DEVELOPING AN APPROACH FOR SCHEDULING OF 10T
APPLICATION TASKS IN FOG COMPUTING

Project report submitted in partial fulfilment of the requirement for
the degree of Bachelor of Technology

in
Computer Science and Engineering/Information Technology

By

Deepanshu Kumar (191204)

Under the supervision of

Dr. Pradeep Kumar Gupta

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat, Solan-
173234, Himachal Pradesh

Candidate’s Declaration

| hereby declare thal the wock presemted in this report emtitied “ Developing an Approach
for Scheduling of IOT Application tasks in fog compating * i partial fulfilment of the
reguirements for the award of the degree of Bachelor of Techmology in Computer Science
and Engineering/Information Technelogy submitted in the department of Computer
Science & Esginecring aod Information Techmology, Jaypee University of Information
Technology Waknaghat is an authentic record of my own work carried out over a period from
Janusry 2023 to May 2023 under the supervision of (Dr. Pradeep Kumar Gupta)
(Associate Professor and Computer Science).

I also authenticate that I have carried out the above mentioned project work wsder the

proficiency stream Computer Science and Engineering,
The matter embodied in the report has not been nubmitted for the award of any other degree

or diploma.

(Stodent Signature)
Deepanshu Kumar 191204

This is to certify that the sbove statement made by the candidate is true 10 the best of my

Signature)

Supervisor Name: Dr. Pradeep Kumar Gupta
Designation: Associste Professor
Department name: Computer Science

PLAGIARISM CERTIFICATE

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAXNAGHAT
PAGIARISM VIRIFICATION REPORT

Dot DS
Type of Decarest {Tidkd: PhD Tresh) M Tech Dissertation/ Resart B.Tech Project Bepert | Paped

tarsez DE £ PANSHU KUMAR pepermear: £ S Cwstmentiio (9) 2 OY
castacerin, TRYYZOIAL gewen, gfecf 3012 00) @ amacl com
Swemct e Superveor,_2y . PO ADEEP JCOMAR SUPTA

Tl the Thesis/DissetyzonProfect RepertiPager (W Copiet Weoveest: O VE LOFINGT

AN _APPROACH FOR (CHEDULING OF 10T APPLILATION
_TASES IN F ot CompvTiNG

UNDERTAKING
| undertake that | e rawee of Dhe plagiarkem rebited nomma) regulations, 11 Sound geity of are plaglactiey ard
copyTiEhe vidltices i De sbove thesigoasort eves siter ewerd of degree, the Uiywacty reserves e rights 1o
wrhdrasoevoks my degreafreport. Crcly elaw e 12 rad Pagaven eeefication repert for the Gooument
meyyared abowe.

- Toral Mo, of Poges = b
~ TanlNe.of Prelewirary peges « S
- Tatsl Ne. of pages scoowwredere bliogrpiyivtemncas s 3, k«:,
FOR UEPARTNENT USE
mmmmw.mmwmmmuiﬂ-_&mu
torawding the corplets thesi/repart for Minal plagiharien check. The vefeation fray be
avded cwer 12 he cnFdne
AT
\
o HO0
EQR LRC USSR v
The #dave docemmnt wiis scanned for plegarses heth. Tha ostcore of the were |1 reported Beow:
| Copy Recetesd on Nadudes Qrviarity der Gesersted Magwbon Aepert Detads

™0 [Titse, Absaract & Caapoers)

o PRisbey Word Courts If
Peport Serretedon | :,'.',m | Crarscoer Counts
peores

* 3 Woeds Srieg

Dreched by
Mure & Spwhire L Reartan

Plonue sand yuer eevrpivts Dasisiaport by (POF) with Tithe Page, Abstrast and Chapters b (Ward Fie)
throegh the ywperviser ot

ACKNOWLEDGEMENT

I would like to thank and express our gratitude to our Project supervisor Dr.
Pradeep Kumar Gupta for the opportunity that he provided us with this project
“Developing an approach for Scheduling of 10T Application Tasks in Fog
Computing”. The outcome would not be possible without his guidance. This
project taught me many new things and helped to strengthen concepts of Cloud
Computing . Next, | would like to express my special thanks to the Lab
Assistant for cordially contacting us and helping us in finishing this project
within the specified time. Lastly, | would like to thank my friends and parents

for their help and support.

TABLE OF CONTENTS

Chapter 1 : INTRODUCTION

I O TUCTION <.ttt ettt ettt e ettt e e e e e e e e e e ere e rearenes 1
PrODIEIM STALEMENT. .. et e e et e e e e e e e e e e e eeeee e aeeeaes 2
ODJECTIVE ..ttt ettt ettt 2
METNOTOIOGY ... et 3
OFQANIZATION ...ttt ettt ettt et 9

CHAPTER 2 : LITERATURE SURVEY

LB AEUIE TEVIBW ..o e ettt e et e e e e e 11
Tabular form Of LItErature FEVIEWvvvuerrvreiiiiiiiiirisiiesiirsssisssesssssesssersees. 16
CHAPTER 3: SYSTEM DEVELOPMENT ... 21

CHAPTER 4: PERFORMANCE ANALYSIS

: Comparisons and RESUILS.uiiiiiieiiiie i 32
CONCLUSIONS

CONCIUSION. .. ettt e e e e e e e nnneee s 44

FULUrE WOTK. .. .o 44
REFERENCES ... 45

LIST OF ABBREVIATIONS

1. PSO: particle swarm optimization
2. LA: learning automata

3. SJF: shortest job first

4. GA: genetic algorithm

5. HGAPSO: hybrid of genetic algorithm and particle
swarm optimization.

LIST OF FIGURES

Figure 1: STRUCTURE OF CLOUD-FOG SYSTEM FOR IOT

APPLICATIONS. ... 1
Figure 2: FOG COMPUTING ARCHITECTURE...........cceenneen. 4
Figure 3: VIRTUAL MACHINE.........ccccooiiiiii e, 5
Figure 4: LEARINING AUTOMATA SCHEDULING.................. 8

Figure 5: PARTICLE SWARM OPTIMIZATION

SCHEDULER.........c 23
Figure 6 : GENETIC ALHORITHMcoooiiiiiiiiiiiice 25
FIQUIE 7 - OUTPUT ...eeeiieceeericenesscsnnesssssnesssssnesssssnssssssnssssssnsasssssnassns 40

Vi

LIST OF GRAPHS

GRAPH 1: TOTAL EXECUTION TIME OF PSO TASK SCHEDULER
VS EACH VIMS ID.....iiic e 33

GRAPH 2:TOTAL EXECUTION TIME OF GA-PSO TASK
SCHEDULER VS EACH VMS ID ...oooiiiiiiiiii e 34

GRAPH 3:TOTAL EXECUTION TIME OF SJF TASK SCHEDULER
VS EACH VIMS ID.....iiii e 35

GRAPH 4: COMPARISON LINE GRAPH FOR SJF, PSO AND GA-
PSO

Vi

ABSTRACT

Applications for the Internet of Things are now essential for raising living
standards. However, the resources of conventional cloud data centres are
under strain due to the growing volume of data produced by 10T devices.

The use of cloud computing is growing for large-scale Internet of things (10T)
applications that need a lot of computational power and storage. Fog
computing brings cloud services to the network's edge. One of the significant
challenges is to satisfy the quality of service requirements while assigning
resources to tasks. In such a case, it is necessary to decide where applications
should be executed in order to meet their quality of service requirements. As a
result, a cloud system requires an efficient task scheduler to determine where
applications should run. In this paper, we propose a hybrid approach for task

scheduling by implementing a Hybrid Particle Swarm Optimization.

VIII

CHAPTER 1 : INTRODUCTION

Introduction

Numerous facets of our daily lives have been significantly impacted by the Internet of
Things (IoT) and related technologies. It has made a variety of other items—not only
conventional smart devices—able to connect to the internet. Vehicles, retail and logistics
systems, traffic control systems, and health monitors are a few examples of these items that
carry out a variety of tasks. It is vital to process the data generated by these items in order

to acquire the information required for loT applications.

Cloud Data Centers

Fog Nodes

loT Devices

B
¢
——

]

FIG 1. STRUCTURE OF CLOUD-FOG SYSTEM

loT devices' ability to handle and store massive amounts of data is restricted. Additionally,
network congestion and data transmission delays have a negative impact on the
performance of time-sensitive 10T applications. Experts have expanded cloud computing

resources to the edge of the network to address these problems.

By placing computer resources closer to end users, fog computing makes it easier to
employ time-sensitive applications. In addition to many additional benefits (as shown in
Figure 1), doing this helps preserve network capacity, lowers energy consumption,
improves mobility and wide dispersion of 10T devices, and enables remote monitoring and

low network latency for delay-sensitive 10T applications. [7]

Problem Statement

Task scheduling is one of several optimization-related problems that the 10T and cloud-fog
networks face. This entails delegating an application's tasks to processing nodes at the
network's edge, where it connects to the cloud. Depending on the resources at hand, a
planner assigns tasks to an application in order to accomplish specified goals. The
scheduler is in charge of deciding how resources should be used by programmes, taking
into consideration variables relating to resource availability as well as application-specific

elements like resource requirements and quality of service.

Enhancing the performance of fog computing requires effective resource management.
Task scheduling is the process of allocating tasks to the appropriate resources in this
context, and it is crucial in 10T systems for efficient resource management. It is crucial to
implement realistic ways for allocating jobs in fog environments since the growing market

for 10T devices places enormous processing demands on fog units.

Objectives

Large-scale loT applications that need a lot of compute and storage capacity are
increasingly turning to cloud computing as a solution. However, one of the major
difficulties is making sure that the standards for service quality are met while effectively
allocating resources to various tasks. Fog computing is a method for bringing cloud
services to the edge of the network, however, it creates additional difficulties for resource
allocation optimization. To ensure optimal system performance, a critical issue that must

be solved is figuring out the best time to schedule a group of jobs on a fog node.

Finding the best moment to schedule a bunch of jobs on fog nodes is the goal of
scheduling. This includes taking into account the service approach's two groups of
scheduling parameters: service providers and consumer services. Fog node availability,
processing power, storage capacity, and network bandwidth are just a few examples of the
elements that the service provider must consider. Service level agreements (SLAS), quality
of service (QoS) requirements, and task priority are examples of consumer service
parameters. Fog computing systems may effectively distribute resources and guarantee that
work requirements are met while maximising system performance by taking into account
these scheduling criteria. Finding the best moment to schedule a bunch of jobs on fog
nodes is the goal of scheduling. This includes taking into account the service approach's
two groups of scheduling parameters: service providers and consumer services. Fog node
availability, processing power, storage capacity, and network bandwidth are just a few
examples of the elements that the service provider must consider. Service level agreements
(SLASs), quality of service (QoS) requirements, and task priority are examples of consumer
service parameters. Fog computing systems may effectively distribute resources and
guarantee that work requirements are met while maximising system performance by taking

into account these scheduling criteria.

Methodology

Fog Computing

A decentralized architecture known as fog computing is used to distribute data, compute,
storage, and applications between the cloud and the data source. By locating computing
resources close to the sites where information is generated and used, this technology, often
referred to as edge computing, brings the advantages and capabilities of the cloud closer to

the user. In Figure 2

Cloud Node

P

Fog Node 1 Fog Node 2

End device End device

Fog Computing Architecture

FIG 2. FOG COMPUTING ARCHITECTURE

The two types of task scheduling algorithms—distributed and centrally managed—can be
applied to both homogeneous and heterogeneous resource systems. A single scheduler
creates all mappings in centralised scheduling. Centralised scheduling has the benefit of
being simple to set up, but if the scheduler fails, the entire system breaks down. Centralised
scheduling also offers little failure tolerance. Distributed scheduling, in contrast, spreads

jobs among several schedulers, allowing them to collaborate to match resources to task.

VIRTUAL MACHINE (VM)

The two types of task scheduling algorithms—distributed and centrally managed—can be
applied to both homogeneous and heterogeneous resource systems. A single scheduler
creates all mappings in centralised scheduling. Centralised scheduling has the benefit of
being simple to set up, but if the scheduler fails, the entire system breaks down. Centralised
scheduling also offers little failure tolerance. Instead, distributed scheduling divides up the

workload across several schedulers, allowing them to collaborate on resource assignment.

Virtual Machine | | Virtual Machine | | Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Hypervisor

Infrastructure

FIG 3. VIRTUAL MACHINE

A virtual machine (VM) contains crucial files like a log file, NVRAM setting file, virtual
disc file, and configuration file. A VM operates as a process on an operating system. VMs
are more substantial and take longer to boot than containers, but they provide benefits like
distinct operating system kernels and conceptual separation between instances. They are
perfect for running legacy software on outdated operating systems, decoupling apps, and

running monolithic applications. Additionally, VMs and containers can be used together.

HPSOGA

Three mechanisms form the foundation of the HPSOGA technique. The discovery and
utilisation processes are balanced by the first mechanism using Particle Swarm
Optimisation (PSO). PSO is a population-based approach that was motivated by the
crowding behaviour of birds, in which particles stand in for individuals and the population

for a swarm.

Dimension reduction and population partitioning are a feature of the second HPSOGA
mechanism. By dividing the solution into smaller groups, this approach hopes to make the
solution space easier to search. This is accomplished by employing arithmetic cross
operations in each group, which widens the algorithm's search space. This process
contributes to the population's increased diversity, which may improve overall

optimization.

The second mechanism in the HPSOGA method involves dimension reduction and
population partitioning. This mechanism aims to break down the solution into smaller
groups, allowing for a more efficient search of the solution space. This is achieved by
using arithmetic cross operation in each group, which expands the search space for the
algorithm. This step helps to increase the diversity of the population, which can lead to

better global optimization..

SJF

Task scheduling in fog computing settings is frequently done using the scheduling
algorithm SJF (Shortest Job First). The shortest task is scheduled first in this algorithm,
which schedules tasks according to their execution times. By minimising the amount of
time when resources are idle, SJF can also aid in optimising resource utilisation. SJF can
assist keep resources in use and make sure they are not idle for long periods of time by

prioritising the quickest jobs.

Because SJF prioritises tasks based on their execution time, which guarantees that the most
crucial tasks are carried out first, it can be very effective in a fog environment. SJF is
therefore perfect for fog contexts where activities frequently have different levels of

urgency and priority.

If there are shorter jobs waiting in the queue, SJF may have the unintended consequence of
delaying longer tasks. Preemptive SJF scheduling, which enables lengthier jobs to be
interrupted if a shorter task with a higher priority enters the queue, can help to reduce this,

though.

PSO

Popular metaheuristic optimisation algorithm Particle Swarm Optimisation (PSO) has been
used for task scheduling in a variety of settings, including fog computing. By determining
the ideal combination of fog nodes and resources to carry out each operation, PSO can be

used to optimise task allocation and scheduling in fog environments.

PSO mimics the movement of a swarm of particles searching for the best answer as they
move about in a search space. Each swarm particle in the context of task scheduling
provides a potential remedy for the scheduling issue. Based on their own positions, the
locations of the best solutions discovered thus far, and the locations of the best solutions

discovered by the entire swarm, the particles move across the search space.

PSO has a number of benefits for task planning in foggy conditions. It may operate in
dynamic contexts where the rate of job completion and the availability of resources can
fluctuate. PSO is also simple to use and may be used to simultaneously optimise various
goals, such reducing makepan and energy usage. Premature convergence is a difficulty that
PSO may encounter where the algorithm becomes stuck in a poor solution. Hybrid PSO
algorithms, which combine PSO with additional optimisation methods or heuristics, have

been offered as a solution to this issue.

LEARNING AUTOMATA

A system called Learning Automata (LA) simulates the way a decision-making agent
interacts with an unpredictably changing environment in order to improve over time.
Artificial intelligence, control systems, and computer networks are just a few of the areas
where LA has seen extensive use. LA offers a strong framework for decision-making
processes that can be modified to varied scenarios and environments, making it a useful

tool for resource scheduling.

The process of allocating resources to tasks in order to ensure their effective usage and
prompt completion is known as resource scheduling. In many real-world applications, such
as cloud computing, distributed systems, and Internet of Things (IoT) networks, it is a
crucial problem. The scheduling problem is frequently difficult because it frequently calls
for the optimisation of many goals, including minimising response time, maximising

throughput, and reducing energy use.

H{Rj_.. Fandom

Environment
Response

Learning
Automata

S

FIG 4 learning automata scheduling

By offering a framework for adaptive decision-making that can learn from experience and
adjust to changes in the environment, LA can aid with resource scheduling. An agent in

LA interacts with the environment and gets information based on what it does. The agent

wants to discover a strategy that will improve its long-term success. By modelling the
environment as a collection of states and actions, LA may be used to solve the scheduling
problem. The agent then learns to choose the appropriate action based on the state of the

environment.

One of LA's benefits is that it has the ability to learn in real-time, which is very helpful in
circumstances that are unexpected and dynamic. LA is able to adjust to environmental
changes including shifts in workload, variations in resource availability, or changes in user
expectations. Additionally, LA can be used to optimise multiple goals because it can learn
to balance various trade-offs based on feedback.

Organization

Chapter 1: Introduction

This section discusses a variety of project-related topics, including a project overview, the
technique employed, a description of the issue the project aims to solve, and the project's
goal.

Chapter 2: Literature Survey

This project's literature review section discusses the resources examined as well as the

concepts discovered through study.

Chapter 3: System Development

We will discuss the project analysis and system design implementation in this section. We

will go over the algorithms employed and give project snapshots.

Chapter 4: Performance Analysis

The performance analysis is presented in this area of the project by comparing and
exhibiting the outcomes in the form of snapshots. The display of numerous outputs is
another aspect of it. The part also discusses the methodology used to arrive at the outcomes

and what significance they have for the project's success.

Chapter 5: Conclusion & Future work

The project's current work is concluded in this section, which also outlines potential

directions for additional research and development.

10

CHAPTER 2 : LITERATURE REVIEW

It is important to note before we start discussing the literature on our subject that a wide
range of academic scholars and paper authors have suggested study materials on picture
reconstruction. These materials use a variety of approaches, filters, transforms, and spatial
domain and transform-only combinations. We will give a quick overview of the pertinent

research methodologies used by various scholars in this section.

A job scheduling strategy was suggested by Q. Liu et al.[1] for the fog-enabled Internet of
Things (l1oT) in smart cities. In order to schedule tasks in the fog environment, they
designed a multi-objective optimisation method after analysing the characteristics and
difficulties of 10T data processing. Through simulation experiments, they tested their
suggested algorithm and compared it to two other ones already in use, demonstrating that
their strategy could produce a better trade-off between task completion time and energy
consumption. The authors also talked about how their strategy might be used in smart

cities for things like traffic control and air quality monitoring.

A review of job scheduling strategies for fog computing was presented by Benchikh et al.
[2]. these examined a number of variables that must be taken into account while job
scheduling, including latency, energy consumption, and reliability, and how these affect
the fog computing system's overall performance. They also contrasted the benefits and
drawbacks of various task scheduling strategies, including heuristic algorithms, game
theory, and artificial intelligence. The scientists stressed the significance of creating more
effective and scalable task scheduling algorithms for fog computing as they offered

potential future avenues for this field of study.

A real-time job scheduling method for Internet of Things (1oT) applications was put forth
by P. Parimi et al.[3] in a fog-cloud computing environment. The suggested method
employs a fuzzy logic-based mechanism to choose the best fog node for task offloading
based on a number of factors, including task processing time, job priority, and resource
availability. Through simulation experiments, the effectiveness of the suggested approach
was demonstrated, and the results revealed that it performed better than current scheduling

algorithms in terms of response time and energy consumption.

11

An overview of contemporary computing paradigms, such as cloud computing, 10T, edge
computing, and fog computing, is given by K. De Donno et al. [4]. They analyse the
development of these paradigms and emphasise their traits, benefits, and drawbacks. The
study also discusses how these computing paradigms are being used in fields including
healthcare, transportation, and smart cities. The paper's overall goal is to give readers a
thorough knowledge of contemporary computer paradigms and their potential social
effects.

A cost-aware job scheduling technique for fog-cloud situations is suggested by T.S. Nikoui
et al. [5]. To ensure effective resource utilisation, the authors stress the significance of
taking time and budget limits into account when scheduling tasks. They offer a heuristic
approach that prioritises jobs that demand more resources and take longer to complete,
while also accounting for the cost of running these jobs on cloud and fog nodes.
Simulations are used to test the suggested algorithm, and the results show that it performs
better in terms of cost savings and job completion times than the methods currently used
for scheduling. In general, the study offers suggestions for improving task scheduling

methods for fog-cloud situations.

For small-cell networks with multi-access edge computing (MEC), fuzzy-based
collaborative task offloading was suggested by K.D. Hossain et al. [6]. To decide on the
best offloading strategy, the method takes into account a number of factors, including job
workload, battery state, channel quality, and the computing capacity of nearby tiny cells.
The proposed method seeks to reduce energy usage and task offloading latency. To assess
the scheme's performance in various settings, the authors ran comprehensive simulations.
The simulation results demonstrated that the proposed strategy performs better in terms of
energy usage and delay reduction than other cutting-edge alternatives. The proposed plan

can help small-cell networks with MEC operate more effectively and efficiently overall.

12

A fuzzy logic-based emergency vehicle routing system for smart cities is proposed by R.
R. Rout et al. [7]. The system uses real-time data gathered from multiple 10T sensors to
pinpoint the emergency's position, the location of the closest hospital, and the current state
of the roadways' traffic. The importance of the emergency is determined using a fuzzy
inference technique, which is also utilized to design the best route for the emergency
vehicle. Additionally, the system considers the current traffic conditions and modifies the
route as necessary. The proposed system is put to the test in a mock smart city setting, and
the findings demonstrate that it is successful in coming up with the best routes for
emergency vehicles. The authors draw the conclusion that their method can be used in

practical settings to speed up emergency service response times in smart cities.

A self-adapting work scheduling approach for container clouds was proposed by L. Zhu et
al. [8] using learning automata. The technique is made to deal with the difficulty of
effective resource utilisation and job scheduling in container cloud systems, where the
demand for computational resources is highly dynamic.

The suggested algorithm decides on job scheduling and resource allocation using a
learning automata-based method. The algorithm's learning automata component enables it
to adapt to changing circumstances and gradually improve resource utilisation.They
conducted simulated experiments utilising various workload scenarios to evaluate the
suggested algorithm. In comparison to previous scheduling algorithms, the results
demonstrate that the method is capable of achieving high resource utilisation and quick
reaction times. The study shows that applying learning automata for work scheduling in

container cloud systems is beneficial overall.

A learning automata-based Quality of Service (QoS) framework for Infrastructure-as-a-
Service (laaS) cloud environments was proposed by S. Misra et al. [8]. The framework's
objective is to raise the quality of service for cloud services by making the best resource
allocation choices..

The suggested framework employs a learning automata method to allocate resources in a
dynamic manner in response to shifting service demand. Along with service level
agreements (SLAs), resource availability, and user preferences and priorities, the

framework is also made to consider these factors.

13

They evaluated the proposed framework through simulation experiments using different
workload scenarios. The results show that the framework is able to effectively allocate
resources and improve QoS compared to other resource allocation methods. The authors
also analyze the scalability and overhead of the framework, and demonstrate its practical

feasibility.

A learning automata-based scheduling approach for time-sensitive jobs in cloud
environments was proposed by S. Sahoo et al. [10]. The suggested method aims to
optimise task scheduling to ensure that all activities are completed by their due dates, while
utilising the fewest resources possible and maintaining high standards of service. The
suggested technique employs a learning automata method to dynamically modify the
scheduling strategy in response to shifting job demands. The algorithm considers elements
including task size, deadline, and priority, as well as the resources available and how they
are being used. Through simulation experiments with a range of workload scenarios, the
authors assess the proposed algorithm. The outcomes demonstrate that the suggested
algorithm is capable of scheduling tasks efficiently, meeting their deadlines, and ensuring

optimal resource utilisation and QoS.

Using learning automata, A. Valkanis et al.[11] suggest a reinforcement learning-based
strategy for traffic prediction in core optical networks. The suggested method aims to
increase traffic prediction accuracy, which is crucial for optimising resource allocation and
raising QoS in optical networks. A. Valkanis et al.[11] propose a reinforcement learning-
based method for traffic prediction in core optical networks using learning automata. The
proposed approach seeks to improve the accuracy of traffic prediction, which is essential

for improving resource allocation and enhancing QoS in optical networks.

A learning automata-based technique for load scheduling in power systems was put forth
by Syed Q. Ali et al. [12]. The suggested method aims to meet the power demand while
maximising resource allocation for power generation, lowering operational costs, and

ensuring system stability.

14

The suggested method employs a learning automata algorithm to dynamically modify the
generation plan in response to the fluctuating power demand and the accessibility of
generation resources. The algorithm considers a number of variables, including the cost of
generation, ramp rate, and minimal up/down times, as well as the demand for electricity

and the accessibility of renewable energy sources.

Through simulation experiments using a realistic power system model, they assessed the
suggested strategy. In comparison to alternative scheduling techniques, the results
demonstrate that the suggested strategy may successfully optimise the generation schedule
and lower operational costs. The impact of several aspects, such as the degree of renewable
energy source penetration and the cyclicality of the power demand, on the performance of
the suggested approach is also examined by the authors.

15

Author(s)

Advantages

Disadvantages

Q.Liu, Y. Wei,
S.Lengand Y.
Chen .[1]

K. Benchikh
and L.
Louail.[2]

H.S. Ali, R. R.
Rout, P. Parimi
and S. K. Das

[3]

Simulations are used to
assess the method, enabling
testing in a controlled
setting.

Improved latency: Tasks
may be processed closer to
the edge with fog
computing, which lowers
latency and speeds up
response times.

The proposed approach can
be easily integrated with
existing fog-cloud
computing frameworks.

16

When scheduling tasks, the
algorithm does not take
security and privacy concerns
into account.

Security risks: The likelihood
of security breaches or
unauthorised access increases
as data is processed and stored
across several nodes.

The experimental evaluation is
restricted to a single use case
and might not be transferable
to others.

Author(s)

Advantages

Disadvantages

K. De Donno, K.
Tange and N.
Dragoni[4]

T.S. Nikoui, A.
Balador, A. M.
Rahmani and Z.
Bakhshi[5]

K.D. Hossain, T.
Sultana, V.
Nguyen, T. D.
Nguyen, L. N.
Huynh, E.-N. Huh
[6]

raised awareness of the
value of fog computing
as a link between cloud
and edge computing.

Evaluation of the
procedure in a simulated
environment can be used
to gauge its effectiveness
and practicality.

In terms of energy usage
and delay, the plan
performs better than
other existing plans.

17

The challenges and
constraints of each computer
paradigm are not thoroughly
examined in the paper.

The method may need
extensive computation and
data processing, which could
increase the overall time
required to complete jobs.

The suggested plan can be
challenging to put into
practise and complex.

Author(s)

Advantages

Disadvantages

R. R. Rout, S.
Vemireddy, S.
K. Raul and D.
Somayajulu [7]

L. Zhu, K.
Huang, Y. Hu
and X. Tai[8]

S. Misra, P. V.
Krishna, K.[9]
Kalaiselvan

The suggested system has
the ability to swiftly
determine the best paths for
emergency vehicles in real-
time, which can help save
crucial time in an
emergency.

The algorithm can gain
knowledge from prior
experiences and develop
better decision-making over
time by using learning
automata.

According to each user's
QoS requirements, the
suggested system can
adaptively alter the
resources allotted to them.

18

It is unknown how well the
suggested method operates in
use because the publication
does not include a thorough
examination of it.

The usefulness of the
suggested approach in such
situations has not yet been
evaluated in a real-world
container cloud scenario.

The methodology makes the
assumption that all users' QoS
requirements can be precisely
described and assessed, which
may not always be the case in
actual use.

10.

11.

12.

Author(s)

S. Sahoo, B. Sahoo
and A. K. Turuk[10]

A. Valkanis, G. A.
Beletsioti, P.
Nicopolitidis, G.

Papadimitriou and E.

Varvarigos[11]

Syed Q. Ali, Imthias
Ahamed T.
Parambath & Nazar
H. Malik[12]

Advantages

The algorithm is
adaptive and can
learn from past
experiences to
improve its
performance over
time.

innovative method
for optical network
traffic prediction that
may be of interest to
academics in the
area.

The suggested LA-
based approach
offers a dynamic and
adaptable way to
deal with shifting
power demand.

19

Disadvantages

In complicated cloud systems
with plenty of tasks and
resources, the proposed
algorithm might not function as
well.

Since the proposed method is
not thoroughly evaluated in the
paper, it is challenging to
compare its effectiveness to that
of other approaches.

In cases where the demand for
power is particularly unexpected
or varies quickly, the strategy
could not be
effective.unknowable.

13

Author(s)

N. Rasouli, M. R.
Meybodi and H.
Morshedlou[13]

Advantages

The suggested
technique is able to
dynamically adjust to
system changes and
eventually arrive at an
ideal solution.

20

Disadvantages

The algorithm relies on
accurate workload and QoS
information, which may not
always be available or may be
difficult to obtain in practice.

CHAPTER 3 :SYSTEM DEVELOPMENT

CloudSim

An open-source programme called CloudSim replicates cloud computing infrastructure and
services. It is written in Java and was created by the CLOUDS Lab. It is beneficial to
duplicate tests and results before developing software by modelling and simulating cloud
computing environments. The system's architecture is built on CloudSim's use of Fog
Nodes, which has facilitated the creation of cutting-edge applications with great scalability
and low latency. The process of developing and maintaining applications has been
revolutionised by CloudSim.

System Design

loT applications that include several real-time operations frequently use cloud-fog
computing since 10T devices are unable to process the enormous amounts of data produced
by these apps. Traditional fog computing techniques, like virtual machines or Docker
containers, are frequently utilised to overcome this constraint. Based on virtualization,
which offers independence from hardware resources, these methods. In order to separate
applications from the operating system, virtual machines are helpful. But they only employ
one hypervisor, which could lead to a single point of failure. Virtual machines still provide
benefits including portability, interoperability, quick boot-up times, and low resource
needs. They also offer greater scalability than virtual machines, which makes them a

desirable strategy in cloud-fog computing.

Virtual machines are focused on giving users more freedom and security, whereas
containers are focused on the programme and its dependencies. Virtual machines are better
suited for building a secure system, while containers are chosen for high availability and
scalability. Depending on the needs of the user, either virtual machines or containers can
be utilised for cloud-fog implementation. However, because virtual machines work well in
constrained environments, this study makes use of them. The method makes use of virtual
computers to supply computing resources, each with a different level of processing power.
Although containers have benefits, the study opts for virtual machines because of their

compatibility with the environment.

21

Scheduling Algorithm

The job scheduling methods covered in this section each have unique characteristics,
advantages, and disadvantages. Some of the most significant and relevant algorithms are

covered in the discussion that follows.

PSO - particle swarm optimization

This strategy is a population-based method that draws inspiration from the actions of
flocks of birds, where the population is referred to as a swarm and the individuals inside it
as particles. In the search space, each particle has a velocity that varies as a result of
information exchange with other particles. Each particle contains a memory where the best
individual particle positions and overall particle positions are stored for each iteration. Due
to its allocation to a very small range, the ideal local position is kept as the ideal particle
position. The ideal particle position overall is saved as the best global position. Each work
is assigned to a machine that is available, which causes the partaicles to be instantiated at
random intervals. The performance of the method can be enhanced by starting the PSO

search with heuristic scheduling techniques like LJFP and MCT.

22

Particle swarm optimization task scheduler structure

/ Initialization of PSO parameter /

A 4

Random initialization of particle position

Y

Random initialization of particle Velocity

'

Evaluate the Fitness Function for each
particle for local and global best solution [~

l

Update the Velocity of each Particle

y Time Iteration
.- . t=1t+1
Update the position of each particle
A

Is the
stopping criteria
satisfied?

Yes

FIG 5. Particle swarm optimization SCHEDULER

23

Procedure for Particle Swarm Optimization (PSO) (as per the above fig)

The initial step defines the swarm size and the acceleration constant.

The initial position and velocity of each particle in the population are then generated at

random in the second stage.

The final stage involves calculating each population solution’s fitness value. The best

options for the individual and the world are then assigned in step four.

The subsequent steps are continued in step five until the termination requirements are

satisfied:

Step 5.1: With each repetition, each particle's position and speed are updated.

The population is assessed in Step 5.2, and the most effective individual and global

solutions are updated.

Step 5.3: The process is looped until the termination conditions are met.

Finally, in step six, the results obtained so far are delivered.

24

Genetic Algorithm

The idea behind GA was to emulate natural system processes. By mixing genes and
genetic operators, it employs a crossover function to produce new offspring, increasing
variety by randomly altering the contents of people. GAs employ the selection operation, a
probabilistic selection technique. Each solution in the population is evaluated by the
algorithm, which then selects the top local and global solutions as the new best
personalised and global solutions.

START

4

C Initialization)

Initial
population

1

(selection)

New
population

No

C Crossover)
Y

(Mutation)—

Y
End

Old population

FIG 6. GENETIC ALGORITHM

25

Algo of Genetic Algorithm (GA') (As mentioned in Figure 6)

In order to put a genetic algorithm into practise, the following actions must be taken:

e Set the generation count to 0 at the beginning.
e Create a sample population at random.

e Assess each person's fitness function within the randomly created population.

e Repeat the following steps until the termination criteria are met:
a. Increase the number of generations (t=t+1).
b. Use the selection operator to select a pivot point within the population.
c. Give each row a value (r) that was created at random.
d. Apply the crossover function to the chosen pairings if r is less than the
pivot point.
e. Refresh the population.
f. Assign a random value (rl) to each gene in each individual.
g. Create a new random value for the selected gene within its domain to
mutate the point.
h. Reassign the population.
i. Evaluate the fitness value of each individual.

e Until the termination requirements were satisfied, return the findings that were
acquired.

26

Shortest Job First (SJF)

The process with the shortest execution time is chosen for execution next using the
scheduling method known as "shortest task first". This tactic has two different preemptive
and non-preemptive options. Due to its ease of use and capacity to shorten the time that
other processes must wait for execution, it is regarded as ideal. "Shortest Job Next" (SIN)
or "Shortest Process Next" (SPN), another comparable scheduling technique, chooses the
process in the waiting queue with the least execution time for execution. SIN is a reactive
algorithm rather than a predictive one. The preemptive SIN with the smallest remaining
time is an enhanced variant of SIN. SJN is useful because it is straightforward and cuts
down on the usual wait time for process execution. But it might result in process starvation

for longer processes\

Algorithm for Shortest Job First (SJF)

e Add each process to the ready queue at the beginning.

e While the ready queue is not empty:
a. From the ready queue, choose the process with the quickest execution
time.
b. Run the chosen process until it completes or is overridden by a quicker-
running process.
c. If the process completes, remove it from the system.
d. If the process is preempted, put it back into the ready queue.

e End of algorithm.

27

Particle swarm optimization combined with a genetic algorithm.

The proposed Hybrid GA-PSO algorithm combines the strengths of both genetic
algorithms (GA) and particle swarm optimization (PSO). GA is used for generating new
solutions and maintaining diversity in the population, while PSO is used for exploiting the
best solutions and searching in the local space. The algorithm starts by randomly
initializing the population and evaluating their fitness values. Then, GA and PSO operators
are applied iteratively to create new solutions and update the best personal and global
positions. The algorithm terminates when the stopping criteria are met, and the best
solution found so far is returned as the optimal task allocation. The hybrid approach of
GA-PSO helps to overcome the limitations of each individual algorithm and achieve better
performance in task scheduling problems.

The HPSOGA Algorithm

e The proposed HPSOGA method has a number of different parameters, including
sample size, accelerator parameters, crossing rate, mutation chance, split number,
split variables, split solutions, and iterations. These variables are essential to the
optimisation process and can be changed to enhance the algorithm's performance.

e The counter variable t is initialised to 0 at the beginning of the procedure. Next, a
population is created at random, and each response in the population is assessed.

1. The algorithm employs the PSO technique to generate new solutions for the
entire population.

2. An intermediate population is selected from the present population in step 2
of the HPSOGA algorithm for task scheduling using the genetic algorithm
(GA) selection operator. In order to provide better solutions in the following
iteration, this stage assists in identifying the fittest members of the present
population.

3. In step three, the present population is divided into subpopulations, each of
which consists of ideas for fixing each division. This is done to increase the
search's variety and address the dimension problem .In this step of the

HPSOGA algorithm applies an arithmetic crossover operator to each

28

subpopulation. This operator helps to combine the solutions from different
subpopulations and create new solutions that inherit the characteristics of
their parent solutions. The resulting offspring solutions are added to the
overall population.

4. To avoid premature convergence, the HPSOGA algorithm now applies the
genetic mutation operator to the entire population. This helps the population
spread new genetic material and prevents it from stagnating in local optima.

* In step four of the HPSOGA algorithm, each solution in the population is assessed
for fitness by calculating its raw fitness value. The method then moves on to the
following iteration after incrementing the counter t. Until the termination
condition—typically a predetermined number of iterations or a satisfactory level of

convergence—is satisfied, this process is repeated.

The optimal solution is presented.

29

Learning Automata for resource scheduling

A probabilistic computational model that can learn and adjust to environmental changes is
called Learning Automata (LA). In cloud computing systems, where resource availability
and utilisation are continually changing, LA is a viable strategy for resource allocation. It
has been discovered that using LA for resource scheduling works well for reducing task

response times while ensuring resource efficiency.

A group of learning agents that interact with the environment and make decisions in
response to feedback make up the LA-based resource allocation method. Based on the
task's qualities and its current state, each agent, which represents a resource, decides
whether to accept or refuse a task. The agents are given a set of parameters that can help
them make better decisions as they gain experience.

Algorithm for Learning Automata
START

1. Set up the probability matrix to have a uniform distribution throughout the resources
available.
2. Randomise the reward values in the reward matrix to start with each resource-task
combination.
3. Clarify learning rate
4. For each task to be scheduled:

a. Determine the resource with the highest reward value for the task

b. Update probability matrix based on the chosen resource

5. Return final probabilities for scheduling

STOP

As a result, the algorithm's fundamental steps—choosing the best resource for each task
based on the rewards from the reward matrix and updating the probability matrix to
account for the best decisions over time—are summed up, these are some example in

which we can use the LA algorithm

30

Resource Allocation in a Dynamic Way: Learning automata can be used to distribute
resources in a dynamic way based on how the system's demands are changing. Learning
automata, for instance, can be utilised in a cloud computing environment to allocate

resources based on the workload and priority of various applications.

Load balancing: Learning automata can be used to distribute the system's workload across
its various resources. For instance, learning automata can be used in a data centre to evenly

distribute the load across many servers to guarantee optimum performance.
Using learning automata, it is possible to foresee when a resource will require maintenance

or replacement. For instance, learning automata can be used in a production facility to

anticipate when a machine needs maintenance based on usage trends.

31

CHAPTER 4 :PERFORMACE ANALYSIS

The purpose of this study is to assess the effectiveness of scheduling algorithm heuristics
in a fog computing setting. The strategies are applied in a heterogeneous fog environment.
The examination of the model's performance is based on the makespan time of the

scheduling method..

The following are the parameter constraints we took for the performance analysis of our
model :

e Burst time is the length of time required for a process to finish under typical
circumstances.

e Process arrival time is the moment a task is given to a processor to be completed.

e Makespan is the amount of time that passes between the beginning and end of a
series of operations in a collection of machines.

e The completion time is the time when the process execution is complete.

e Turnaround time- This is the total amount of time spent at the processor, which is
equivalent to the change between completion and arrival time.

e Waiting time is the interval between the time a process spends at the processor and
the time it would normally take to finish. that is, the burst time minus the

turnaround time.

Before using this type of scheduling approach, a processor must be informed of the burst
time of the processes. This is also beneficial in batch processing, where waiting time is

unimportant.

32

PSO Scheduler

The start time, end time, and makespan time of the jobs were the three primary parameters
used to analyse the PSO scheduler's performance. In a manner similar to the HPSOGA
scheduler, the start time denotes the time at which a task is assigned to a resource, the end
time denotes the time at which the task is finished, and the makespan time denotes the
entire amount of time required to complete all tasks. The researchers were able to assess
the PSO scheduler's efficiency and efficacy in terms of job scheduling and resource

utilisation by looking at these metrics.

Time Taken By VMs to complete the task

PSO Task Scheduler

5 . 47832
: .

" 3_75/ E
™ .

. § 3.263
' : o
3 277821 : : :
e .
21 14/ : : .

2-.

VMs 0 1 2 3

GRAPH 1. PSO VSVM ID

33

HPSOGA Scheduler

The start time, end time, and makespan time of the jobs were used as the basis for the
performance analysis of the HPSOGA scheduler. The start time designates the moment at
which a job is assigned to a resource, and the end time designates the moment at which the
task is finished. The total amount of time needed to execute all jobs is called the makespan
time. The researchers were able to assess the HPSOGA scheduler's efficiency and efficacy

in terms of job scheduling and resource utilisation by looking at these characteristics.

Time Taken By VMs to complete the task

GA-PSO Task Scheduler

3
2.64

\.27 | | .
’ ' 2.06 '
. : ’

WM 0 1 2 3
Made with Livegap Charts

GRAPH 2. VMs VS HPSOGA

34

SJF Scheduler

The start time, end time, and makespan time of the jobs were the three main parameters
used to evaluate the SJF scheduler's performance. The start time designates the moment at
which a job is assigned to a resource, and the end time designates the moment at which the
task is finished. The makespan time is the entire amount of time needed to finish all tasks,
as well as the amount of time needed to finish the last job or task in an operation or
process. The researchers were able to evaluate the SJF scheduler's efficiency and efficacy

in terms of job scheduling and resource utilisation by looking at these criteria.

Time Taken By VMs to complete the task

SJF Task Scheduler

4.2997
]

. ’ .
3.051_/// ; ;
3 2.808 . 5

o e

-

468

VMs 0 1 2 3 4

GRAPH 3. SIF VSVMs ID

35

Performance Analysis

Time Taken By VMs to complete the task

Task Scheduler
5 : 47832
| / 42997
4 : 37684 359935><
: 3059/ 5
3 .2)235&3'
211414 205
29 \—\132__________________.. _______________1_81
1,463{ .
o :
1 : : :
\.-"I\Ip"ls 0 1 2 3
-e-SJF «-PSO -o- GA-PSO

Made with Livegap Charts

GRAPH 4. CHART FOR COMPARISION BETWEEN SJF, PSO AND GA-PSO

The graph shows that the performance of HGAPSO initially lags behind that of SJF and

PSO algorithms, but as the number of tasks rises, it outperforms them

36

COMPARISON OF MAKESPAN TIME OF SJF, PSO AND GA-PSO

Performance Chart

VMs 0 1 2 3

W GAPSOPSO MSIF
Made with Livegap Charts

GRAPH 5. CHART FOR COMPARISION BETWEEN SJF, PSO AND GA-PSO

37

Learning automata for resource scheduling analysis

Pseudo code of the implementation:

1. Start the probability matrix prob with a uniform distribution over the resources
available.

2. Randomise the reward values in the reward matrix for each resource-task combination.

3. Explain learning rate alpha.
class CloudResourceScheduler:
def___init_ (num_resources, num_tasks, alpha):
Initialize class variables
self.num_resources = num_resources
self.num_tasks = num_tasks
self.alpha = alpha
self.prob = initialise the probability matrix prob with a uniform
distribution using the resources that are available.
self.reward = # From the reward matrix, return the reward value for
the provided resource-task pair.
def reward(resource, task):
Return reward value for a given resource-task pair from reward matrix

return reward[resource][task]

def learning_automaton(task):
Create a new one-dimensional array to record the probability values for each resource in
the system and update the probability matrix prob in accordance with the rewards each
resource has earned for job p:
r = reward(resource, task)
if r is highest reward value for task:
p[resource] = prob[resource] + alpha
else:
p[resource] = prob[resource] - alpha / (num_resources - 1)

refresh prob matrix with values in p array

38

def schedule():
Execute the learning automaton algorithm for every task and return the final
probability matrix for every task in tasks:
learning_automaton(task)

return prob

4. Construct a CloudResourceScheduler object and fill it with the desired amount of
resources, tasks, and learning rate.
5. Use the scheduling technique to get the final probability matrix for the object.

6. Print to the console the final probability for each resource.

39

Learning automaton method explanation:

def learning automaton(self, task):
max_reward = ©
max_index = ©
for i in range(self.num_resources):
current_reward = self.reward(i, task)
if current reward > max_reward:
max_reward = current_reward
max_index = i
self.prob[max_index] += self.alpha * (1 - self.prob[max_index])
for i in range(self.num_resources):
if i != max_index:
self.prob[i] -= self.alpha * self.prob[i]

The learning automaton algorithm is used for each task in the learning_automata approach.

Here is a step-by-step breakdown of how this method works:

1. The method accepts a task parameter that denotes the action to be taken.

2. Based on the current state of the prob matrix, a new one-dimensional array p is made to

contain the probability values for each resource.
3. A loop that iterates across all of the system'’s resources is begun. The reward method is
used to retrieve the reward value from the reward_matrix for the current resource-task pair

for each resource.

4. The resource with the highest reward value is then chosen by the algorithm as the most

promising resource for carrying out the task.

5. To make sure that the probabilities add up to 1, the probability value for the resource
with the highest likelihood is increased by alpha (the learning rate), while the probability
value for all other resources is decreased by alpha / (num_resources - 1).

6. The p array contains the revised probability values.

40

7.Based on the state of the p array, the prob matrix is finally updated with the current
probabilities for each resource.

Results and analysis of the implementation

OUTPUT:

Final Probabilities:
[6.19583 B.52534 6.2??83]

Final Probabilities:
[6.28683 B.19683 6.51534]

FIG.7: OUTPUT

The probability matrix that shows the likelihood of each resource being assigned to each
task is the output of the learning automaton resource scheduling method. The likelihood
that the relevant resource will be selected for the corresponding task is specifically

represented by the value in each cell of the matrix.

The algorithm's particular use will determine the importance of the output. The probability
matrix can be used to assign resources to activities in the context of cloud computing

resource scheduling based on the most probable and effective combinations. The method is
able to optimise system performance and guarantee that each task is carried out effectively

by allocating resources based on the highest probability values.

The algorithm may also provide metrics like total resource utilisation, total execution time,
and other performance indicators in addition to the probability matrix. These metrics can
be used to assess an algorithm's performance and contrast various iterations or runs of the

method.

41

Why random initialization of the reward matrix?!

self.reward matrix = np.random.rand(num tasks, num resources)

The reward matrix must be randomly initialised in order for the algorithm to explore a
variety of potential outcomes and avoid being trapped at a local optimum. The method is
able to explore various resource-task pairings and converge to a solution that maximises

the overall system performance by initialising the reward matrix with random values.

If the starting values of the reward matrix are inappropriate for the task and resource
requirements, the algorithm may converge to a suboptimal solution if the matrix was
initialised with fixed or predetermined values. The algorithm can explore various mixtures
of resources and tasks and converge to a superior solution by randomly initialising the

reward matrix.

It is crucial to remember that while the reward matrix's random initialization might lead to
variations in the algorithm's outcomes, it is not the only factor that influences the
algorithm'’s convergence behaviour and final solution. The performance of the algorithm
can also be influenced by the learning rate parameter, task specifications, resource
availability, and other variables. To guarantee the algorithm performs at its best, it is

crucial to carefully select the beginning values and other algorithmic parameters.
ANALYSIS

The idea of a learning automaton, a mathematical representation of a decision-making
agent that can learn from experience, serves as the foundation for the algorithm. The

learning automaton depicts a scheduler in the context of resource scheduling for cloud
computing that must choose which resource to allocate to each task based on previous

performance and present task requirements.

Advantages:

Dynamic response to shifting circumstances: By revising the probability matrix in

42

accordance with the algorithm may adapt dynamically to changes in the system, including
the addition of new jobs or the removal of resources, by using the most recent reward

values.

Scalability: The technique may be scaled to handle a huge volume of jobs and resources
because it only needs to update the probability matrix for each task.

Flexibility: The algorithm is easily adaptable to various reward functions or decision
criteria, making it appropriate for a range of application scenarios.

Disadvantages:

Initialization: The performance of the algorithm is significantly influenced by the initial
values chosen for the probability and reward matrices. If the starting values are not
selected carefully, the procedure could produce disappointing results.

Convergence rate: There is a chance that the algorithm's convergence rate will occasionally
be delayed because it relies on making small-step modifications to the probability matrix in

response to incentives.

Complexity: The method may be challenging to build and may require a lot of computing

power to manage large systems with many jobs and resources..

43

CHAPTER 5: CONCLUSIONS

Fog and cloud resource integration has arisen as a critical component to meet the demands
of 10T applications, generating profound changes in many parts of modern life. This paper
introduces a meta-heuristic scheduling technique to efficiently plan jobs for loT
applications in a fog computing environment. By utilising complex algorithms, this

technique can plan work in a dynamic and uncertain environment.

FUTURE SCOPE

1) Instead of using VMs, the algorithm can be improved by using containers which are
expected to yield better results.

2) Containers are a more concrete option and have faster boot times compared to VMs.

3) The primary drawback of the algorithm is that it relies on static optimization
techniques.

4) To make the algorithm more suitable for industrial applications, dynamic

optimization techniques can be utilized.

44

REFERENCES

[1] Q.Liu, Y. Wei, S. Leng and Y. Chen, "Task scheduling in fog enabled

Internet of Things for smart cities," 2017 IEEE 17th International Conference

on Communication Technology (ICCT), 2017

[2] K. Benchikh and L. Louail, "Task scheduling approaches for fog
computing,” 2021 30th Wireless and Optical Communications Conference
(WOCC), 2021

[3] H.S. Ali, R. R. Rout, P. Parimi and S. K. Das, "Real-Time Task
Scheduling in Fog-Cloud Computing Framework for IoT Applications: A
Fuzzy Logic based Approach,” 2021 International Conference on
COMmunication Systems & NETworkS (COMSNETS), 2021

[4] K. De Donno, K. Tange and N. Dragoni, "Foundations and evolution of
modern computing paradigms: Cloud iot edge and fog", IEEE Access, vol. 7,
pp. 150 936-150 948, 20109.

[5] T.S. Nikoui, A. Balador, A. M. Rahmani and Z. Bakhshi, "Cost-aware

task scheduling in fog-cloud environment", 2020

[6] K.D. Hossain, T. Sultana, V. Nguyen, T. D. Nguyen, L. N. Huynh, E.-
N. Huh et al., "Fuzzy based collaborative task offloading scheme in the
densely deployed small-cell networks with multi-access edge

computing"”, Applied Sciences, vol. 10, no. 9, pp. 3115, 2020.

45

[7] R. R. Rout, S. Vemireddy, S. K. Raul and D. Somayajulu, "Fuzzy
logic-based emergency vehicle routing: An iot system development for smart
city applications”, Computers & Electrical Engineering, kvol. 88, pp. 106839,
2020.

[8] L. Zhu, K. Huang, Y. Hu and X. Tai, "A Self-Adapting Task
Scheduling Algorithm for Container Cloud Using Learning Automata,” in
IEEE Access, vol. 9, pp. 81236-81252, 2021, doi:
10.1109/ACCESS.2021.3078773.

[9] S. Misra, P. V. Krishna, K. Kalaiselvan, V. Saritha and M. S. Obaidat,
"Learning Automata-Based QoS Framework for Cloud laaS," in IEEE
Transactions on Network and Service Management, vol. 11, no. 1, pp. 15-24,
March 2014, doi: 10.1109/TNSM.2014.011614.130429.

[10] S. Sahoo, B. Sahoo and A. K. Turuk, "A Learning Automata-Based
Scheduling for Deadline Sensitive Task in The Cloud,” in IEEE Transactions
on Services Computing, vol. 14, no. 6, pp. 1662-1674, 1 Nov.-Dec. 2021, doi:
10.1109/TSC.2019.2906870.

[11] A Valkanis, G. A. Beletsioti, P. Nicopolitidis, G. Papadimitriou and E. Varvarigos,
"Reinforcement Learning in Traffic Prediction of Core Optical Networks using Learning
Automata,” 2020 International Conference on Communications, = Computing,
Cybersecurity, and Informatics (CCCI), Sharjah, United Arab Emirates, 2020, pp. 1-6, doi:
10.1109/CCCl149893.2020.9256655

46

[12] Syed Q. Ali, Imthias Ahamed T. Parambath & Nazar H. Malik (2013) Learning
Automata Algorithms for Load Scheduling, Electric Power Components and
Systems, 41:3, 286-303, DOI: 10.1080/15325008.2012.742943.

[13] N. Rasouli, M. R. Meybodi and H. Morshedlou, "Virtual machine placement in
cloud systems using Learning Automata,” 2013 13th Iranian Conference on Fuzzy Systems
(IFSC), Qazvin, Iran, 2013, pp. 1-5, doi: 10.1109/IFSC.2013.6675616.

47

https://doi.org/10.1080/15325008.2012.742943

	Computer Science and Engineering/Information Technology
	TABLE OF CONTENTS
	LIST OF ABBREVIATIONS
	2. LA: learning automata
	4. GA: genetic algorithm
	LIST OF FIGURES
	APPLICATIONS 1
	Figure 2: FOG COMPUTING ARCHITECTURE 4
	Figure 3: VIRTUAL MACHINE 5
	Figure 4: LEARINING AUTOMATA SCHEDULING 8
	Figure 5: PARTICLE SWARM OPTIMIZATION
	SCHEDULER 23
	Figure 6 : GENETIC ALHORITHM 25
	Figure 7 : OUTPUT 40

	LIST OF GRAPHS
	GRAPH 1: TOTAL EXECUTION TIME OF PSO TASK SCHEDULER
	GRAPH 2:TOTAL EXECUTION TIME OF GA-PSO TASK
	GRAPH 3:TOTAL EXECUTION TIME OF SJF TASK SCHEDULER
	GRAPH 4: COMPARISON LINE GRAPH FOR SJF, PSO AND GA- PSO
	GRAPH 5: COMPARISON LINE GRAPH FOR SJF, PSO AND GA-

	ABSTRACT
	CHAPTER 1 : INTRODUCTION
	Introduction
	Problem Statement
	Objectives
	Methodology
	Fog Computing
	VIRTUAL MACHINE (VM)
	HPSOGA
	SJF
	PSO
	LEARNING AUTOMATA
	FIG 4 learning automata scheduling

	Organization
	Chapter 1: Introduction
	Chapter 2: Literature Survey
	Chapter 3: System Development
	Chapter 4: Performance Analysis
	Chapter 5: Conclusion & Future work

	CHAPTER 2 : LITERATURE REVIEW
	CHAPTER 3 :SYSTEM DEVELOPMENT
	CloudSim
	System Design

	Scheduling Algorithm
	PSO - particle swarm optimization
	Particle swarm optimization task scheduler structure
	Genetic Algorithm
	Shortest Job First (SJF)
	Particle swarm optimization combined with a genetic algorithm.

	CHAPTER 4 :PERFORMACE ANALYSIS
	PSO Scheduler
	HPSOGA Scheduler
	SJF Scheduler
	Performance Analysis
	COMPARISON OF MAKESPAN TIME OF SJF, PSO AND GA-PSO

	Learning automata for resource scheduling analysis
	Learning automaton method explanation:
	Results and analysis of the implementation OUTPUT:

	Why random initialization of the reward matrix?!
	ANALYSIS

	CHAPTER 5: CONCLUSIONS
	FUTURE SCOPE
	REFERENCES

