
I

DATA TRANSFER USING TCP SOCKET OVER HTTP
APPLICATION

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Kunal S Bhandari (191205)

Under the supervision of

Dr. Pradeep Kumar Gupta

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

III

III
I

IV

ACKNOWLEDGEMENT

I would like to thank and express our gratitude to our Project supervisor Dr.

Pradeep Kumar Gupta for the opportunity that he provided us with this project

“Data Transfer Using TCP Socket Over HTTP Application”. The outcome

would not be possible without his guidance. This project taught me many new

things and helped to strengthen concepts of Computer Networks and Socket

Programming . Next, I would like to express my special thanks to the Lab

Assistant for cordially contacting us and helping us in finishing this project

within the specified time. Lastly, I would like to thank my friends and parents

for their help and support.

V

TABLE OF CONTENTS

Chapter 1 : INTRODUCTION

 Introduction .. 1

 Problem statement ... 2

 Objective .. 2

 Methodology .. 3

 Organization ... 6

CHAPTER 2 : LITERATURE SURVEY

 Computer Network Architecture .. 8

 Data Transfer protocols .. 10

 TCP Socket Programming .. 11

CHAPTER 3: SYSTEM DEVELOPMENT .. 13

CHAPTER 4: PERFORMANCE ANALYSIS

1.1: Comparisons and Results ... 37

CONCLUSIONS

Conclusion ... 42

REFERENCES ...43

VI

LIST OF FIGURES

Figure 1:TCP MODEL VS OSI MODEL AND THEIR PROTOCOLS IN EACH

LAYER ... 1

Figure 2: ARCHITECTURE OF WEB SOCKET CONNECTION 4

Figure 3: CONTAINER ARCHITECTURE................................... 5

Figure 4:ONE TO ONE RELATION OF ITEMS IN DATABASE 13

Figure 5: RELATION OF EACH VALUES AND USER DATABASE DESIGN 14

Figure 6 : WORKFLOW OF SERVER AND DB .. 15

Figure 7 :REQUEST RESPONSE CYCLE OF THE SYSTEM 16

Figure 8 : DATABASE VALIDATION SCHEMA ... 23

Figure 9 : FACTORY DESIGN PATTERN ... 26

Figure 10 : DOCKER FILE .. 28

Figure 11 : DOCKER COMPOSE YAML FILE .. 29

Figure 12 : DOCKER COMPOSE-DEBUG YAML FILE ... 30

Figure 13 : TCP SOCKET ARCHITECTURE .. 31

Figure 14 : CLIENT - SERVER TCP SOCKET TRANSMISSION DESIGN 32

Figure 15 : FUNCITON TO FETCH OPPONENT SOCKET ID ...33

Figure 16 : FUNCTION TO CREATE SOCKET OBJECT .. 33

Figure 17 : SOCKET FOR USER STATE .. 34

Figure 18 : SOCKET FOR STATUS CHECK .. 34

Figure 19 : SOCKET FOR STATE OF BOARD... 35

Figure 20 : SOCKET FOR DISCONNECTION .. 36

VII

LIST OF GRAPHS

GRAPH 1: PARAMETER I ANALYSIS GRAPH .. 39

GRAPH 2:PARAMETER II ANALYSIS GRAPH ... 40

GRAPH 3:PARAMETER III ANALYSIS GRAPH .. 41

VIII

ABSTRACT

The application described in this abstract is a bidirectional communication

tool that uses Socket.IO and Node.js to facilitate real-time data transfer over

both HTTP and TCP sockets. This application enables seamless

communication between clients and servers, allowing for instantaneous

exchange of data and updates.

By leveraging the power of Socket.IO, this application provides a reliable and

efficient means of bidirectional communication, with support for multiple

connections and real-time event-driven communication. Users can send

messages, notifications, and other data in real-time, with near-instantaneous

delivery and response times. Furthermore, this application supports both

HTTP and TCP sockets, allowing for flexible communication options based

on the specific needs of the user. This makes it an ideal solution for a wide

range of use cases, including chat applications, real-time dashboards, and

online gaming platforms. Overall, this bidirectional communication tool

provides a powerful and versatile solution for anyone seeking to implement

real-time communication capabilities in their web or mobile applications.

With support for both HTTP and TCP sockets, and the ability to handle large

numbers of concurrent connections, it offers a highly scalable and efficient

means of data transfer that is both reliable and responsive.

CHAPTER 1 : INTRODUCTION

1.1 Introduction

The Hypertext Transport Protocol (HTTP) and the Transmission Control Protocol

(TCP) are computer protocols that facilitate data transport. HTTP is a protocol for

responding to requests, allowing

worldwide web (WWW). The protocol is still one of the most used ways to access the

Internet, allowing users to interact with online assets, including HTML documents,

sending texts between consumersand servers. It's basica

via hypertext links. It is the foundation of the World Wide Web and defines the

message format used by Internet browsers and Internet servers to interact. It also

specifies how a web browser

protocol, which implies that the receiver does not keep session information from prior

requests. Although the core of HTTP is stateless, it is not session

cookies allow for the utilization of state sessions.

FIG 1. TCP MODEL VS OSI MODEL AND THEIR PROTOCOLS IN EACH LAYER .

TCP, which signifies Transmission Control Protocol, is a form of communication

protocol that allows application programs and computer devices to send and receive

CHAPTER 1 : INTRODUCTION

Hypertext Transport Protocol (HTTP) and the Transmission Control Protocol

(TCP) are computer protocols that facilitate data transport. HTTP is a protocol for

responding to requests, allowing clients to interact and transport hypertext on the

worldwide web (WWW). The protocol is still one of the most used ways to access the

Internet, allowing users to interact with online assets, including HTML documents,

sending texts between consumersand servers. It's basically used to load online pages

It is the foundation of the World Wide Web and defines the

message format used by Internet browsers and Internet servers to interact. It also

specifies how a web browser should handle a specific web request. It is a stateless

protocol, which implies that the receiver does not keep session information from prior

requests. Although the core of HTTP is stateless, it is not session-less because HTTP

cookies allow for the utilization of state sessions.

TCP MODEL VS OSI MODEL AND THEIR PROTOCOLS IN EACH LAYER .

TCP, which signifies Transmission Control Protocol, is a form of communication

protocol that allows application programs and computer devices to send and receive

Hypertext Transport Protocol (HTTP) and the Transmission Control Protocol

(TCP) are computer protocols that facilitate data transport. HTTP is a protocol for

and transport hypertext on the

worldwide web (WWW). The protocol is still one of the most used ways to access the

Internet, allowing users to interact with online assets, including HTML documents, by

lly used to load online pages

It is the foundation of the World Wide Web and defines the

message format used by Internet browsers and Internet servers to interact. It also

t. It is a stateless

protocol, which implies that the receiver does not keep session information from prior

less because HTTP

TCP MODEL VS OSI MODEL AND THEIR PROTOCOLS IN EACH LAYER .

TCP, which signifies Transmission Control Protocol, is a form of communication

protocol that allows application programs and computer devices to send and receive

data and/or messages over networks. It is a stateful protocol that is included in the

Internet Engineering Task Force (IETF) specifications.

TCP protocol specifies how to set up and up a network connection via which data

may be transferred. It also selects how to divide application data into network-

transferable packets and assures end-to-end data transmission. TCP transmission is

dependable, and secure, and ensures the integrity of information delivered over an

internet connection, regardless of its size. TCP is located at Layer 4 of the Open

Systems Interconnection (OSI) Model and is used in conjunction using the Internet

Protocol. IP is a primary communications protocol that specifies how data should be

transmitted from one network to the next via the Internet.

1.2 Problem Statement

When you want to create a real time bidirectional communication between the client

and the web server there are several communication protocols to choose from while

developing apps: the Hypertext Transfer Protocol , the Web-socket and WebRTC. To

send and receive data correctly, equipment on either side of the exchange of Protocol

guidelines must be accepted and followed by information. Protocol support in

communication can be built into either software or hardware. Systems and other

equipment would be unable to interact with one another without network protocols.

As a result, a smaller amount networks would be able to remain functioning, with the

exception of speciality networks built around a certain design, and the internet as we

know it would go away. Almost all communication end users rely on network

protocols to connect. Different protocols follow different rules, and it is critical to

understand each protocol's strengths and limitations. In this instance, we must select

the best protocol for data transfer between clients and servers in order to

accommodate real-time data transmission .

1.3 Objectives

Some applications necessitate a peer-to-peer connection with minimal latency and

high transmission of data, and they are willing to accommodate some packet

(information) losses. Other apps may query the server as needed and do not need to

communicate with a different peer. A protocol is a collection of rules that regulate

how data is transferred between devices in computer networking. The protocol

specifies the communication rules, grammar, semantics, synchronization, and error

recovery mechanisms. A network protocol is a set of rules that determines how data is

sent among devices on an identical network. It essentially allows connected devices to

communicate with one another despite differences in their internal functions, structure,

or design. Network protocols provide simple contact with people globally and so play

a vital role in modern digital communications.

More than only trained network engineers and IT experts rely on network protocols.

Every day, billions of individuals use network protocols, whether they realize it or not.

You use network protocols every time you access to the internet. Though you may not

comprehend how network protocols function or how frequently you encounter them,

they are necessary for any usage of the World Wide Web or electronic

communication. The communication and data requirements of a multiplayer online

game play, chat app, blogging website, multimedia galleries app, and video calling

software vary. Other factors to consider when developing a video streaming solution

can be found in this report.

1.4 Methodology

1.4.1 Hypertext Transfer Protocol

Hypertext Transfer Protocol, also known as HTTP, is a networked, cooperative, and

multimedia information system application protocol. HTTP is the World Wide Web's

data transfer protocol. Hypertext is a type of organized text that employs logical

linkages (hyperlinks) between text-containing nodes. The HTTP protocol is used to

exchange or transport hypertext.Servers and clients communicate via HTTP by

exchanging distinct messages. Requests are information sent by the client, while

replies are messages delivered by the server. These messages are transmitted as plain

text via a TCP connection. They can also be protected with TLS and transmitted via

the HTTPS protocol. A client is often a browser for the internet or program running

on a user's phone or machine, but it might potentially be anything, such as a crawling

script. Requests made via HTTP can only be sent from a client's computer to the

server. The server cannot start contact with the user; it can only reply to requests.

1.4.2 Web Socket

Web Socket is a protocol

directions. It's an attractive option for real

multiplayer games, and live inf

bidirectional protocol that is commonly used in client

communication. It is bidirectional in nature, which means that communication takes

place between the client and the server.

FIG 2. ARCHITECTURE OF WEB SOCKET CONNECTION .

The Web Socket-based relationship remains active until one party disconnects it.

When one party stops contact, the other side is unable to share information because

the link is immediately severed at

to create a connection. In terms of functionality, it provides the backbone for

advanced web app development when it comes to smooth data streaming and other

unsynchronized traffic.

1.4.3 Containers

Containers are packages of software that have all of the necessary components to run

in any environment. Containers replicate the operating system and enable it to run

anywhere, whether an internal data centre to a cloud service to a developer's the

 that allows a client and the server to communicate in both

directions. It's an attractive option for real-time data applications including chat apps,

multiplayer games, and live information streaming.The Web Socket protocol is a

bidirectional protocol that is commonly used in client-server channels of

communication. It is bidirectional in nature, which means that communication takes

place between the client and the server.

ARCHITECTURE OF WEB SOCKET CONNECTION .

based relationship remains active until one party disconnects it.

When one party stops contact, the other side is unable to share information because

the link is immediately severed at its front. Web Socket necessitate HTTP capabilities

to create a connection. In terms of functionality, it provides the backbone for

advanced web app development when it comes to smooth data streaming and other

ainers are packages of software that have all of the necessary components to run

in any environment. Containers replicate the operating system and enable it to run

anywhere, whether an internal data centre to a cloud service to a developer's the

that allows a client and the server to communicate in both

time data applications including chat apps,

ormation streaming.The Web Socket protocol is a

server channels of

communication. It is bidirectional in nature, which means that communication takes

based relationship remains active until one party disconnects it.

When one party stops contact, the other side is unable to share information because

its front. Web Socket necessitate HTTP capabilities

to create a connection. In terms of functionality, it provides the backbone for

advanced web app development when it comes to smooth data streaming and other

ainers are packages of software that have all of the necessary components to run

in any environment. Containers replicate the operating system and enable it to run

anywhere, whether an internal data centre to a cloud service to a developer's the

machine.Our development teams can now move quickly, distribute software

effectively, and function at an unparalleled scale thanks to containerization.

FIG 3. CONTAINER ARCHITECTURE .

Containers are executable software units in which application

frameworks and interdependence, is packed in standard ways so that the code may be

executed anywhere. Containers accomplish this through a type of operating systems

(OS) virtualization in which features of the kernel of the OS are u

handles and control the amount of CPU, memory, and disc that those processes can

access. Containers are compact, quick, and portable because, unlike virtual machines,

they do not require an additional operating system in each instance and ma

rely on the host OS's capabilities and resources.

1.4.4 TCP Protocol

TCP, or Transmission Control Protocol, is a network communication protocol that

allows application programme and hardware components to exchange messages. Its

goal is to send packets across the internet and ensure that messages and other

information are delivered correctly across networks. TCP is a key protocol that

establishes Internet laws and has been incorporated in the Internet Engineering Task

r development teams can now move quickly, distribute software

effectively, and function at an unparalleled scale thanks to containerization.

CONTAINER ARCHITECTURE .

Containers are executable software units in which application code, together with its

frameworks and interdependence, is packed in standard ways so that the code may be

executed anywhere. Containers accomplish this through a type of operating systems

(OS) virtualization in which features of the kernel of the OS are u

handles and control the amount of CPU, memory, and disc that those processes can

access. Containers are compact, quick, and portable because, unlike virtual machines,

they do not require an additional operating system in each instance and ma

rely on the host OS's capabilities and resources.

TCP, or Transmission Control Protocol, is a network communication protocol that

allows application programme and hardware components to exchange messages. Its

ackets across the internet and ensure that messages and other

information are delivered correctly across networks. TCP is a key protocol that

establishes Internet laws and has been incorporated in the Internet Engineering Task

r development teams can now move quickly, distribute software

effectively, and function at an unparalleled scale thanks to containerization.

code, together with its

frameworks and interdependence, is packed in standard ways so that the code may be

executed anywhere. Containers accomplish this through a type of operating systems

(OS) virtualization in which features of the kernel of the OS are used to isolate

handles and control the amount of CPU, memory, and disc that those processes can

access. Containers are compact, quick, and portable because, unlike virtual machines,

they do not require an additional operating system in each instance and may instead

TCP, or Transmission Control Protocol, is a network communication protocol that

allows application programme and hardware components to exchange messages. Its

ackets across the internet and ensure that messages and other

information are delivered correctly across networks. TCP is a key protocol that

establishes Internet laws and has been incorporated in the Internet Engineering Task

Force (IETF) specifications. It is a commonly used protocol for digital

communication over networks that ensures data delivery from start to end.

Transmission Control Protocol (TCP) connections have been employed to link the

server and client processes. The server code is executed first, which establishes a port

and waits for incoming client connection requests.

 In networking, The User Data-gram Protocol (UDP) is a protocol that, like TCP, is

used to establish low-latency connections between programme and shorten

transmission times. Because it incorporates missing or improperly formed packets and

protects data transfer with restrictions such as acknowledgment of receipt connection

initiation, and flow control, TCP is an expensive network utility. UDP is less reliable

but less expensive since it lacks defective connection and packet the sequencing

process, as well as signaling a destination before transmitting data. As a result, it is an

excellent solution for time-critical applications which include DNS search, Voice over

Internet Protocol (VoIP), and video streaming.

1.5 Organization

Chapter 1: Introduction
Various aspects of the project are dealt with in this section, which includes a synopsis

of the assignment, the approach that was used, an explanation of the issue discussed

by the project, as well as the goal of the project.

Chapter 2: Literature Survey

This project's literature review part discusses the evaluated resources as well as the

topics that have been investigated and recognized.

Chapter 3: System Design and Development

Within this section, we are going to look over project analysis and system design

implementation. We will describe the algorithms employed and share project

snapshots.

Chapter 4: Experiment and Result Analysis

This portion of the project shows the results of the analysis by displaying and

comparing the findings in snapshots. It also has the ability to show multiple outputs.

The part also discusses how the outcomes were acquired and what they indicate for

the project's achievement.

Chapter 5: Conclusion

This component of the study ends with the present project and discusses potential

additional study and development opportunities.

CHAPTER 2 : LITERATURE SURVEY

The numerous advancements in the field of networking and socket programme were

covered in this part. The effectiveness of the system and socket programming

methodologies, as well as the outcomes of their testing on the specified architecture

2.1 Computer Networking Architecture

 It has been found that the types of network assaults are equally varied as the

systems they target.[11] Technically skilled intruders might have been fascinated

with attacking the protocols that are used for safe communication across

networking devices, whether the attacks are purposeful or accidental . This

review discusses how, despite very high-security measures, extremely skilled

attackers are breaking into internet networks. The new generation of Internet-

enabled gadgets, which may be found everywhere in the globe, requires

organizations to make plans, according to the research Internet of Things Wake-

Up Call for Enterprises.

 Forbes study from 2015 states that a 42% rise in cloud-based security investment

is anticipated. [2] Another study found that the investment on IT security climbed

to 79.1% by 2015, indicating a rise of more than 10% annually. Security was

identified as a top problem by 74.6% of commercial clients in 2011, according to

International Data Corporation (IDC).[11] This publication compiles a number of

peer-reviewed articles on cloud computing security concerns and mitigation

techniques. Our research's goal is to comprehend cloud components, security

concerns, and difficulties, as well as new technologies that may be able to reduce

cloud vulnerabilities.

 Although it is widely acknowledged that the cloud has been a viable hosting

platform since 2008, there is a notion that security in the cloud still has to be

significantly improved in order to achieve higher rates of adoption at the business

scale.[10] Many of the problems facing cloud computing, as noted by another

study, need to be remedied right away. Although the industry has made

tremendous strides in defending against threats to cloud computing, more work

has to be done before it reaches the level of maturity enjoyed by traditional/on-

premise hosting.

 The author of this paper believes that corporate networks are distinct from the

Internet at large and require particular attention because of preventive and

detective attacks:[7] Security is of the utmost importance, centralized control is

typical, and uniform, consistent procedures are crucial. However, offering robust

protection is challenging and necessitates certain compromises. An open

ecosystem with unrestricted communication and interoperability across all end

hosts has definite advantages. However, it is also obvious that such openness

leaves the network vulnerable to attacks from nefarious individuals both inside

and outside of it.

 It is suggested that ENSASE be implemented in Evaluating and Enhancing

Enterprise Network Safety Using Attacking Graphs. Large company network

security assessments are difficult and time-consuming. We offer a new method

that builds attack graphs that demonstrate how far inside and outside attackers

may advance via a network by gradually compromising exposed and susceptible

hosts by using configuration data on firewalls combined with vulnerability

information on every network device.

 Within the context of Markov Decision Processes, optimal algorithms may be

defined as constrained optimization problems where the goal is to maximize a

certain utility subject to specified QoS restrictions.However, many poor

algorithms have been developed since optimum algorithms are frequently

computationally inefficient.

 In this part, we examine a variety of these specifically proposed methods for

IEEE 802.16 networks.The lone exception is [12], where the authors suggested a

contention-based TCP aware upstream routing for IEEE 802.16 connection. Most

of these methods have been developed for real-time traffic with QoS guarantees.

 The BS analyses the send rate of every component flow dynamically and

distributes resources depending on the observed send rate, whereas in, SSs do not

submit any bandwidth queries for scheduling.[12] As the BS must keep account

of the statuses for every TCP flows as well as the needs of the SSs, this type of

dynamic transmit rate assessment of every TCP flows within the BS within each

frame may result in scalability issues.Furthermore, the plan in does not take into

account the wireless channel's time-varying nature, the impact of RT T change on

the need, or the impact of TCP timeouts.

 When resources are allocated only based on transmit rate, some flows may get

starved, which will cause frequent congestion in the TCP window decreases and

performance deterioration.[9] On the other hand, we provide a scheduling

technique in this study that takes into consideration the time-varying wireless

channel in addition to cwnd and TCP timeout.

2.2 Data Transfer Protocols , HTTP/ HTTPS

 Based on the injecting traffic and the control traffic, Chen et al.'s [1] analysis of

TCP performance in multi hop wireless networks. The ideal congestion window

size, where n is the total number of hops, determines infused traffic in large part.

TCP's use is limited when a fixed cwnd is set. As a result, the literature

concentrates more on decreasing control traffic to boost TCP performance.

 In [4]. examine how well the most popular VoIP codecs—G.711, G.723.1, and

G.729—perform over a WiMAX network while using different service classes

and NOAH as the transport protocol. With the capacity to transmit voice as

packet over IP networks, Voice Over Internet Protocol is a potential new

technology that enables voice communication via internet protocol-based

networks. As a result, it can replace public switched telephone networks.

 The authors[2] suggest a receiver-aided technique in which the TCP receiver

keeps track of the connection's contention state and, when necessary, notifies the

TCP sender via the ACK mechanism. End-to-end latency is used by TCP receiver

as a contention criterion.

 Focusing on the analysis of crucial QoS factors for Wimax Network [5] study.

500 mobile nodes in a WiMax network have had their throughput, latency, jitter,

packet delivery ratio, and packet loss ratio (PLR) measured. The AODV protocol

was chosen as a routing protocol due to its capacity to function well in erratic and

highly mobile environments.

 Due to wireless router connectivity, WAP is "fast-paced technology" and simple

to use since corporate operations are not constrained to a small space. In this

manner, several devices may be accessed in the same location without

experiencing any connectivity issues. Costs are decreased because less cabling is

required to connect each item individually [1].

 In contrast, sluggish WAP connections can occasionally cause user delays and

other issues. Because the internet cannot be accessed, it is not completely secure,

and the amount of data that can be collected is limited. WAP is pricey at first,

even with a flawless keyboard and a good display [2].

 To support the findings of the literature research, this study collects various data,

such as "An interoperability testing approach to wireless application protocols"

and "micro-computed methodology". Several WAP strategies are emphasised by

secondary research, including how it manages "High Latency,""Small

Displays,""limited input facilities," and "Less Stable Connection" [4]. The WAP

architecture was identified and the Wireless application protocol was compared to

the Internet protocol using this technique.

 This study used secondary research approach to compile theoretical information

regarding WAP [8]. This technique made it possible for this study to acquire

sufficient data about the benefits and downsides of WAP in order to provide

theoretical support for the literature review. The collected data will be subjected

to thematic analysis. In this paper, the foundations of "Audio-Video testing" and

"Cluster-based routing protocol in wireless sensor networks" are evaluated.

2.2 TCP Socket Programming

 The socket-based programming ideas introduced by Xue & Zhu (2009) are

crucial for our investigation. They also gave a briefing on connection-oriented

programming, which may ensure ongoing network connectivity.

 Understanding the fundamental terminology associated with client-server

communication is made easier by insights on the principles, ideas, and designing

aspect of client-server web applications.[17] Working on wireless connections is

recommended to join the client-server connection. They also added that

consumers will receive a wide range of services from these sorts of solutions.

 The communication strategy described here is applicable to socket programming

and interface design. On File ServerJava Sockets are being used to construct a file

server that is based on the TCP protocol. The server may react to requests for

files in a variety of formats. A dedicated Server keeps a list of files and is used

for client authentication depending on the IP address of the connected client[13]

 The study of active networks has advanced steadily. It is important to build

suitable execution platforms for active applications because active networks

provide programmability to the Internet. Execution environments (EEs) are what

these operating systems are known as, and a number of them have been

developed, such as the Active Network Transport System (ANTS) and the Active

Signalling Protocol (ASP) [12].

 A design framework for adding additional network protocols to the Internet was

put out by Clark and Tennenhouse [1] in 1990. Active design of networks

framework has gradually developed since the release of that position paper in the

late 1990s. On the Internet, programme code and data may be transmitted

concurrently thanks to the active network concept. Additionally, they could be

performed and changed en route to their destinations.

 The peak performance of a certain kernel on various architectures is not

guaranteed by OpenCL. Different programming techniques may be induced by

the nature of the underlying hardware. The more common CPU architecture is

undoubtedly the multi-core one. However, the upcoming Khronos proposal to

bring GPU computation to the web is certain to increase programmers' interest in

GPU architecture [15].

 Nevertheless, even if the most challenging aspect of parallel programming is

hidden by OpenCL's API, a solid grasp of the underlying memory model results

in more effective code. Details regarding the memory model are provided in the

following paper, along with basic recommendations on how to construct an

OpenCL cluster: [11].

CHAPTER 3 : SYSTEM DESIGN & DEVELOPMENT

The systems development cycle

design, management of data, and software engineering, consists

and executing the system. For this project's development, we utilized the following set

of tools and development stack: Node.js and express for the application's hosting

server, socket.io for web socket implementation, MongoDB for

Docker for container creation.

3.1 Database Design and Architecture

Relationships are meaningful connections between tables that hold related data; they

are what make databases functional. You might as well be dealing with fragmented

spreadsheet documents instead of a database system if there is no connectivity among

tables in a database.

3.1.1 One to One Relation

A record in one database may relate to only one value in another table (or, in certain

situations, no records) in a one

uncommon since equivalent information may often be stored in the exact same table.

Whether you break that information up into numerous tables is determined by your

entire data structure and design technique; if you

feasible (as in a normalized database), one

FIG 4. ONE TO ONE RELATION OF ITEMS IN DATABASE.

SYSTEM DESIGN & DEVELOPMENT

The systems development cycle referred to as a development life cycle in system

design, management of data, and software engineering, consists of creating, assessing,

and executing the system. For this project's development, we utilized the following set

of tools and development stack: Node.js and express for the application's hosting

server, socket.io for web socket implementation, MongoDB for the database, and

Docker for container creation.

3.1 Database Design and Architecture

Relationships are meaningful connections between tables that hold related data; they

are what make databases functional. You might as well be dealing with fragmented

eadsheet documents instead of a database system if there is no connectivity among

3.1.1 One to One Relation

A record in one database may relate to only one value in another table (or, in certain

situations, no records) in a one-to-one connection. One-to-one connections are

uncommon since equivalent information may often be stored in the exact same table.

Whether you break that information up into numerous tables is determined by your

entire data structure and design technique; if you keep tables as tightly focused as

feasible (as in a normalized database), one-to-one connections may be advantageous .

ONE TO ONE RELATION OF ITEMS IN DATABASE.

SYSTEM DESIGN & DEVELOPMENT

referred to as a development life cycle in system

of creating, assessing,

and executing the system. For this project's development, we utilized the following set

of tools and development stack: Node.js and express for the application's hosting

the database, and

Relationships are meaningful connections between tables that hold related data; they

are what make databases functional. You might as well be dealing with fragmented

eadsheet documents instead of a database system if there is no connectivity among

A record in one database may relate to only one value in another table (or, in certain

one connections are

uncommon since equivalent information may often be stored in the exact same table.

Whether you break that information up into numerous tables is determined by your

keep tables as tightly focused as

one connections may be advantageous .

3.1.2 Database Design

I have employed MongoDB to design the database and its schema for the project .

With replica sets, MongoDB provides high availability.A replica set consists of many

copies of exactly the same data. Everyone who is part of the replica set

assume the role of a combination of the main copy or secondary replica at any

moment. All data transactions are conducted on the original replica by default.

Secondary replicas retain a copy of the primary's information via built

When an initial replica fails, the replica set performs an election that determines

whichever secondary should take its place. Secondary data can be utilized to perform

read operations if desired, however it is only eventually permanent by default. If the

duplicated MongoDB deployment has only one primary member, an extra daemon

known as an arbiter must be introduced to the set. It only has one responsibility: to

settle the outcome of the next primary. As a result, even with a single primary and one

secondary server, an idealized distributed MongoDB deployment needs at least three

different servers.

FIG 5. RELATION OF EACH VALUES AND USER DATABASE DESIGN.

3.2 System Design

Long-polling connections are used to communicate between the client computer and

the server. Every message received by the server is sent out to all active connections.

Web sockets are more dependable. Because an event may occur while some clients

reconnect, a queue for messages should be carried out, and clients ought to transmit

I have employed MongoDB to design the database and its schema for the project .

With replica sets, MongoDB provides high availability.A replica set consists of many

copies of exactly the same data. Everyone who is part of the replica set

the role of a combination of the main copy or secondary replica at any

moment. All data transactions are conducted on the original replica by default.

Secondary replicas retain a copy of the primary's information via built

eplica fails, the replica set performs an election that determines

whichever secondary should take its place. Secondary data can be utilized to perform

read operations if desired, however it is only eventually permanent by default. If the

B deployment has only one primary member, an extra daemon

known as an arbiter must be introduced to the set. It only has one responsibility: to

settle the outcome of the next primary. As a result, even with a single primary and one

alized distributed MongoDB deployment needs at least three

RELATION OF EACH VALUES AND USER DATABASE DESIGN.

polling connections are used to communicate between the client computer and

message received by the server is sent out to all active connections.

Web sockets are more dependable. Because an event may occur while some clients

reconnect, a queue for messages should be carried out, and clients ought to transmit

I have employed MongoDB to design the database and its schema for the project .

With replica sets, MongoDB provides high availability.A replica set consists of many

copies of exactly the same data. Everyone who is part of the replica set is able to

the role of a combination of the main copy or secondary replica at any

moment. All data transactions are conducted on the original replica by default.

Secondary replicas retain a copy of the primary's information via built-in replication.

eplica fails, the replica set performs an election that determines

whichever secondary should take its place. Secondary data can be utilized to perform

read operations if desired, however it is only eventually permanent by default. If the

B deployment has only one primary member, an extra daemon

known as an arbiter must be introduced to the set. It only has one responsibility: to

settle the outcome of the next primary. As a result, even with a single primary and one

alized distributed MongoDB deployment needs at least three

polling connections are used to communicate between the client computer and

message received by the server is sent out to all active connections.

Web sockets are more dependable. Because an event may occur while some clients

reconnect, a queue for messages should be carried out, and clients ought to transmit

the timestamp of the most recent message they received. This is not available in the

present release.

FIG 6. WORKFLOW OF SERVER AND DB

3.2.1 Web Server

The server answers to requests made via POST with json formatted data. Each

message should include room and action parame

parameters utilized by the related commands.The client side should send initialization

as the initial command. While no reply is received, the player is the only one

connected to the given room, and the game cannot be starte

there is a second player, the web server answers to the init call, informing each client

of whose player it is.

ost recent message they received. This is not available in the

WORKFLOW OF SERVER AND DB

The server answers to requests made via POST with json formatted data. Each

message should include room and action parameters, as well as any additional

parameters utilized by the related commands.The client side should send initialization

as the initial command. While no reply is received, the player is the only one

connected to the given room, and the game cannot be started. From the moment as

there is a second player, the web server answers to the init call, informing each client

ost recent message they received. This is not available in the

The server answers to requests made via POST with json formatted data. Each

ters, as well as any additional

parameters utilized by the related commands.The client side should send initialization

as the initial command. While no reply is received, the player is the only one

d. From the moment as

there is a second player, the web server answers to the init call, informing each client

When an individual moves, the set instruction is sent; the specified extra data is sent

to every one of other connections

arguments; it simply adds the connection's information to the pool so that when

someone sends set, the client receives the data.

The reset instruction (not implemented), which indicates that a fresh game between

the players has begun and that all associated clients ought to reload their boards.

Because the internet connection does not save the current state, any fresh watcher can

observe only the latest moves and will be unable to initialize itself with the game's

current state. The server, on the other hand, might save the state and, upon resumption,

ask the first connecting players about the current game's state, while the client ought

to issue a data command including all of the game data, that will be propagate

newly connected viewers or a rejoined player.

3.2.2 Client Side

The client is made up of three key parts: the Board, Game, and Connection classes.

The connections class encapsulates the server connection and contains just one

method, send, which has

the data to be sent with the command, and a callback to be invoked when there is a

response. The answer is likewise a JSON thing, containing the command name as

well as any data connected with it. I

will be resend with an increasing interval between attempts .

FIG 7.REQUEST RESPONSE CYCLE OF THE SYSTEM

The class initializes the link between the player and the board, as well as enabling and

disabling the board based on whether or not it is the current user's time to move. The

When an individual moves, the set instruction is sent; the specified extra data is sent

to every one of other connections observing this room.The wait command has no

arguments; it simply adds the connection's information to the pool so that when

someone sends set, the client receives the data.

The reset instruction (not implemented), which indicates that a fresh game between

the players has begun and that all associated clients ought to reload their boards.

Because the internet connection does not save the current state, any fresh watcher can

observe only the latest moves and will be unable to initialize itself with the game's

current state. The server, on the other hand, might save the state and, upon resumption,

ask the first connecting players about the current game's state, while the client ought

to issue a data command including all of the game data, that will be propagate

newly connected viewers or a rejoined player.

The client is made up of three key parts: the Board, Game, and Connection classes.

The connections class encapsulates the server connection and contains just one

method, send, which has three parameters: the command that needs to be given out,

the data to be sent with the command, and a callback to be invoked when there is a

response. The answer is likewise a JSON thing, containing the command name as

well as any data connected with it. If a connection fault occurs, the previous command

will be resend with an increasing interval between attempts .

REQUEST RESPONSE CYCLE OF THE SYSTEM

The class initializes the link between the player and the board, as well as enabling and

disabling the board based on whether or not it is the current user's time to move. The

When an individual moves, the set instruction is sent; the specified extra data is sent

observing this room.The wait command has no

arguments; it simply adds the connection's information to the pool so that when

The reset instruction (not implemented), which indicates that a fresh game between

the players has begun and that all associated clients ought to reload their boards.

Because the internet connection does not save the current state, any fresh watcher can

observe only the latest moves and will be unable to initialize itself with the game's

current state. The server, on the other hand, might save the state and, upon resumption,

ask the first connecting players about the current game's state, while the client ought

to issue a data command including all of the game data, that will be propagated to

The client is made up of three key parts: the Board, Game, and Connection classes.

The connections class encapsulates the server connection and contains just one

three parameters: the command that needs to be given out,

the data to be sent with the command, and a callback to be invoked when there is a

response. The answer is likewise a JSON thing, containing the command name as

f a connection fault occurs, the previous command

The class initializes the link between the player and the board, as well as enabling and

disabling the board based on whether or not it is the current user's time to move. The

Game class interacts with the board via event listeners and displays the status

message.The board category is the game's heart. Its constructor takes an HTML Table

component as the single argument and links the game boards to the table's cells. When

the user clicks upon the cell's button, a board:set events are fired, which includes the

row and number of the cell. If the move was successful, a deck:winning event is fired,

and if the final square is filled but the move was unsuccessful, a deck:full event is

fired.

3.3 ECMA-262

ECMAScript is a language for object-oriented programming used in a host

environment to execute calculations and manipulate computational objects.

ECMAScript as specified here is not meant to be computationally self-contained; in

fact, there are no facilities in this specification for the entry of external data or the

output of calculated results. However, it is expected that an ECMAScript program's

computational environment will provide rather than only the objects along with the

additional facilities characterized in this specification, but also certain context-specific

host objects, the description of which and their behavior are outside the bounds of this

specification with the exception to indicate that they might offer certain properties the

fact that can be obtained and specific operations that may be invoked from an

ECMAScript programme. A language for scripting is a type of computer language

used to alter, modify, and automate a system's features. In such systems, beneficial

functionality is already exposed to programme control through an operator interface,

and the scripting language serves as a means of making it accessible to programme

control. In this approach, it is claimed that the current system offers a host

environment filled with objects and facilities that completes the scripting language's

capabilities. Both seasoned programmers and novice programmers can utilize

scripting languages. For client-side computing, a web browser offers an ECMAScript

host environment, which may include objects that symbolize windows, menus, pop-

ups, dialogue boxes, text regions, anchors, structures, history, cookies, and

feedback/output. The host environment further offers a way to associate scripting

code with activities like focus change, page and picture loading and unloading, failure

and abort, selection, form delivery, and mouse movements. The HTML contains

scripting code, and the page that is shown combines user interface components with

fixed and calculated text, pictures, and user interface elements. There is no

requirement for a primary programme because the scripting code responds to user

input.

3.4 Node

Node.js is an inexpensive and freely available server environment that runs on Linux,

Windows, Unix, macOS, and other platforms. Node.js is a JavaScript runtime

framework for the back end which processes code written in JavaScript outside of a

web browser. The V8 Js Engine powers it. Node.js enables developers to create

command-line tools, including JavaScript server-side scripts. The ability to run

JavaScript script on the server that hosts the website is widely used to generate

dynamic material for web pages before transmitting the page to the the customer's

web browser. As a result, Node.js represents a "JavaScript every where" paradigm in

which combining web application programming around a single language of

programming rather than using several distinct languages for on the server side and

client-side programming.Node.js' event-driven architecture enables for asynchronous

I/O. Node.js allows the building of Web servers as well as networking tools by using

JavaScript as well as a collection of components that handle several basic

operations.Modules provide file system I/O, networking, binary data (buffers),

cryptographic operations, data streams, and other vital services.Node.js modules use

an API to make it easier to create server applications.Node.js only natively supports

JavaScript, although there are other collate-to-JS languages available. As a result,

Node.js applications may be written in a number of programming languages, such as

Coffee Script, Dart, TypeScript, ClojureScript, and others.

Node.js is mostly used to create network programme like Web servers.The most

notable distinction between Node.js and PHP is that most PHP functions block until

conclusion, whereas Node.js operates are not blocking (commands perform

simultaneously or additionally in parallel and use callbacks to indicate completion or

failure).

3.5 Express

Express.js, or just Express, is a back-end web-based application framework for

constructing Restful API using Node.js that is available for free and open-source use

under the MIT Licence. It is intended for the development of web-based applications

and API.It has been dubbed the de-facto Node.js server framework defined as a

Sinatra-inspired server, implying that it is very simple with numerous functionality

accessible as plugins. Sharding allows MongoDB to scale horizontally. The user

selects a shard essential which governs how information within a collection is

dispersed.

Express is a node js web application framework. It provides a variety of capabilities

for developing mobile and online apps, including the ability to create a single page,

many pages, and a full hybrid web application. Express JS operates as a layer atop

Node JS, assisting in the management of servers and routes.Express is a Node.js

website development framework that offers a minimum and versatile collection of

functionality for developing online and mobile apps. It speeds up the creation of

Node-based Web applications. The factors that follow are some of the most important

characteristics of the Express framework. Allows you to configure middleware to

reply to HTTP requests. Defines a routing database for doing various actions

according to the HTTP Method and URL. Allows for the dynamic rendering of

HTML pages.The data is divided into ranges and spread among numerous shards

depending on the shard key. (A shard consists of a master and one or more copies.)

On the other hand, the shard key can be calculated to correspond to a shard, allowing

for more even data distribution. MongoDB may be distributed over numerous servers,

balancing the demand or replicating data in order to keep the system operational in the

event of hardware failure.

3.4 Web Sockets

Web Sockets were created to provide full-duplex in communication among a client

and a server, allowing data to move both directions instantly over a single open

connection. The client's browser does not need to query an internet server for updates

once the connection via Web Socket is established. Communication is instead

bidirectional. When compared to HTTP/1's original long- and short-polling, this

enhances speed and real-time capability. Web Socket does not adhere to any format.

Web Sockets are popular because they allow you to transfer any type of data,

including text and bytes. Some of this may seem familiar from the HTTP/2 portion,

but it's crucial to remember that Web Sockets existed long before HTTP/2. We'll

compare them more thoroughly afterwards.TCP sockets are a basic notion in the

TCP/IP application environment. The Transmission Control Protocol, also known as

the TCP socket is a focused on connections socket that employs the TCP protocol. To

establish a connection, three packets are required: the SYN package, the SYN-ACK

package, and the acknowledgment package. The Internet Protocol (IP) address of the

system and the port that it uses define a TCP socket. TCP sockets ensure that every

data is obtained and recognized. TCP sockets are utilized to connect a server and an

end-user process. The server code is executed first, which establishes a port and waits

for incoming client connection requests. A user or server can send an electronic

message after connecting to the exact same (server) port. When the communication is

sent, it is processed by anyone who encounters it (server or client).

3.6 Modules

Modules in Node.js are isolated units of code that interface with a third-party app

based on their relevant capabilities. Modules might be just one file or a group of

files/folders. Because of their versatility and ability for breaking down an intricate

piece of software into digestible bits, modules are frequently used by programmers.

3.6.1 Express Session

The HTTP protocol is the foundation of a website. HTTP is a protocol without states,

which implies that both ends of the connection forget regarding one another at the end

of each request and answer cycle.This is the point where the meeting comes into play.

To maintain track of the user's status, a session will include some particular

information about that client. Session-based authentication stores the user's state in

the server's memory or a database.

When a client requests authentication, the server creates a session and stores it on the

server. A cookie is sent by the server when it responds to the client. This cookie will

hold the session's unique id, which was previously saved on the server and is going to

remain on the client. The cookie in question will be delivered with each server request.

To preserve an exact match among an ongoing session and a cookie, we utilize this

session ID to search for the session maintained in the database itself or the session

storage. HTTP protocol connections will now be stateful.

3.6.2 Cookie

Cookies is a Node.js module that allows you to get and set HTTP(S) cookies. Using

cookies may be issued to prevent tampering. It may be used in conjunction with the

node.js HTTP library or as Connect/Express middleware. The cookie is a combination

of keys and values that the browser stores. Cookies are attached to each HTTP request

submitted to the server by the browser. A cookie cannot hold a large amount of data.

A session cookie is unable to save any user credentials or confidential information. If

we did so, a hacker might simply obtain that information and take personal

information for nefarious purposes. The session data, on the opposite, is saved on the

server, in a file called a database or a temporary store. As a result, it can handle higher

volumes of data. To retrieve data from the server, a session must be authenticated

using a secret key or session id obtained from the cookie on each request.

3.6.3 Socket IO

Socket.IO is a driven-by-events library for real-time applications on the web. It

facilitates real-time, bidirectional communication among web clients and servers. It is

divided into two parts: a client side module that runs in a web browser and a server-

side component for Node.js. Both components have nearly identical API. Socket.IO

primarily use the Web Socket protocol, with polling as a backup option, while

maintaining the same interface. Although it can be used just as a wrapper for Web

Sockets it has many more features, such as transmitting to multiple sockets and

storing data connected with each client, and asynchronously I/O.Within the Engine.IO

threshold, a heartbeat system is built, enabling both the server's side and the client to

detect when the other is no longer responding. Timers are established on both the

server and the client, and expiration quantities (also known as the and ping

timeout variables) are communicated during the connection handshake. Because of

the timers, any future client calls must be routed to the same server, resulting in the

sticky-session requirements when employing multiple nodes.

3.6.4 Bcrypt

Encryption aids in the integrity, security, and accessibility of systems and information.

Our clients rely on our computerized systems to do business, offer services, and,

ultimately, make a difference in the world by providing better and more affordable

medicine.To offer a full comparison, Bcrypt has additional component that must be

discussed. A salt (or a random piece of data) can be added to a supplied password

before it is passed through the hashing process. Salting enhances the difficulty of

passwords as well as the length of time it takes to crack them using brute force.

Rainbow Table assaults are similarly restricted. (Pap) Bcrypt was created for the

purpose of password hashing and includes other components that boost the

complexity of hashed passwords.

3.6.5 Flash

The flash storage area is a session-specific region used to store messages. Instructions

are recorded to the flash and then cleared when the user sees them. Flash is commonly

used in conjunction with redirects to ensure that the notification can be clicked to the

next . After Express 3.x eliminated immediate support for the flash, this middleware

was removed from Express 2.x. Connect-flash restores this feature to Express 3.x and

any other middleware-compliant framework or application for extreme re usability.

3.6.6 Cookie Parser

Parse the Cookie header and add an object indexed by the cookie values to

req.cookies. You may enable signature cookie support by giving a secret a string,

which allocates req.secret so that other middleware can utilize it.

The middleware will scan the Cookie request on the request it receives and provide

the cookie information as the req.cookies property and, if a secret was given, as the

req.signed Cookies property. These are combinations of the cookies name and cookie

value.When secret is supplied, this component will unsigned and check any signature

cookie values before moving them from req.cookies to req.signed Cookies.

3.6.7 Mongo DB

MongoDB maintains records of data as documents (particularly BSON documents)

organist into collections. A database contains one or more document collections. To

specifically build a collection with different settings, such as selecting the maximum

size or reviewing the validation criteria, MongoDB offers the db.createCollection()

function. You don't have to explicitly construct the collection if you do not specify

these settings since MongoDB generates new collections once you first save data for

the collection. A collection of files does not need each document to have the identical

schema by default; that is, the documents in one collection are not required to include

a comparable number of fields, and an information

documents within a set of documents.MongoDB has two types of views: regular

views and on-demand materialized views. Both of them view types return aggregation

pipeline results.

FIG 8. DATABASE VALIDATION SCHEMA.

Standard views are calculated when the view is read and are not saved to disc.

Materialized views are saved and accessed from disc on demand. Standard views rely

on the underlying collection's indexes. As a consequence, you cannot directly create,

drop, or rebuild indexes on a conventional view, nor can you retrieve an array of

a comparable number of fields, and an information type for a field might vary among

documents within a set of documents.MongoDB has two types of views: regular

demand materialized views. Both of them view types return aggregation

DATABASE VALIDATION SCHEMA.

ard views are calculated when the view is read and are not saved to disc.

Materialized views are saved and accessed from disc on demand. Standard views rely

on the underlying collection's indexes. As a consequence, you cannot directly create,

ild indexes on a conventional view, nor can you retrieve an array of

type for a field might vary among

documents within a set of documents.MongoDB has two types of views: regular

demand materialized views. Both of them view types return aggregation

ard views are calculated when the view is read and are not saved to disc.

Materialized views are saved and accessed from disc on demand. Standard views rely

on the underlying collection's indexes. As a consequence, you cannot directly create,

ild indexes on a conventional view, nor can you retrieve an array of

index on the view. On-demand materialized views outperform normal views in terms

of read performance since they are accessed from disc rather than calculated as part of

the enquiry. This speed advantage grows in proportion to the sophistication of the

process and the amount of information being aggregated.

3.6.8 Net Module

The application model may be defined by combining many Compose files. The user-

specified Compose file order MUST be followed when implementing a mix of YAML

files by adding or overriding YAML components. Simple attributes, maps, and lists

are merged by appending, whereas lists are overridden by the highest-order

highest compose file. When merging complementary files that are housed in different

directories, relative addresses MUST be resolved depending on the parent folder of

the first Compose file. Combines MUST extend to the expanded version since some

Compose file components can be written as either simple strings or complicated

objects. For building flow-based TCP or IPC services (net.createServer()) or

customers (net.createConnection()), use the node:net module's asynchronous network

API.The local domain on Unix is also referred to as the Unix realm. The path is the

name of a file system path. It is cut off at sizeof(sockaddr_un.sun_path) - 1, which is

an OS-dependent length. On Linux and macOS, the typical amounts are 107 and 103

bytes, respectively. The Unix domains socket will also be unlinked when a Node.js

API encapsulation generates one. For instance, server.close() will unlink a Unix

domain socket that was created by net.createServer().

3.7 MVC Design Pattern and Factory Design Pattern

Patterns of design are a means for you to organise the code in your solution so that

you may profit from something, like quicker development times, code reuse, etc.

The object-oriented programming model lends itself to all patterns rather naturally.

However, given the adaptability of JavaScript, you can also use these ideas in non-

OOP projects.There are simply too many different design patterns to discuss them all

in one article.

3.7.1 Model View Controller

MVC is only an architectural or design pattern applied to software engineering. While

not a rigid rule, this pattern aids in helping developers narrow their attention to one

particular aspect of their application at a time. The primary objective of MVC is to

divide complex programme into distinct portions, each with a distinct function.

Additionally, it enables secure logical application structuring, as we will demonstrate

in this tutorial. Let's first examine what each feature of the pattern offers. A model is,

as its name suggests, a design and structure. With MVC, the portion of the

programme that communicates with the database is defined by the model, which also

establishes how a database is organized. The attributes of a user which will be stored

in our database will be defined here.Through the model, the controller has access to

the database. Users interact with the programme through the view. In other words, this

is the location of all the HTML template files. The controller communicates with the

representation and provides the view with functionality and response. When an end

user submits a request, the controller, which works with the database, receives

it. Consider a controller as an attendant taking care of the orders of the patrons, in this

instance the view. After then, the waiter, who represents the model/database or the

controller processing the request.

The Model does not include any logic detailing how to show the data to a user; it

merely holds the pure application data. (It is only data that is sent across the

programme, for instance from the the front-end side to the database and from the

back-end server view. The View shows the user the data from the model. The view is

aware of how to get to the data in the model, but it is unaware of what this data

signifies or how the user might be able to alter it. View just represents, shows the data

from the programme on the screen. Among the view & the model lies the controller.

The real company reasoning is written there. It keeps an eye out for events that are

brought on by the viewpoint and responds to them appropriately. The response is

often to invoke an operation on the model. The outcome of that action is then

instantaneously reflected on the view since the views and the underlying model are

linked by a notification system.

3.7.2 Factory Design Pattern

The factory pattern is one of the most common patterns for developing in Javascript.

This type of design pattern is classified as a development pattern since it provides one

of the best ways to create an item.We build items in the factory architecture without

exposing their origin logic to the client and utilise an interface that is universal to

refer to freshly created objects. Simply provide an interface and an abstraction class to

build an object using the factory architecture or factory technique pattern, and

subsequently let the subclasses decide which class to instantiate. Subclasses, in a

nutshell, are in charge of creating a class instance.The Factory Methods Pattern is a

different acronym for the Virtual Constructor.

FIG 9. FACTORY DESIGN PATTERN

The factory pattern of design is used when a super class has numerous sub objects and

we require returning one of the sub classes depending on the input. In this approach,

the factory class takes responsibility of class instantiate rather than the client

programme. Before delving into the advantages of the factory design arrangement .

3.8 Docker

Developers and system administrators may create, distribute, and execute programme

using containers using the Docker platform. Containerization is the process of using

containers to deliver software. Although using containers to quickly deploy

applications is not new, it is. A container runs on Linux natively and shares the host

computer's kernel with other containers. It is lightweight because it runs a separate

process and uses no more memory than any other programme.

A virtual machine (VM), in contrast, utilizes a full

and has virtual access to host resources via a

of overhead in addition to what your application logic uses.

exposing their origin logic to the client and utilise an interface that is universal to

refer to freshly created objects. Simply provide an interface and an abstraction class to

using the factory architecture or factory technique pattern, and

subsequently let the subclasses decide which class to instantiate. Subclasses, in a

nutshell, are in charge of creating a class instance.The Factory Methods Pattern is a

r the Virtual Constructor.

FACTORY DESIGN PATTERN

The factory pattern of design is used when a super class has numerous sub objects and

we require returning one of the sub classes depending on the input. In this approach,

takes responsibility of class instantiate rather than the client

programme. Before delving into the advantages of the factory design arrangement .

Developers and system administrators may create, distribute, and execute programme

ers using the Docker platform. Containerization is the process of using

containers to deliver software. Although using containers to quickly deploy

applications is not new, it is. A container runs on Linux natively and shares the host

h other containers. It is lightweight because it runs a separate

process and uses no more memory than any other programme.

A virtual machine (VM), in contrast, utilizes a full-fledged "guest" operating system

and has virtual access to host resources via a hypervisor. In general, VMs include a lot

of overhead in addition to what your application logic uses.

exposing their origin logic to the client and utilise an interface that is universal to

refer to freshly created objects. Simply provide an interface and an abstraction class to

using the factory architecture or factory technique pattern, and

subsequently let the subclasses decide which class to instantiate. Subclasses, in a

nutshell, are in charge of creating a class instance.The Factory Methods Pattern is a

The factory pattern of design is used when a super class has numerous sub objects and

we require returning one of the sub classes depending on the input. In this approach,

takes responsibility of class instantiate rather than the client

programme. Before delving into the advantages of the factory design arrangement .

Developers and system administrators may create, distribute, and execute programme

ers using the Docker platform. Containerization is the process of using

containers to deliver software. Although using containers to quickly deploy

applications is not new, it is. A container runs on Linux natively and shares the host

h other containers. It is lightweight because it runs a separate

fledged "guest" operating system

hypervisor. In general, VMs include a lot

A container is, to put it simply, a sand boxed process running on your computer that is

separate from every other programme running on the host machine. This separation

makes use of kernel namespaces and cgroups, two long-standing Linux features.

These features have been made approachable and simple to utilize by Docker. The

container itself is a functional instance of an image, to put it simply. Using the

DockerAPI or CLI, you are able to start, stop, move, or delete a container. can be

executed to the cloud or run on local or virtual machines. has portability. runs its

particular software, binaries, and settings while being separated from other

containers.It makes use of an isolated file system while operating a container. A

container image provides this unique file system. The image must contain every

dependency, configurations, scripts, binaries, and other materials required to run an

application since it houses the container's file system. The image also includes

metadata, variables related to the environment, a default command to run, and

additional setup for the container.Decker's infrastructure as a service products deploy

applications in containers using OS-level virtualization. Containers can communicate

with one another via explicitly defined channels while remaining separate. In addition,

they include their individual software, libraries in general, and configuration files.

3.8.1 Docker Compose

The version , facilities , the networks, volume, configure, and secrets are all defined in

the Compose file, which is a YAML file. Compose files have a default location of

either compose.yaml in the working directory or compose.yaml (recommended). For

backward compatibility, Compose solutions Must incorporate docker-compose.yaml

and docker-compose.yml. Compose implementations MUST choose the canonical

compose.yaml file if both exist.The application model may be defined by combining

many Compose files. The user-specified Compose file order MUST be followed when

implementing a mix of YAML files by adding or overriding YAML components.

Simple attributes, maps, and lists are merged by appending, whereas lists are

overridden by the highest-order highest compose file. When merging complementary

files that are housed in different directories, relative addresses MUST be resolved

depending on the parent folder of the first Compose file.

Combines MUST extend to the expanded version since some Compose file

components can be written as either simple strings or complicated objects.

One may design a container

Compose standard. An application of this type is created as a collection of containers

that must operate cooperatively with sufficient shared resources and communication

routes. A service is a computing component of an application. A service is a platform

based abstraction that is achieved by repeatedly executing the same container image

(and settings). Through ne

definition, a network is an abstraction of a platform feature used to provide an IP

route between containers in related services. The Network specification contains low

level, platform-specific net

implemented. Persistent data is stored and shared by services in volumes. Such

permanent data is described in the specification.A cloud platform's characteristics

related to resource allocation on a cluster, repl

scalability are also available, along with other Windows container

We recognize that not every Compose implementation is expected to handle every

characteristic and that platform

determined at runtime. The docker

format was built, defined a versioned schema to control the permitted properties in a

Compose file, however this description does not provide any

user characteristics will actually be implemented.

3.8.2 Docker File

There is no case difference in the instruction. To make it easier to identify them from

arguments, it is customary to capitalize them. A Docker file is executed s

by Docker. A FROM directive must come first in a Docker file. This might come after

comments, global scoped ARGs, and parser directives.

FIG 10.DOCKER FILE.

One may design a container-based application that is platform independent using the

Compose standard. An application of this type is created as a collection of containers

ratively with sufficient shared resources and communication

routes. A service is a computing component of an application. A service is a platform

based abstraction that is achieved by repeatedly executing the same container image

(and settings). Through networks, services can communicate with one another. In this

definition, a network is an abstraction of a platform feature used to provide an IP

route between containers in related services. The Network specification contains low

specific networking options, some of which maybe partly

implemented. Persistent data is stored and shared by services in volumes. Such

permanent data is described in the specification.A cloud platform's characteristics

related to resource allocation on a cluster, replicated application distribution, and

scalability are also available, along with other Windows container-specific attributes.

We recognize that not every Compose implementation is expected to handle every

characteristic and that platform-specific support for some properties can only be

determined at runtime. The docker-compose tool, which is where the Compose file

format was built, defined a versioned schema to control the permitted properties in a

Compose file, however this description does not provide any assurance that the end

user characteristics will actually be implemented.

There is no case difference in the instruction. To make it easier to identify them from

arguments, it is customary to capitalize them. A Docker file is executed s

by Docker. A FROM directive must come first in a Docker file. This might come after

comments, global scoped ARGs, and parser directives.

based application that is platform independent using the

Compose standard. An application of this type is created as a collection of containers

ratively with sufficient shared resources and communication

routes. A service is a computing component of an application. A service is a platform-

based abstraction that is achieved by repeatedly executing the same container image

tworks, services can communicate with one another. In this

definition, a network is an abstraction of a platform feature used to provide an IP

route between containers in related services. The Network specification contains low-

working options, some of which maybe partly

implemented. Persistent data is stored and shared by services in volumes. Such

permanent data is described in the specification.A cloud platform's characteristics

icated application distribution, and

specific attributes.

We recognize that not every Compose implementation is expected to handle every

r some properties can only be

compose tool, which is where the Compose file

format was built, defined a versioned schema to control the permitted properties in a

assurance that the end-

There is no case difference in the instruction. To make it easier to identify them from

arguments, it is customary to capitalize them. A Docker file is executed sequentially

by Docker. A FROM directive must come first in a Docker file. This might come after

The original Parent Illustration that originates from you are constructing is specified

by the FROM directive. Only one or more ARG guidelines, which provide parameters

utilize by FROM sections in the Docker file, may come before a FROM instruction.

Unless the line contains a valid parser directive, Docker interprets lines that start with

a # as comments.

Anywhere else on a line with a #, an argument is considered. The manner that

succeeding sections in a Docker file are treated depends on the presence of

directives, which are optional. Parser instructions do not increase the build's layer

count and are not displayed as an installation step. The format of parser directives is #

directive = value, and they are expressed as a specific kind of comment.

only use a directive once.

Docker stops looking for parser directives after processing a comment, an empty line,

or a builder command. Instead of attempting to assess whether anything may be a

parser directive, it considers everything structured as

the first line of every Docker file must have a parser directive.

3.8.2 Docker Compose File

A Docker application's services, the networks, and volumes are specified in the

Compose file, which is a YAML file.

FIG 11. DOCKER COMPOSE YAML FILE .

The original Parent Illustration that originates from you are constructing is specified

by the FROM directive. Only one or more ARG guidelines, which provide parameters

utilize by FROM sections in the Docker file, may come before a FROM instruction.

the line contains a valid parser directive, Docker interprets lines that start with

Anywhere else on a line with a #, an argument is considered. The manner that

succeeding sections in a Docker file are treated depends on the presence of

directives, which are optional. Parser instructions do not increase the build's layer

count and are not displayed as an installation step. The format of parser directives is #

directive = value, and they are expressed as a specific kind of comment.

Docker stops looking for parser directives after processing a comment, an empty line,

or a builder command. Instead of attempting to assess whether anything may be a

parser directive, it considers everything structured as one as a comment. Therefore,

the first line of every Docker file must have a parser directive.

3.8.2 Docker Compose File

A Docker application's services, the networks, and volumes are specified in the

Compose file, which is a YAML file.

ER COMPOSE YAML FILE .

The original Parent Illustration that originates from you are constructing is specified

by the FROM directive. Only one or more ARG guidelines, which provide parameters

utilize by FROM sections in the Docker file, may come before a FROM instruction.

the line contains a valid parser directive, Docker interprets lines that start with

Anywhere else on a line with a #, an argument is considered. The manner that

succeeding sections in a Docker file are treated depends on the presence of parser

directives, which are optional. Parser instructions do not increase the build's layer

count and are not displayed as an installation step. The format of parser directives is #

directive = value, and they are expressed as a specific kind of comment. You may

Docker stops looking for parser directives after processing a comment, an empty line,

or a builder command. Instead of attempting to assess whether anything may be a

one as a comment. Therefore,

A Docker application's services, the networks, and volumes are specified in the

The Compose Specification outlines the most recent and suggested edition of the

Compose file type.One may design a container

independent using the Compose standard. An application of this type is c

collection of containers that must operate cooperatively with sufficient shared assets

and communication routes. A service is a computing component of an application.

FIG 12. DOCKER COMPOSE

A service is a platform-based ab

identical container image (and settings). Through networks, services may

communicate with one another. In this definition, a network is an abstraction of a

platform feature used to provide an IP route b

The Network specification contains low

some of which MAY be partly implemented.Persistent data is stored and shared by

services in volumes. The standard refers to such pers

file system mount. The Volumes specification contains actual platform

implementation information that MAY only be partly implemented on some systems.

Some services call for configuration information that depend

runtime. Configure is a notion specifically defined in the standard to address this.

Configure are similar to Volumes from the perspective of a Service container in that

The Compose Specification outlines the most recent and suggested edition of the

Compose file type.One may design a container-based application that is platform

using the Compose standard. An application of this type is c

collection of containers that must operate cooperatively with sufficient shared assets

and communication routes. A service is a computing component of an application.

DOCKER COMPOSE-DEBUG YAML FILE .

based abstraction that is achieved by repeatedly executing an

identical container image (and settings). Through networks, services may

communicate with one another. In this definition, a network is an abstraction of a

platform feature used to provide an IP route between containers in related services.

The Network specification contains low-level, platform-specific networking options,

some of which MAY be partly implemented.Persistent data is stored and shared by

services in volumes. The standard refers to such persistent data as a high

file system mount. The Volumes specification contains actual platform

implementation information that MAY only be partly implemented on some systems.

Some services call for configuration information that depends on the platform or

runtime. Configure is a notion specifically defined in the standard to address this.

Configure are similar to Volumes from the perspective of a Service container in that

The Compose Specification outlines the most recent and suggested edition of the

based application that is platform-

using the Compose standard. An application of this type is created as a

collection of containers that must operate cooperatively with sufficient shared assets

and communication routes. A service is a computing component of an application.

straction that is achieved by repeatedly executing an

identical container image (and settings). Through networks, services may

communicate with one another. In this definition, a network is an abstraction of a

etween containers in related services.

specific networking options,

some of which MAY be partly implemented.Persistent data is stored and shared by

istent data as a high-level, global

file system mount. The Volumes specification contains actual platform-specific

implementation information that MAY only be partly implemented on some systems.

s on the platform or

runtime. Configure is a notion specifically defined in the standard to address this.

Configure are similar to Volumes from the perspective of a Service container in that

they are mounted files. However, the real description calls for c

and amenities, which this type abstracts.

A particular type of config data for sensitive information that SHOULD NOT be

revealed without security concerns is known as a Secret. Although platform

resources that offer sensitiv

description inside the Compose standard, secrets are made accessible through services

as directories mounted into their containers.

3.9 Socket Handler

The core logic is implemented using Socket IO module , the architecture of the TCP

sockets can be explained using elaborate diagrams .

FIG 13. TCP SOCKET ARCHITECTURE

3.9.1 TCP Socket Data Transmission Model

they are mounted files. However, the real description calls for certain platform assets

and amenities, which this type abstracts.

A particular type of config data for sensitive information that SHOULD NOT be

revealed without security concerns is known as a Secret. Although platform

resources that offer sensitive data are unique enough to merit a separate concept and

description inside the Compose standard, secrets are made accessible through services

as directories mounted into their containers.

The core logic is implemented using Socket IO module , the architecture of the TCP

sockets can be explained using elaborate diagrams .

TCP SOCKET ARCHITECTURE

3.9.1 TCP Socket Data Transmission Model

ertain platform assets

A particular type of config data for sensitive information that SHOULD NOT be

revealed without security concerns is known as a Secret. Although platform-specific

e data are unique enough to merit a separate concept and

description inside the Compose standard, secrets are made accessible through services

The core logic is implemented using Socket IO module , the architecture of the TCP

When we look closely at

clear how important the asymmetry among clients and servers is. Clients must be

aware of the server process' port number since TCP and UDP are used to start

application data transfers on the client sid

utilize well-known port numbers. As a result, server processes are identified by well

known and recorded port numbers. They are utilized in requests submitted by clients

as destination port numbers.Servers, on

make contact with them. So, there is no requirement for the client to use a set aside

port number. A server shouldn't utilize a well

replies to clients, which is actually an u

FIG 14. CLIENT - SERVER TCP SOCKET TRANSMISSION DESIGN

The explanation for this is that a given device may run the same protocol's client and

server programme simultaneously. The HTTP server process on the client computer

would receive the reply if a server accepted a request made via HTTP on port 80 of

the client machine and transmitted the response to port 80 on the user machine rather

than the HTTP client process that originated the request. The server has to be aware of

the port number that that the client is employing in order to know where to deliver the

response. This is used by the server as the port used by the destination to transmit the

response after being provided by the client's browser as the source port in the request.

Client processes don't make advantage of popular or authorized ports.

When we look closely at how the number of ports are used in TCP/IP, it becomes

clear how important the asymmetry among clients and servers is. Clients must be

aware of the server process' port number since TCP and UDP are used to start

application data transfers on the client side. In light of this, servers are obligated to

known port numbers. As a result, server processes are identified by well

known and recorded port numbers. They are utilized in requests submitted by clients

destination port numbers.Servers, on the other hand, react to users; they do not

make contact with them. So, there is no requirement for the client to use a set aside

port number. A server shouldn't utilize a well-known or listed port number to relay

replies to clients, which is actually an understatement.

SERVER TCP SOCKET TRANSMISSION DESIGN

The explanation for this is that a given device may run the same protocol's client and

server programme simultaneously. The HTTP server process on the client computer

e reply if a server accepted a request made via HTTP on port 80 of

the client machine and transmitted the response to port 80 on the user machine rather

than the HTTP client process that originated the request. The server has to be aware of

that that the client is employing in order to know where to deliver the

response. This is used by the server as the port used by the destination to transmit the

response after being provided by the client's browser as the source port in the request.

t processes don't make advantage of popular or authorized ports.

how the number of ports are used in TCP/IP, it becomes

clear how important the asymmetry among clients and servers is. Clients must be

aware of the server process' port number since TCP and UDP are used to start

e. In light of this, servers are obligated to

known port numbers. As a result, server processes are identified by well-

known and recorded port numbers. They are utilized in requests submitted by clients

the other hand, react to users; they do not

make contact with them. So, there is no requirement for the client to use a set aside

known or listed port number to relay

The explanation for this is that a given device may run the same protocol's client and

server programme simultaneously. The HTTP server process on the client computer

e reply if a server accepted a request made via HTTP on port 80 of

the client machine and transmitted the response to port 80 on the user machine rather

than the HTTP client process that originated the request. The server has to be aware of

that that the client is employing in order to know where to deliver the

response. This is used by the server as the port used by the destination to transmit the

response after being provided by the client's browser as the source port in the request.

Instead, an interim port number is given to each client process for use. A term used to

describe this is ephemeral port number.

3.10 Socket Connection Algorithm

3.10.1 Server Side

 It uses the Socket to construct a brand

createGame() function determines whether an opponent is already present.the

function getOpponent().

FIG 15. FUNCITON TO FETCH OPPONENT SOCKET ID .

 It transmits the "begin" event to both o

opponent is present.method emit(). The player's logo and turn are both sent in this

event along with the initial game state data.

FIG 16. FUNCTION TO CREATE SOCKET OBJECT.

Instead, an interim port number is given to each client process for use. A term used to

describe this is ephemeral port number.

3.10 Socket Connection Algorithm

the Socket to construct a brand-new game.Using the Socket, the

createGame() function determines whether an opponent is already present.the

function getOpponent().

FUNCITON TO FETCH OPPONENT SOCKET ID .

It transmits the "begin" event to both of the players utilizing the socket if an

opponent is present.method emit(). The player's logo and turn are both sent in this

event along with the initial game state data.

FUNCTION TO CREATE SOCKET OBJECT.

Instead, an interim port number is given to each client process for use. A term used to

new game.Using the Socket, the

createGame() function determines whether an opponent is already present.the

f the players utilizing the socket if an

opponent is present.method emit(). The player's logo and turn are both sent in this

 It watches for the player who is now in

event. The "move_made" event is sent to both players over the socket whenever a

move is made.

 Updating the game state.method emit(). The most recent game state and turn

information is sent via this event.

FIG 17. SOCKET FOR USER STATE .

 It monitors either player's "state_check" event to determine the game's current

state. It emits the "state" event with the "Win" flag set to true and the "Loss" flag

It watches for the player who is now in control of the turn to emit the "move"

event. The "move_made" event is sent to both players over the socket whenever a

pdating the game state.method emit(). The most recent game state and turn

information is sent via this event.

SOCKET FOR USER STATE .

It monitors either player's "state_check" event to determine the game's current

state. It emits the "state" event with the "Win" flag set to true and the "Loss" flag

control of the turn to emit the "move"

event. The "move_made" event is sent to both players over the socket whenever a

pdating the game state.method emit(). The most recent game state and turn

It monitors either player's "state_check" event to determine the game's current

state. It emits the "state" event with the "Win" flag set to true and the "Loss" flag

FIG 18. SOCKET FOR STATUS CHECK .

 set to false if there is a

"state" event with the "Draw" flag set to true if the game is a tie.

 The user score is updated in the database using the db.updateUserScore() function

as soon as a player emits a "end" event.

 In order to manage the situation where a player disconnects from the game, it also

listens for the "disconnect" event.

FIG 19. SOCKET FOR STATE OF BOARD .

 When a player disconnects, the other player receives the "opponent_left" event

via the Socket.getOpponent() function. The surviving player is informed by this

occurrence that their opponent has departed the game.

SOCKET FOR STATUS CHECK .

set to false if there is a winner and the opposite if there is a loser. It emits the

"state" event with the "Draw" flag set to true if the game is a tie.

The user score is updated in the database using the db.updateUserScore() function

as soon as a player emits a "end" event.

order to manage the situation where a player disconnects from the game, it also

listens for the "disconnect" event.

SOCKET FOR STATE OF BOARD .

When a player disconnects, the other player receives the "opponent_left" event

ponent() function. The surviving player is informed by this

occurrence that their opponent has departed the game.

winner and the opposite if there is a loser. It emits the

The user score is updated in the database using the db.updateUserScore() function

order to manage the situation where a player disconnects from the game, it also

When a player disconnects, the other player receives the "opponent_left" event

ponent() function. The surviving player is informed by this

FIG 20. SOCKET FOR DISCONNECTION.

3.10.1 Client Side

 The server records the user's ID to the console whenever a client joins to it.

 The server provides player data to the client when the game starts.

 The server refreshes the game grid and verifies the game state after receiving

move data from the client when a player performs a move.

 When the server gets a game status check, it evaluates w

conclude in a winner, a draw, or a new round, and then delivers the relevant game

state information to the clients.

 If the opponent leaves the game, the server sends a message to the client

indicating that the opponent has left the g

SOCKET FOR DISCONNECTION.

The server records the user's ID to the console whenever a client joins to it.

server provides player data to the client when the game starts.

The server refreshes the game grid and verifies the game state after receiving

move data from the client when a player performs a move.

When the server gets a game status check, it evaluates whether the game should

conclude in a winner, a draw, or a new round, and then delivers the relevant game

state information to the clients.

If the opponent leaves the game, the server sends a message to the client

indicating that the opponent has left the game.

The server records the user's ID to the console whenever a client joins to it.

The server refreshes the game grid and verifies the game state after receiving

hether the game should

conclude in a winner, a draw, or a new round, and then delivers the relevant game

If the opponent leaves the game, the server sends a message to the client

CHAPTER 4 : EXPERIMENTS & RESULT ANALYSIS

By building a test bench to evaluate the selected functionality while monitoring the

necessary metrics, such as throughput or memory use, performance checks and

comparison are frequently made. I needed to learn how to measure the performance of

web servers in order to conduct a study that would enable me to find an answer to my

research issue. What other people have done and what criteria are important. I

completed this through reading scholarly publications and researching other people's

work. When examining the efficiency and burden of various frameworks, protocols,

and network services, it has been demonstrated that some metrics are common to

assess and some queries are common to answer. How many inquiries or messages

may be sent or received per second at varying levels of concurrency, data

transmission rates, and response times

The Benchmark / criteria that were considered to measure the performance of

socket .io module with other TCP socket modules such as Socket Js , web sockets ,

net module.

 With various client levels, different levels require varied amounts of time to

connect.

 With various tiers of customers, the time it takes for them to get a message (after

a connection has been made) varies.

 With varying client tiers, the server's memory use varies.

The server answers to the clients' connection requests, and a connection is formed.

Following that, the server notifies the client, and assessments are made of both the

server & the clients. The client cuts off communication after receiving the message.

To as closely as possible replicate the actual application, the messages are transmitted

in exactly the same length & format as those that are now being sent . The message's

text is a JSON string containing key:value pairs that include, but are not limited to,

the thunderstorm's timestamp, location, and proximity.

4.1 Experiment Parameters

The pre-exist questions are examined and measured in several methods

that are described below.

4.1.1 Parameter I : Time to establish a link between client and web server

The built-in function process in the Node.js framework is used to calculate the answer

to the query "How does the time needed to establish a relationship change with

various numbers of active clients?"With nanosecond precision, hrtime() returns the

current excellent quality real time.

The time that the function call returns is a relative time that is resistant to clock

movement and suitable for bench-marking .

4.1.2 Parameter II : Time to receive an acknowledgement during a link up

How does the amount of active clients affect the time it takes to receive an alert (after

a connection has been made)? is built up according to subsection 3.3.1. The first

epoch is obtained when the connection is made, which is the difference. After it

obtains the communication from the server, a second timestamp is obtained. Then,

certain statistics are computed and reported, including the lowest, maximum, and

median times in addition to the standard deviation of the times.

4.1.3 Parameter III : Memory consumption on web server

In the Node.js setting, the built-in function process is used to measure the memory

utilization on the server as a function of the number of active clients.memory Usage()

provides extensive information on how much memory the process is presently using.

For instance, the V8 engine's memory consumption as well as the Resident Set Size

(henceforth termed RSS). The RSS measures how much room a process takes up in

the main memory. containing all JavaScript code and objects. Since RSS represents

the actual amount of memory needed to operate the operation, it is data in its entirety

that is utilized for monitoring. The maximum RSS currently in use is only written out

once per second but is refreshed ten times each second.

4.2 Result Analysis

Results and information related to the questions presented in subsection 4.1 are

provided in this section.

4.2.1 Parameter I : Time to establish a link between client and web server

Plain Web Sockets were able to create a connection with just 1 client in 8

milliseconds. Socket.IO was around three times slower than net module, and vice

versa. Up to 1000 clients, plain Web Sockets continue to be around 3 times quicker

than Socket.IO or net module. Plain Web Sockets took 211 milliseconds with 10,000

concurrent clients, whereas Socket.IO took 319 milliseconds. net module failed to

keep up but reached its maximum of 7000 users at 470 ms.

FIG 21. GRAPH FOR PARAMETER I

4.2.2 Parameter II : Time to receive an acknowledgement during a link up

Plain Web Sockets took just 1 millisecond (ms) with just 1 client to get a response

from the server, compared to 21 ms and 3 ms for Socket.IO and net module,

respectively. Plain Web Sockets took 63 milliseconds with 1000 simultaneous clients,

but Socket.IO took 425 milliseconds and net module took 47 milliseconds. With

10000 clients, regular Web Sockets took 366 milliseconds while Socket.IO took 483

milliseconds. net module reached its maximum client count at 481 milliseconds.

4.2.1 Parameter I : Time to establish a link between client and web server

Plain Web Sockets were able to create a connection with just 1 client in 8

conds. Socket.IO was around three times slower than net module, and vice

versa. Up to 1000 clients, plain Web Sockets continue to be around 3 times quicker

than Socket.IO or net module. Plain Web Sockets took 211 milliseconds with 10,000

, whereas Socket.IO took 319 milliseconds. net module failed to

keep up but reached its maximum of 7000 users at 470 ms.

GRAPH FOR PARAMETER I

4.2.2 Parameter II : Time to receive an acknowledgement during a link up

Plain Web Sockets took just 1 millisecond (ms) with just 1 client to get a response

from the server, compared to 21 ms and 3 ms for Socket.IO and net module,

respectively. Plain Web Sockets took 63 milliseconds with 1000 simultaneous clients,

took 425 milliseconds and net module took 47 milliseconds. With

10000 clients, regular Web Sockets took 366 milliseconds while Socket.IO took 483

milliseconds. net module reached its maximum client count at 481 milliseconds.

4.2.1 Parameter I : Time to establish a link between client and web server

Plain Web Sockets were able to create a connection with just 1 client in 8

conds. Socket.IO was around three times slower than net module, and vice

versa. Up to 1000 clients, plain Web Sockets continue to be around 3 times quicker

than Socket.IO or net module. Plain Web Sockets took 211 milliseconds with 10,000

, whereas Socket.IO took 319 milliseconds. net module failed to

4.2.2 Parameter II : Time to receive an acknowledgement during a link up

Plain Web Sockets took just 1 millisecond (ms) with just 1 client to get a response

from the server, compared to 21 ms and 3 ms for Socket.IO and net module,

respectively. Plain Web Sockets took 63 milliseconds with 1000 simultaneous clients,

took 425 milliseconds and net module took 47 milliseconds. With

10000 clients, regular Web Sockets took 366 milliseconds while Socket.IO took 483

milliseconds. net module reached its maximum client count at 481 milliseconds.

The network footprints for 1

with the network's trace analyzer Wire shark in order to better understand how and

how the architecture may vary. The quantity of data required to send a message varies.

Reassembled TCP Sections for plai

96262 bytes for Socket.IO and 96012 bytes for net module. The level of overhead in

the platforms is also shown by the number of transmissions; standard Web Socket

utilizes 5, but Socket.IO and net module each re

respectively.

FIG 22. GRAPH FOR PARAMETER II

4.2.3 Parameter III : Memory consumption on web server

No matter the framework, the server used about 20 MB of RAM with just 1 client.

Simple Web Sockets used about 76 MB with 1

about 200 MB. 84 MB were needed for net module. Plain Web Sockets needed 210

MB of RAM with 10,000 clients, whereas Socket.IO needed over 2 GB. The

maximum number of clients for net module was 7000, needing 341 MB of R

The network footprints for 1 client delivering 1 message were captured and stored

with the network's trace analyzer Wire shark in order to better understand how and

how the architecture may vary. The quantity of data required to send a message varies.

Reassembled TCP Sections for plain Web Sockets total 75963 bytes. While it is

96262 bytes for Socket.IO and 96012 bytes for net module. The level of overhead in

the platforms is also shown by the number of transmissions; standard Web Socket

utilizes 5, but Socket.IO and net module each require 13 and 8 transmissions,

GRAPH FOR PARAMETER II

4.2.3 Parameter III : Memory consumption on web server

No matter the framework, the server used about 20 MB of RAM with just 1 client.

Simple Web Sockets used about 76 MB with 1000 clients, whereas Socket.IO needed

about 200 MB. 84 MB were needed for net module. Plain Web Sockets needed 210

MB of RAM with 10,000 clients, whereas Socket.IO needed over 2 GB. The

maximum number of clients for net module was 7000, needing 341 MB of R

client delivering 1 message were captured and stored

with the network's trace analyzer Wire shark in order to better understand how and

how the architecture may vary. The quantity of data required to send a message varies.

n Web Sockets total 75963 bytes. While it is

96262 bytes for Socket.IO and 96012 bytes for net module. The level of overhead in

the platforms is also shown by the number of transmissions; standard Web Socket

quire 13 and 8 transmissions,

No matter the framework, the server used about 20 MB of RAM with just 1 client.

000 clients, whereas Socket.IO needed

about 200 MB. 84 MB were needed for net module. Plain Web Sockets needed 210

MB of RAM with 10,000 clients, whereas Socket.IO needed over 2 GB. The

maximum number of clients for net module was 7000, needing 341 MB of RAM.

FIG 23. GRAPH FOR PARAMETER III

GRAPH FOR PARAMETER III

CHAPTER 5 : CONCLUSIONS

As anticipated, simple Web Sockets are up to three times quicker than the frameworks

like Socket.IO and net module. This is anticipated since Socket.IO and net module

contain additional cost in the form of transmitting several data packets, but simple

Web Socket follows the protocol specification Messages and requests are only sent in

order to establish a connection between devices. When establishing a connection,

Socket.IO sends three requests for data over The Hypertext Transfer Protocol and two

messages via Web Socket. Prior to attempting to build a Web Socket connection that

is confirmed, it first opens an XHR polling connection. The overhead is perceived as

requiring more transmissions in net module initially makes a standard HTTP GET

request, and the server replies with a JSON object . Following that, information about

the URL and server is provided along with the Web Socket request responds. Finally,

the server sends a message to the client.There are considerable speed advantages to be

had when utilizing plain Web Sockets with up to 2000 simultaneous clients. All

frameworks are nearly equivalent when there have 3,000 or more customers. This, in

my opinion, was caused by the gigabit network to which the test bench was attached.

It appears that while the server is already sending information to the connected clients,

the gigabit Ethernet prevents the server & clients from connecting any quicker.

Two key advantages may be attained by selecting a framework with the right level of

abstraction. less time and money spent on development. Additionally, apps that have

been optimized are quicker, more stable, and use less power. Being able to handle the

amount of work with less resources, like one server, is another benefit. As opposed to

needing several servers to handle the odd significant surge in user traffic, while doing

so most of the time with an idle workload that has been demonstrated to be quite

inefficient and still use a lot of power,

REFERENCES

[1] C. DiCesare and J. A. Hoxmeier. An experimental study of browser-

based applications was published in "System Response Time and User

Satisfaction." In: Association of Information Systems Americas

Conference Proceedings , Jan. 2000.

[2] K. Ross and J. Kurose. 7th edition of Computer Networking: A Top-

Down Approach , 2017 .

[3] A. Melnikov and I. Fette. The Web Socket Protocol , 2011.

[4] Performance Comparison and Evaluation of Web Socket Frameworks:

Netty, Undertow, Vert.x, Grizzly, and Jetty, Y. Wang, L. Huang, X. Liu,

T. Sun, and K. Lei. In: Hot Information-Centric Networking, the first

IEEE International Conference , 2018 .

[5] M. Horvat, S. Srbljic, and D. Skvorc. "Performance Evaluation of the

Web socket Protocol for the Implementation of Full-Duplex Web

Streams." Submitted to the ,2014 .

[6] Steven K. Reinhardt, Erik G. Hallnor, and Nathan L. Binkert M5-

based network-oriented full-system simulation. Using Commercial

Workloads in the Sixth Workshop on Computer Architecture Evaluation ,

2013 .

[7] At the Forge: Communication in HTML5 by R. M. Lerner, Linux

Journal, 2011.

[8] "Cross-Layer-Based Modelling for Quality of Service Guarantees in

Mobile Wireless Networks," IEEE Communications Magazine, X. Zhang,

J. Tang, H.-H. Chen, S. Ci, and M. Guizani , 2006 .

[9] R. Ludwig and R. H. Katz, “The Eifel algorithm: Making TCP

robust-against Spurious Re-transmissions,” ACM SIGCOMM Computer

Communication Review, 2000.

[10] S. Phoemphon, C. So-In and N. Leelathakul, "Fuzzy weighted

centroid localization with virtual node approximation in wireless sensor

networks", IEEE Internet Things J., 2018.

[11] A. A. Sorokin, V. N. Dmitriev and N. N. Losev, "Virtual laboratory

for modeling and studying of telecommunication systems based on

software package network simulator", Vestnik Astrakhan State Tech.

Univ. Ser. Manage. Comput. Sci. Inform., vol. 1, no. 2010, pp. 103-108,

2010.

[12] J. Samain, G. Carofiglio, L. Muscariello, M. Papalini, M. Sardara, M.

Tortelli, et al., "Dynamic adaptive video streaming: Towards a systematic

comparison of ICN and TCP/IP", IEEE Trans. Multimedia, vol. 19, no.

10, pp. 2166-2181, Oct. 2017.

[13] J. Bai, W. Wang, M. Lu, H. Wang and J. Wang, "TD-WS: A threat

detection tool of Web Socket and Web storage in HTML5 websites",

Secur. Commun. Netw., vol. 9, no. 18, pp. 5432-5443, 2016.

[14] J.-S. Wang and G.-H. Yang, "Data-driven methods for stealthy

attacks on TCP/IP-based networked control systems equipped with attack

detectors", IEEE Trans. Cybern., vol. 49, no. 8, pp. 3020-3031, Aug.

2019.

[15] L. Quan, Z. Xu and Z. Li, "Implementation of hardware TCP/IP

stack for DAQ systems with flexible data channel", Electron. Lett., vol.

53, no. 8, pp. 530-532, 2017.

[16] H. K. Rath and A. Karandikar, “On TCP-Aware Uplink Scheduling

in IEEE 802.16 Networks,” in Proc. of IEEE COMSWARE, January

2008.

[17] H. K. Rath, A. Bhorkar, and V. Sharma, “An Opportunistic Uplink

Scheduling Scheme to Achieve Bandwidth Fairness and Delay for

Multicast Traffic in Wi-Max (IEEE 802.16) Broadband Wireless

Networks,”in Proc. of IEEE GLOBECOM, November 2006 .

[18] A. Gomez-Sacristan, V. M. Sempere-Paya and M. A. Rodriguez-

Hernandez, "Virtual laboratory for QoS study in next-generation

networks with metro Ethernet access", IEEE Trans. Educ., vol. 59, no. 3,

pp. 187-193, Aug. 2016.

[19] Lin Zhou, Computer Network Engineering [M], People’s Posts and

Telecommunications Press, 2013.

[20] Chen Yingming, Computer Network and Application [M],

Metallurgical Industry Press, 2011.

