
Healthcare Data Pipeline

Project report submitted in partial fulfillment of the requirement for the degree of
Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Shivam Dabral (191273)

Under the supervision of

Dr. Rajni Mohana

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Healthcare Data Pipeline”
in partial fulfillment of the requirements for the award of the degree of Bachelor of
Technology in Computer Science and Engineering/Information Technology submitted in
the department of Computer Science & Engineering and Information Technology, Jaypee
University of Information Technology Waknaghat is an authentic record of my own work
carried out over a period from February 2023 to May 2023 under the supervision of Dr.
Rajni Mohana (Associate Professor in the Department of Computer Science and
Engineering).
The matter embodied in the report has not been submitted for the award of any other degree
or diploma.

(Student Signature)
Shivam Dabral, 191273.

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

(Supervisor Signature)
Dr. Rajni Mohana
Associate Professor
Computer Science and Engineering
Dated

i

ACKNOWLEDGEMENT

Firstly, I express my gratitude to the god who provided me with courage and
fortitude to
complete the project.

I am grateful and wish my profound indebtedness to Supervisor Dr.Rajni
Mohana, Associate Professor, Department of CSE Jaypee University of
Information Technology, Wakhnaghat.

Deep Knowledge & keen interest of my supervisor in the field of "Data
Processing" to carry out this Project. Her endless patience, scholarly guidance,
continual encouragement, constant and energetic supervision, constructive
criticism, valuable advice, reading many inferior drafts and correcting them at
all stages have made it possible to complete this Project.

I would like to express my heartiest gratitude to Dr. Rajni Mohana,
Department of CSE, for her kind help to finish my Project.

I would also generously welcome each one of those individuals who have
helped me straightforwardly or in a roundabout way in making this project a
success. In this unique situation, I might want to thank the various staff
individuals, both educating and non-instructing, which have developed their
convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and
patience of my
parents.

(Student Signature)
Project Group No.: 94
Student Name: Shivam Dabral
Rollno.: 191273

iii

Contents

S.No. CHAPTERS PAGE

1. List of Figures v
2. List of Graphs vi
3. Abstract vii
4. Chapter 1: Introduction 1

a. Ch 1.1: Introduction 1
b. Ch 1.2: Problem Statement 1
c. Ch 1.3: Objectives 2
d. Ch 1.4: Methodology 3
e. Ch 1.5: Organization 3

5. Chapter 2: Literature Survey 4
6. Chapter 3: System Development 6

a. Ch 3.1: Related Terms 6
i) Ch 3.1.1 Python 6
ii) Ch 3.1.2 Spark 13
iii) Ch 3.1.3 Pyspark 25
iv) Ch 3.1.4 Cluster 31
v) Ch 3.1.5 Airflow 34

b. Ch 3.2: Development 38
i) Raw Data 39
ii) Implementation 39

7. Chapter 4: Performance Analysis 46
8. Conclusion 49

a. Conclusion 49
b. Future Scope 49

9. References 51

iv

LIST OF FIGURES

FIGURE PAGE NO.

Fig 1:Python Programming language logo 6
Fig 2: Apache Spark logo 14
Fig 3: Spark Cluster Model 20
Fig 4: Spark Cluster Architecture 32
Fig 5: Apache Airflow logo 34
Fig 6: Real world use cases of Apache Airflow 38
Fig 7: Pseudocode for Data Processing 40
Fig 8: Broadcast join in apache spark 41
Fig 9: Pseudocode for Data Processing Validation 42
Fig 10: Pseudocode for data generation process 43
Fig 11:Pseudocode for data generation process validation 44
Fig 12: DAGs in Apache Airflow 45

v

LIST OF GRAPHS

GRAPH PAGE NO.

Graph 1: Time taken by different compression algorithm 46
Graph 2: Sizes of files after using compression algorithms 47
Graph 3: Time comparison between two algorithms checked 48

vi

ABSTRACT

Big Data Processing is a matter of interest for many companies around the

globe as they try to harness the true power of data. Similarly Nference labs

private limited is trying to make use of healthcare data to provide people with

better medical support. This project aims at exploring such various techniques

that employ engines and frameworks that can generate useful data from raw

data effectively and efficiently. Various techniques were examined based upon

many research papers and compared. The results suggested the use of Apache

Spark as an engine for computation. The data files were stored in parquet

format with snappy compression, so that data occupies less space. Hence the

aim was to come up with an efficient data generation pipeline that can handle

Terabytes of data.

vii

CHAPTER 1 : INTRODUCTION

1.1 Introduction

In today's world there is an abundance of data, owing to the great

advancement in computational power of computers, easy access to the

internet and population explosion. In the last century only the top companies

could afford harnessing huge amounts of data, but nowadays even individuals

can not afford the data. With the abundance of data there was an advent of Big

Data Processing. Big Data. Big Data processing refers to systematic collection

and warehousing of data so as to harness its true potential.

Big tech companies can use the readily available data for making their goods

more "marketable" by being more aware of the trend of the market,what

people want, monitoring their shopping habits, etc. The companies also use

data in the healthcare sector to train machines to diagnose diseases and to

come up with a hypothesis depending upon results of various tests. Not just in

healthcare, machines can be trained in various other sectors using the abundant

data like to train self-driving cars, make recommendation systems for the

consumers, and many more.

However, this data is ever growing and needs to be managed properly,

otherwise it can incur huge costs for storing data and processing which also

consumes a lot of time. Hence it is essential to maintain this data properly so

that its powers can be used optimally for the good of the company.

1.2 Problem Statement

The issue with Big Data is explained by 5 Vs- Volume (How big is the data?),

Velocity (How frequent is the data appended?), Variety (Formats of data like

1

image, audio, etc), Value (How much of the data stored is actually useful) and

Veracity (How accurate the data is?). Dealing with these problems of big data

the most useful step hence are data extraction, data transformation and the

subsequent data loading. Data Extraction refers to extracting the data from

sources while ensuring its accuracy(no or minimum outliers). Data can thus

become too much to handle, however is it all necessary? Hence Data

Transformation is required to remove the bulk which is of no good. And at last

is Data Loading into a platform in a manner that it occupies less space and is

easy to access. Also the data read speed must be fast to ensure less time spent

in data processing. Hence making a chain of operations is the task that ensures

all these principles are taken care of making use of data easy for the company

and ensuring its utilization to the maximum.

1.3 Objectives

The project objectives are as follows:

● Create a pipeline of successive functions that can be used in data

extraction, data transformation and data loading, in the specified order.

● Data Extraction should merge data which is different/inconsistent and

received from different sources.

● Data Transformation must be efficient, capable of removing data bulk

that is not required and can be dropped because of no utility. Thereby

saving storage space and shall be cost effective also.

● Data Loading must be such that data is quickly accessible across all

platforms like cloud. Also data must be stored in a format such that

data retrieval is quick. It must adopt some compression algorithm so

that it occupies the minimum space possible.

● Not only an effective but also an efficient data pipeline is required to

ensure data is processed quickly.

2

1.4 Methodology

The project work first of all includes recognizing all utilities that would be

required to accomplish the aforementioned tasks. Having chosen the utilities it

is important to get familiar with them and adopt best programming practices to

ensure effective and efficient data processing. This shall include using the

Apache Spark engine for processing huge amounts of data. Being familiar

with Python using PySpark, a python api for Apache Spark is necessary. Also

getting used to Apache Airflow for managing the pipeline is necessary. Whole

pipeline needs to be automated as each process involved may take hours,

hence any manual triggers must be avoided to maintain the flow of the process

and also save cost by not allowing clusters not to sit idle.

1.5 Organization

Chapter 2: Includes literature Survey containing studies, analysis and brief

report for various research papers on data processing and information

available in relevant journals, conference papers etc.

Chapter 3: Includes the system development which contains a brief note on

various utilities studied for accomplishing this task. Also it contains a detailed

report on how the project was made and finished.

Chapter 4: Includes the results of the pipeline made and a small performance

review of how it was performed.

Chapter 5: The conclusion is contained here which includes a discussion upon

the results. Also this part houses a critical analysis of what has been done and

what better can be done to improve it further i.e., the future developments.

3

CHAPTER 2 : LITERATURE SURVEY

"Distributed Stream Processing Frameworks: A Comparative Study" by Li et

al. (2018).[1] This paper compares four popular distributed stream processing

frameworks, including Apache Spark Streaming, Apache Flink, Apache

Storm, and Apache Samza. The authors evaluate the performance, scalability,

and fault-tolerance of each framework, and provide insights into the strengths

and weaknesses of each tool. So basically, this paper claims Flink to have least

latency, Samza to have least CPU usage and in the end Spark to have least

disk consumption among all. This study used Twitter Api and Kafka to fetch

tweets and then transformed them before loading them into ElasticSearch.

"A Survey of Big Data Processing Frameworks in Healthcare Sector" by

Saravanan et al. (2018) is another research paper that presents a

comprehensive study of various frameworks for big data processing in the

healthcare sector.[2] The study compares Apache Spark, Apache Hadoop and

Apache Storm for big data processing, discussing their pros and cons. Apache

Spark is a popular big data processing framework that offers high performance

and scalability, making it well-suited for healthcare applications that require

real-time data processing and analysis and therefore appears above the two in

this sector where privacy and security are also a huge concern.

Kumar et al. (2017)'s research article "Big Data Processing Using Apache

Spark in Hadoop Environment" analyses the performance and efficiency of

Apache Spark for large data processing in a Hadoop system. The authors

compare Spark's performance to that of other large data processing

frameworks, such as Apache Hadoop and Apache Storm, and show that Spark

exceeds them in terms of processing speed and efficiency.[3] Basically the

trials also look at how different Spark parameters, such as the number of

partitions, affect processing performance. The authors discover that increasing

4

the number of partitions can enhance processing performance, but only up to a

certain limit.

The foundational research article "Apache Spark: A Unified Engine for Big

Data Processing" by Zaharia et al. (2016) introduces Apache Spark and

outlines its architecture and main features.[4] Basically the purpose of this

article is to present an in-depth analysis of Spark's design and to emphasise its

benefits over alternative large data processing frameworks.The authors begin

by analysing the constraints of existing large data processing systems such as

Hadoop MapReduce, as well as the need for a unified engine capable of

handling a broad range of workloads such as batch processing, interactive

queries, and stream processing. They next go through Apache Spark and its

architecture, which is built on a distributed computing approach that makes

use of in-memory processing and data partitioning to achieve great speed and

scalability.

So basically these articles provide a thorough introduction to the different big

data approaches and technologies, as well as a discussion of the advantages

and disadvantages of using Apache Spark. They can be useful for academics

and practitioners looking to understand the state of the art in big data

processing and select the appropriate technology for their requirements.

5

CHAPTER 3 : SYSTEM DEVELOPMENT

The development of a datagen pipeline for a company that delivers the

required data is not enough. Efficiency is also very important. Efficiency in

terms of space and time holds a very important value. Therefore it becomes a

necessity to go through various frameworks, libraries, etc before the

development of the actual pipeline. Here is a detailed overview of some of

such terms.

3.1 Related Terms

3.1.1 Python

Fig 1:Python Programming Language

Python is a high-level, interpretable programming language widely used in

various fields such as web development, data analysis, machine learning,

scientific computation, etc. It was originally introduced by Guido van Rossum

in 1991, and since then it has become one of the most popular programming

languages ​​in the world. Python is known for its ease of use, readability, and

simplicity. Its syntax is designed to be clear and concise, making it ideal for

novice and experienced programmers alike. Python is also an interpreted

language, which means the code can be executed without compilation, which

6

helps speed up the development process. Another characteristic that

distinguishes Python from other programming languages is it being a

dynamically typed language. Variables do not need to be defined with a

specified data type, and their type is decided at runtime based on the value

provided to them. This increases flexibility and simplicity of use since

developers may quickly assign and reassign values without worrying about

type definitions. Python's popularity has risen in recent years, thanks in part to

the advent of data science and machine learning. Python has been a favourite

among data scientists due to the availability of sophisticated libraries such as

NumPy, pandas, and scikit-learn, who appreciate its simplicity of use and

robust data processing capabilities.

Features of Python are as follows:-

Python has become extremely popular in recent years. It is well-known for its

straightforward syntax, ease of usage, and strong capabilities, making it an

excellent choice for developers, data scientists, and amateurs alike. Some

features of Python that make it such a versatile and powerful programming

language are as follows:-

1. Simple and easy-to-read syntax: One of Python's most distinguishing

qualities is its simple and easy-to-read syntax. Unlike many other

programming languages, Python employs indentation rather than curly

brackets or other symbols to express block organisation. This makes the

language easier for newcomers to learn and comprehend, and it also helps to

decrease the amount of code necessary to do a particular task.

2. Dynamically-typed language: Python is a dynamically-typed language,

which means that variables in Python are not allocated a data type at

declaration but are decided at runtime based on the value provided to the

variable. This provides increased flexibility and simplicity of use since

7

developers may quickly assign and reassign values without having to worry

about type definitions.

3. Python is an interpreted language, which means that the source code is

directly run without the need for a separate compilation process. This makes it

easier for developers to write and test code since they can see the

consequences of their changes without having to wait for the code to compile.

4. Object-oriented programming (OOP): Python supports object-oriented

programming, allowing developers to write code that is reusable and modular.

OOP enables the generation of objects (class instances) and offers a

framework for encapsulating data and behaviour.

5. Cross-platform compatibility: Because Python is a cross-platform language,

code written on one platform may be run on another without change. As a

result, it is an excellent choice for developers who need to construct

programmes that can operate on numerous systems.

Python also has a huge and active community of third-party built-in libraries

and programming. These libraries and frameworks make it simple for

developers to obtain the resources they want to execute projects including web

development, data analytics, machine learning, or anything else.

Applications and Use Cases of Python are as follows:-

Python is a popular high-level programming language that has spread to a

wide range of industries and applications. It is popular among developers, data

scientists, and academics because of its simple syntax, ease of usage, and huge

library of modules and packages. Here are some applications where this

language finds its use:-

8

Web development: Python's web frameworks, such as Django, Flask, and

Pyramid, make it an excellent choice for web development. These frameworks

offer a variety of functionality, ranging from simple web page templates to

full-stack solutions with built-in database support and security measures.

Python is also frequently used in tandem with front-end technologies, such as

HTML, CSS, and JavaScript to create dynamic and interactive web

applications.

Data Science and Machine Learning: Python is a popular choice for data

scientists and machine learning practitioners because of its flexibility and

strong libraries such as NumPy, Pandas, and Scikit-learn. Python enables

efficient data processing and analysis, allowing users to deal with enormous

datasets in a short period of time.

Scientific Computing and Numerical Analysis: Python's ability to work with

arrays and matrices, together with libraries like SciPy and NumPy, makes it a

good choice for scientific computing and numerical analysis. These libraries

offer a variety of functions, such as linear algebra, optimisation, and statistical

analysis. Python is also widely used to simulate and analyse complicated

systems in scientific domains such as physics, chemistry, and biology.

Scripting and Automation: Python is an excellent choice for scripting and

automation due to its simple syntax and ability to automate repetitive

activities. File management, data processing, and system administration may

all be automated using Python scripts. Python is also often used in DevOps,

where it is used to automate deployment and monitoring of softwares.

Python libraries and frameworks in python are as follows:-

Python is a very popular programming language, and one of the reasons for

this is the large number of libraries and frameworks that are available for it.

9

These libraries and frameworks provide strong tools for developers to make

their work more efficient and productive. Python includes a number of

standard libraries as part of the language itself. These libraries cover a wide

range of subjects, from fundamental data types and structures to sophisticated

capabilities like network programming and regular expressions.

Here are a few examples of standard Python libraries:

1. math: Provides basic mathematical functions like sin, cos, tan, and

logarithms.

2. os: Provides access to operating system functionality like file operations,

directory operations, and process management.

3. datetime: Provides classes for working with dates and times.

4. random: Provides functions for generating random numbers.

5. urllib: Provides functions for making HTTP requests.

Third-party libraries and frameworks for Python

While the standard libraries provide a solid foundation for Python

development, most Python developers rely heavily on third-party libraries and

frameworks to build their applications. There are thousands of third-party

Python libraries and frameworks available, covering almost every possible use

case.

Here are a few examples of popular third-party Python libraries and

frameworks:

1. Flask: A lightweight web framework for building RESTful APIs and web

applications.

2. Django: A full-stack web framework for building complex web applications

quickly and easily.

10

3. NumPy: A library for working with arrays and numerical data in Python.

4. Pandas: A library for data analysis and manipulation.

5. Matplotlib: A library for creating data visualizations like charts and graphs.

6. TensorFlow: A library for machine learning and deep learning.

7. Scikit-learn: A library for machine learning algorithms like classification,

regression, and clustering.

8. Pygame: A library for building games and multimedia applications.

Popular Python libraries for data science and machine learning

Python has become one of the most popular programming languages for data

science and machine learning, and there are many powerful libraries available

specifically for these use cases.

Here are a few examples of popular Python libraries for data science and

machine learning:

1. NumPy: A library for working with arrays and numerical data in Python.

2. Pandas: A library for data analysis and manipulation.

3. Matplotlib: A library for creating data visualizations like charts and graphs.

4. SciPy: A library for scientific computing and advanced mathematics.

5. Scikit-learn: A library for machine learning algorithms like classification,

regression, and clustering.

6. TensorFlow: A library for machine learning and deep learning.

7. Keras: A library for building neural networks and deep learning models.

8. PyTorch: A library for building and training neural networks.

Some Python Advanced Features and Concepts are:-

Python is a versatile and powerful programming language that has gained

popularity in recent years due to its ease of use, simplicity, and broad range of

11

applications. While Python's fundamental syntax is straightforward, it also has

a number of advanced features and concepts that may be used to build

complex applications and systems.

Python Object-Oriented Programming (OOP)-Object-oriented programming is

a programming paradigm that organises data and functionality into classes and

objects to generate modular, reusable code. Python is an object-oriented

programming language, which means it supports concepts like encapsulation,

inheritance, and polymorphism. Classes in Python are specified using the

"class" keyword, and objects are produced with the class constructor function.

The "def" and "self" keywords are used to add methods and attributes to a

class, respectively.

Decorators and Metaclasses in Python-Decorators are a strong Python feature

that allows functions to be changed or expanded by other functions.

Decorators are useful for adding functionality to existing functions, such as

logging or error checking, without changing the original function code.

Decorators are created using the "@" symbol followed by the name of the

decorator function. Metaclasses are another strong Python feature that allow

classes to be changed or expanded by other classes. Metaclasses are used to

specify how class objects should behave during execution. It may be used to

add new methods or attributes to classes, change the behaviour of existing

classes, or create custom class formation logic.

Python Multithreading and Multiprocessing- Multithreading and

multiprocessing are two wonderful Python ideas that enable you to do

numerous activities concurrently. Multithreading employs threads, which are

subprocesses that operate in a single process, whereas multiprocessing

employs a number of activities that occur concurrently on various CPU cores.

Multithreading and multiprocessing may be utilised to offer many Python

functions, and speed and scalability have substantially improved.

12

The Python "threading" module, which provides a simple interface for

creating and managing threads, can be used for multithreading. Offering

comparable interfaces for configuring and managing systems, the

"multiprocessing" module can be used for multiple processing. Both modules

have tools for monitoring and managing concurrent activities, as well as

supporting synchronization and communication between threads and processes

Python is a high-level multi-purpose programming language that has become

increasingly popular in recent years. Python's simple syntax, robust library

support and cross-platform portability have made it popular with developers in

projects ranging from web development to scientific computing

The future of Python is bright, with improvements and new features being

added to the language all the time. The recent release of Python 3.10 has

significant improvements in performance, security and usability. Python is

expected to remain the top choice for developers across industries as it grows

in popularity. Python is well suited to a wide variety of programming

challenges, from simple scripting tasks to big data analysis to machine

learning projects, thanks to its simple implementation, robust library and

active community

Overall, Python is a robust and scalable programming language with various

benefits for developers.

3.1.2 Spark

Spark is a distributed computing system designed to process large amounts of

data in parallel. It was developed as a research project at AMPlab at UC

Berkeley in 2009, and later became an open source project in 2010.It has

13

gained significant popularity due to its high processing speed, memory

management, fault tolerance and many more such characteristics.

Fig 2:Apache Spark Logo

Spark is an essential tool for big-data processing because it can handle large

amounts of data that would otherwise be impossible to handle with traditional

tools. Spark for businesses enables businesses to process large amounts of data

in near real-time, make decisions rapidly, show patterns and trends, and get

valuable insights.

Spark was developed in 2009 by Matei Zaharia and his colleagues at the

AMPlab at UC Berkeley. The goal was to build a distributed computing

system that could handle enormous amounts of data efficiently and swiftly.

Hadoop MapReduce, a then-common standard for big data processing, was

initially improved by Spark. In 2010, Spark was made accessible as an

open-source project, and the big data processing sector adopted it quickly. Due

to its rapid execution times, efficient memory management, and fault

tolerance, Spark has been a well-liked alternative to Hadoop MapReduce.

Since then, Spark has grown and altered as new features and functionalities

have been added.

14

The importance of Spark in the realm of Big Data processing is unparalleled.

Capable of parallel processing of huge volumes of data, Spark is essential to

companies hoping to analyze the increasingly vast quantities of information

they receives. Its support for a wide range of data sources such as HDFS,

Apache Cassandra, Apache HBase, and Amazon S3 allows Spark to be used

for analysis from multiple streams as well. Beyond its unrivaled processing

power, Spark’s astute memory management and fault tolerance capabilities

make it a truly powerful tool for Big Data applications. Spark stores data in

memory for quicker analysis, compared to disk-based systems, and its fault

tolerance capabilities ensure that data is neither lost nor damaged in the event

of a node failure. Indeed, Spark's ability to make incredibly complex data

analysis faster and more accurate, is truly invaluable.

Spark is a distributed computing system designed to process large amounts of

data in parallel. The Spark infrastructure is built on a cluster computing

framework, which allows data processing tasks to be distributed across

clusters of computers The Spark infrastructure is flexible, allowing users to

process data separately if depending on the data type and resource

requirements. The Spark framework is based on a master-worker architecture,

where a master node controls a group of worker nodes that perform data

processing tasks. The master node controls the distribution of tasks among the

worker nodes, ensuring that the tasks are executed in an efficient and

fault-tolerant manner.

Spark consists of many components that work together to efficiently manage

data. These factors include:

1. Spark Core: This is the core component of Spark and provides the core

functionality of distributed data processing. Spark Core provides

support for distributed workflows, fault tolerance, and data parallelism.

15

2. Spark SQL: This product provides support for structured and

semi-structured data operations. Spark SQL allows users to query data

with SQL-like syntax and supports data sources such as Hive, Parquet,

and JSON.

3. Spark Streaming: This feature provides support for managing real-time

databases. Spark Streaming enables users to process data streams in

near real-time, enabling real-time decision making and monitoring.

4. Spark MLlib: This product provides support for machine learning and

data mining. Spark MLlib contains various machine learning

algorithms and tools for data preprocessing and feature extraction.

5. Spark GraphX: This product provides support for graph processing.

Spark GraphX ​​enables users to efficiently manipulate and analyze

large graphs.

Spark can be executed in various execution modes, which includes modes like

standalone, YARN, and Mesos. Standalone mode is the default mode and is

suitable for small to medium-sized clusters. YARN and Mesos are cluster

managers that provide support for managing large clusters.

Spark provides support for different data abstraction and processing models,

including RDDs, DataFrames, and Datasets. DataFrames provide a

higher-level API for processing structured and semi-structured data. Datasets

provide a type-safe API for processing data and support both structured and

unstructured data. Spark is a powerful distributed computing framework that

allows users to process large-scale datasets in parallel. Spark provides several

data abstractions and processing models that enable users to process data in a

16

distributed and fault-tolerant manner. In this article, we will explore some of

the key data abstractions and processing models in Spark.

Resilient Distributed Datasets (RDDs) are the basic building block of Spark.

RDDs are immutable distributed collections of objects that can be processed in

parallel across a cluster of computers. RDDs are fault-tolerant, meaning that if

a node in the cluster fails, the RDD can be reconstructed from the data on

other nodes. RDDs provide two types of operations: transformations and

actions. Transformations create a new RDD from an existing RDD, while

actions perform some computation on the RDD and return a result to the

driver program or save the result to external storage. Some examples of

transformations in RDDs include map(), filter(), and flatMap(), while some

examples of actions include count(), collect(), and saveAsTextFile().

DataFrames and Datasets are higher-level abstractions in Spark that provide a

more structured way to work with data. DataFrames are distributed collections

of data organized into named columns, similar to a table in a relational

database. Datasets provide type-safe, object-oriented programming interfaces

for working with structured and unstructured data. DataFrames and Datasets

provide a rich set of operations, including filtering, aggregation, sorting, and

joining. They can be created from a variety of data sources, including CSV,

JSON, Parquet, and Hive tables. DataFrames and Datasets can also be

converted to RDDs for lower-level processing if necessary.

Spark provides a wide range of transformations and actions that can be used to

process data in RDDs, DataFrames, and Datasets. Basically Transformations

are operations that create a new RDD, DataFrame, or Dataset from an existing

one, while actions are operations that return a result to the driver program or

save the result to external storage. A few examples of Transformations in

spark are as follows map(), filter(), flatMap(), groupByKey(), reduceByKey(),

17

join(), and cogroup(). A few examples of Actions in spark are as follows

count(), collect(), reduce(), saveAsTextFile(), and foreach().

Caching and persistence are essential features of Spark that allow users to

reuse RDDs, DataFrames, and Datasets across multiple computations. Caching

an RDD, DataFrame, or Dataset stores the data in memory or on disk,

reducing the need to recompute the data each time it is used in a computation.

Spark provides several levels of persistence, including MEMORY_ONLY,

MEMORY_ONLY_SER, MEMORY_AND_DISK,

MEMORY_AND_DISK_SER, and DISK_ONLY. Choosing the right

persistence level depends on the size of the data, the available memory, and

the frequency of use.

Spark is a popular distributed computing framework used for big data

processing. It provides a range of programming languages and APIs for

working with data in distributed environments. Spark provides support for

several programming languages, including Scala, Java, Python, and R. Scala is

the native language of Spark, and many of its core libraries are written in

Scala. Java is another popular language used with Spark and provides a more

verbose syntax for working with Spark. Basically Python and R are popular

languages used for data science, and their support in Spark makes it easier to

use Spark for data science tasks.

Basically Spark provides several APIs for working with data, including the

RDD (Resilient Distributed Datasets), DataFrame, and Dataset APIs. RDD is

the basic building block of Spark and provides low-level APIs for working

with distributed data. DataFrame and Dataset APIs provide a more structured

and type-safe way to work with data, similar to working with tables in a

relational database.

18

The DataFrame and Dataset APIs are similar in structure, but Dataset provides

stronger type-safety guarantees than DataFrame. Basically both APIs provide

a wide range of operations for working with data, including filtering,

aggregation, and joining.

Spark SQL is a Spark module that allows you to deal with structured data

using a programming interface. Spark SQL allows users to query data using

SQL-like syntax, making data interaction easier for persons with SQL

knowledge. Spark SQL can read and write data in a variety of formats,

including JSON, CSV, and Parquet. There are certain advantages to utilising

Spark SQL over a traditional SQL engine. To begin, it effortlessly connects

with Spark's existing APIs, allowing customers to mix and match several APIs

for data processing. When dealing with huge data sets, Spark SQL offers data

aggregation and durability, which may significantly boost throughput. Finally,

because Spark SQL offers batch and streaming data processing, it is an

excellent choice for real-time data processing.

Spark Streaming is a Spark module that supports real-time data processing.

Users may manage data streams in real time using the same API that is used

for batch data processing with Spark Streaming. Spark Streaming supports a

variety of data sources, including Kafka, Flume, and HDFS.Fault tolerance,

user scalability, and support for window-based workflows are just a few of the

features that make Spark Streaming excellent for real-time applications. Spark

Streaming also integrates with Spark's other APIs, allowing you to easily

combine real-time and batch processing.

Spark is a popular distributed computing platform for processing massive data

that is meant to run on machine clusters. The Spark cluster is made up of

numerous nodes, each of which is a machine in the cluster. A Spark cluster

consists of two types of nodes: master nodes and worker nodes.So basically,

the master node maintains the Spark application and supervises the worker

19

nodes operations. The worker nodes are in charge of the duties given to them

by the master node.

Fig 3:Spark Cluster model

Spark can be deployed to a cluster using one of three different cluster

managers: Standalone, YARN, and Mesos.

Standalone mode is the easiest way to deploy Spark in a cluster. So basically,

In this mode, Spark is its own cluster manager, and the user can install Spark

through a simple command-line interface. YARN is another popular cluster

manager used in Spark. YARN is a part of Hadoop and is widely used in

Hadoop clusters. Spark can be run on YARN using a simple configuration file.

Mesos is another popular cluster manager used in Spark. Mesos provides a

distributed system kernel that pulls in CPU, memory, storage, and other

compute resources to create a shared pool of resources that Spark can use.

Managing Spark clusters can be challenging, and there are several tools

available to help manage Spark clusters. Some of the most popular Spark

cluster management tools which can be used to manage spark clusters include

Apache Ambari, Cloudera Manager, and Hortonworks Data

Platform.Basically, Apache Ambari is an open-source management tool used

to manage Hadoop and other related technologies, including Spark. Ambari

provides an easy-to-use web-based interface for deploying, configuring, and

monitoring Spark clusters. Cloudera Manager is a proprietary management

20

tool used to manage Hadoop and related technologies, including

Spark.Basically Cloudera Manager provides an easy-to-use web-based

interface for deploying, configuring, and monitoring Spark clusters.

Hortonworks Data Platform (HDP) is another popular management tool used

to manage Hadoop and related technologies, including Spark. HDP provides

an integrated solution for managing Spark clusters and includes features such

as automated provisioning, monitoring, and troubleshooting.

Spark is a powerful distributed computing framework that provides a wide

range of data processing capabilities, including machine learning and graph

processing. A small overview of the machine learning and graph processing

capabilities of Spark, and how they can be used for big data processing are as

follows:

Machine Learning in Spark: Spark includes a strong machine learning

framework known as MLlib, which allows users to create scalable machine

learning models. Machine learning methods supported by MLlib include

classification, regression, clustering, and collaborative filtering. MLlib is

meant to operate with Spark's main API, and it includes a number of

high-level APIs for developing machine learning models, such as the ML

pipeline API and the DataFrame-based API.

Basically the above-mentioned ML pipeline API is a high-level API that

provides a straightforward and intuitive approach to design machine learning

pipelines. A pipeline is a series of processes used to turn raw data into a

format that a machine learning algorithm can use. The pipeline API makes it

simple to create sophisticated pipelines.By offering a collection of high-level

abstractions for data transformation, feature extraction, and model training, the

pipeline API makes it simple to design large machine learning pipelines.

Another high-level API is the DataFrame-based API, which provides a

straightforward and easy approach to create machine learning models using

21

Spark's DataFrame API. The DataFrame-based API contains high-level

abstractions for data preparation, feature extraction, and model training.

Spark Graph Processing: GraphX, a powerful graph processing package

provided by Spark, enables developers to create scalable graph algorithms.

GraphX ​​is built on top of the main Spark API, and provides enhanced APIs for

developing graph algorithms. PageRank, rectangle count, associated content,

and label width are just a few of the graph algorithms supported by GraphX.

GraphX ​​also provides many amazing APIs for graph applications, such as the

Graph API and the Pregel API. Graph API is a high-level API that allows you

to create graph algorithms in a simple and logical way. The Graph API

provides high-level abstractions for developing graph algorithms, such as

vertex and edge RDDs for defining the vertices and edges of a graph. Pregel

API is another high-level API that makes it easy to build graph algorithms

using the Pregel programming model. The pregel programming model is a

message-based program that transfers messages between vertices to provide

shortcuts for graph algorithms.

Spark is a powerful big data processing tool that has been widely adopted by

industries of all kinds. From e-commerce to healthcare, Spark is a versatile

and efficient solution for handling large datasets. The most popular use cases

of Spark and real-world examples of its application are as follows:-

1. E-Commerce: E-commerce companies process a lot of data every day, from

customer interactions to inventory management. Spark provides real-time

solutions to process this data, enabling eCommerce businesses to gain insights

into customer behavior and make data-driven decisions For example, Amazon

uses Spark for its customized product recommendations for each, based on

user behavior and purchase history.

22

2. Financial information: Financial institutions produce a wealth of

information every day, from stock prices to trading history. Spark provides

real-time solutions to process this data, enabling financial institutions to

monitor market trends and create investment decisions such as Capital One

using Spark to detect fraud, detect transactions as it creates illusion and

prevents fraudulent activities.

3. Health care: The healthcare industry processes a lot of data every day, from

patient records to medical images. Spark provides real-time solutions to

process this data, empowering healthcare providers to improve patient

outcomes and reduce costs. For example, the University of California, San

Francisco uses Spark to analyze medical imaging data, identify patterns, and

predict disease outcomes.

4. Telecommunications: Telecom companies generate a lot of data every day,

from call logs to networks. Spark provides real-time solutions to process this

data, enabling telecom companies to monitor network performance and

identify potential issues For example, AT&T uses Spark for its predictive

maintenance program.

Real-World Examples of Spark Usage are as follows

1. Uber: Uber is a transportation network company that uses Spark for its data

processing needs. Uber uses Spark to analyze trip data and optimize its pricing

strategy, ensuring a good match between riders and drivers. Spark also helps

Uber forecast demand in real time, allowing the company to better allocate

drivers.

2. Netflix: Netflix is ​​a popular streaming service that uses Spark for its data

processing needs. Netflix uses Spark to optimize its content recommendations,

ensuring that users are shown relevant content based on their viewing history.

23

Spark also helps Netflix manage network performance, ensuring users can

stream content with ease.

3. IBM Watson: IBM Watson is a cognitive computing platform that uses

Spark for its data processing needs. IBM Watson uses Spark to process vast

amounts of unstructured data, enabling it to understand natural language and

generate insights. Spark also helps IBM Watson to identify patterns in data,

making it a powerful tool for predictive analytics.

In summary, Spark is a fast and efficient framework for running distributed

computing on large datasets. It provides flexible configuration models and

APIs that can be used to develop complex data processing workflows. Spark's

support for multiple programming languages ​​and compatibility with various

cluster computing frameworks also make it a versatile option for big data

processing

Looking ahead, Spark's future prospects are very promising. With the

increasing demand for real-time data processing and machine learning, Spark

is expected to become an increasingly important tool for dealing with big data

as new use cases and applications emerge, making Spark available improve

and improve, and further solidify its position as a leading big data provider

management system

In conclusion, Spark provides a powerful and flexible solution to handle large

data processing applications. Its ease of use, scalability, and wide range of

features and benefits make it a valuable tool for organizations of all sizes and

industries. As the demand for big data processing increases, Spark will

undoubtedly play a key role in shaping the future of data-driven

decision-making.

24

3.1.3 Pyspark

Big data has become an essential component of modern enterprises and

businesses. As data evolves, methods and technology that can efficiently

manage and analyse massive volumes of data are required. PySpark is one

such technology that has grown in popularity in recent years. PySpark is a

Python API for Apache Spark, a powerful distributed computing framework

designed for big data processing. This allows developers to write Spark

applications using the Python programming language, which is one of the

most popular languages ​​in the data science and machine learning communities

PySpark provides a flexible interface for Spark programming and Python. It

enables developers to leverage the power of Apache Spark for big data

processing tasks, but retain the simplicity and flexibility of Python PySpark

offers a superior API for distributed data processing and machine learning,

making it an excellent choice for data scientists and developers who want to

process more data efficiently

PySpark has become an essential tool for big data processing for several

reasons. First, Python is a popular programming language among data

scientists and developers. This popularity has led to the creation of a vast

ecosystem of Python libraries for data science, machine learning and artificial

intelligence, such as NumPy, Pandas, and Scikit-learn. Second, Apache Spark,

the underlying distributed computing framework, is designed to handle large

amounts of data in a distributed and parallel manner, making it ideally suited

for big data processing Spark uses an API powerful variety for distributed data

processing, including data processing, streaming, and machine learning.

Finally, PySpark makes it easy for developers to use the power of Spark from

Python, a language that many data scientists and developers are already

25

familiar with This makes it easy for developers to get started with Spark and

benefit from its power if distributed electronically.

One of the fundamental concepts of PySpark is RDDs, or Resilient Distributed

Datasets. RDDs are a distributed collection of objects that can be processed in

parallel across a cluster of computers. RDDs can be created from data stored

in files, databases, or other sources, and they can be transformed and

processed using PySpark's APIs.

PySpark provides a set of APIs for transforming RDDs. Transformations are

operations that produce a new RDD from an existing one. Examples of

transformations include map, filter, and reduce. Actions, on the other hand, are

operations that return a value to the driver program or write data to an external

storage system. Examples of actions include count, collect, and save.

PySpark uses lazy evaluation, which means that transformations on RDDs are

not executed immediately. Instead, PySpark builds a directed acyclic graph

(DAG) of transformations and actions and only executes them when an action

is called. This approach is more efficient than immediately evaluating every

transformation, as it allows PySpark to optimize the execution plan and avoid

unnecessary computations.

PySpark is a well-known distributed computing technology that enables users

to analyse massive volumes of data in an efficient and scalable way. PySpark

provides a number of libraries and components in addition to its core

foundations like as RDDs, transformations, and actions, making it a

formidable tool for data scientists and engineers.

26

Some Pyspark Libraries are as follows:-

● Spark SQL, one of the most popular PySpark libraries, provides a

high-level interface for working with structured and semi-structured

data. Users may simply conduct SQL queries on huge datasets using

Spark SQL, as well as perform complex analytics with built-in

functions and operators.

● Spark Streaming, another major component of PySpark, allows users

to handle real-time data streams in parallel over a cluster of computers.

Users may utilise Spark Streaming to create real-time data pipelines

that analyse data as it is created, providing rapid and accurate insights

into streaming data.

● Another key feature of PySpark is MLlib, or the Machine Learning

library, which contains a variety of machine learning techniques and

data analysis tools. Users can use MLlib to build and train models on

large data sets, as well as perform sophisticated analyzes such as

clustering and classification.

● Finally, GraphX ​​is a graph application that allows users to perform

powerful graph calculations on large data sets. The well-designed

GraphX ​​API allows users to quickly define and modify graphs, create

graph algorithms, and create new graph algorithms with GraphX.

Overall, PySpark offers a wide range of libraries and features, making it an

effective tool for data scientists and engineers. whether they need to handle

real-time data streams, build and train machine learning models, or perform

complex calculations. PySpark is a strong tool for dealing with massive data,

but it may be challenging to write efficient code and maintain applications.

There are various best practises for PySpark development like including

27

efficient code, debugging approaches, and development tools that one should

follow.

Writing high-performance code that can handle massive volumes of data is

one of the most difficult aspects of PySpark development. Users must first

understand the various RDD variables and actions available in PySpark and

how you can use them to optimise Pyspark code. For example, transformations

such as map, filter, reduceByKey, and so on can frequently be used to conduct

operations on RDDs. Furthermore, methods such as caching and partitioning

may be used to boost the speed of PySpark code.

Because Spark is dispersed, developing PySpark apps might be difficult.

Using logging statements to get information about the progress and status of

your application is a valuable technique of troubleshooting PySpark

applications. You may also analyse your application's behaviour using

PySpark's built-in debugging tools, such as the Spark UI. Another good

debugging strategy for PySpark apps is to run your code locally initially with

tiny datasets before scaling up to bigger datasets on the Spark cluster. This

might assist you in swiftly identifying and correcting mistakes.

Many PySpark development tools are available to assist simplify and speed

the development process. PyCharm, for example, is a popular Python IDE that

incorporates PySpark functionality, such as syntax highlighting, code

completion, and debugging. Jupyter Notebook and Apache Zeppelin, for

example, provide an interactive environment for working with PySpark,

letting users to test and iterate your code fast. PySpark Use Cases: Big Data

Processing, Machine Learning, and Real-Time Streaming Analytics. Python

API for Apache Spark PySpark is a powerful tool for processing and analysing

large amounts of data. It provides high-level connectivity for distributed

computing and helps data scientists and developers to construct complicated

data processing applications using Python. Beyond massive data processing,

28

PySpark's capabilities include machine learning and real-time flow analysis. In

this essay, we will look into the PySpark deployment environment in various

scenarios.

Big Data processing: PySpark is a popular tool for big data processing. Using

distributed computing approaches, it can efficiently handle big data processing

processes. PySpark is a flexible tool for large data processing since it can

handle organised, semi-structured, and unstructured data.

1. Extract, Transform, and Load (ETL) PySpark can take data from numerous

sources, transform it to an arbitrary format, and load it into the target system.

2. Data cleaning and preprocessing: PySpark may be used to clean data,

validate data, normalise data, and transform data. This is especially helpful

when dealing with unstructured data, which needs substantial cleaning and

upkeep.

3. Data analysis: PySpark can execute complicated data analysis jobs on large

amounts of data, such as making statistical choices, creating reports, and

discovering patterns and trends.

Machine learning: PySpark also provides a rich set of machine learning

libraries and tools that can be used for a variety of applications. PySpark’s

machine learning libraries are built on top of Spark’s distributed computing

framework, enabling data scientists to efficiently execute large machine

learning projects Here are some of PiSpark’s most popular machine learning

use cases:

1. Predictive modeling: PySpark can be used to build predictive models that

can be used for various applications such as fraud detection, customer

segmentation, recommendation systems and more

29

2. Grouping and classification: PySpark can be used to perform clustering and

classification tasks such as combining similar objects and dividing objects into

predefined groups.

3. Natural Language Processing (NLP): PySpark can be used for NLP tasks

such as sentiment analysis, text segmentation, and entity recognition.

Real-time streaming analysis: PySpark can also be used for real-time

streaming analysis. It provides a streaming API that can be used to process

data streams in real time. PySpark’s streaming capabilities make it a popular

choice for applications such as:

1. Fraud Detection: PySpark can be used to detect fraudulent transactions in

real time by analyzing transaction databases.

2. Social Media Monitoring: PySpark can be used to monitor social media

feeds in real time and analyze trends and sentiment.

3. IoT data processing: PySpark can be used and analyzed data streams from

IoT devices such as sensors and wearables.

PySpark is a robust open source distributed computing platform that has

transformed huge data processing, analysis, and administration. Spark SQL,

Spark Streaming, MLlib, and GraphX are among the PySpark libraries and

functionalities that have been tested. PySpark has garnered great popularity in

the large data processing and machine learning fields because to its scalability,

adaptability, and ease of use. It contains sophisticated features and tools that

let users to handle and analyse enormous volumes of data with ease. PySpark's

machine learning and real-time streaming analytics features make it a

formidable tool for corporations and organisations across industries.

30

An important advantage of PySpark is its integration with the Python

programming language, which has a large developer community and a wide

range of third-party libraries and programs This integration enables data

scientists and developers to use Python libraries simple, flexible and exploits

the rich ecosystem. To get the most out of PySpark, developers and data

scientists should follow best practices, including writing efficient code,

maintaining applications, and deploying development tools to optimize their

workflow. These actions can help improve the performance and reliability of

PySpark applications and make it easier to perform maintenance and upgrades.

PySpark is projected to continue to evolve and improve its capabilities in the

future. PySpark may become an increasingly significant tool for businesses

and organisations that need to effectively handle and analyse massive volumes

of data as big data grows and demand for real-time analytics grows.

In conclusion, PySpark is a strong tool for massive data processing, machine

learning, and real-time leak detection. Its adaptability, scalability, and

simplicity of use make it a great tool for enterprises and organisations of all

sizes. Developers and data scientists may use PySpark's capabilities and

achieve their data processing and analytics goals by employing development

tools that adhere to best practises.

3.1.4 Spark Clusters

Apache Spark is a distributed computing system designed to process large

amounts of data simultaneously across a set of computers. A Spark cluster is a

group of machines that work together to process data, and allows Spark users

to distribute data and workloads across this group to improve performance and

scalability In this article we will explore the concept of clusters in Spark

terms, how they work, and their benefits. A Spark cluster is a group of

machines that work together to process data in parallel. Each machine in the

31

cluster is called a node and can be either a master node or a worker node. The

master node distributes tasks among worker nodes and organizes the entire

workflow. The worker nodes manage the data and send the results back to the

master node.

Fig 4:Spark Cluster Architecture

Benefits of Using a Spark Cluster are as follows:-

Using a Spark cluster provides several benefits for processing large volumes

of data:

1. Scalability: A Spark cluster allows users to scale processing power up or

down as needed by adding or removing nodes. This makes it easy to handle

large volumes of data and meet changing business needs.

2. Speed: Processing data in parallel across a cluster of machines can

significantly reduce the time it takes to analyze large volumes of data.

32

3. Fault tolerance: Spark is designed to be fault-tolerant, meaning that if a

node fails during processing, the work can be automatically redistributed to

other nodes in the cluster.

4. Cost-effectiveness: Using a Spark cluster can be more cost-effective than

using a single high-powered machine, as it allows users to use a group of

lower-cost machines to process data in parallel.

The Spark cluster distributes data and tasks across numerous processors in

simultaneously. The master node keeps track of the whole cluster and manages

workload allocation among worker nodes. The worker node performs

simultaneous tasks and reports the results to the master node. Spark is

intended to manage data allocation and workloads on clusters automatically,

ensuring that each node works on the portion of the data set that it is most

equipped to handle.

While employing a Spark cluster has numerous benefits, there are also

drawbacks to consider.

1. Setup and configuration of a Spark cluster may be complicated and

time-consuming, requiring knowledge in distributed computing and

networking.

2. Maintenance: Maintaining a Spark cluster necessitates regular monitoring

and monitoring to verify that all nodes and the cluster are operational.

3. Data locality: When data is not stored locally on the same system that is

processing, Spark may face performance difficulties. In the nineteenth century,

this necessitates careful consideration of data storage and dissemination in a

cluster.

33

Spark Cluster is a powerful tool for processing large amounts of data in

parallel, providing scalability, speed, fault tolerance and cost savings. While

there are challenges to consider, the benefits of using a Spark cluster make it a

valuable tool for many organizations that want to process big data. By

understanding how Spark clusters work and carefully considering their design

and maintenance, organizations can take full advantage of the benefits it

offers.

3.1.5 Airflow

Apache Airflow is an open-source platform that allows developers and data

scientists to systematically write, schedule, and track workflows, which

consist of various tasks to be performed in a specific order. Airflow was

developed at Airbnb in 2015. Since meanwhile, data operations penetrate

organizations of all sizes It has become a popular management tool. In this

article we will explore the features and benefits of Airflow and provide a

guide to getting started with the platform.

Fig 5: Apache Airflow Logo

Apache Airflow Features:

1. Workflow management: Apache Airflow can run workflows through Python

code or through its user interface, making it easy to create, configure, and

manage complex workflows You can create objects based between services,

34

edit them warning, and create custom plugins to extend its functionality and

you can.

2. Dynamic workflows: Dynamic workflows allow you to adjust your

workflows in real time as your data changes. This makes it easier to adapt to

changing business needs and ensures that your business processes stay

up-to-date.

3. Scalability: Airflow is designed to be scalable, allowing you to manage

workflows across multiple devices and clusters. It also supports distributed

execution, and allows you to execute tasks in parallel on different machines.

4. Expandability: Airflow has a modular architecture that makes it easy to

expand its functionality. You can create custom operators and sensors,

integrate with external systems, and even create your own plugins.

5. Visibility and Monitoring: Airflow provides elegant tools for performance

monitoring and troubleshooting. You can view logs and metadata for

individual tasks, track business progress, and set up alerts and reports to

ensure your workflow is running smoothly.

Advantages of Apache Airflow:

1. Increased Efficiency: Airflow helps you to automate repeated operations,

saving you time and effort while managing complicated workflows. This can

lead to increased team efficiency and production.

2. Increased Flexibility: Because Airflow is dynamic, it is simpler to react to

changing business requirements and data environments. You may change your

processes in real time to keep them up to date and relevant.

35

3. Error Reduction: Airflow may assist decrease the risk of mistakes and

guarantee that your workflows are completed correctly and consistently by

automating operations and eliminating the need for manual intervention.

4. Improved Collaboration: Airflow provides a centralised platform for

managing processes, allowing teams to interact and share resources more

easily. You may delegate work to other team members, monitor progress, and

give comments and assistance.

5. Cost Savings: Airflow can assist minimise the expenses associated with

managing complicated workflows by automating operations and enhancing

efficiency. It can also assist to lessen the need for manual intervention,

lowering the chance of mistakes and downtime.

Getting Started with Apache Airflow:

1. Install Airflow: Airflow can be installed using pip, the Python package

manager. You'll also need to install any necessary dependencies and libraries.

2. Set up a Database: Airflow requires a database to store metadata and

information about your workflows. You can use a variety of databases,

including PostgreSQL, MySQL, and SQLite.

3. Configure Airflow: Once you've installed Airflow and set up your database,

you'll need to configure Airflow's settings. This includes setting up

authentication, specifying the location of your DAGs (Directed Acyclic

Graphs), and configuring the executor that will be used to execute your tasks.

4. Create DAGs: DAGs are the core building blocks of workflows in Airflow.

You can create DAGs using Python code or through the Airflow UI. Users

36

need to define the tasks that make up your workflow, specify their

dependencies, and configure any configs.

Apache Airflow is a powerful platform for managing, scheduling, and

monitoring data pipelines. It has gained popularity among data engineers and

data scientists for its flexibility, scalability, and robustness. Here are some of

the use cases where Apache Airflow can be helpful:

1. ETL workflows: Apache Airflow is suited for creating complicated ETL

processes (Extract, Transform, Load). It has an easy-to-use interface for

establishing jobs, dependencies, and scheduling, making it straightforward to

manage and monitor data pipelines.

2. Machine learning: Machine learning is a multi-step process that includes

data preparation, model training, and assessment. Apache Airflow can assist

data scientists manage and monitor the whole workflow by automating these

procedures. Airflow, for example, may schedule data preparation chores, begin

model training, and monitor model performance.

3. Data processing: Apache Airflow may be utilised in a distributed setting to

handle massive amounts of data. It is capable of scheduling jobs across a

cluster of computers and coordinating task execution across several nodes.

This can help data engineers to build data pipelines that are scalable and

fault-tolerant.

6. DevOps: Apache Airflow may be used to organise and automate DevOps

processes including software development, deployment, and testing. It has the

ability to schedule tasks that start builds, deploy apps, and execute tests.

Airflow also integrates with technologies like as Jenkins, GitHub, and Docker,

making it simple to build end-to-end pipelines that automate the full DevOps

process.

37

Finally, Apache Airflow is a flexible platform that can be utilised for a variety

of use cases, ranging from ETL to machine learning to DevOps. It is a popular

option among data engineers and data scientists because of its flexible design,

sophisticated scheduling features, and large ecosystem of plugins.

Organisations may use Apache Airflow to automate data pipelines, enhance

data quality, and boost productivity.

Fig 6: Real world use cases of Apache Airflow

3.2 Development

The data received is from the patients of various hospitals across the globe.

The task is to reduce and preprocess this massive data so as to convert it to a

form that is more space efficient and can be used directly for further analysis.

Therefore we must come up with a pipeline that can do the preprocessing. It is

ought to be made sure that the datagen pipeline is automated i.e., each process

can be run after another automatically without intervention. Here are the

details of the development process:

38

3.2.1 Raw Data

The patient data is received from hospitals in the form of JSONs. JSON is a

format commonly used to exchange information. The data is divided into

many folders where each folder has many JSON files. Each JSON file

contains multiple single lined JSONs. One such file can be of a size nearly

400-500 MBs. Making each folder of the size of 20-30 GBs. Hence the

collection of such folders was of the size 75 Tbs. The data is hence massive

and requires efficient storage and processing. So the data recieved is in the

form of JSONs. Each JSON can be imagined as a row in a table. Hence these

JSONs combine to generate a huge table. The JSONs contain many fields

which can be interpreted as a column. Each JSON can have almost 700 unique

columns at maximum. However all this data isn't required and is futile. Only

100 selected columns are required for the required task. Hence processing

requires removing the unnecessary columns and keeping only the required

ones. This will reduce the space taken up by data considerably. Not just

removing columns is necessary but also adding a few columns is required, the

details shall be discussed further in the implementation.

3.2.2 Implementation

The implementation blueprint is designed so as to match the requirements

asked. The first step would be to process each folder. Processing requires to

read JSONs in each folder and first of all create a dataframe for each. This is

done because of inconsistency in the data as the fields (columns) in each

JSON might be different, hence a union would be done. The entries for which

values are absent are filled by null values. As the whole data will be merged

into one single dataset it will be essential to be able to trace back which data

39

entry belonged to which folder, as each folder has a different set of medical

data. Therefore adding folder names to each entry is necessary. Also filename

is appended so that the value can be traced back if required. Therefore we see

a need to process each folder separately.

Fig 7: Pseudocode for data preprocessing

The data after going through the following process must be written to a disk.

The raw data hence can be discarded and operations be performed on the data

now generated. This data is clean and must occupy less space. But still the

data must be stored such that it occupies less space. Hence parquet format is

chosen to store the data after preprocessing.

But before discarding the data it must be ensured that the data generated is

complete and error free. Hence data validation must be done before

proceeding any further. This is one in the following manner: Firstly the

number of lines are counted in each file of each folder and compared to the

count of rows of that file in the parquet generated. The second test is a random

sampling test where some random JSONs are selected from the files and are

searched in the parquet. The sample size is only 0.0005% of the actual dataset.

This might seem to be a small portion but it still contains almost 40,000 values

40

and therefore searching these many values in a huge dataset is still a big task.

Therefore instead of searching each value in the dataframe (generated from

parquet) we perform an inner join. Inner Join seems to be a more complex task

in terms of time. However we employ the characteristics of spark to make it a

yet simpler task than searching each term. Here we employ broadcast join.

Fig 8: Broadcast join in spark

The broadcast join simply sends the smaller table of the two to each executor

where it is joined with the same values and returned to the master node which

compiles all the results and returns to the driver code. Thereby making the join

process faster. Once all the values are found we are done with our data

validation process. Hence this data can be now saved and the raw data can be

discarded.

41

Fig 9: Pseudocode for data preprocessing validation

42

Having gone through this process the data now remaining needs to go through

some more processing before it can be used for any analysis. Firstly each

patient is recognized by a string that is too long and can be reduced to a

smaller string by finding a hash value. This ensures that each unique string is

matched to a unique hash value which takes up far less space. Not just space

but these hash values match the values present in the patient records held by

the company where each patient is recognized by the hash value. This is done

so that the patient cannot be traced back from his/her medical records.

Thereafter we can also find the patient details for each row and append it to

the data so that analysis of data can be done properly. After this minor changes

can be done like changing date time given in the columns in a particular

format to seconds since epoch for better and easier analysis.

Fig 10: Pseudocode for data generation

In the end it is again essential to verify if the contents of the dataframe so

generated are correct. Again two checks will be executed, firstly we simply

match the counts of the two parquet and see if they are the same or not.

Secondly we will check the unique values of a few columns where we know

that the number of unique values are finite or handful. If the number of unique

values are the same and their frequencies are the same then we can say that the

data is correct and validation is successful.

43

Fig 11: Pseudocode for data generation validation

All these tasks shall take up a long time hence automation is necessary.

Automation means that these processes are triggered without any human

44

intervention whenever the one preceding it succeeds. For this we use Apache

Airflow. Here each process is represented by a DAG(Directed Acyclic

Graph). When one dag completes the control automatically moves to the next

process or node in the dag.This ensures that processes continue one after

another until and unless an exception occurs. Hence no need to monitor the

tasks all around the day.(As each task may take up to 4-6 hours running on a

29 node spark cluster)

Fig 12: DAGS as in Apache Airflow

45

CHAPTER 4 :EXPERIMENT AND RESULT
ANALYSIS

The programs were then executed on a spark cluster, which had a master and

29 worker nodes. The results discussed are a brief idea of the actual run as the

details are confidential and are subject not to be disclosed in any manner

possible. Here we shall discuss the space efficiency, the time efficiency of the

codes and a brief discussion on how the approaches used have contributed to

better results.

The first process of data preprocessing took time of 6 hours and 27 minutes to

process a dataset of approximately 75 Tb in size.This is fairly impressive and

proves the code is efficient. Also not to forget our processing power is also

considerably high using a cluster with 29 worker nodes. The data after

removing values was compressed to a size of approximately 25 Tb which is

fairly impressive again. This shall reduce the cost of storing a huge dataset by

far. The compression chosen for the same was snappy as it is both mediocre

time and space efficient as compared to other algorithms offering a balance in

between. Here are the results for a small dataset of 1.2 GB:

Graph 1: Time Taken by different compression Algorithms

46

Graph 2: Sizes of files after using compression algorithms.

Hence Snappy was chosen as it provides a fine balance among all the three

compression algorithms.

Next we proceeded to the Validation process. The validation process had to be

made such that it takes way less time than datagen itself. Having run the

validation process the time taken was checked which came out to be nearly 4

hours and 11 minutes which is fairly fast. This speed was obtained owing to

the optimisation done by using joins instead of individual searches. On a

dataset of 25 GB the improvement was from 6 minutes 32 seconds down to 2

minutes 42 seconds, which is a massive improvement. Hence the improvement

was nearly 60%.[5]

47

Graph 3: Time comparison between two algorithms checked

Following this we come to the datagen process where we add required data to

the dataset. This process was again fairly long taking 5 hours 49 minutes

owing to various joins done in the data with the existing dataset. Once again

the validation of this data was done but this time it took only 1 hour and 17

minutes making it fast and efficient.

48

CHAPTER 5 : CONCLUSIONS

5.1 Conclusions

In this project, we used Spark to create a data creation pipeline capable of

compressing data to 25 TB from 75 TB of raw data. This pipeline was capable

of efficiently processing massive amounts of data and transforming it into a

parquet format suitable for downstream analysis. Overall, this study

emphasises the significance of having an efficient data processing pipeline

when dealing with enormous amounts of data. The outcomes of this research

illustrate Spark's strength and adaptability for huge data processing workloads.

We were able to manage massive amounts of data and provide valuable

insights that may guide business choices by exploiting Spark's distributed

processing capabilities.Spark along with use of Cluster consisting of one

master node and 29 worker nodes allowed us to process this massive data

rather quickly. The use of Apache Airflow also enabled us to construct a

pipeline that is automated, i.e., runs scripts one after another without any

human intervention but only using a few config files containing process

details, making the process even more efficient and automated. Parquet format

appeared as more efficient over others as it was able to compress the data and

could be written simultaneously by multiple worker nodes at one go. Making

the process fast and space efficient at the same time. The use of snappy

algorithm is however debatable as there exists gzip which is faster and lz4 that

is more efficient however snappy is a balance of the two. The choice of the

algorithm is highly use case dependent.

5.2 Future Scope

The data pipeline seems to be efficient but still has a scope for improvement.

This would require more testing on the actual dataset. Also the use of parquet

49

is debatable as data in parquet format cannot be updated periodically.

Everytime there is a data update the parquet must be written from scratch.

Hence more formats must be explored to ensure speed, space and flexibility at

the same time.

50

REFERENCES

[1] Inoubli, Wissem & Aridhi, Sabeur & Mezni, Haithem & Maddouri,
Mondher & Mephu Nguifo, Engelbert. (2018). A Comparative Study on
Streaming Frameworks for Big Data.

[2] N. Renugadevi, S. Saravanan, C.M. Naga Sudha, Revolution of Smart
Healthcare Materials in Big Data Analytics, Materials Today: Proceedings,
2021,

[3] Kumar, S., Singh, R. K., & Aggarwal, R. (2017). Big data processing using
Apache Spark in Hadoop environment. Journal of Big Data Analytics in
Transportation, 1(1), 23-38. doi:10.1007/s42421-017-0003-9

[4] Zaharia, Matei & Xin, Reynold & Wendell, Patrick & Das, Tathagata &
Armbrust, Michael & Dave, Ankur & Meng, Xiangrui & Rosen, Josh &
Venkataraman, Shivaram & Franklin, Michael & Ghodsi, Ali & Gonzalez,
Joseph & Shenker, Scott & Stoica, Ion. (2016). Apache spark: A unified
engine for big data processing. Communications of the ACM. 59. 56-65.
10.1145/2934664.

[5] https://stackoverflow.com/questions/46940771/difference-between-a-looku
p-and-a-join-in-spark

51

