

DESIGN A FAULT TOLERANT DATA

COLLECTION NETWORK STRUCTURE IN IoT

Project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information

Technology

By

Anirudh Pal Dev 191259

Anshul Thakur 191436

Under the supervision of

Mr. Arvind Kumar

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology

Waknaghat, Solan-173234, Himachal Pradesh

I

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Design a Fault

Tolerant Data Collection Network Structure in IoT” in partial fulfillment

of the requirements for the award of the degree of Bachelor of Technology in

Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from January 2023

to May 2023 under the supervision of Mr. Arvind Kumar Assistant Professor

(Grade-II), Department of Computer Science and Engineering.

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

(Student Signature)

Anirudh Pal Dev, 191259

Anshul Thakur, 191436

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

(Supervisor Signature)

Supervisor Name - Mr. Arvind Kumar

Designation - Assistant Professor (Grade-II)

Department name - Computer Science and Engineering

Dated: 03/05/2023

II

Plagiarism Certificate

III

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to Almighty God for His

divine blessing to make it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Mr.

Arvind Kumar, Assistant Professor (Grade-II), Department of CSE

Jaypee University of Information Technology, Wakhnaghat. Deep

Knowledge & keen interest of my supervisor in the field of “Cloud

Computing” to carry out this project. His endless patience, scholarly

guidance, continual encouragement, constant and energetic supervision,

constructive criticism, valuable advice, and reading many inferior drafts and

correcting them at all stages have made it possible to complete this project.

I would like to express my heartiest gratitude to Mr. Arvind Kumar,

Department of CSE, for his kind help in finishing my project.

I would also generously welcome each one of those individuals who have

helped me straightforwardly or in a roundabout way in making this project a

win. In this unique situation, I might want to thank the various staff

individuals, both educated and non- instructed, who have developed their

convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and

patients of my parents.

(Student Signature)

Project Group No.: 124

Student Name: Anirudh Pal Dev, Anshul Thakur

Roll No.: 191259, 191436

IV

TABLE OF CONTENT

Sr. No. TITLE Page

No.

1 Candidates Declaration i

2 Plagiarism Certificate ii

3 Acknowledgement iii

4 List of Abbreviation v

5 List of Figures vi

6 Abstract 1-2

7 Chapter 1 - Introduction 3-9

1.1. Introduction 3

1.2. Problem Statement 5

1.3. Objectives 5

1.4. Methodology 6

1.5. Organizations

 7

8 Chapter 2 - Literature Survey

2.1. Concurrent Data Collection Trees

2.2. Time Optimal Data Collection Trees

 10-19

 17

 18

9 Chapter 3 - System Development 20-32

3.1. Design Analysis

3.2. Proposed Design

3.3. Analysis

3.4. Numerical Analysis

3.5. Algorithm

3.6. Model Development

3.7. Computational Methodology

 20

 21

 23

 27

 29

 30

 31

10 Chapter 4 - Performance Analysis 33-36

4.1. Mathematical Analysis 33
4.2. Metric Analysis

4.3 Implementation

 34

 36

V

11 Chapter 5 – Results

5.1. Simulation Results

5.2. Graphical Outputs

 37-43

 37

 43

12 Chapter 6 – Conclusions

6.1. Conclusions

6.2. Future Scope

6.3. Applications

6.4. Performance Requirements

6.5. Security Requirements

6.6. Attributes of Software Quality

 44-49

 44

 45

 47

 48

 49

13 References 50-51

14 Appendices 52-53

V

 LIST OF ABBREVIATIONS

Sr.

No.

 List Full Form

1 WSN Wireless Sensor Networks

2 IoT Internet of Things

3 BS Base Stations

4 CTP Collection Tree Protocol

5 DADCNS Delay Aware Data Collection

Network Structure

6 CDCT Concurrent Data Collection

Tree

7 ETX Expected Transmission

8 TDMA Time Division Multiple

Access

VI

LIST OF FIGURES

Figure

No.

Figure Title Page No.

1.1 Architecture of Internet of Things (IoT) 4

2.1 Proposed Network topology for delay aware

12

2.2 Network configuration for Data Collection Structure

14

2.3 α (alpha)-ring structure 15

2.4 β (beta)-ring structure 16

3.1 Fault Tolerant design 21

3.2 Case1: When Rank=1 [Faulty] 22

3.3 Case 2: When Rank>1 & Leaf Node is Dummy 22

3.4 Case 3: When Rank>1 & Leaf Node is not

Dummy

23

5.1 Plot of the number of nodes vs time delay

for k=5

38

5.2 Plot of the number of nodes vs time delay

for k=4
39

5.3 Plot of the number of nodes vs time delay

for k=5
40

5.4 Plot of the number of nodes vs time delay

for N=36
41

5.5 Plot of the number of nodes vs time delay

for N=100
42

5.6 Plot of the number of nodes vs time delay

for N=500
42

1

ABSTRACT

The Internet of Things (IoT) is a revolutionary invention that ushers in the

digital era in the physical world. The IoT boom has resulted in an explosion of

new products on the market, including voice assistants, smart cars, and

smartphones. IoT technology exists to enhance and simplify daily

conveniences. The Internet of Things (IoT) is a network of physical objects that

are represented digitally. It can be compared to a system of embedded, internet-

connected gadgets with sensors that collect data on the objects they are

embedded in. The Internet of Things is bringing about a new wave of

automation, intelligence, and control. IoT sensors monitor the environment for

changes or anomalies and provide feedback to people or systems so they can

react appropriately. Real inclusion and exclusion criteria, as well as a thorough

analysis, were used to choose the primary analysis. IoT infrastructures often

connect sensors, controllers, and the outside world through a central node or

gateway.

The adage "Necessity is the Mother of Invention" sums up the creation of WSN

nicely. As technology has improved, systems have accelerated the creation of

smart sensors. As a result, a network can be built using different sensor nodes.

Applications for wireless sensor networks include military operations,

monitoring vital infrastructure, and data collection in dangerous locations.

Weather that poses a threat has an influence on the WSNs that remote sensor

organizations use to monitor their systems. Sensor hubs are designed to function

independently under potentially hazardous circumstances. A sensor node's

lifespan might vary from a few hours to months or years, depending on the

environment it functions in. As a result, WSNs are susceptible to defects, which

are likely to occur frequently and randomly. The ability to distinguish between

malfunctioning and functioning nodes due to errors is crucial in a sensor

network. Fault management poses a substantial design difficulty for WSNs

because to all of these factors. Faults must be treated with particular care and

respect. As a result, WSNs are susceptible to flaws, which are unpredictable and

2

likely to occur frequently. There will always be flaws in a sensor network, thus

it's critical to distinguish between malfunctioning and functional nodes. Fault

management poses a substantial design difficulty for WSNs because to all of

these factors. Faults must be treated with particular care and respect. As a result,

WSNs are susceptible to flaws, which are unpredictable and likely to occur

frequently. There will always be flaws in a sensor network, thus it's critical to

distinguish between malfunctioning and functional nodes. Fault management

poses a substantial design difficulty for WSNs because to all of these factors,

faults must be treated with particular care.

The project's goal is to create a network structure for a fault-tolerant data

collection system that can handle various faults and data transmission failures.

It offers a trustworthy, fault-tolerant framework that offers a dependable and

fault-tolerant structure that may be used in future IoT applications on different

patterns.

Keywords: Fault-Tolerance, Redundancy, Internet of Things, Dynamic

Reconfiguration, Remote Monitoring, Scalability, Wireless Sensor Networks

(WSNs), Sensors Management, Network Architecture, Network Topology,

Data Transmissions, IoT Applications.

3

Chapter-1

INTRODUCTION

1.1 Introduction

70% of the world's inhabitants are projected to live in urban regions by 2050.

Cities must make use of contemporary information and communications

technologies to promptly deliver up-to-date information to their residents in

order to facilitate such rapid expansion. The Internet of Things (IoT) is one of

the technological advancements that is frequently cited as a viable solution.

Many of the current smart cities have standalone, non-interoperable IoT

systems. Instead of creating many discrete closed form systems, IoT devices

mounted on various assets should be networked to increase efficiency and

realize the full potential of smart cities. Both public and private IoT

infrastructures should be shared to prevent overprovisioning and pointless

redundancy. For example, a smart city typically has a number of Data Things.

For instance, a smart city usually includes a range of applications; hence,

different apps may be compliant with the same set of devices. Additionally, it's

possible that numerous programmers will use the same information. The

reduced deployment costs, time, and maintenance needs of the shared

infrastructure in such a case will benefit applications greatly. Additionally,

using the infrastructure-as-a-service business model, identical infrastructure can

be made available to apps for a fee. The allocation of resources, data collecting,

data privacy and security, energy use, and a few other issues must all be

resolved. Modern protocols for IoT and WSN applications have been primarily

developed to enhance network hierarchy and performance. For instance, the

changes investigated put a strong emphasis on automating job management and

maintenance as well as boosting resilience against failures (such as electrical or

4

communication failures). As a result, third-party management protocols (like

SNMP) keep track of the node's state and issue alerts. The majority of Internet

of Things (IoT) applications are made up of software components that are

dispersed throughout the network as perception, data processing, storage.

The network shown in Figure [1] shows the majority of IoT networks

concentrate on fault-tolerant data analysis and transmission, an architecture-

based characteristic of the ensuing data processing and storage modelling are

defined-

Fig. 1.1: Architecture of Internet of Things (IoT)

Since multiple applications may query data sources simultaneously and the

freshness of the data must be maintained, the process of data collection presents

a significant challenge. Depending on this factor, either a single node or several

nodes dispersed across the IoT system should run data analysis software. In

other words, when IoT processing and storage software is deployed to hardware,

it is referred to as distribution. The Fault is decreased by employing a distributed

approach since data flow and bandwidth use are minimized results in the easy

communication between the devices and respective nodes.

5

1.2 Problem Statement

Due to the numerous variances in Internet of Things (IoT) devices topologies,

morphology, environmental conditions, the identification and categorization of

fault tolerant methods has proven to be a difficult challenge for specialists.

Traditional identification techniques including error detection, error masking,

error monitoring, and error recovery using data are time-consuming, costly and

need a deep understanding of botany. The development of an accurate and

effective system using Fault Tolerant Data Collection Algorithms to identify

and classify various types of faults present in the IoT devices on a very large

scale is necessary due to the growing demand for IoT devices and smartly

connected things due to their potential health benefits in the field of medicine,

safety, and the need for sustainable and responsible fault tolerant devices

development practices.

This system will be created utilizing a cutting-edge fault-tolerant algorithm that

can analyses the error and locate the defect using visual characteristics and

patterns in the channeled data to identify and deliver simple and rapid results

for the device where the error occurred. The algorithmic operations of several

models for the delay and fault, together with their related labels, will be used to

train the system. On the other hand, applications like permafrost monitoring

demand continuous and rapid data transfer over extended periods of time, which

is classified as continuous data collection.

1.3 Objectives

A key step towards delivering service quality to consumers under a variety of

scenarios is the development of an effective and accurate approach for

recognizing fault in nodes and in communication connections based on their

interoperability. To do this, the system must be preprocessed, and fault

augmentation techniques must be used to raise the accuracy of the data

collection and the variety of the technical domains and data nodes. Cluster

6

Heads and the parent and child nodes they are related with, together with their

respective labels, should be present in the Sensory Base Station nodes.

Advanced algorithms should be built to guarantee the dependable and

continuous collection and data storage with failover mechanism through with

rerouted data may be used. This will help design a Fault Tolerant Data

Collection Network Structure model for identifying fault tolerance through

optimal workload. In order to recognize multiple sorts of failures, such as node

or link failure, power outages, and network congestion, among others, for fault

identification jobs, these model structures may learn complicated characteristics

and patterns in the fault failover process. The objective is to provide an

automated, effective technique with a structural approach for correctly

identifying and detecting the failover node in various communication protocols

based on certain wide-ranging circumstances.

The Network Structure model must be validated using a number of validation

conditions and indicators, including:

If the device is broken, verify its rank; if it turns out to be a dummy, change the

topology. If it's broken, examine the number of children. Advanced fault

tolerant techniques and fine-tuning the hyperparameters can boost the model's

performance even more.

For example, we may focus on specific base model scenarios and their

conditions where the entire structure can be adjusted to increase the precision

of the fault tolerance detection task. The Cases followed are:

1. For Rank 1 is Faulty.

2. For Rank > 1 & Leaf node is Dummy.

3. For Rank > 1 & Leaf node is not Dummy.

1.4 Methodology

The parallel trees that gather data simultaneously are designed to get the data

quickly from the same set of nodes to several storage station locations. It is

known that the CDCT (Concurrent Data Collection Trees) network structure is

7

not optimum in terms of the number of time slots required. In this sense, we can

fairly obtain the results i.e. rings produce less data collecting time for the same

number of nodes since they employ more nodes than the α -rings. Fewer time

slots would be necessary for data collection if more nodes could be used in a

time-slot. Here, we talk about CDCT's following drawbacks. First, the

dependency that demands a maximum of one -ring if the value is required to

maximize beta rings total number handled in terms of µ max is unusual. The

maximum number of devices that can be allocated to a " α -ring" is also limited

by CDCT. The most devices that can be connected to a " β -ring" is equal to 2

τ1 + 1. We concentrate on increasing the number of α -rings because they use

more nodes than other rings do. The proposed method allows for a maximum

of 2 -rings, which can be used to increase the number of rings and speed up

concurrent data collecting. We seek to use more devices in each time-slot by

altering the network topology by increasing the number of "rings." Additionally,

the time slots 1 and 2 must be adjusted if the topology is based on maximizing

the α -rings. In light of this, we suggest the updated computation of time-slots 1

and 2, which is described in the next section. The network architecture is built

along with the value of max number of nodes in a data stream being even either

odd, which is another CDCT constraint. We abandon this constraint and

demonstrate the topology creation method regardless of whether u-max is even

or odd. As a result, whether the value of maximum number of nodes is even or

odd, the overall number of time-slots for concurrent data gathering in the

proposed task can be decreased. The proposed method's do-able transmission

schedule.

1.4 Organization

The organization's research and analysis primarily concentrate on the existence

challenges between the externally induced events and actions that interfere with

organizational communication functionality such as data and node

communication, providing the challenges and differences with fault detection

and swiftly verifying them in wireless sensing networks.

8

Due to obstructions or totally due to a poor connection, communication between

nodes is not possible. Critical systems must operate in wireless sensor networks

with reliable connectivity. Despite this, wireless sensor networks have a

reputation for being unstable and prone to errors that interfere with their regular

operation. Wireless sensor networks, especially in open spaces, must be capable

of detecting anomalies to reduce network failures. By reducing the delays in

gathering and retrieving data from wireless sensors, as well as new problems.

Network Model Development:

● Increasing the fault tolerance model's efficiency while concurrently

communicating with the Base States to hasten model development and

enhance performance.

● Utilize a variety of performance metrics to evaluate the model's ability

to manage processes on a tree cluster and to use a hybrid model process

for each running concurrent process.

● Research to determine the variables influencing model performance,

depending on factors including the size of the dataset, the selection of

the hyperparameters, and the number of layers in the model, various

alpha or beta rings may be produced on the cluster heads.

System Validation:

● Test the system thoroughly to make sure it satisfies the required

performance and functionality standards. This includes unit, integration,

and acceptance testing.

● Create a procedure for continuous monitoring and feedback on errors to

make sure the system is responsive to user needs and up-to-date.

● Evaluate the system's ethical and legal standing to make sure it complies

with all applicable legal and ethical standards.

9

Documentation and Reporting:

● Create thorough documentation, such as technical specifications, user

guides, and training materials, to make the project replicable and

extensible by others.

● Share the project's findings and outcomes through papers, conferences,

and social media to raise awareness of the endeavor and draw in IoT-

related prospective collaborators.

10

Chapter-2

LITERATURE SURVEY

According to the research [1], the assembly of clusters of remote sensor hubs

reduces energy dispersal by lowering the number of nodes involved in long-

distance transmission. paper [1] focuses on assembling groups of remote sensor

hubs and energy dispersing is reduced by reducing the number of nodes

connected with long-distance transmission. The author proposed network

design in [1] aims to reduce delays in distant sensor network information-

gathering operations. Various clusters separate a group organization. in every

bunch, one kind, sensor node is designated, the group leader, Cluster Head

(CH), with many others serving as group members, Cluster Members (CM). The

group leader will either directly or indirectly obtain information from its

members. Energy dispersion is reduced by clustering remote sensor nodes and

reducing the number of nodes involved in long-distance transmission.

Information/choice combination at nodes along the information aggregation

path can also reduce the number of information transfers and energy

consumption.

The goal of a clustering algorithm is to classify sensor nodes. One node is chosen

to serve as the cluster head inside each cluster. Data from cluster members must

be gathered by the cluster head, combined utilizing data/decision fusion

techniques and sent to the distant base station.

In terms of data collection efficiency, the proposed network structure is once

again ideal, given that

i. each sensor node may only connect to one other sensor node at a time.

ii. Data fusion can be placed at any sensor node.

iii. The network has been segmented into clusters.

11

For the Delay Aware Proposed network structure, a tree structure is

recommended. To optimize data collection efficiency, the number of nodes in the

recommended network structure must be restricted to, where it will be proved in

a future section that such limits may be decreased by forsaking some

performance. Each member of the cluster will be allocated a rank, which is an

integer between 1 and k. A node with rank k will form data links with other nodes,

each of which has a different rank ranging from 1 to k-1. All of these nodes will

be children of the node with rank k. A data link will be made between the node

with rank and a node with a higher rank.

The figure addresses Circles with CM addressing the cluster of individuals. The

circle with CH addresses the cluster head. A filled circle with BS addresses the

base station. The position of every hub is addressed by the variable. The arrow

addresses the presence of information connected and the heading of the arrow

shows the course of the information stream.

Let’s take an example of a proposed network structure with n = 16 nodes

Individuals are addressed in circles with CM. The bunch head is addressed by a

circle with CH. The base station is addressed by a filled circle with BS. The

variable addresses the position of each hub.

A running bolt indicates the presence of an information link, and the bolt's

heading indicates the direction of the information stream.

12

Fig. 2.1: Proposed network topology for Delay Aware Data Collection

The paper [2] aims to Trees of Concurrent Data Collection for Internet of Things

Applications. It emphasizes utilizing α-ring, and β-ring structures (yield a more

limited information assortment process term for a similar number of hubs). It

follows Node to Node and Node to Base Station communication.

Equal information streams present new issues for IoT defer minimization.

Simultaneous information assortment trees are acquainted in this article with

diminishing all-out information gathering time. IoT hubs might communicate

with each other and interface with BSs. The work in [2] deciphers information

assembled from different IoT gadgets is accepted to be absolutely fusible, and

that implies that few got information bundles might be melded into one preceding

being sent to one's parent hub. A solitary unit of information will be

communicated for the one-time allotment, and the term of an information

combination process is accepted to be irrelevant. Each simultaneous information

13

conglomeration activity will use an unmistakable BS to interface with the IoT

organization, with a sum of k simultaneous information streams.

The procedure for creating transmission plans for the proposed network structure

is basically modifiable to fit extra improvement limitations or measures. One run-

of-the-mill cause of stress for portable organizations is the general

correspondence distance of the information-gathering tree, which can essentially

diminish the battery duration of cell phones. When the widths and number of

alpha and beta rings are characterized, the proposed construction's N2N

correspondence distance inside each ring can be brought down utilizing bunching

procedures with given group sizes. This boundary can be additionally brought

down by utilizing mobile sales rep issue solvers to change the request for the hubs

inside each circle, subsequently shortening the general course length of the ring.

Power depletion in N2BS communication collisions is a disadvantage. This part

of Network for Concurrent Data Collection provides two unique network

topologies known as alpha ring and beta ring to achieve the desired performance

in data-gathering methods. When Umax = 1, the BS of each data stream can

collect information from |N| IoT nodes using star topologies (i.e., T = |N|). Data

aggregation processes with durations equal to (7) may be implemented in

networks with U-max = 2 and U-max = 3 by grouping the nodes into the alpha

ring and beta ring, respectively.

14

Fig. 2.2: Proposed network configuration for concurrent data collection

Data collection in a network N with |N | = 9 nodes and k = 3 concurrent data

streams. Circles and triangles indicate IoT nodes and base stations, respectively.

The flow of data streams is shown by arrows. The text adjacent to an arrow

indicates its data stream (i.e., A, B, C) and time-slot number (i.e., 1,, 5).

The paper [3] focuses on Concurrent Data Collection Trees that are Time Optimal

for IoT Applications. It utilizes more of the β-rings than α-rings. It has a

combination of network topologies to lower the delays. In this research, we

propose a network layout that reduces the number of time slots required for

concurrent data collection.

The network configuration is made up of a group of devices/nodes, designated

by N = n1; n2..., n |1|, that are shared by several applications, denoted by S = s1;

s2, S|6|. We foresee a single-hop network with gadgets connecting directly to the

BS. A device can also communicate with any other device in its immediate

proximity. Devices can aggregate and transfer data because the data acquired by

numerous devices are assumed to be linked. Multiple apps may simultaneously

request data, demanding ongoing data collection. It is assumed that all N devices

have data to convey and are involved in data transmission.

15

Because beta-rings require more nodes than alpha-rings, the article focuses on

expanding the number of beta-rings. The proposed approach allows for a

maximum of two alpha-rings, which enables faster concurrent data collection by

increasing the beta-rings. It desired to employ more devices in each time slot by

altering the network topology and increasing the beta-rings.

Fig. 2.3: α (Alpha)-Ring Structure

16

Fig. 2.4: β(Beta)-Ring Structure.

The paper [4] examines low-energy adaptive clustering hierarchy (LEACH), a

convention design for microsensor networks that joins the ideas of the energy-

proficient cluster-based routing and media access with application-explicit

information aggregation to accomplish great framework lifetime.

LEACH incorporates another dispersed bunch development procedure that

permits huge quantities of hubs to self-sort out, calculations for adjusting nodes

and pivoting cluster head positions to equitably convey the energy load among

all nodes, and strategies for empowering circulated signal handling to save

communication assets. When contrasted with universally useful multi-hop

methods, the outcomes recommend that LEACH can increase framework life

expectancy by a significant degree.

In LEACH, nodes organize themselves into nearby groups, with one node filling

in as the cluster head. All non-cluster head hubs communicate information to the

group head, though the group head node gets information from all cluster

members, performs signal handling processes on the information, and sends

information to the far-off Base Station. Subsequently, being a group head node

requires fundamentally more energy than being a non-cluster head hub.

Assuming that the cluster heads were picked indiscriminately and stayed steady

during the framework's life expectancy, these nodes would quickly drain their

17

restricted energy. At the point when the cluster head runs out of energy, it stops

working and all cluster nodes lose communication capacity.

Subsequently, LEACH consolidates a randomized revolution of the great energy

at cluster head position among the sensors to try not to deplete the battery of any

one sensor in the organization. Along these lines, the energy heap of a cluster

head is uniformly disseminated among the hubs.

CONCURRENT DATA COLLECTION TREES

Consider an Internet of Things (IoT) network N = n1, n2, n|N| and a collection of

base stations S = s1, s2, s|S|. It is expected that each of these |N| IoT nodes can

connect to the base stations and communicate with one another. Since numerous

incoming data packets can be fused into one before being forwarded to one's

parent node, data collected from various IoT devices is believed to be perfectly

fusible [6]. A single unit of data will be transmitted throughout one time slot, and

it is believed that the time it takes to combine the data will be minimal. The total

number of concurrent data streams is k, and each concurrent data aggregation

process will access the IoT network via a distinct base station (BS). The issue of

concurrent data collecting using several data streams at multiple base stations is

first addressed by the authors in Concurrent Data Collection Trees. The

aforementioned method is based on the design of CDCT, which is depicted as

rings, also known as α-rings and β-rings. The data collecting time from the same

set of nodes to many base stations is shortened as a result of this network

structure. The network structure is predicated on the idea that nodes can combine

data from many IoT nodes into a single packet before sending it on. It is

anticipated that a single piece of data will be conveyed once. Such data

aggregation operations can all operate simultaneously to a different IoT base

station. The total amount of base stations is equivalent to the total amount of

active data gathering operations, which is indicated by the letter k. Additionally,

it is believed that the network's transmissions are synced. In other words,

numerous transmissions can take place simultaneously between non-overlapping

18

sets of nodes. The proposed network configuration makes use of the most nodes

possible during each time slot, depending on the quantity of nodes and data

streams. Additionally, each data stream inside a time slot must use a unique

combination of nodes for transmission. Umax specifies the maximum number of

nodes that can be used by a data stream in its first time slot. All concurrent data

streams should start and stop during the same time period in order to guarantee

fairness among these users. However, each time slot in parallel data streams

should use the same number of nodes. Each data stream should make use of the

greatest number of nodes at each time-slot in order to accelerate the overall data

collection process.

TIME OPTIMAL CONCURRENT DATA COLLECTION TREES

In contrast to Wireless Sensor Networks (WSNs), the Internet of Things (IoT)

allows many applications to share the same device infrastructure. The devices

can be queried by multiple such apps at once, which might necessitate starting

concurrent data streams on the devices. The authors have noted this problem in

[2]. In order to overcome this, they presented a concurrent data gathering tree

structure known as α-rings and β-rings that is represented as rings. These rings

are used to create the network architecture, and data is collected simultaneously

at several base stations (BSs) using the same set of nodes. Therefore, it's crucial

to make the most of the nodes throughout a particular time period. To do this, [4]

concentrated on the β-rings rather than the α-rings to maximize node utilization.

The Time Optimal CDCT network structure that minimizes the quantity of time

slots needed for concurrent data collecting is defined here. The network

configuration consists of a number of devices or nodes, denoted by N = {n1, n2,

. . ., n|N|} ... base-stations (BS) S = {s1, s2, . . ., s|S|} are used to symbolize, n|N|

that are shared by many applications. s1, s2, s3..., s|S|. We consider a single-hop

network architecture in which devices can connect directly to the BS. A device

can also talk to any other device in its vicinity. Assuming that the data produced

by these devices is related, devices can combine and communicate data.

19

Concurrent data collection is necessary because multiple applications may need

data at once. All devices in N are assumed to have some data to send, and are

involved in data transmission. It is assumed that every device in the network N is

engaged in data transmission and has some data to send. A certain number of

concurrent data streams k are started in the network depending on how many of

these parallel applications are requesting data. Each time-slot is typically thought

of as transmitting one unit of data. The suggested network topology makes use

of the most devices in the first τ1 time-slots, depending on the quantity of devices

and data streams. The devices used for data transmission of various data streams

vary depending on the time slot. U-max specifies the most devices that can be

used by a data stream in the first time slot.

20

Chapter-3

SYSTEM DEVELOPMENT

3.1 Design Analysis

We have recommended, after carefully reviewing the aforementioned literature

studies and other research publications, to develop a fault tolerant data gathering

network topology with improved fault tolerance mechanism.

This building's design is essentially a ring of trees. When there are numerous

nodes, it will be difficult to use just one design, which is why a hybrid

architecture may be useful. Nodes will be arranged into clusters called "trees,"

each of which has a cluster head. Making the greatest use of the time that is

available, the cluster heads will gather all the data from the child nodes

concurrently. The cluster heads will employ ring architecture to interact with

the base stations, who will then give the data to the individual processes, after

collecting all the data from each group. Processes can either be greater than or

less than the number of tree clusters, depending on such situation, many tree

clusters will manage a certain process.

Analysis: The analysis of the methodology for fault tolerance network structure

for easily communication of processes on the large scale involves evaluating the

performance of the structure design and interpreting the results. If there are more

processes than tree clusters, or fewer processes than tree clusters, then more

than one tree cluster may be controlling a particular process. On the cluster

heads, multiple alpha or beta rings may be formed, but they must stick to the

final time t1 + t2. The following rules must be followed while creating the

network:

There will be k concurrent processes, and a single process may be linked to

several trees.

The base stations for each concurrent process will be independent.

21

Each tree network's cluster heads will be able to interact with one another,

meaning that each cluster head may also talk to a base station.

3.2 Proposed Design

Fig 3.1: Fault Tolerant Design

Representation of Fault Tolerant Design shows the communication from:

BS-Base Stations: Serves as a Central Communication point for wireless device

CN-Cluster Node: Groups of servers that work together to perform task.

CH-Cluster Head: Gathers data from its representative child node and pass data

to base stations.

Base Stations marks the communication from each cluster nodes to cluster

heads to Base Station. Rank wise distribution should be provided to check the

Time taken by each node from its child node to parent node.

22

Fig 3.2: Rank=1 [Faulty]

The figure illustrates the (Cluster Node with K=1) i.e. Faulty, and Faulty node

is dummy node. Dummy nodes with the Leaf Nodes [Rank=1]. Checking the

Faulty node is whether dummy node.

Fig: 3.3: Rank>1 & Leaf Node is Dummy

The figure illustrates the (Cluster Node with K=3) i.e. Faulty. Now, If faulty

node rank >1, check if real nodes>N/2 & dummy nodes <N/2. Then replace it

with a workable node. Send it to its maximum ranked child in order to remove

fault.

23

Fig 3.4: Rank>1 & Leaf Node is not Dummy

The figure illustrates the (Cluster Node with K=3) i.e. Faulty. If faulty node

rank >1 & real nodes <N/2 & dummy nodes >N/2. We now restructure the

whole tree. Again, starting with reconstruction of the whole structure by the

faulty nodes from given nodes.

Then initializing the value of N & TN number of nodes in the form of 2^p.

We again add dummy nodes and check for the three cases mentioned above, till

the whole structure if it is Fault Tolerant.

In the following figures, cluster heads link various tree clusters head to base

stations and to one another. According to [3], Each tree will simultaneously

collect data from its progeny for certain t1 time intervals. Following that, data

will be collected simultaneously using ring architecture in t2 time periods from

all cluster heads. Thus, the total time needed would be t1 plus t2.

3.3 Mathematical Analysis of Model

 In a tree design, each cluster member is assigned a rank, which is a number

between 1 and k. Nodes of rank k will create data linkages between nodes with

rankings ranging from 1 to k-1. Each of these nodes will combine into the node

with rank k, becoming its progeny. To exchange data, a node with rank k will

link to a node with rank greater. The cluster leader is the network node with the

highest rank. A data link will be created by the cluster leader.

24

The number of time slots necessary for the cluster head to collect

data from all of its offspring is provided by the equation:

𝒕(𝑵) = 𝒍𝒐𝒈2(𝑵) + 𝟏

In a ring architecture, there are a total of k concurrent data streams, and each

concurrent data aggregation process connects to the IoT network via a different

base station. All concurrent data streams should start and stop at the same time

to maintain fairness among these users. A single data stream may use a

maximum of |N| k nodes in a network N with k concurrent data aggregation

operations during the first time slot.

In the proposed data collecting tree, a data stream would use U-max nodes in

the first 1 time-slots in a row, where 1 is defined as

 𝑢𝑚𝑎𝑥 = [
|𝑁|

𝑘
]

where N is the number of ring nodes and k is the number of

processes.

𝜏𝟏 = [
𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙 + 𝟏
+ 𝟏] (𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒐𝒅𝒅)

𝜏𝟏 = [
𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒆𝒗𝒆𝒏

For 𝜏𝟐 there are the following cases:

𝜏𝟐 = {

𝑖𝑓 (|𝑁| − 𝜏1(𝑢 𝑚𝑎𝑥 + 1)/2) > 0 𝑎𝑛𝑑 𝑢 𝑚𝑎𝑥𝑖𝑠 𝑜𝑑𝑑,

[𝑙𝑜𝑔 2(|𝑁| − 𝜏1(𝑢 𝑚𝑎𝑥 + 1)/2)] + 1

𝑖𝑓 (|𝑁| − 𝜏1(𝑢 𝑚𝑎𝑥)/2) > 0 𝑎𝑛𝑑 𝑢 𝑚𝑎𝑥𝑖𝑠 𝑒𝑣𝑒𝑛,

[𝑙𝑜𝑔 2(|𝑁| − 𝜏1(𝑢 𝑚𝑎𝑥)/2)] + 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

0

}

25

Therefore, the total amount of time taken would be:

 𝒕 = 𝝉𝟏 + 𝝉𝟐

Model and Assumption for Design:

Let's assume that our hybrid network has N total nodes and k

concurrent processes that each have data to deliver to their

respective base stations. Assume that each tree will contain TN

nodes in order to be fair, and allow there to be a total of T trees.

For each case, we must analyze, calculate the formula, and

compare it to the ring architecture that already exists.

𝑇𝑁 ∗ 𝑇 = |𝑁| ………………. (1)

where TN = node number in each tree cluster,

T = Tree Clusters number,

N = Total number of nodes in Network.

Case A: In the Case that T = n base stations:

Consider the scenario where there are as many processes as cluster

heads, or the number of trees in the network, and as many base

stations as there are processes.

𝑘 = 𝑇 (2)

𝑢𝑚𝑎𝑥 = 𝑇/𝑘 = 1

Assuming there are N total nodes, we must partition them as

equally as feasible into T tree nodes, each of which has TN nodes;

TN must strictly take the form of 2p, where p is any positive

integer. From ring architecture [4] we have,

𝜏𝟏 = [
𝟐(𝑻 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙 + 𝟏
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒐𝒅𝒅

𝜏𝟏 = [
𝟐(𝑻 − 𝟏)

𝟐
+ 𝟏]

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓(𝑻)

26

And the time taken to collect data by each tree is

𝑡 = 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑇𝑁))

Total time will be

𝒇𝒍𝒐𝒐𝒓(𝑻) + 𝒇𝒍𝒐𝒐𝒓(𝒍𝒐𝒈𝟐(𝑻𝑵))

from (1) = 𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓(𝒍𝒐𝒈𝟐(𝑵/𝒌)) … (3)

𝑁

𝑘
= 2𝑝 = 𝑇𝑁 ……….. (4)

Case B: when TN will always be in the form of 2p:

In this instance, N is taken to be selected such that N=k*2p, where

p is an integer in the positive range. The graph for the following

equations is shown below:

𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓(𝒍𝒐𝒈𝟐(𝑵/𝒌))

𝑵 = 𝒌 ∗ 𝟐𝒑 from (4)

Case C: when TN may not be presented as 2p

In the past, we had set up N so that TN would always be a power

of two. Since N will be random in this situation, we will derive

equations and evaluate them in such a way that adding fake nodes

to specific tree clusters will cause TN to be in the power of 2.

To make it acceptable for a given k and N, where N might not be

in the form k*2p, we need to add a few extra fake nodes.

Total nodes that will be there after adding extra nodes will be

given according to the given formula,

𝑵 = 𝒌 ∗ 𝟐𝒄𝒆𝒊𝒍(𝒍𝒐𝒈𝟐(𝒙/𝒌)) x=node number .. (6)

27

For instance, if k = 3 and x = 45, then adjusted N would be 48,

which is nothing more than 3 * 24, and additional dummy nodes

will only be 3.

It determines the bare minimum node that must be added.

3.4 Numerical Analysis:

Take the case where N is 100 and k is 4. The revised value of N

that will be utilized to create clusters must be chosen so that the

cluster tree will have 2p nodes. This is achievable by utilizing (6),

𝑵 = 𝒌 ∗ 𝟐𝒄𝒆𝒊𝒍(𝒍𝒐𝒈𝟐(𝒙/𝒌)) 𝒘𝒉𝒆𝒓𝒆 𝒙 𝒊𝒔 𝒈𝒊𝒗𝒆𝒏 𝒏𝒐 𝒐𝒇 𝒏𝒐𝒅𝒆𝒔.

Formulation:

U-maxis even:

 # τ1 = 𝑓𝑙𝑜𝑜𝑟 (2 * 𝑘 − 1)

 # τ2 = [𝑙𝑜𝑔2(𝑘 * 2^𝑝 − t1 (2^(𝑝−1)] + 1

U-maxis odd:

 # τ1 = [2(𝑁 − 𝑢𝑚𝑎𝑥)/(𝑢𝑚𝑎𝑥+1) + 1]

 # τ2 = [log2(n-t1*(umax+1)/2)] +1

N = 4 * 32 = 128.

28 dummy nodes were inserted.

T (trees) = 4, and P (processes) = 4.

32 plus 25 is the TN

4 base stations

Total amount of time:

𝑓𝑙𝑜𝑜𝑟(𝑘) + 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑁/𝑘)) from (3)

t = 4 + 5 = 9.

28

The tree will gather information from each of its children over a

5-slot period. Following that, simultaneous data transfer between

the cluster heads and base stations will begin in the following

manner. Let's say there are 4 processes, and A, B, C, and D the 4

cluster heads:

A will transmit to 1, B will send to 2, C will send to 3, and D will

send to 4 during the first-time window.

A will transmit to 4, B will send to 3, C will send to 2, and D will

send to 1. In the second time slot.

A will transmit to 2, B will send to 1, C will send to 4, and D will

send to 3 in the third time slot.

A will transmit to 3, B will send to 4, C will send to 1, and D will

send to 2 at the fourth time slot.

calc_umax: This returns the value of the umax parameter in integer always. It

can be zero as well.

● calc_t1: This returns the t1 time as proposed in the ring architecture.

● calc_t2: This returns the t2 time as proposed in the ring architecture.

● calc_ring: Calculates the time delay using the formulas of ring architecture.

● calc_hybrid: Calculate the time delay using the formulas of the proposed

design.

29

Algorithm:

Step 1: Initialize the value of N and k. N denotes the total number of devices in

an IoT network and k is the total number of concurrent data streams.

Step 2: Initialize the value of total number of Base stations required. There will

be one base station for each concurrent process.

Step 3: Let’s say we have N nodes in total, we have to divide it as equally as

possible into T tree nodes each having TN number of nodes, TN is strictly in

the form of 2^p where p is any positive integer.

Step 4: Allocation of devices or nodes must be in form of 2^p and the time taken

to collect data by each tree is t =floor(log2(TN)).

Step 5: In order to have 2^p Nodes we need to add dummy nodes.

Step 6: Now check for the inputs where fault occurred. Once fault is detected

we check for three conditions (as mentioned in fig 3.3(from System Analysis)).

If the faulty node is the leaf node, consider it as dummy decrement the no of

real nodes and increment the no. of dummy nodes.

Step 7: If faulty node rank >1, check if real nodes>N/2 & dummy nodes <N/2.

Then replace it with a workable node. Send it to its maximum ranked child in

order to remove fault.

Step 8: Repeat till it reaches leaf or to a higher ranked node whose all child are

dummy. Nodes should be seen out for the checking.

30

Step 9: If faulty node rank >1 & real nodes <N/2 & dummy nodes >N/2. We

now restructure the whole tree. Again, starts with Step 1 by subtracting the

faulty nodes from given nodes.

Then initializing the value of N & TN number of nodes in the form of 2^p.

We again add dummy nodes and check for the three cases mentioned above, till

the whole structure if Fault Tolerant and check the Tolerances.

Model Development

Steps for Model Development Fault Tolerant Detection:

1. Import libraries: Import the necessary libraries such as NumPy,

Matplotlib, NetworkX for graphical use.

2. Load data: Load the preprocessed and augmented data into the memory

using various key functions.

3. Train the model: Use Node_generator method to train the model on the

training node data for a specified number of values and approaches.

4. Evaluate the model: Calculate and evaluate the metrics on the various

values and keys to assess the trained model's performance on the

validation and testing Cluster node data. To do evaluation, use

evaluate_generator method.

5. Fine-tune the model: Adjust the model's hyperparameters with variable

keys such as the modern model techniques to optimize and improve the

fault tolerance performance of the model.

31

6. Save the model: Save the trained and fine-tuned model in a format like.

ipynb for later use can be use in Jupyter Notebook or Google

Collaboratory.

7. Predictions: Use the trained model to make calculations on new values

and process of nodes by loading the saved model and using the predict

method from model by changing node values.

8. Deployment: Deploy the trained and fine-tuned model to modern IoT

applications for future users of Model.

Selecting the proper hyperparameters, avoiding fault, and employing methods

like basic function regularization to boost the model's performance are some

modeling best practices. The performance of the model can also be validated by

using real-world data from other sources.

Computational Method:

The computational method for fault tolerant detection involves several

important steps.

1. Data collection: Firstly, the node data collection process is critical to the

success of the system. The project team must collect the Cluster data

with the nodes that are labeled with the corresponding data collection

process. The dataset must be non-faulty, containing child to parent node

with different backgrounds, lighting conditions to ensure that the model

can generalize well to unseen data.

2. Model training: The Fault tolerant Data Collection model is trained

using the training set in the model training method. During training, the

32

model develops the ability to identify the correct fault tolerant by

separating out non-existed elements.

3. Model evaluation: Examining the model's performance on the test set

comes after it has been trained. Calculating model on new metrics is

necessary to determine whether the model is capable of correctly

classifying fault tolerant into the appropriate model.

4. Model optimization: The model can then be further tuned via transfer

learning based on the evaluation findings by the project team. In order

to increase a model's accuracy and generalization performance,

especially when working with fresh and new node data and Cluster

heads which contains various classes of fault, this entails employing a

pre-trained model and retraining it on a new data collection process.

33

Chapter-4

PERFORMANCE ANALYSIS

4.1 Mathematical Analysis:

When TN can be represented as 2p

For the hybrid model proposed the time delay is calculated

as:𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓(𝒍𝒐𝒈𝟐(𝑵/𝒌)) from (3)

𝑵 = 𝒌 ∗ 𝟐𝒑 from (5)

putting values we get, 𝒕 = 𝒇𝒍𝒐𝒐𝒓(𝒌) + 𝒇𝒍𝒐𝒐𝒓(𝒑) ……... (7)

For ring architecture model proposed the time delay is calculated

as:

umax = N/k = 2p (even)

𝜏𝟏 = [𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒆𝒗𝒆𝒏 from [4]

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓(𝟐 ∗ 𝒌 − 𝟏) (𝒐𝒏 𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒚𝒊𝒏𝒈)

𝜏2 = [𝑙𝑜𝑔 2(|𝑁| − 𝜏1(𝑢 𝑚𝑎𝑥)/2)] + 1

𝜏2 = [𝑙𝑜𝑔 2(𝑘 ∗ 2
𝑝

 − 𝜏1(2
𝑝−1

)] + 1

Total time will be 𝜏2 + 𝜏1.

The proposed model and the ring architecture model have been

compared and their results presented on the graph, which displays

the characteristic of p in N=k*2p versus time delay. The number

34

of processes has been maintained constant at 5 in the graph below.

Our findings showed that the proposed model has a lower time

delay than ring architecture and that it varies linearly with p, the

power of 2, in the formula N=k*2p, where N is the number of

nodes.

In N=k*2p, where N is the number of nodes, the graph illustrates

the characteristic of the number of base stations or processes with

the time delay at the fixed value of p, which is 3 Our findings

indicate that the proposed model has a shorter time delay than the

ring architecture.

4.2 Metric analysis

Case 1: where TN can be represented in the form of 2p

Let's start with the hybrid model approach, assuming that k = 3

and N = 3 * 24 = 48.

There will therefore be three trees, each with 24 = 16 nodes.

Considering (7), t = floor(k) + floor(p), total time is 3 + 4 = 7.

Ring architecture method: for k=3, and N = 48, umax = 24.

umax is even here,

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓(𝟐 ∗ 𝒌 − 𝟏) = 𝟓.

𝜏2 = [𝑙𝑜𝑔 2(𝑘 ∗ 2
𝑝

 − 𝜏1(2
𝑝−1

)] + 1

𝜏2 = 4

Total time = 5 + 4 = 9

Result: The ring architecture model has more time, while the

hybrid model has less.

35

Case 2: when TN cannot be represented in the form of 2p

First using the hybrid model method:

Let’s say k = 3 and N = 57.

using (7), the total nodes that will be there after adding extra nodes

will be given according to the given formula,

𝑵 = 𝒌 ∗ 𝟐𝒄𝒆𝒊𝒍(𝒍𝒐𝒈𝟐(𝒙/𝒌)) where x is the given number of nodes

 (6)

N = 3 * 2ceil(log2(57/3))

N = 96.

we need to add dummy nodes to make it 96.

N = 3 * 25

Now using formula (7), t = floor(k) + floor(p) = 3 + 5 = 8.

Second using ring model method:

k = 3, N = 57.

umax = floor (N/k) = floor(19) = 19.

Since umax is odd,

𝜏𝟏 = [
𝟐(𝑵 − 𝒖𝒎𝒂𝒙)

𝒖𝒎𝒂𝒙 + 𝟏
+ 𝟏], 𝒊𝒇 𝒖𝒎𝒂𝒙 𝒊𝒔 𝒐𝒅𝒅

𝜏𝟏 = 𝒇𝒍𝒐𝒐𝒓 (𝟒. 𝟖) = 𝟒.

𝜏2 = [𝑙𝑜𝑔 2(|𝑁| − 𝜏1(𝑢 𝑚𝑎𝑥 + 1)/2)] + 1

𝜏𝟐 = 5.

Total time = 5+4 = 9.

Result: As a result, the Hybrid architecture model outperforms

better and relevant than Ring architecture model. Time taken by

Hybrid model is also quite less as comparison with ring

architecture model.

36

4. 3 Implementation

The proposed hybrid model and the model presented in [2], which

is a ring architecture, are both implemented in the code below. We

contrasted the two models based on a number of parameters and

presented the results as graphs.

In the first section, we displayed the network's time delay for a

fixed number of processes over a range of values for the number

of nodes, N, and plotted the resulting graph. We use the value of

N in the ring architecture as-is and include it into the formula

suggested in the research publication [4] to obtain the time delay

values. In contrast, the proposed architecture scales the value of

N by adding a few dummy nodes so that TN = 2p, or the number

of nodes per tree cluster, will be to the power of two.

In the second section, we plotted the graph and displayed the

network's time delay for various constant values of N, or the

number of nodes, over various values of K, or the number of

processes. We pass N's value exactly as it is once more in the ring

design, but in hybrid, we try to create dummy nodes to make it

comply with the formula. We iterated over the number of

processes k for some fixed value of N while keeping k at a very

low level, around 10.

37

Chapter-5

RESULTS

5.1 SIMULATION RESULTS:

The simulations were performed in a Python (Jupyter Notebook) The

inputs of Nodes and base stations were varied and the results were then

observed. The number of nodes (N) were increased in a random fashion

so that the inputs do not have any correlation with each other

Comparison between number of nodes and time delay for a value-

CASE I:

38

Fig. 5.1: Plot of the number of nodes vs time delay for k = 5.

Number of processes= 5 The given graph illustrates the relationship

between node density and time delay. The results show that the

proposed model has a lesser time delay than the ring (previous)

architecture model. After detection of faulty nodes=10, Structure

changes as mentioned in Fig 5.1.

39

CASE II:

Figure: 5.2: Plot of the number of nodes vs time delay for k = 4

40

Number of processes = 4

The given graph illustrates the relationship between node density

and time delay. The results show that the proposed model has a

lesser time delay than the ring (old) architecture model.

After detection of faulty nodes=8, Structure changes as mentioned

in Fig 5.2.

CASE III:

Fig. 5.3: Plot of the number of nodes vs time delay for k = 5.

Number of processes=8. The given graph illustrates the relationship

between node density and time delay. The results show that the proposed

model has a lesser time delay than the ring(old) architecture model. After

detection of faulty nodes=2, Structure changes as mentioned in (Fig 5.3)

41

For the following Graphs

Comparison between number of processes and time delay for a value of

N that is constant vs time delay.

CASE I:

Fig. 5.4: Plot of the number of BS vs time delay N = 36.

The graph, where N is the number of nodes that were kept, displays the

characteristics of the number of processes in relation to the time delay.

The results show that the suggested model's time delay is less than that of

the old design.

42

CASE II:

Fig. 5.5: Plot of the number of processes vs time delay N=100.

In respect to the number of nodes kept at N=100, the graph shows the

features of the number of processes vs the time delay.

CASE III:

Fig. 5.6: Plot of the number of processes vs time delay for N =500.

43

The graph shows the features of the number of processes in relation to the

time delay, where N is the number of nodes that were retained. According

to the findings, the proposed model has a shorter time delay than the ring

architecture model.

In this study, we suggest the best way to gather data concurrently in IoT

systems. Due to the expanded advantages of shared device infrastructure,

an increasing number of Internet of Things (IoT) applications rely on such

shared systems for their data demands. As numerous of these applications

request data simultaneously, concurrent data transmission is necessary to

maintain the freshness of the data. Furthermore, quick data distribution is

crucial for making crucial decisions in real-time systems. The

recommended network structure in this case uses a variety of network

topologies to cut down on delays. The simulation and performance

analysis findings show that the suggested approach performs better than

the two most often used data gathering techniques, CDCT and Time

Optimal CDCT. An IoT federation is expected to be established soon as

public and private internet of things (IoT) systems are linked. Under these

connected systems, numerous parties will share IoT devices. Different

data collecting processes launched by different users might run

simultaneously on the same collection of IoT devices.

IoT devices that capture data quickly can help us obtain data with less

delay than ever before. which, given that IoT applications are now

commonplace in our daily lives, may eventually contribute to a worldwide

gain. This endeavor may be expanded to include more fields. We have just

looked at the network structure between nodes and base stations for the

sake of this study. In the future, we may look at how much energy certain

data collection processes use as well as how frequently each device is used

in an effort to lower both. We may then use less energy to run an IoT

network as a result of this. Through the processing of massive amounts of

data, cloud computing is currently generating a lot of interest among

various businesses where information is acquired from sensor Networks.

44

Chapter-6

CONCLUSIONS

6.1 COCLUSIONS

In this study, we provide the ideal method for concurrent data collection

in IoT devices. A growing number of Internet of Things (IoT) applications

rely on such shared systems for their data needs due to the enhanced

benefits of shared device infrastructure without any fault. Concurrent data

transmission is required to ensure the data's freshness since several of

these apps request data at once. Furthermore, real-time systems require

quick data distribution in order to make critical decisions. To reduce the

fault delays, the suggested network layout in this situation employs a

variety of network topologies. The results of the simulation and

performance analysis demonstrate that the recommended methodology

outperforms the two most popular data collection methods, CDCT and

Time Optimal CDCT.

An IoT federation is expected to be established soon as public and private

internet of things (IoT) systems are linked. Under these connected

systems, numerous parties will share IoT devices. Different data

collecting processes launched by different users might run simultaneously

on the same collection of IoT devices. linked. Under these connected

systems, numerous parties will share IoT devices.

Fast-capture IoT devices can assist us in obtaining data with less delay

than ever before. which, given the prevalence of IoT applications in

modern society, could eventually result in a global benefit. This

undertaking may be broadened to include other areas. We have just looked

45

at the network structure between nodes and base stations for the sake of

this study. In the future, we may look at how much energy certain data

collection processes use as well as how frequently each device is used in

an effort to lower both. We may then use less energy to run an IoT network

as a result of this that capture data quickly.

Through the processing of massive amounts of data, cloud computing is

currently generating a lot of interest among various businesses. where

information is acquired from several sources, such as social networks,

sensor networks, and automobiles. Concerns concerning the security of

the data coming from the aforementioned sources and being sent to the

cloud data center may still be addressed. To facilitate data gathering from

sensors to the cloud, a standard architecture is required. Large

heterogeneous networks of sensing devices, topologies, and protocols

make up the Internet of Things (IoT). Fault identification and management

is a crucial and time-consuming activity in this vast IoT network.

Network protocols act as the building blocks of any communication system

that adheres to a specific Quality of Service (QoS) for each communication

application. Remote system design becomes increasingly potent when installed

technology advances quickly, and its topological structure and correspondence

also change in unanticipated ways. It may be possible to add data collecting

from WSNs and other sources to the recommended model.

6.2 FUTURE SCOPE

Future research has a huge potential for the classification of nodes inside cases

that represent stationary nodes using Internet of Things (IoT) and fault-tolerant

approaches for detection. The following are some possible growth areas:

1. Increasing the Accuracy and Efficiency of the Model: By employing

larger and more thorough tolerant models, enhancing data concurrent

methods, and creating more effective hardware, researchers can

46

continue to improve the models. The effectiveness and precision of the

models can also be improved by further research and optimization of

various Fault Tolerant approaches.

2. Integrating Other Modalities: A more thorough and precise

identification of the fault tolerant model may be achieved by combining

model classification function with additional modalities, such as data

morphology, profiles, and genetic data methodology. Researchers can

create more robust and reliable categorization systems by fusing several

modalities.

3. Developing Portable and User-Friendly Applications: To find and

detect the fault tolerant approach in the field, researchers might create

applications that are simple to use for non-experts. For smartphones,

tablets, and other portable devices, these applications may be created,

making it simpler for consumers to obtain information about the Internet

of Things and its objects.

4. Expanding the use of Fault Tolerant Detection: The Data Collection

devices can also be used in other fields, such as the Internet of Things

(IoT), Cloud Computing, and bioprospecting, in addition to the

conventional ways for defect detection. Researchers can find new

applications for data collecting and increase their potential advantages

by investigating these new fields of use.

5. Addressing Ethical and Legal Concerns: The necessity to conserve

traditional knowledge, stop biopiracy, and guarantee a just and equitable

distribution of profits are only a few of the ethical and legal issues that

should be considered as the usage of fault tolerant approaches for

methodology detection increases. Involved parties and researchers can

create rules and regulations to make sure moral and legal standards are

upheld.

47

6.3 APPLICATIONS

As the world's population shifts toward relying more on technology than

manual methods, everyone wants a job done for them without any effort.

Everyone wants a work done for them without any effort as the world's

population swings towards depending more on technology than manual

techniques. The phrase "Internet of Things" essentially refers to

computing equipment that transmits and receives data via the internet. The

relevance of IoT in people's life is increasing as a result of its advantages

and the degree of comfort people are experiencing. There are numerous

ways that IoT can benefit humanity, some of which are described below:

1. The Medical Sector: Adoption on a large scale is possible. Exams,

medical wearable technologies, telemedicine, and a great deal

more. adoption is feasible.

2. Smart Homes: New technology has been unveiled, including Nest,

Google Home, and Alexa from Amazon. Each of these devices has

a certain function that improves our quality of life and makes it

easier for family members to communicate online.

3. Intelligent Transportation Systems: In "smart cities," where time-

wasting traffic congestion is the major issue, the Internet of Things

(IoT) is providing connection and information exchange to enable

proactive situational management. contemporary security and

parking systems.

In addition, there are other more industries as well, including

manufacturing, improved power supply, planning, industrial automation,

and the digitization of cities in developing nations (for instance, have a

look at Mark Zuckerberg's JARVIS). There are many opportunities.

48

6.4 Performance Requirements:

i. Performance Requirements:

How well a system operates under different circumstances, considering

factors like time restrictions, environment, and so forth. system operates

under different circumstances and considering factors.

ii. Energy Consumption:

Because the majority of Internet of Things (IoT) devices run on batteries,

it is crucial to connect resource conservation to a variety of other quality

factors, including performance. While coping with network connection

loss, algorithms must find disconnected routes that consume the least

amount of energy. most IoT devices are battery-powered, it is vital to link

resource conservation to many other quality characteristics, such as

performance. Algorithms must discover disjoint paths that use the least

amount of energy while dealing with network connection loss.

6.5 Security Requirements:

 i. Detection and Tolerance Early: The IoT network should have

procedures and rules in place once an attack starts to make sure that it is

stopped before it causes significant damage and extends throughout the

network. IoT network architectures should be secure against hacks and

other malicious assaults from the beginning.

ii. Data Transmission Enhancement & Security: Making sure data is

transferred securely through a public channel without hiding information

from anybody and preventing the illicit flow of information about persons

or things is another aspect of security.

49

iii. Sensory Distribution Mechanism: This feature determines whether

data analysis software should be installed on a single node or a number of

nodes spread out throughout the IoT system. In other words, when IoT

processing and storage software is deployed to hardware, it is referred to

as distribution. The delay is decreased by employing a distributed

approach since data flow and bandwidth use are minimized.

6.6 Attributes of Software Quality:

 i. Accessibility: The system's capacity to function fully or partially when

required. Since a fault-tolerant system is expected to operate without

interruption, but a highly available system may experience service

interruptions, fault tolerance and availability are not the same thing. On

the other hand, a fault-tolerant approach should maintain high device

availability and performance and valuable system. A fault-tolerant

strategy, on the other hand, should keep device availability and

performance high.

 ii. Scalability: Internet of Things (IoT) systems must function effectively

when there are several heterogeneous devices present. It is built on the

incorporation of future on-demand resources.

 iii. Localization: Processing and storage can be carried out locally or

remotely depending on the amount of the data and the complexity of the

needed analyses. It is built on the incorporation of future on-demand

resources. The centralized cloud, dispersed edge, and fog notions start to

make sense at this stage.

50

REFERENCES

[1] Chi-Tsun Cheng, Nuwan Ganganath & Kai-Yin Fok, “Concurrent

Data Collection Trees for IoT Applications,” IEEE

TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13,

NO. 2, APRIL 2017.

[2] C-T. Cheng, H. Leung, and P. Maupin, “A delay-aware network

structure for wireless sensor networks with in-network data fusion,”

IEEE Sensors J., vol. 13, no. 5, pp. 1622–1631, May 2013.

[3] C-T. Cheng and C. K. Tse, “A delay-aware network structure for

wireless sensor networks with consecutive data collection processes,”

IEEE Sensors J., vol. 13, no. 6, pp. 2413–2422, Jun. 2013.

[4] Chi-Tsun Cheng, Chi K. Tse & Francis C. M. Lau, “A Delay-

Aware Data Collection Network Structure for Wireless Sensor

Networks” IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH

2011.

[5] J. N. Al-karaki and A. E. Kamal, “Routing techniques in wireless

sensor networks,” IEEE Wireless Communication Mag., vol. 11, no.

6, pp. 613–228, Dec. 2004.

[6] Zaheeruddin, D.K. Lobiyal and Aruna Pathak, “CLUSTERING

SOLUTION TO MAXIMIZE LIFETIME OF WIRELESS SENSOR

NETWORK”, International Journal of Science, Technology &

Management Volume No 04, Special Issue No. 01, March 2015.

7] T.Rashmi Anns1 , R.K.Shunmuga Priya2 , K.Mala3 , Christo

Ananth. “Delay-Aware Data Collection Network Structure For

WSN”, International Online Conference on Advanced Research in

Biology, Ecology, Science and Technology (ICARBEST’15), 19 Nov.

2015.

[8] W. Zhao and X. Tang, “Scheduling sensor data collection with

dynamic traffic patterns,” IEEE Trans. Parallel Distrib. Syst., vol. 24,

no. 4, pp. 789– 802, Apr. 2013.

51

[9] N. Kapoor, S. Majumdar, and B. Nandy, “Scheduling on wireless

 sensor networks hosting multiple applications,” in Proc. IEEE Int.

Conf. Commun., 2011, pp. 1–6.

[10] W. Wang, Y. Wang, X.-Y. Li, W.-Z. Song, and O. Frieder,

“Efficient interference-aware TDMA link scheduling for static

wireless networks,” in Proc. 12th Annu. Int. Conf. Mobile Comput.

Netw., (MobiCom’06), Los Angeles, CA, Sep. 2006, pp. 262–273.

[11] I. Solis and K. Obraczka, “The impact of timing in data

aggregation for sensor networks,” in Proc. IEEE Int. Conf. Commun.,

Paris, France, Jun. 2004, vol. 6, pp. 3640–3645.

[12] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,

“An application-specific protocol architecture for wireless micro

sensor networks,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp.

660–670, Oct. 2002.

52

APPENDICES

#/-Pseudocode for Fault Tolerant Data Collection Network-#

INPUT: number of initialNodes, BaseStations, FaultyNodes

 CALL: calculate method

 CALL: newnodenum with initialNodes,BST,faultyNodes

INITIALIZE: newNum # new nodes in power of 2

 COMPUTE: newNum = int(k * math.pow(2, math.ceil(math.log2(n/k))))

 CALL: umax with newNum,BST,faultyNodes

 COMPUTE: m # maximum utilized nodes in a cluster

 CALL: calc_umax with newNum,no of BST,faultyNodes

OUTPUT: Floor value of newNum / BST

 CALL: actualanddummy with m,BST,faultyNodes

INITIALIZE: ntemp equal to initialNodes

INITIALIZE: btemp equal to BST

INITIALIZE: act equal to list of actual nodes

 For: iteration equal to number of cluster head

INITIALIZE: 0 in act

INITIALIZE: dum equal to list of dummy nodes

 For: iteration equal to number of cluster head

INITIALIZE: 0 in dum

 FOR: iteration equal to number of cluster head

INITIALIZE: ith value of act

 COMPUTE: act[i] by ntemp/btemp typecaste to integer

INITIALIZE: ith value of dum

 COMPUTE: dum[i] by m-act[i]

INITIALIZE: ntemp

 COMPUTE: ntemp-act[i]

DECREMENT: btemp

 IF: faultyNodes>0

THEN

 CALL: condition with m,act,dum,faultyNodes

 For: iteration equal to length of dum list

 IF: dum[itr] + faultyNodes > m/2

THEN: OUTPUT: return

TRUE

ENDIF: dum[itr] + faultyNodes < m/2

THEN: OUTPUT: return FALSE

THEN: INITIALIZE: initialNodes

 COMPUTE: initialNodes equal to initialNodes-faultyNodes

 INITIALIZE: faultyNodes equal to 0

 REPEAT:

 CALL: calculate method

 UNTIL: condition OUTPUT: FALSE

53

ELSE:

 IF: case1 equal TRUE #RANK 1 node is faulty

 THEN: leaf node becomes faulty

ELSE: case2 equal TRUE #Rank >1 is faulty

 IF: case2_1 equal TRUE #Rank>1 leaf Node dummy

 THEN: REPEAT: replace faultyNode with maximum ranked child

 UNTIL:working higher ranked node whose all child are dummy

ELSE IF: case2_2 equal TRUE #Rank>1 leaf Node not Dummy

 THEN: replace faultyNode with leafNode

 OUTPUT: Changed the topology

 ELSE:

 OUTPUT: Working fine

54

