

CAR RENTAL MANAGEMENT SYSTEM

Project report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Abhiti Labroo (191225)

Under the supervision of

Dr. Deepak Gupta

To

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

 I

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “Car Rental System

Management” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic record

of my own work carried out over a period from February 2023 to May 2023 under the

supervision of Dr. Deepak Gupta (Assistant Professor).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Abhiti Labroo, 191225

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr.Deepak Gupta

Assistant Professor(SG)

Department CSE

Dated: 15-05-2023

 II

PLAGIARISM CERTIFICATE

 III

ACKNOWLEDGEMENT

First and foremost, I want to give God the highest praise and gratitude for His heavenly grace,

which made it possible to finish the project work successfully.

My supervisor, Dr. Deepak Gupta, an assistant professor in the Computer Science

Engineering department at the Jaypee University of Information Technology in Waknaghat,

has my deepest gratitude and gratitude. To complete this assignment, my supervisor had

extensive knowledge and significant enthusiasm for cloud computing. His unwavering

persistence, intellectual leadership, and ability to persevere made this endeavour possible, the

constant encouragement, persistent and rigorous oversight and helpful criticism, insightful

advice, reading multiple imperfect copies, and any necessary corrections.

I want to extend my sincere appreciation to Dr.Deepak Gupta, Department of CSE, for his

gracious assistance in seeing my research through to completion.

A warm welcome would also be extended to everyone who has directly or indirectly assisted

me in making this project successful. In this particular circumstance, I would like to thank the

personnel —teaching and non-teaching—who have provided me with practical assistance and

made my task easier.

Abhiti Labroo

Project Group No. : 44

Rollno.: 191225

 IV

 TABLE OF CONTENTS

 Title Page Number

Candidate’s Certificate I

Plagiarism Certificate II

Acknowledgment III

List of Abbreviations V

List of Figures VI-VII

List of Tables VIII

Abstract IX

Chapter - 1 Introduction

 1.1 Introduction

 1.2 Problem Statement

 1.3 Objectives

 1.4 Scope

1

1

2

2-3

Chapter - 2 - Literature Survey 4-7

Chapter - 3 System Analysis and Development

 3.1 System Design

 3.2 System Analysis

 3.3 System Development

 3.4 Database Design

8-10

11-13

13-15

15-17

Chapter - 4 Performance Analysis

 4.1 Technology Stack

 4.2 Source Code

18-19

19-56

Chapter - 5 Result and Conclusion

 5.1 Result and Conclusion

 5.2 Future Scope

57

58

References 59-60

 V

LIST OF ABBREVIATIONS

1. ASP.NET - Active Serve Pages.NET

2. MVC - Model View Controller

3. SQL - Structured Query Language

4. HTML - Hypertext Markup Language

5. CSS - Cascading Style Sheets

6. API - Application Programming Interface

7. AJAX - Asynchronous JavaScript and XML

8. CRUD - Create, Read, Update, Delete

9. ORM - Object-Relational Mapping

10. JWT - JSON Web Tokens

11. DAL – Data Access Layer

12. URL - Uniform Resource Locator

13. HTTPS - Hypertext Transfer Protocol Secure

14. DNS - Domain Name System

15. SMTP - Simple Mail Transfer Protocol

16. FTP - File Transfer Protocol

17. LINQ - Language Integrated Query

18. XML - Extensible Markup Language

19. JSON - JavaScript Object Notation

 VII

 LIST OF FIGURES

Figures Name Page

No.

Figure 3.1.2.1 Software architecture design with three major microservices 9

Figure 3.1.3.1 Schematic Diagram design with two major use case clients 9

Figure 3.1.4.1 Use case diagram (Contextual) depicting customer

interactions

10

Figure 3.1.5.1 Use case (high) diagram depicting customer interactions 10

Figure 3.3.1 Data flow diagram depicting customer interactions 14

Figure 3.4.1 data model diagram of the project depicting how the how all

three tables are connected to each other

16

Figure 4.2.1-4.2.4 Workflow and files available for project 20-21

Figure 4.2.5.1-

4.2.5.2

Attributes in Car database and its DbContext 21-22

Figure 4.2.6-4.2.9 CarRepository file with data logic 22-23

Figure 4.2.10 ICarRepository interface for implementation of CarRepository 24

Figure 4.2.11 CarDto for modular and flexible application 24

Figure 4.2.12-

4.2.14

CarService with business services and DTOs 25

Figure 4.2.15 ICarService for implementation of CarService 26

Figure 4.2.16-

4.2.18

CarController for handling requests and responses 26-27

Figure 4.2.19 Customer.cs for handling attributes in customer table 27

Figure 4.2.20 Rental.cs for handling attributes in rental table 28

Figure 4.2.21 RentalCar.cs for handling attributes in rented cars table 28

Figure 4.2.22-

4.2.23

CustomerRepository file with data logic 29

Figure 4.2.24 ICustomerRepository interface for implementation of

CustomerRepository

30

Figure 4.2.25 IRentalRepository interface for implementation of

RentalRepository

30

Figure 4.2.26-

4.2.28

RentalRepository file with data logic 31-32

Figure 4.2.29-

4.2.31

RentalCarRepository file with data logic 32-33

Figure 4.2.32 IRentalCarRepository interface for implementation of

RentalCarRepository

33

Figure 4.2.33 RentalDbContext database with tables and attributes 34

 VII

Figure 4.2.34-

4.2.37

CustomerService with business services and DTOs 34-35

Figure 4.2.38 ICustomerService 36

Figure 4.2.39 IRentalService 36

Figure 4.2.40-

4.2.45

Rental Service with DTOs 37-38

Figure 4.2.46 IRentalCarService 39

Figure 4.2.47-

4.2.50

RentalCarService with DTOs 39-40

Figure 4.2.51 and

4.2.52

CustomerDto and RentalDto (separate figures) 40-41

Figure 4.2.53 RentalCarDto 41

Figure 4.2.54-

4.2.56

CustomerController 41-42

Figure 4.2.57-

4.2.59

RentalCarController 42-43

Figure 4.2.60-

4.2.63

RentalsController 43-44

Figure 4.2.64 Payment.cs 45

Figure 4.2.65 PaymentDbContext and Payments Table 45

Figure 4.2.66-

4.2.69

PaymentRepos and IPaymentRepos 45-46

Figure 4.2.70 PaymentDto 47

Figure 4.2.71 IPaymentService 47

Figure 4.2.72-

4.2.76

PaymentService with DTOs 48-49

Figure 4.2.77-

4.2.79

PaymentController 49-50

Figure 4.2.80-

4.2.87

Migrations 50-53

Figure 4.2.88 appSettings.json 53

Figure 4.2.89 Program.cs 54

Figure 4.2.90-

4.2.93

Functioning of Controllers on Swagger 54-55

Figure 4.2.94-

4.2.97

Database creation using Code First Approach 55

Figure 4.2.98-

4.2.99

Schema of 5 tables with columns 56

 VIII

LIST OF TABLES

Table Name Page

No.

Table -1.4.1 Requirements of Microservices in Project 2-3

Table -2.1 Author, Proposed Approaches, Journal, Year, and

Technologies

4-7

Table -3.4.1 Car Module Table and Column Names with DataTypes 16

Table -3.4.2 Rental Car Module Table and Column Names with

DataTypes

17

Table -3.4.3 Payment Module Table and Column Names with

DataTypes

17

 IX

 ABSTRACT

Automobile companies need effective tools at their disposal in order to administer their

complex operational tasks such as managing fleets , customers and reservations efficiently .

Our program provides one such solution that offers a range of inventory management’s

services to rental firms to help achieve this. Rental businesses can count on our software to

maintain the up to date information of all vehicles in their inventory . By using this program

managers can easily add, edit, or delete any car belonging to the company fleet and keep

accurate records of its vital attributes like make, model , year and mileage for improved

decision making purposes. Ultimately cutting down on time consuming activities such as

paperwork thus freeing up more time that can be dedicated to serving customers better.

A significant advantage offered by modern technology in the field of car rentals is its ability

to provide companies with valuable customer insights garnered through tracking personal

details and rental histories. By assessing this information over time businesses can leverage it

for improving customer relations through personalized services tailored specifically towards

their needs. The Car Lease Management Systems adept booking management feature further

simplifies the process by enabling clients to browse available vehicles online in real time –

ensuring hassle free travel planning and access to necessary cars at all times.

Clients can pay securely via the payment interface built into the system, thus enhancing the

convenience of the booking procedure. This project has functions including fleet management,

client management, reservation management, and payment processing, and it is simple to use.

Additionally, the system is dependable and safe, protecting user information and ensuring

continuous system available.

1

CHAPTER -1 INTRODUCTION

1.1 Introduction

The car rental industry has grown significantly over the last few years as a result of the constant

increase of interest for vehicles for both business and personal travel. Managing a car rental company

is challenging for a variety of reasons, including managing the inventory, handling clients, scheduling

management, the processing of payments, and data confidenttiality. These issues can be resolved by

developing a comprehensive and efficient system for managing car rentals.

The system will offer ressources for better fleet management, such as tools for analyzing upkeep,

locating underutilized cars, and making information-driven fleet acquisition decisions. Additionally,

it will offer resources for more effective management of client data, such as personal information,

rental historys, and likes and dislikes. By giving clients a quick and accessible way to look for

accessible cars, bookings online, and select their choosen model and other brand, the system will

simplify reservation administration. Clients can make payments online using the system's safe and

dependable payment gateway.

1.2 Problem Statement

The laborious, susceptible to error, and ineffective manual procedures employed by

automobile rental firms include manual documentation, telephone-based reservation territory,

and hands-on payments. The dearth of modern conveniences like real-time accessibility, e-

payments, and management of clients in out-of-date software packages may make it

challenging for vehicle rental companies to compete in a market that is changing quickly.

As a result, the problem statement of this project would be to offer a thorough, protected, and

effective computerized solution to the obstacles that firms encounter while trying to

coordinate their processes, fleet, clients, and schedules. For the system to adapt to the evolving

demands of the automobile rental sector, it ought to be simple to use, extensible, and

adaptable. In order to safeguard the platform and its clients, it ought to additionally

incorporate real-time car availability, payment processing, client administration, and strong

security measures.

2

1.3 Objectives

1.3.1 Simplify reservation management: The system should provide customers with a simple and

convenient way to search for available cars, make reservations online, and choose their preferred

pick-up and drop-off locations. The system should also provide real-time availability of cars, making

it easier for customers to plan their trips and ensuring that they can get the cars they need when they

need them.

1.3.2 Improve fleet management: The system should provide car rental companies with tools to

manage their fleet more efficiently, such as tracking vehicle maintenance, identifying underutilized

or over utilized vehicles, and making data-driven decisions regarding fleet acquisition and retirement.

1.3.3 Streamline customer management: The system ought to give automobile rental businesses

the instruments they need to better handle client data, such as personal information, rental history,

and preferences. The client experience is able to be enhanced by using the aforementioned data to

deliver improved client service.

1.3.4 Provide scalability and flexibility: The system should be created with scalability as well as

adaptability in mind, enabling automobile rental businesses to adjust to shifting client demands and

competitive circumstances. This can assist automobile rental businesses in long-term profitability and

competitiveness.

1.4 Scope

A car rental management system developed is a software application that providess a web-based

platform for car rental companies to manage their operations. The scope of a car rental mannagement

system developed includes the following features:

Requirement

Number

Requirement

Name

Requirement Description

Requirement-01 Car Inventory

module

This module is a Middleware Microservice that performs

following operations:

This module will allow customers who wish to rent cars to see

from inventory, its pictures, model, price and other important

details

3

Table 1.4.1: The Table shows requirements of the microservices that are being developed in

this project.

Requirement-02

Car Rental

module

This module is a Middleware Microservice that performs the

following operations:

This module works in way that it allows customers to see the

total amount of rent that has to be paid including security

amount.

Requirement -03 Car Total

Payment module

This module is a Middleware Microservice that performs the

following operations:

This module basically performs functions that will provide

what amount has to be paid.

Requirement -04 User Management

portal

A Web Portal that allows a user to Login and allows to do

following operations:

Login

Load the Customer Detail

Invoke the Process Car Inventory module

4

CHAPTER -2 LITERATURE SURVEY

A comprehensive array of features is offered by car rental management systems to assist organizations

in managing their inventory of cars and streamlining their internal operations. Car inventory

management, booking and reservation administration, rental administration, transaction management,

and maintenance scheduling are a few of the key characteristics and capabilities of these

computerized platforms.

The management of leasing operations, car inventory, and network upkeep are only a few of the

difficulties faced by car rental organizations. A huge network of cars requires routine service,

maintenance, and tidying up, which is a difficult undertaking. Cars must always be in mint condition

and ready for lease, according to car rental businesses. It can be difficult to keep track of all these

tasks for an extensive inventory of cars. Yet another big difficulty is to make sure that there are

certainly constantly sufficient cars on hand to rent. To maximize utilization and lower the chance of

accumulating a surplus of idle cars, car rental firms have to manage their fleet of cars.

Through automating numerous of the procedures required in handling an inventory of cars, car rental

management systems are able to help in overcoming these obstacles. These kinds of systems

frequently have functions like managing stock, automated warnings for maintenance and repairs, and

upkeep scheduling. The result is that it is easier for car rental firms to maintain tabs of their fleet, plan

repair duties more effectively, and guarantee that cars are accessible for rental whenever they're

required. Additionally, by streamlining operations like making the reservation, bookings, and billing

purposes, car rental management systems can assist rental companies in managing rental purchases

successfully. This lowers the possibility of inaccuracies and raises customer loyalty by enabling rental

organizations to handle rental payments fast and properly.

Authors Published Title Technology Description

Shikha Dhiman

Pratibha Sharma [1]

Performance Testing:

A Comparative Study

and Analysis of Web

Service Testing

Tools, ICMSR, 2021

ASP.NET In order to pinpoint bottlenecks

in performance and assess the

effects of various configuration

options and tuning techniques,

the authors combine load testing,

profiling, which is an efficiency

metric analysis.

5

Sandra Sarasan, Ayana

Ajith , Archana A.B.

[2]

Detection of Security

Attacks and their

Countermeasures in

ASP.NET Web

Applications,

IJCSIS,2021

ASP.NET This study is concerned with

detecting security vulnerabilities

in ASP.NET online applications

and suggesting solutions to

reduce those vulnerabilities.

systems, and encryption

methods.

Fanie Reynders [3] Introduction to

ASP.NET Core

Springer,2018

ASP.NET The authors go over the

framework and parts of

ASP.NET Core, including its

backing for dependency

injection, middleware pipeline,

and flexible layout.

Jean-Rémy Falleri &

Xavier Blanc [4]

Automated

generation of REST

API specification

from plain HTML

documentation

Web-API In order to identify and build

APIs based on their functionality

and semantics, this paper

provides a novel method for

automated API creation and

testing.

Lucas Pelloni, Andrei

Zgirvaci, and Thomas

Fritz

[5]

RESTful API

Integration Testing:

A Survey, IEEE,

2017

Web-API The authors list popular API test

types as well as the programmes

and frameworks that can be used

to automate API testing. The

limits and unanswered research

problems in this field are also

covered in the report.

Julie Lerman[6] Entity Framework 6:

Extending Database-

First with Code-First,

IEEE 2018

Entity

Framework-

6

This paper explores the hybrid

approach of combining

Database-First and Code-First

approaches in EF6. The author

demonstrates how to use

Database-First to generate an

initial model, and then extend

and customize the model using

Code-First techniques.

M.Prajapati[7] Asp.net MVC -

generic repository

Entity

Framework-

6

This study investigates EF6's

hybrid strategy, which combines

the Database-First and Code-

6

pattern and unit of

work, IJARW,2019

First techniques. The author

shows how to create an initial

model using database-first

techniques, then how to enhance

and customize the model using

code-first techniques.

Rowan Miller, Julian

Bucknall, and Chris

Anderson[8]

Entity Framework 6

in Action, Springer

2020

Entity

Framework-

6

This book provides an in-depth

guide to Entity Framework 6, a

popular Object-Relational

Mapping (ORM) framework for

.NET applications. The authors

cover a wide range of topics

related to EF6, including data

modelling, querying,

performance tuning, and

database migrations.

Spadini, Davide and

Antiche,Mauricio [9]

To Mock or Not To

Mock? An Empirical

Study on Mocking

Practices, IEEE,2017

Mocking This paper’s main contribution

was a categorization of the most

often mocked and not mocked

dependencies, based on a

quantitative analysis on three

OSS systems and one industrial

system and the main challenges

faced by developers when

making use of mock objects in

the test suites, also extracted

from the interviews and surveys

Shaikh Mostafa and

Xiaoyin Wang[10]

An Empirical Study

on the Usage of

Mocking

Frameworks in

Software Testing,

QSIC,2014

Mocking In practice, mock objects have

been used in

software testing to simulate such

missing dependencies, and A

number of popular mocking

frameworks have been

developed for software testers to

generate mock objects more

conveniently.

Mohammad Mahdi

Hassan and Wasif

Afzal.[11]

Testability and

Software Robustness:

A Systematic

Unit Testing It works on Software robustness

and software testability

7

Literature Review,

IEEE,2015

Sharma, Rashmi and

Saha, Anju[12]

A Systematic Review

of Software

Testability

Measurement

Techniques,

IEEE,2018

Unit Testing This paper works upon software

quality, testability assessment,

testability improvement,

controllability, observability.

Mustafa M. Tikir and

Jeffrey Kenneth

Hollingsworth[13]

Efficient

Instrumentation for

Code Coverage

Testing, ACM, 2002

Unit Testing The paper presents an approach

to dynamically insert and remove

instrumentation code to reduce

the runtime overhead of code

coverage. It also explores the use

of dominator tree information to

reduce the number of

instrumentation points needed

Table 2.1: The Table shows the Author's name, the Proposed Approaches, the Journal it was

published in, the Year of publication and their technologies.

8

CHAPTER -3 SYSTEM ANALYSIS AND DEVELOPMENT

3.1 System Design

3.1.1 Proposed Design

The design would consist of three main microservices that are being developed and secondary

technologies that will aid in proper functioning of the project. The project design components are as

follows:

1. Car Management Microservice: The management of the rental car inventory would fall

under the purview of the fleet of vehicles microservice. Then, for each car, it would log the

year, make, model, and any other relevant data. The microservice would also keep track of

the availability, location, and history of each car's rentals.

2. Rental Microservice: In addition to monitoring the number of vehicles, length, kind,

clientele for whomever it is being hired, period of rental; additionally, and status of payment,

the car rental micro-services could also be in responsibility for renting cars to customers.

3. Payment Microservice: The money transfer microservice would have the responsibility in

charge of tracking payments, comprising the billing process, the sum paid, its type, and its

current status, as well as calculating any potential price breaks.

4. Database: All pertinent information, including client identities, car specifics, rental

contracts, and financial information, must be kept in a centralized database.

5. User Interface: Clients must be able search for, reserve, and keep track of automobiles

through a platform that is easy to use. Employees will be able to manage bookings, modify

car accessibility, and examine reports thanks to the user interface.

Overall, the system is broken down into smaller, more manageable components that can be

developed, deployed, and maintained independently. This approach offers greater scalability,

resilience, and flexibility, making it easier to add new features or update existing ones.

9

 3.1.2 System Architecture Design

Figure 3.1.2.1 This above figure depicts the software architecture design of the project with three

major microservices.

3.1.3 Schematic Diagram

Figure 3.1.3.1 This above figure depicts the Schematic Diagram design of the project with three

major microservices with two major use case clients, that are User and Admin.

10

3.1.4 Use Case Diagram (Contextual Level)

Figure 3.1.4.1 This above figure depicts the use case diagram (Contextual) of the project depicting

how the how customer and rental company interacts with each other on the application.

3.1.5 Use Case Diagram (High Level)

Figure 3.1.5.1 This above figure depicts the use case (high) diagram of the project depicting how the

how customer and rental company interacts with each other on the application.

11

3.2 System Analysis

3.2.1 Assumptions

The following could be presumptions for an automobile rental management system:

1. The programme will store data about customers, vehicles, rental agrements, and variouss other

appropriate data in a single centralised location.

2. The portal will let customers search for and reserve cars based on their prefereneces, such as the

kind of caar, how long they want to rented it for, where they live, and other details.

3. The system will control the entire rentaal process, includingg picking up and returning the car,

billing, and managing payments.

 4. The online platform will have security features to protect confidential client information and

prevent fraud.

3.2.2 Dependencies

The dependencies of a car rental management system project could include:

1.Hardware and software infrastructure: In order to execute the programme, the platform would

need hardware like server infrastructure, network components, and storage devices. Additionally, it

would require software dependencies including programming tools, management systems for

databases, and operating systems.

2.Data management: The platform depends on a dependable and safe database to record all pertinent

data, including client details, car specifics, rental contracts, and information about payments.

3.User interface design: For consumers as well as staff members to interact with the system, it would

be necessary to have an intuitive user interface.

4.Testing and quality assurance: In-depth analysis as well as quality management procedures would

be necessary to make sure the system performs as intended, complies with the demands of the

company, and provides free of defects and faults.

12

3.2.3 Risks

There are several risks that could be associated with a car rental management system project,

including:

1. Data breaches: Since the system will likely retain private consumer and banking details, it

might become an easy target for attacks via the internet and data breaches. By putting in

place robust safety precautions like encryption, access controls, and recurring security

inspections, the danger of breaches of data could be reduced.

2. System downtime: Any system outage could put clients out of their comfort zone and cost

the car rental company money. Employing resilience regulations such as servers for backups

and rollover methods, could reduce the likelihood of system outages.

3. User adoption: The appliance's success would be contingent on how well clients and staff

members used it. Any problems with customer acceptance could lead to poor system

utilization and reduced revenue. By educating and assisting consumers, doing studies on

users, and enhancing interface design, the likelihood of user adoption problems may be

reduced.

4. Regulatory compliance: The entire system would have to abide by all applicable regulations

and legislation, including those governing safeguarding information and the handling of

payments. Administrative and economic penalties could be imposed for any non-

compliance. By being aware of and abiding by all pertinent laws and regulations, the risk of

non-compliance may be reduced.

These potential risks might have been recognized, assessed, and reduced by carrying out a

thorough risk assessment and putting risk management techniques into place.

3.2.4 Hardware and Software Requirements

3.2.4.1 Hardware Requirements

 1. Developer Desktop PC with 8GB RAM

13

3.2.4.2 Software Requirements

 1.Frontend/UI:

1.1 HTML/CSS/JavaScript

1.2 A frontend framework or library (e.g., React, Angular, Vue.js)

1.3 UI design tools (e.g., Adobe XD, Sketch)

 2.Backend/API:

2.1 C#/.NET framework

2.2 ASP.NET Core for building the RESTful API

2.3 Entity Framework Core for handling database operations

2.4 Swagger for API documentation

 3. Database:

3.1 Microsoft SQL Server or another relational database management system (RDBMS)

3.2 Additionally, some other tools and services that may be helpful for development and

deployment include:

3.2.1 Git/GitHub for version control

3.2.2 Visual Studio for development

3.3 System Development

 System evaluation, development, execution, and validation are usual phases during developing of

a car rental management system. Finding the system's minimum specifications, which include the

capacity to manage client data, car inventory, bookings, and transactions, is the initial step in the

system evaluation.

Using a programming language like ASP.NET, the application is put into effect once the data model

and application framework have been developed. The user interface, database access layer, and

business logic must all be coded in order to accomplish this.

The following phase is to develop the system's framework and data model after the application's

specifications have been established. This entails figuring out the general framework of the system,

together with the numerous elements and their interactions, the relational database schema, and the

links amongst tables.

14

Figure 3.3.1 This above figure depicts the data flow diagram of the project depicting how the how

customer and rental company interacts with each other on the application with each of the

mircroservices.

3.3.1 System Development – Car Microservice

The Car microservice will be defined in the data model, which has the features like and data variables

like CarId, CarType, Brand etc. Taking advantage of the ASP.NET Web API framework to create

the Car micro-services API. For maintaining the Car entity, the API ought to encompass CRUD

actions (Create, Read, Update, and Delete).

Then next step would be to integrate car microservice with the Rental microservices and Payment

microservice to give complete car rental system capabilities. To validate the car microservice's

usability and dependability, testing it employing a unit testing framework like NUnit would be the

next phase.

3.3.2 System Development – Rental Service Microservice

RentalId, CarId, CustomerId, RentalSTime, RentalETime, and RentalType are just a few of the

components that make up the Rental microservice in the automobile rental system. All rental

payment's special identification number is the RentalId, which is produced automatically. To

preserve the connections among the things, CustomerId are foreign keys that respectively point to

the car microservices. While the RentalETime column records the completion time of the rental

15

duration, the RentalSTime column records the beginning of the rental time frame. The RentalType

column lists the many types of rentals, including hourly, daily, and weekly rentals. The car rental

company may supervise rental operations and keep account of which automobiles have been rented

out and for duration thanks to this microservice.

3.3.3 System Development –Payment Microservice

The payment is the name of the microservice in charge of handling transactions for renting a vehicle.

The PaymentId column, which has an integer data type, serves as the Payment table's primary key.

This update-incrementing field assigns an identity number to each customer who makes a purchase.

The RentalId column is an integer data type foreign key that corresponds to the Rental table's

primary key. It depicts the renting process that is related to payments.

3.3.4 System Development – User Authorisation and Authentication

Throughout the car rental management system, user profiles, authorization, and authentication are

managed by the customer authorization and authentication microservice. This microservice's

purpose is to handle and safely preserve user data, such as credentials for login, roles, and

permissions. Only those individuals who have been granted access to the application and the

associated assets can use it thanks to the secure authentication and authorisation processes provided

by these protocols. In its entirety, through guaranteeing that client accounts are administered safely

and effectively and that clients are given adequate access and rights to the platform and its facilities.

3.4 Database Design

The database design, which dictates the way data will be retained and accessed across the system,

is an essential part of the vehicle rental management system. The database design for the undertaking

contains tables for cars, clients, rentals, and payments.

The cars inventory table provides details concerning the automobiles being rented, such as their

model and manufacturer, rental rates per hour, day, and week, date as well as cost of purchase, and

capacity. The renters' names, contact details, and previous rentals are all kept on file.

The rentals table keeps account of every rental transaction, comprising the person who leased the

vehicle, the vehicle itself, how long it was rented for, and how much it charged. The rental ID and

the amount paid are two pieces of data that are included in the payments table for every one of the

payments provided by the client.

16

Relationships amongst those tables are also part of the relational database schema. To differentiate

between the car that is being leased and the individual who is borrowing it, for instance, the rentals

table has foreign keys that link to the cars and payments tables. In order to connect payments to

rental operations, the payments table additionally has a foreign key that refers to the rentals table.

Figure 3.4.1 This above figure depicts the data model diagram of the project depicting how the how

all three tables are connected to each other for each of the following microservices.

1.Car Inventory Service

 Column Name Data Type Length Nulls

CarId Int - No

CarType varchar 50 No

Brand varchar 50 Yes

Model varchar 50 Yes

BuyDate datetime - Yes

BuyPrice decimal - Yes

RentalCostPerHour decimal - Yes

RentalCostPerDay decimal - Yes

RentalCostPerWeek decimal - Yes

AvailQuantity int - No

Table 3.4.1: The Table shows Car Module table and Column Name and its DataType

17

2.Rental Car Service:

Column Name Data Type Length Nulls

RentalId int - No

CarId int - No

CustomerId int - No

RentalSTime datetime - No

RentalETime datetime - Yes

RentalType int - No

Table 3.4.2: The Table shows Rental Car Module table and Column Name and its DataType

3.Payment Service:

Column Name Data Type Length Nulls

PaymentId Int - No

RentalId Int - No

PaymentAmount decimal - No

PaymentTime datetime - No

Table 3.4.3: The Table shows Payment Module table and Column Name and its DataType

18

CHAPTER -4 PERFORMANCE ANALYSIS

4.1 Technology Stack

The advanced technology underpinning the automobile rental management system is adaptable and

will take the growth department's demands and requirements into account. However, a few of the

developments and those that are widely applied in implementations are as follows:

4.1.1 ASP.NET

The Application Programming Interface is the primmary web application building platform used in

the this projeect. The MVC construction, one of its many characteristics, allows developers to

separate a platform's display and functionality layers, making code administration and upkeep easier.

A range of built-in instruments and features, such as input validation, registration and authentication,

and the use of encryption, are also provided by ASP.NET for developing secure applications for the

interneet. Finally, ASP..NET is a powerful development framework that providees developers with

the tools and capabiliities they require to build scallable, simple to manage, and dependable web-

basedd applications.

4.1.2 Entity Framework Core-6

The multiple platforms EF-Core- 6 framework is an inexpensive and free to download. Programmer

may interact regarding database using .NET entities thanks to a method that lets them map .NET

instances to table contents in databases and the other way around. Among of the numerous database

providers confirmed by EF Core 6 that enables developers to generate inquiries using C#

programming language is Microsoft SQL Server.

4.1.2.1 Code First Approach

An ORM framework called EF offers a mechanism for mapping table contennts in databases to CLR

instances. In EF Core, the entity classes that represent the database tables are made, and the resulting

classes are then used for producing the database schema. The database structure is then developed by

the EF Core using the entity classes. The structure of the database can be created and maintained as

code using the CF methodology, which makes it simpler to manage and modify. Migrations refers to

the technique of building a database schema from entitty types. The migrations functionality is used

by EF Core to monitor modificattions to the entity classes and implement those modifications to the

database schema. Developers need to initialise the entity classses and relationships betweeen them in

order to adopt the CF strategy in EF Core.

19

4.1.3 Database

ASP.NET can be implemented in conjunction with SQL Server, a database management system, for

managing and retrieving data. The outcome is a robust database architecture that provides a number

of characteristics and abilities to manage data, including the capacity to process interactions, backing

up data and rehabilitation, along with data confidentiality. SQL Server is widely used in ASP.NET

applications that are intended for business use due to its reactivity and versatility. It can handle a lot

of data and integrate easily with other Microsoft programmes. It also offers cutting-edge security

techniques like data compression, position-based protection, and the field of auditing, which can

assist protect critical database information.All things considered, Microsoft's SQL Server is a reliable

and practical database platform that can be utilised to administer and save data in ASP.NET

programmes.

4.1.4 Web-API

The term "Web API," which stands for "Web Application Programming Interface," refers to a specific

type of API designed only for web-based applications. Numerous programmes can communicate with

other applications using HTTP and HTTPS, two widely used web-based guidelines, through a

connection to the web. A RESTful API is an administrative framework for a website that is based on

the HTTP protocol. The acronym RST stands for a set of guidelines that describe how interactions

among servers and their clients should be handled. GET, POST, PUT, and DELETE are common

HTTP methods that the client can use to interact with the server-provided contents in a RESTful

architecture.

4.1.5 Unit Testing and Mocking

Mocking and Unit Testing are crucial elements in the process of producing software because they

assure the precision and standard of the manuals being written. Unit evaluation is the practise of

examining solitary individual components or sections to ensure they are functioning properly and as

intended in the overall scheme of the rental car operation. To do this, one must write autonomous

execution tests that simulate various situations and relevant data in order to verify that the final

product of the produced code produces the desired outcomes. It offers an arrangement for creating

and executing digital investigations that test the effectiveness of the many steps, techniques, and

methodologies used to create software applications.

20

4.2 Source Code

Following figures will show the source code of the CarRentalManagement Project which is written

on VS Code. This source code follows the code first approach. For each microservice the flow go as

follows, it will start from data access layer folder which has the file in models folder then to go to the

file Data folder then it will traverse itself fully in business layer and then it will move to repositories

in DAL and then move to controller.

Flow of Whole Project

21

Figure 4.2.1 – 4.2.4 These images show the workflow and all files that are available for this project.

These figures basically cover microservices and layers formed in each one of them.

Car Microservice –> Data Access Layer -> Models -> Car.cs

Figure 4.2.5.1 This figure depicts the attributes that will be present in Car database which is the data

that would be available for this microservice hence in the data access layer.

22

Car Microservice –> Data Access Layer -> Data -> CarDbContext.cs

Figure 4.2.5.2 This figure depicts the Database of CarDbContext which also makes a table

CarsFromInventory and then show the results that each of the attributes has.

Car Microservice –> Data Access Layer -> Repositories-> CarRepository.cs

23

Figure 4.2.6-4.2.9 This figures shows the CarRepository file which comprises classes or methods

that encapsulates all data logic.

24

Car Microservice –> Data Access Layer -> Repositories-> ICarRepository.cs

Figure 4.2.10 This figure shows the ICarRepository which is an interface for the implementation for

CarRepository.

Car Microservice –> Business Layer ->Models-> CarDto.cs

Figure 4.2.11: This figure shows the CarDto which is data transfer objects which is used to make

application more modular and flexible.

25

Car Microservice –> Business Layer ->Services -> CarS.cs

Figure 4.2.12 – 4.2.14: These figures depicts the CarService include the business services, the

services that are in charge of carrying out the program's business logic. The services themselves can

interface with the presentation layer and the data access layer in a standardised way by using Data

Transfer Objects (DTOs) in the services.

26

Car Microservice –> Business Layer ->Services -> ICarS.cs

Figure 4.2.15: This figure shows the ICarService which is used in order to give the layer that presents

data the necessary features, the business logic layer needs to implement a set of functions that are

defined by the interface

Car Microservice –>Controller-> CarController.cs

27

Figure 4.2.16- 4.2.18: This figure shows the CarController is essential for handling requests that

come in, sending them through the right action method, and producing a response to send back to the

user.

RentalManagementService Microservice –>Data Access Layer-> Models

-> Customer.cs

Figure 4.2.19: This figure shows the file Customer.cs essential for handling attributes and the columns

in the customer table regarding the customers in the microservices.

28

RentalManagementService Microservice –>Data Access Layer-> Models -> Rental.cs

Figure 4.2.20: This figure shows the file Rental.cs is essential for handling attributes and the columns

in the rental table regarding the rentals in the microservices.

RentalManagementService Microservice –>Data Access Layer-> Models -> RentalCar.cs

Figure 4.2.21: This figure shows the file RentalCar.cs is essential for handling attributes and the

columns in the rented cars table regarding the rentals in the microservices.

29

RentalManagementService Microservice –>Data Access Layer-> Repositories->

CustomerRepository.cs

Figure 4.2.22-4.2.23: This figures shows the CustomerRepository file which comprises classes or

methods that encapsulates all data logic.

30

RentalManagementService Microservice –>Data Access Layer-> Repositories->

ICustomerRepository.cs

Figure 4.2.24 - This figure shows the ICustomerRepository which is an interface for the

implementation for CustomerRepository

RentalManagementService Microservice –>Data Access Layer-> Repositories->

IRentalRepository.cs

Figure 4.2.25 - This figure shows the IRentalRepository which is an interface for the implementation

for RentalRepository.

31

RentalManagementService Microservice –>Data Access Layer-> Repositories->

RentalRepository.cs

32

Figure 4.2.26-4.2.28: This figures shows the RentalRepository file which comprises classes or

methods that encapsulates all data logic.

RentalManagementService Microservice –>Data Access Layer-> Repositories->

RentalCarRepository.cs

33

Figure 4.2.29-4.2.31: This figures shows the RentalCarRepository file which comprises classes or

methods that encapsulates all data logic.

RentalManagementService Microservice –>Data Access Layer-> Repositories->

IRentalCarRepository.cs

Figure 4.2.32 - This figure shows the IRentalCarRepository which is an interface for the

implementation for RentalCarRepository.

34

RentalManagementService Microservice –>Data Access Layer-> Data-> RentalDbContext.cs

Figure 4.2.33-This figure depicts the Database of RentalDbContext which also makes a table Rentals,

RentalCars, Customers table and then show the results that each of the attributes has.

RentalManagement Microservice –> Business Layer ->Services -> CustomerService.cs

35

Figure 4.2.34- 4.2.37 These figures depicts the CustomerService include the business services, the

services that are in charge of carrying out the program's business logic. The services themselves can

interface with the presentation layer and the data access layer in a standardised way by using Data

Transfer Objects (DTOs) in the services.

36

RentalManagement Microservice –> Business Layer ->Services -> ICustomerService.cs

Figure 4.2.38 This figure shows the ICustomerService which is used in order to give the layer that

presents data the necessary features, the business logic layer needs to implement a set of functions

that are defined by the interface.

RentalManagement Microservice –> Business Layer ->Services -> IRentalService.cs

Figure 4.2.39 This figure shows the IRentalService which is used in order to give the layer that

presents data the necessary features, the business logic layer needs to implement a set of functions

that are defined by the interface

37

RentalManagement Microservice –> Business Layer ->Services -> RentalService.cs

38

Figure 4.2.40- 4.2.45 These figures depicts the Rental Service include the business services, the

services that are in charge of carrying out the program's business logic. The services themselves can

interface with the presentation layer and the data access layer in a standardised way by using Data

Transfer Objects (DTOs) in the services.

39

RentalManagement Microservice –> Business Layer ->Services -> IRentalCarService.cs

Figure 4.2.46 This figure shows the IRentalCarService which is used in order to give the layer that

presents data the necessary features, the business logic layer needs to implement a set of functions

that are defined by the interface

RentalManagement Microservice –> Business Layer ->Services -> RentalCarService.cs

40

Figure 4.2.47- 4.2.50 These figures depicts the RentalCarService include the business services, the

services that are in charge of carrying out the program's business logic

RentalManagement Microservice –> Business Layer ->Models ->CustomerRDto.cs

Figure 4.2.51: This figure shows the CustomerDto which is data transfer objects which is used to

make application more modular and flexible.

41

RentalManagement Microservice –> Business Layer ->Models ->RentalDto.cs

Figure 4.2.52: This figure shows the RentalDto which is data transfer objects which is used to make

application more modular and flexible.

RentalManagement Microservice –> Business Layer ->Models ->RentalCarDto.cs

Figure 4.2.53: This figure shows the RentalCarDto which is data transfer objects which is used to

make application more modular and flexible.

RentalManagement Microservice –>Controller-> CustomerController.cs

42

Figure 4.2.54 – 4.2.56: This figure shows the CustomerController is essential for handling requests

that come in, sending them through the right action method, and producing a response to send back

to the user.

RentalManagement Microservice –>Controller-> RentalCarController.cs

43

Figure 4.2.57 – 4.2.59: This figure shows the RentalsCarController is essential for handling requests

that come in, sending them through the right action method, and producing a response to send back

to the user.

RentalManagement Microservice –>Controller-> RentalsController.cs

44

Figure 4.2.60 – 4.2.63: This figure shows the RentalsController is essential for handling requests that

come in, sending them through the right action method, and producing a response to send back to the

user.

45

PaymentService -> DataAccessLayer ->Models-> Payment.cs

Figure 4.2.64: This figure shows the file Payment.cs is essential for handling attributes and the

columns in the rented cars table regarding the rentals in the microservices.

PaymentService -> DataAccessLayer ->Data-> PaymentDbContext.cs

Figure 4.2.65 This figure depicts the Database of PaymentDbContext which also makes a table

Payments and then show the results that each of the attributes has.

PaymentService -> DataAccessLayer ->Repositories-> PaymentRepos.cs

46

Figure 4.2.66-4.2.68: This figures shows the PaymentRepos file which comprises classes or methods

that encapsulates all data logic.

PaymentService -> DataAccessLayer ->Repositories-> IPaymentRepos.cs

Figure 4.2.69: This figures shows the IPaymentRepos file which comprises classes or methods that

encapsulates all data logic.

47

PaymentService -> BusinessLogicLayer ->Models-> PaymentDto.cs

Figure 4.2.70: This figure shows the PaymentDto which is data transfer objects which is used to make

application more modular and flexible.

PaymentService -> BusinessLogicLayer ->Services -> IPaymentService.cs

Figure 4.2.71: This figure shows the IPaymentService which is used in order to give the layer that

presents data the necessary features, the business logic layer needs to implement a set of functions

that are defined by the interface

48

PaymentService -> BusinessLogicLayer ->Services -> PaymentS.cs

49

Figure 4.2.72 – 4.2.76: These figures depicts the PaymentService include the business services, the

services that are in charge of carrying out the program's business logic. The services themselves can

interface with the presentation layer and the data access layer in a standardised way by using Data

Transfer Objects (DTOs) in the services.

PaymentService -> BusinessLogicLayer ->Controller -> PaymentController.cs

50

Figure 4.2.77-4.2.79 This figure shows the PaymentController is essential for handling requests that

come in, sending them through the right action method, and producing a response to send back to the

user.

Migrations

51

52

53

Figure 4.2.80 – 4.2.87 These figure shows the Migrations which are used in database management

systems to help developers apply changes to the database schema.

 AppSettings.json

Figure 4.2.88 This figure shows the appSettings.json, which has a connection string

54

Program.cs

Figure 4.2.89 This figure shows the Program.cs

Swagger - OpenAPI

55

Figure 4.2.90 – 4.2.93 This figure shows the Swagger API is a set of open-source tools built to help

programmers develop, design, document, and use REST APIs.

Figure 4.2.94 – 4.2.97 This figure shows the database was created on SSMS with the help of Code

First Approach.

56

Figure 4.2.98 – 4.2.99 These figure shows the schema of 5 tables that are made with the columns.

4.3 Limitations and restrictions
1. To establish and carry out the capacity to rent a car:

 Clients must sign onto their individual profiles.

 Each visitor is required to set up an account.

2. This application will not enable you do scheduling, booking and renting functionalities until the

billing step is finished.

3. This project prohibits renting the exact same vehicle on the exact same day. If such a result

occurred, it would throw a fatal error.

57

CHAPTER -5 RESULT AND CONCLUSION

5.1 Result and Conclusion

The primary goal of the application aims to offer a straightforward, intuitive user interface for

managing the rental sector. Customers may rapidly search for available vehicles, reserve them in their

final days and review their rental histories. It additionally provides a trustworthy financial system that

allows customers to pay for their services in a secure manner.

The project's architectural layout made use of a microservices framework, which allowed for flexible

development and adaptability. A variety of services, including those for purchases, permission from

users and authentication, rentals, and cars, are included in the project.

This project develops the backend of the project which includes the three microservices and each

microservices have all the three-layer architecture is developed. Here, we have followed best practises

were used in technologies like Entity Framework Core, SQL Server etc. The use of architectural

frameworks, interdepenndence injection, and the separation of responsibilities are all adhered to in

this project in accordance with standard behaviours for software development.

The Swagger port shows that WebAPI layer of all the microservices have been developed correctly

as all the 5 controllers have been listed and show all the HTTP verbs used are being tested out. The

Migrations were also developed so that all the tables that were made in entity models are made can

be seen on SSMS which means that migrations have been successfully made and will have the data

populated it

The PostMan was used to test and debug. The use of NUnit and Mocking was done to ensure efficient

testing and to ensure that all of it is working fine and as expected. Through the course of this project,

I understood the concepts of the CLR, CLS, FCL, code coverage, code analysis etc.

The car lease project based ASP..NET has, in general, demonstrated the practicalitty and advantages

of employing the mix of technologies to create an effective tool. Comprehension of all facets of

computer programme development, from gathering requirements to deployment, as well as the value

of applying effective developing software adheres to throughout the whole procedure, have been

provided.

58

5.2 Future Scope

The future scope of this project is to work up upon the limitations of the project that were discussed

earlier and also identify and add more functionalities to this project such as:

1. Language Support: This functionality would allow the web application to be accessible to

not only to the clients that understand English but also native languages of the country

basically make it diverse.

2. Integrating with social medias: It would help clients to share their locations to their family

members on different social media applications such as WhatsApp.

3. Rating and Feedback Services : It could develop a microservice where the client can give

rating and feedback after every rental experience.

59

REFERENCES

[1] S. Dhiman and P. Sharma, "Performance testing:;’’ A comparative study and analysis of web

service testing tools," International Journal of Computer Science and Mobile Computing, vol.5, no.

6, pp. 507-512, Jun. 2016.

[2] S. Sarasan, A. Ajith, and A. B. Archana, "Detection of Security Attacks and their Countermeasures

in ASP..//.NET Web Applications,"liin Proceedings of the IEEE International Conference on

Advances in Computing, Communications and Informatics (ICACCI), ‘’Jaipur, India, 2016, pp. 906-

910. doi: 10.1109/ICACCI.2016.7732226.

[3] F. Reynders, "Introduction to ASP. NET Core," }in Modern API Design with ASP. NET Core 2:

Building Cross-Platform Back-End Systems,”’1st ed., Birmingham, UK: Packt Publishing, 2018, pp.

9-22.

[4] H. Cao, J. R. Falleri, and X. Blanc, "Automated generation of REST API specification from plain

HTML documentation," in Service-Oriented Computing: 15th International Conference, ICSOC

2017, Malaga,*^Spain,}}November 13–16, 2017, Proceedings, Cham, Switzerland: Springer

International Publishing, 2017, pp. 453-461.

[5] A. Arcuri,#1"RESTful API automated test case generation,"{} in 2017 IEEE International

Conference on Software Quality, Reliability and Security (QRS), 2017, pp. 9-20.

[6] J. Lerman and R. Miller_, Programming Entity Framework: Code First: Creating and Configuring

Data Models from Your Classes, Sebastopol, CA, USA: O'Reilly Media, Inc.,*~ Nov. 2011.

[7] M. Prajapati, "ASP..NET MVC-generic repository pattern and unit of work,"`~International

Journal of All Research Writings,[vol. 1,!no. 1, pp. 23-30, Jul. 2019.

[8] C.. Cassell and P. Johnson, "Action research: }Explaining the diversity," Human Relations, vol.

59, no. 6, pp.’; 783-814, Jun. 2006.

[9] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli,*` "To mock or not to mock? An

empirical study on mocking practices," in 2017 IEEE/ACM 14th International Conference on

Mining Software Repositories (MSR), 2017, pp. ;402-412.

[10] S. Mostafa and X..Wang, "An empirical study on the usage of mocking frameworks in software

testing," in 2014.14th International Conference on Quality Software)(QSIC), 2014, pp..127-132.

60

[11] M. M. Hassan,-;W. Afzal, M. Blom, B. Lindström,’/S. F. Andler, and S. Eldh, "Testability and

software robustness: A systematic literature review," in 2015 41st Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2015, pp. 341-348.

[12] R. Sharma and A. Saha, "A systematic review of software testability measurement techniques,"

in)92018-=International Conference on Computing, Power and Communication Technologies

(GUCON), 2018, pp. 299-303.

[13] M. M.*Tikir and J. K. Hollingsworth, ‘"Efficient instrumentation for code coverage testing," in

ACM SIGSOFT Software Engineering Notes, vol. 27, no. 4, pp. 86-96, July 2002.

61

