
DESIGNING A SIMULATION APPLICATION FOR MOBILITY

BASED CLUSTERING ALGORITHM FOR MANETS

Enrollment Number: 101304

Name: Nishtha Sharma

Project Supervisor: Mr Amol Vasudeva

May 2014

Submitted in partial fulfillment of the Degree of

Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

AND INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

CERTIFICATE

This is to certify that the work titled Designing a Simulation Application for Mobility Based

Clustering Algorithm for MANETS submitted by Nishtha Sharma in partial fulfillment for

the award of degree of Bachelor of technology of Jaypee University of Information Technology,

Waknaghat has been carried out under my supervision. This work has not been submitted

partially or wholly to any other University or Institute for the award of this or any other degree or

diploma.

Signature of Supervisor:

Name of Supervisor : Mr. Amol Vasudeva

Designation : Assistant Professor

Date :

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave us the possibility to complete this

project. I want to thank the Department of CSE & IT in JUIT for giving us the permission to

commence this project in the first instance, to do the necessary research work.

I am deeply indebted to my project guide Mr Amol Vasudeva, whose help, stimulating

suggestions and encouragement helped me in all the time of research on this project. I feel

motivated and encouraged every time I get his encouragement. For his coherent guidance

throughout the tenure of the project, I feel fortunate to be taught by him, who gave me his

unwavering support.

We are also grateful to Mr. Amit Singh (CSE Project lab) for his practical help and guidance

Nishtha Sharma

Abstract

A wireless ad-hoc network is a self-configuring network that does not depend on any

infrastructure for communication. Every node is free to move anywhere in the network and data

is exchanged independently across the network. Destruction of one node does not affect the

communication of other nodes in the network. Every node in the network can act as both host as

well as destination. A wireless ad-hoc network does not rely on fixed infrastructure or

predetermined connectivity. It is a self organizing multi-hop wireless network in which all of the

nodes can be mobile. Data is exchanged between nodes via wireless communication. Aside from

the ability to be rapidly deployed, wireless ad-hoc networks have the ability to exist in highly

volatile environments. Unlike traditional networks, if one node is destroyed it will not impact the

data exchange between the remaining nodes within the network. The selection of the correct

network topology given the network characteristics is extremely important to ensure reliable and

efficient communication between nodes. The topology of a network can be either hierarchical or

flat. In a hierarchical topology nodes are divided into clusters. Within each cluster, a cluster head

is selected via a mathematical formulation or heuristic method. Cluster heads are responsible for

keeping track of which nodes are maintained in their respective cluster. Furthermore, they are

responsible for transmitting data between clusters. Each of the cluster heads maintains a

continuously updated routing table. This table contains specific information detailing which

cluster each node belongs to. If a node desires to transfer information to another node, the

information is sent to the sending node’s cluster head. This cluster head scans its routing table to

determine which cluster the recipient is in. If the recipient is in the same cluster, the data is

immediately forwarded to the receiving node. If not, the cluster head scans its routing table to

determine which cluster the recipient is in and forwards the data to the appropriate cluster head

where it is again forwarded to the recipient. Mobility based Clustering algorithm uses mobility

of the nodes as a feature to form the clusters. Each node in the Mobile Ad hoc Network

computes the ratio of two successive “Hello” messages from all its neighbors. This gives the

relative mobility metric of the nodes with respect to their respective neighbors. Then by

calculating the variance of relative mobility values of all the nodes with respect to their

neighbors in a distributed manner, the aggregate speed of all the mobile nodes can be estimated.

Finally, the mobile node with lowest variance value in its neighborhood is elected as the cluster

head. MOBIC is suitable for MANETs in which a group of mobile nodes moves with almost

similar speed and the direction. However, if mobile nodes move randomly and change their

speeds from time to time, the performance of this algorithm is degraded.

Problem Statement

The proposal put forward in this project is to develop efficient Mobility based clustering
algorithm (MOBIC) for cluster formation, which can used be by a set of asynchronous, self-
organizing nodes to form an ad hoc network, under the above model. When a set of nodes are
powered on at the same time, they start executing these algorithms immediately in order to form
a connected set of clusters. These topology construction algorithms should en- sure the
following.

 Minimum Number of Clusters

 Stable environment

Motivation

Mobile Ad-Hoc Network (MANET) has become an increasingly active research area work in ad-

hoc routing, media access, and protocols, etc. However, much of the effort so far has been in

simulation with only a few systems that have ever been implemented and none that we know

have gone beyond field trial to regular use. One of the reason is the high complexity involved in

implementing and testing actual ad-hoc networks, and the lack of software tools for doing so.

Our vision is to implement Mobility based clustering algorithm to make MANET easy to

develop, easy to deploy, and easy to use. The project includes: reasons for choosing this

particular algorithm, implementing the algorithm, and model using which we will implement the

algorithm. An application that will provide the means for user input and simulation status while

results are exported for analysis. This method works well as long as the user is relatively

computer literate.

1

Contents
Chapter 1: Mobile Adhoc Networks (MANETS)...1

1.1 Introduction .. 1

1.2Characteristics ... 1

1.3 Applications... 2

1.4 Limitations .. 2

1.5 Challenges.. 3

Chapter 2 : Mobility Models.. 5

2.1 Definition ... 5

2.2 Types .. 5

2.2.1 Random Walk Mobility Model... 5

2.2.2 Random Waypoint Mobility Model ... 6

2.2.3 Random Direction Mobility Model .. 6

Chapter 3: Routing Algorithms... 7

3.1 Definition ... 7

3.2 Types .. 7

3.2.1 Flat Routing Algorithm... 7

3.2.2 Destination-Sequenced Distance-Vector Routing (DSDV)... 8

3.2.4 Hierarchical Routing... 9

3.2.5 Lowest ID.. 10

3.2.6 Highest Degree ... 11

3.2.7 Mobility Based Clustering (MOBIC):.. 11

Chapter 4: Implementation ... 12

4.1 Simulation Environment .. 12

4.1.1 Comparison Parameters.. 12

4.2 Tools and Technologies .. 13

4.2.1 Java 1.6 Version ... 13

4.2.1.1 Characteristics .. 13

4.3.3.2 JAVA Virtual Machine (JVM).. 13

4.3.3.3 Applet and Standalone Application .. 13

4.2.2 Eclipse Galileo Version 3.5.1... 14

4.3 Diagrams.. 14

2

4.3.1 Data Flow Diagram.. 14

4.3.2 Sequence Diagram ... 15

4.3.3 Class Diagram .. 16

4.4 Algorithm ... 20

4.5 Code .. 25

Chapter 6 Average Cluster Calculation and Stability... 51

6.1 Definition ... 51

6.2 Code .. 51

6.3 Need For Stability ... 51

6.4Stability... 52

Chapter 5 Conclusion... 53

5.1 Conclusion ... 53

Chapter 6 Glossary:.. 54

Chapter 7 References .. 55

1

Chapter 1: Mobile Adhoc Networks (MANETS)

1.1 Introduction

A mobile ad hoc network (MANET) is a self-configuring infrastructure less network of

mobile devices which are connected by wireless. Each device in a MANET is free to

move independently in any direction, and will therefore change its links to other

devices frequently.

Figure 1.1: Example of MANET [8]

1.2Characteristics
 In MANET, each node acts as both host and router. That is it is autonomous in

behavior.

 Multi-hop radio relaying-When a source node and destination node for a message is

out of the radio range, the MANETs are capable of multi-hop routing. The nodes

can join or leave the network anytime, making the network topology dynamic in

nature.

2

 Network topology dynamic in nature.

 Distributed nature of operation for security, routing and host configuration. A

centralized firewall is absent here.

 The nodes can join or leave the network anytime, making the network topology

dynamic in nature.

 Nodal connectivity is intermittent.

 Mobile nodes are characterized with less memory, power and light weight features.

 Completely symmetric environment.

 The reliability, efficiency, stability and capacity of wireless links are often inferior

when compared with wired links. This shows the fluctuating link bandwidth of

wireless links.

 Mobile and spontaneous behavior which demands minimum human intervention to

configure the network.

 All nodes have identical features with similar responsibilities and capabilities and

hence it forms a completely symmetric environment.

 High user density and large level of user mobility.

1.3 Applications
 Personal area networking (cell phone, laptop).

 Military environments (battle grounds).

 Civilian environments (taxi cab network, meeting rooms, boats, aircraft).

Emergency operations (search-and-rescue, policing and fire fighting).

1.4 Limitations
 Limitations of the Wireless Network

 packet loss due to transmission errors

3

 variable capacity links

 frequent disconnections/partitions

 limited communication bandwidth

 Broadcast nature of the communications

 Limitations Imposed by Mobility

 dynamically changing topologies/routes

 lack of mobility awareness by system/applications

 Limitations of the Mobile Computer

 short battery lifetime

 limited memory

 Routing efficiency

 Discovery, maintenance

 Network services

 Authentication, service discovery, addresses binding, address

assignment.

1.5 Challenges
 The reliability of wireless transmission is resisted by different factors-The wireless

link characteristics are time-varying in nature. There are transmission impediments

like fading, path loss, blockage and interference that adds to the susceptible

behavior of wireless channels.

4

 Limited range of wireless transmission-The limited radio band results in reduced

data rates compared to the wireless networks. Hence optimal usage of bandwidth is

necessary by keeping low overhead as possible

 Packet losses due to errors in transmission – MANETs experience higher packet

loss due to factors such as hidden terminals that results in collisions, wireless

channel issues (high bit error rate (BER)), interference, and frequent breakage in

paths caused by mobility of nodes, increased collisions due to the presence of

hidden terminals and uni-directional links.

 Route changes due to mobility- The dynamic nature of network topology results in

frequent path breaks.

 Frequent network partitions- The random movement of nodes often leads to

partition of the network. This mostly affects the intermediate nodes.

 The application of this wireless network is limited due to the mobile and ad hoc

nature. Similarly, the lack of a centralized operation prevents the use of firewall in

MANETs. It also faces a multitude of security threats just like wired networks. It

includes spoofing, passive eavesdropping, denial of service and many others. The

attacks are usually classified on the basis of employed techniques and the

consequences.

5

Chapter 2 : Mobility Models

2.1 Definition
Mobility models represent the movement of mobile users, and how their location, velocity

and acceleration change over time. Such models are frequently used for simulation

purposes when new communication or navigation techniques are investigated. For mobility

modeling, the behavior or activity of a user’s movement can be described using both

analytical and simulation models. The input to analytical mobility models are simplifying

assumptions regarding the movement behaviors of users. Such models can provide

performance parameters for simple cases through mathematical calculations. In contrast,

simulation models consider more detailed and realistic mobility scenarios. Such models

can derive valuable solutions for more complex cases.

2.2 Types
Typical mobility models include

 Random Walk Mobility Model

 Random Waypoint Mobility Model

 Random Direction Mobility Model

2.2.1 Random Walk Mobility Model

In this mobility model, a node moves from its current location to a new location by

randomly choosing a direction and speed in which to travel. The new speed and direction

are both chosen from pre defined ranges, [minspeed; maxspeed] and [0; 2π] respectively.

Each movement in the Random Walk Mobility Model occurs in either at constant time

interval ‘t’ or a constant distance traveled ‘d’, at the end of which a new direction and

speed are calculated. If any node reaches to the simulation boundary, it bounces off the

simulation border with an angle determined by the incoming direction. The node then

continues along this new path.

6

2.2.2 Random Waypoint Mobility Model

The random waypoint mobility model contains pause time between changes in direction

and/or speed. Once a node begins to move, it stays in one location for a specified pause

time. After the specified pause time is elapsed, the randomly selects the next destination in

the simulation area and chooses a speed uniformly distributed between the minimum speed

and maximum speed and travels with a speed ? whose value is uniformly chosen in the

interval (0 , ? max). ? max is some parameter that can be set to reflect the degree of

mobility. Thereafter, it continues its journey toward the newly selected destination at the

chosen speed. As soon as it arrives at the destination, it stays again for the indicated pause

time before repeating the process.

2.2.3 Random Direction Mobility Model

In random direction mobility model each node alternates periods of movement (move

phase) to periods during which it pauses (pause phase). During the beginning of each move

phase, a node independently selects its new direction and speed of movement. Speed and

direction are kept constant for the whole duration of the node movement phase.

7

Chapter 3: Routing Algorithms

3.1 Definition
Routing is the process of selecting best paths in a network. To find and maintain routes

between nodes in a dynamic topology with possibly unidirectional /by directional links,

using minimum resources.

Figure 3.1: Routing Algorithms

3.2 Types

3.2.1 Flat Routing Algorithm:

In a Flat Routing technique, the message to be delivered is directly passed from source

node to the destination node without passing the message to any cluster head node. The

information directly hops from one node to another and finds the shortest path to reach the

8

destination node. Best example of flat routing is Routing Information Protocol which is a

simple hop count protocol where maximum 15 number hops can be taken to reach the

destination node.

Figure 3.1: Flat Routing

3.2.2 Destination-Sequenced Distance-Vector Routing (DSDV):

DSDV is a table-driven routing scheme for ad hoc mobile networks based on the Bellman–

Ford algorithm. The main contribution of the algorithm was to solve the routing loop

problem. Each entry in the routing table contains a sequence number, the sequence

numbers are generally even if a link is present; else, an odd number is used. The number is

generated by the destination, and the emitter needs to send out the next update with this

number

Figure 3.2 Destination-Sequenced Distance-Vector Routing

9

3.2.3 Ad hoc On-Demand Distance Vector Routing (AODV): In this routing algorithm,

the path is drawn on demand by the source node when it wants to send the message that is

when the source node desires to send a message and does not have any path so its

broadcast the route request message across the network. All the nodes in the network after

receiving this message will look for the shortest path through which the message can be

sent .The source node will receive the message along with the IP address of the destination

node and then can send the message through that path/route.

Figure 3.3 (a) Ad hoc On-Demand Distance Vector Routing- source

Figure 3.3 (b) Ad hoc On-Demand Distance Vector Routing- Destination

3.2.4 Hierarchical Routing:

In Hierarchical Routing nodes are divided into groups on the basis of the categories of

nodes. These groups are known as clusters. A cluster can have three categories of nodes:

cluster head, gateway node and ordinary or member nodes. In order to send the information

from one node to another node, the message is first passed on to the cluster head and then

the information is passed to the destination node after looking at the routing table for the

10

desired cluster. If the node is within the same cluster then the information is directly passed

else is first passed to the respective cluster head and then the destination cluster head

followed by the destination node. There are numerous methods to form clusters in a

simulation environment.

Figure 3.4 Hierarchical Routing

3.2.5 Lowest ID:

The Lowest-ID is considered as a simplest clustering scheme algorithm. In this scheme

unique identifier (ID) is assigned to each node. All nodes recognize its neighbors ID and

CH is chosen according to minimum ID. Thus, the nodes IDs of the neighbors of the

CH will be higher than that CH. The main drawback with this scheme is there is no

limitation to the number of nodes attached to the same CH. Also, CHs are prone to power

drainage due to serving as cluster heads.

Figure 3.5 Lowest ID

11

3.2.6 Highest Degree:

In comparison with Lowest-ID scheme, the degree of nodes is computed based on its

distance from each others. All nodes flood its connectivity value within their transmission

range. Thus, a node decides to become a CH or remain as CN by comparing the

connectivity value of its neighbors with its own value. Node with highest connectivity

value in its vicinity will become CH. Connectivity-based clustering follows the same

circumstances of ID-based regarding to cluster size and performance degradation.

Figure 3.6: Highest Degree

3.2.7 Mobility Based Clustering (MOBIC):

MOBIC uses mobility of the nodes as a feature to form the clusters. Each node in the

Mobile Ad hoc Network computes the ratio of two successive “Hello” messages from all

its neighbors. This gives the relative mobility metric of the nodes with respect to their

respective neighbors. Then by calculating the variance of relative mobility values of all the

nodes with respect to their neighbors in a distributed manner, the aggregate speed of all the

mobile nodes can be estimated. Finally, the mobile node with lowest variance value in its

neighborhood is elected as the cluster head.

12

Chapter 4: Implementation

4.1 Simulation Environment

We will simulate an ad hoc network with n nodes randomly distributed in a 100 100 pixel

area. The simulator was implemented in Java due to its multithreading feature and

collection of numerous container classes. The network simulator has the ability to generate

network with any number of nodes. The mobility is based on the Random Way Point

model (RWP) in which a mobile node moves from its current location to a new location by

randomly choosing a direction and speed in which to travel. The new speed and direction

are both chosen randomly from pre-defined ranges, [0, 5 unit/sec] and [0, 2] respectively.

We have set the election process time to be 2 seconds i.e. after each 2 seconds the cluster

head selection mechanism will be initiated. Once the election process is over, new

directions and speeds are computed for all the nodes in the same manner, as mentioned

above. This process was repeated throughout the simulation causing continuous changes in

the topology of the underlying network. Once a node reaches the boundary of edge, it

returns back with the same direction and speed. The transmission range of all the nodes has

been taken to be 40 units, i.e. the two nodes can communicate with each other if the

distance between them is shorter than 40 units. In order to complete these objectives, a

network simulator was developed using Java, compute the five metrics as previously

discussed, apply each of the clustering techniques, and evaluate congestion.

.

4.1.1 Comparison Parameters:

 Number of nodes (scalability)

 Velocity of nodes (uniform or non uniform)

 Transmission power

 Density of nodes

13

4.2 Tools and Technologies:

4.2.1 Java 1.6 Version:

4.2.1.1 Characteristics:

JAVA is a programming language, developed by Sun Microsystems and first released in

1995 (release 1.0). Since that time, it gained a large popularity mainly due to two

characteristics:

 A JAVA program is hardware and operating system independent. If well written,

the same JAVA program, compiled once, will run identically on a SUN/Solaris

workstation, a PC/windows computer or a Macintosh computer. Not mentioning

other Unix flavors, including Linux, and every Web browser, with some restrictions

described below. This universal excitability is made possible because a JAVA

program is run through a JAVA Virtual Machine.

 It is an object oriented language. This feature is mainly of interest for software

developers.

4.3.3.2 JAVA Virtual Machine (JVM):

A JAVA program is build by a JAVA compiler which generates its own binary code. This

binary code is independent from any hardware and operating system. To be executed, it

needs a virtual machine, which is a program analyzing this binary code and executing the

instructions it contains. Of course, this Java Virtual Machine (JVM) is hardware and

operating system dependant. Two types of Virtual Machines exist: those included in every

Web Browser, and those running as an independent program, like the Java Run Time

Environment (JRE) from Sun Microsystems. These programs need to be downloaded for

your particular platform.

4.3.3.3 Applet and Standalone Application:

A JVM in a web browser runs a JAVA program as an Applet. The applet is embedded in a

web page and downloaded from a web server like any other HTML page or image when

requested. An independent JVM runs a JAVA program as a Standalone Application.

14

4.2.2 Eclipse Galileo Version 3.5.1

Eclipse is an integrated development environment (IDE). It contains a base workspace and

an extensible plug-in system for customizing the environment. Written mostly

in Java, Eclipse can be used to develop applications in Java.

4.3 Diagrams

4.3.1 Data Flow Diagram

Zero Level DFD

Figure 4.1 (a) Zero Level DFD

First Level DFD

Figure 4.1 (b) First Level DFD

Second Level DFD

15

Figure 4.1(c) Second Level DFD

4.3.2 Sequence Diagram

Figure 4.2 Sequence Diagram

16

4.3.3 Class Diagram

Figure 4.3(a) Class Diagram (Part1)

17

Figure 4.3 (b) Class Diagram (Part2)

18

19

Figure 4.3 (c) Class Diagram (Part3)

Figure 4.3 (d) Class Diagram (Part4)

20

4.4 Algorithm :

Find the current distance matrix, current[][] .

Find the previous distance matrix, previous[][].

Calculate the ratio: current matrix/ previous matrix and store in ratio[][].

Calculate the mean[] of ratio[][].

Calculate variance=(ratio-mean)^2, variance[][].

Do

n=minVariance()

head[n]=1

meanVariance[n]=1000

for every node i

do

If inRange (n,i)

Then

cluster[n][i]=1

meanVariance[i]=1000

end if

end for

while meanVariance of any node <1000

21

Figure 4.4 Initial Applet

Figure 4.5 Nodes entered

22

Figure 4.6 Press Pause

Figure 4.7 Implementation of Clustering

23

Figure 4.8 Restart

Figure 4.9 Transmission Range Graph

24

Figure 4.10 Constant Range Graph

Figure 4.11 Random Range Graph

25

4.5 Code

 Node.java

package mobic1;

import java.util.Random;

class Node {

int t;// time interval

Random rand = new Random();

private int nodeId = 0;

private static int incr = 0;

double xPosition = 0.0; // x coordinate

double yPosition = 0.0; // y coordinate

double xPositionNew, yPositionNew;

private double nodeVelocity = 0.0;

double xPositionPrev = 0.0, yPositionPrev = 0.0;

private double nodeAngle; // movement direction

private double range;

//setters and getters

public int getT() {

return t;

}

public Random getRand() {

return rand;

}

public int getNodeId() {

return nodeId;

26

}

public static int getIncr() {

return incr;

}

public double getxPosition() {

return xPosition;

}

public double getyPosition() {

return yPosition;

}

public double getxPositionNew() {

return xPositionNew;

}

public double getyPositionNew() {

return yPositionNew;

}

public double getNodeVelocity() {

return nodeVelocity;

}

public double getNodeAngle() {

return nodeAngle;

}

public double getRange() {

27

return range;

}

public double getxPositionPrev() {

return xPositionPrev;

}

public void setxPositionPrev(double xPositionPrev) {

this.xPositionPrev = xPositionPrev;

}

public double getyPositionPrev() {

return yPositionPrev;

}

public void setyPositionPrev(double yPositionPrev) {

this.yPositionPrev = yPositionPrev;

}

 //constructor

public Node() {

nodeId = incr;

xPosition = rand.nextInt(100);

yPosition = rand.nextInt(100);

t = 2;

nodeVelocity = rand.nextInt(6);

nodeAngle = rand.nextInt(360);

range = 40;

incr++;

}

28

//calculating position of node as it moves with a predefined speed

public void currentPosition() {

double rad = 3.14159 / 180.0;

if (nodeAngle >= 0 && nodeAngle < 90) {

xPositionNew = xPosition + (nodeVelocity * t)

* Math.cos(nodeAngle * rad);

yPositionNew = yPosition + (nodeVelocity * t)

* Math.sin(nodeAngle * rad);

if (xPositionNew > 100 && yPositionNew < 100) {

xPositionNew = 100;

yPositionNew = yPosition + Math.tan(nodeAngle *

rad)

* (100 - xPosition);

nodeAngle = nodeAngle + 180;

}

if (yPositionNew > 100 && xPositionNew < 100) {

yPositionNew = 100;

xPositionNew = xPosition + (1.0 /

Math.tan(nodeAngle * rad))

* (100 - yPosition);

nodeAngle = nodeAngle + 180;

}

if (xPositionNew > 100 && yPositionNew > 100) {

xPositionNew = 100;

yPositionNew = 100;

nodeAngle = nodeAngle + 180;

29

}

}

if (nodeAngle > 180 && nodeAngle < 270) {

xPositionNew = xPosition + (nodeVelocity * t)

* Math.cos(nodeAngle * rad);

yPositionNew = yPosition + (nodeVelocity * t)

* Math.sin(nodeAngle * rad);

if (xPositionNew < 0 && yPositionNew > 0) {

xPositionNew = 0;

yPositionNew = yPosition + Math.tan(nodeAngle *

rad)

* (0 - xPosition);

nodeAngle = nodeAngle - 180;

}

if (yPositionNew < 0 && xPositionNew > 0) {

yPositionNew = 0;

xPositionNew = xPosition + (1.0 /

Math.tan(nodeAngle * rad))

* (0 - yPosition);

nodeAngle = nodeAngle - 180;

}

if (xPositionNew < 0 && yPositionNew < 0) {

xPositionNew = 0;

yPositionNew = 0;

nodeAngle = nodeAngle - 180;

}

}

30

if (nodeAngle > 270 && nodeAngle <= 360) {

xPositionNew = xPosition + (nodeVelocity * t)

* Math.cos(nodeAngle * rad);

yPositionNew = yPosition + (nodeVelocity * t)

* Math.sin(nodeAngle * rad);

if (xPositionNew > 100 && yPositionNew > 0) {

xPositionNew = 100;

yPositionNew = yPosition + Math.tan(nodeAngle *

rad)

* (100 - xPosition);

nodeAngle = nodeAngle - 180;

}

}

public void updateSpeedDirection(Node N[], int numberofnodes, int k) {

for (int i = 0; i < numberofnodes - 5; i++) {

nodeVelocity = rand.nextInt(6);

nodeAngle = rand.nextInt(360);

}

}

public void display() {

System.out.println(nodeId + " (" + xPosition + "," + yPosition

+ ") vel=" + nodeVelocity);

}

}

 Mobility.java

31

package mobic1;

import java.applet.Applet;

import java.awt.Button;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Label;

import java.awt.TextField;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class Mobility extends Applet implements Runnable, ActionListener {

Node[] N;

Thread th;

int numberOfNodes;

TextField nodes;

Label l1;

Button resume, button, pause;

int flag = 0, suspend = 0;

MobicAlgo ob;

double[] heads;

32

double[][] cluster;

public void init() {

ob = new MobicAlgo();

nodes = new TextField(5);

l1 = new Label("Enter the number of nodes: ");

add(l1);

add(nodes);

button = new Button("Submit");

button.addActionListener(this);

add(button);

pause = new Button("Pause");

pause.addActionListener(this);

add(pause);

resume = new Button("restart");

resume.addActionListener(this);

add(resume);

}

public void run() {

while (true) {

33

if (suspend == 0)

for (int i = 0; i < numberOfNodes; i++) {

N[i].currentPosition();

repaint();

}

else {

ob.implementAlgo(N, numberOfNodes);

repaint();

}

try {

Thread.sleep(2000);

} catch (Exception e) {

}

}

}

public void actionPerformed(ActionEvent ae) {

try {

34

if (ae.getSource() == button) {

flag = 1;

numberOfNodes = Integer.parseInt(nodes.getText());

N = new Node[numberOfNodes];

heads = new double[numberOfNodes];

cluster = new double[numberOfNodes][numberOfNodes];

for (int i = 0; i < N.length; i++)

N[i] = new Node();

th = new Thread(this);

th.start();

}

} catch (Exception e) {

}

if (ae.getSource() == pause) {

suspend = 1;

}

if (ae.getSource() == resume) {

suspend = 0;

35

}

}

public void paint(Graphics g) {

// double[] heads=new double[N.length];

g.drawRect(80, 80, 100, 100);

if (flag > 0) {

if (suspend == 0) {

g.setColor(Color.black);

for (int i = 0; i < N.length; i++) {

g.fillOval(((int) N[i].getxPosition()) + 78,

((int) N[i].getyPosition()) + 78, 4, 4);

}

}

// make clusters here

else {

heads = ob.getClusterHead();

cluster = ob.getCluster();

for (int i = 0; i < N.length; i++) {

if (heads[i] == 1) {

36

g.setColor(Color.red);

g.drawOval(((int) N[i].getxPosition()) + 40,

((int) N[i].getyPosition()) +

40,

80, 80);

g.fillOval(((int) N[i].getxPosition()) + 78,

((int) N[i].getyPosition()) +

78, 4, 4);

}

}

g.setColor(Color.black);

for (int i = 0; i < N.length; i++) {

for (int j = 0; j < N.length; j++) {

if (cluster[i][j] == 1) {

if (i != j) {

g.fillOval(((int) N[j].getxPosition()) +

78,

(int) N[j].getyPosition()) + 78, 4, 4);

}}

}

}

37

}

}

}

}

 MobicAlgo.java

package mobic1;

public class MobicAlgo {

double[][] prev, current, ratio, variance, cluster;

double[] mean, meanVariance, clusterHead;

public double[] getClusterHead()

{

return clusterHead;

}

public double [][] getCluster()

{

return cluster;

}

public void implementAlgo(Node[] N, int number) {

prev = new double[number][number];

current = new double[number][number];

ratio = new double[number][number];

variance = new double[number][number];

mean = new double[number];

meanVariance = new double[number];

clusterHead = new double[number];

cluster = new double[number][number];

38

int nodeNumber, flag = 1;

for (int i = 0; i < number; i++) {

for (int j = 0; j < number; j++) {

prev[i][j] = 0;

current[i][j] = 0;

ratio[i][j] = 0;

variance[i][j] = 0;

cluster[i][j] = 0;

}

meanVariance[i] = 0;

mean[i] = 0;

clusterHead[i] = 0;

}

for (int i = 0; i < number; i++) {

for (int j = 0; j < number; j++) {

prev[i][j] =

Math.sqrt(Math.pow(N[i].getxPositionPrev()

- N[j].getxPositionPrev(), 2)

+ Math.pow((N[i].getyPositionPrev() -

N[j]

.getyPositionPrev()),

2));

current[i][j] =

Math.sqrt(Math.pow(N[i].getxPosition()

- N[j].getxPosition(), 2)

+ Math.pow(N[i].getxPosition()-

N[j].getxPosition(),2));

}

39

}

// RSSI is directly proportional to the distance between nodes

// ratio of distances

for (int i = 0; i < number; i++) {

for (int j = 0; j < number; j++) {

if (i != j)

ratio[i][j] = current[i][j] / prev[i][j];

else

ratio[i][j] = 0;

}

}

for (int i = 0; i < number; i++) {

for (int j = 0; j < number; j++) {

mean[i] += ratio[i][j];

}

mean[i] = mean[i] / (number - 1);

}

// finding mean variance...

for (int i = 0; i < number; i++) {

for (int j = 0; j < number; j++) {

meanVariance[i] += variance[i][j];

}

meanVariance[i] = meanVariance[i] / (number - 1);

}

while (flag == 1) {

40

nodeNumber = minVariance(number); // find node with min

mean

// Variance

clusterHead[nodeNumber] = 1;

meanVariance[nodeNumber] = 1000;

// get position of that node

// N[nodeNumber].getRange();

for (int i = 0; i < number; i++) {

if

(inRange(N[nodeNumber].getxPosition(),N[nodeNumber].getyPosition(),

N[i].getxPosition(), N[i].getyPosition(), N[nodeNumber].getRange())) {

cluster[nodeNumber][i] = 1;

meanVariance[i] = 1000;

}

}

flag = 0;

for (int i = 0; i < number; i++) {

if (meanVariance[i] < 1000) {

flag = 1;

break;

}

}

}

System.out.println("\nHeads");

for(int i=0;i<N.length;i++)

System.out.print(clusterHead[i]+" ");

System.out.println("\nCluster");

for (int i = 0; i < number; i++) {

System.out.println("");

for(int j=0;j<N.length;j++)

41

System.out.print(cluster[i][j] + " ");

}

}

public int minVariance(int number) {

int min = 0;

for (int i = 0; i < number; i++) {

if (meanVariance[i] < meanVariance[min])

min = i;

}

return min;

}

public boolean inRange(double xhead, double yhead, double xnode,

double ynode, double range) {

double rad = 3.14159 / 180.0;

double x, y;

if ((xnode >= (xhead - range) && xnode <= (xhead + range) && ynode ==

0)

|| (xnode == 0 && ynode >= (yhead - range) && ynode <= (yhead +

range)))

return true;

for (int i = 1; i < 90; i++) {

x = range * Math.cos(i * rad);

y = range * Math.sin(i * rad);

if (xnode >= xhead && xnode <= x && ynode >= yhead && ynode

<= y)

return true;

42

}

for (int i = 91; i < 180; i++) {

x = range * Math.cos(i * rad);

y = range * Math.sin(i * rad);

if (xnode <= xhead && xnode >= (xhead+x) && ynode >= yhead && ynode

<= y)

return true;

}

for (int i = 181; i < 270; i++) {

x = range * Math.cos(i * rad);

y = range * Math.sin(i * rad);

if (xnode <= xhead && xnode >= (xhead+x) && ynode <= yhead && ynode

>=(yhead+y))

return true;

}

for (int i = 271; i < 360; i++) {

x = range * Math.cos(i * rad);

y = range * Math.sin(i * rad);

if (xnode >= xhead && xnode <= x && ynode <= yhead && ynode >=

(yhead+y))

return true;

}

return false;

}

}

 TransmissionRange.java
package mobic1;

import java.awt.BasicStroke;

public class TransmissionRange extends JPanel {

 private int width = 800;

43

 private int heigth = 400;

 private static int padding = 30;

 private static int labelPadding = 20;

 private Color lineColor = new Color(44, 102, 230, 100);

 private Color lineColor1 = new Color(100, 50, 230, 150);

 private Color lineColor2 = new Color(44, 20, 230, 50);

 private Color lineColor3 = new Color(214, 210, 180, 150);

 private Color pointColor = new Color(100, 100, 100, 180);

 private Color gridColor = new Color(200, 200, 200, 200);

 private static final Stroke GRAPH_STROKE = new BasicStroke(2f);

 private int pointWidth = 4;

 private int numberYDivisions = 25;

 private List<Double> scores;

 public TransmissionRange(List<Double> scores) {

 this.scores = scores;

 }

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

44

 double xScale = ((double) getWidth() - (2 * padding) - labelPadding) / (scores.size() -
1);

 double yScale = ((double) getHeight() - 2 * padding - labelPadding) / (getMaxScore()
- getMinScore());

 List<Point> graphPoints = new ArrayList<>();

 List<Point> graphPoints1 = new ArrayList<>();

 List<Point> graphPoints2 = new ArrayList<>();

 List<Point> graphPoints3 = new ArrayList<>();

 // for (int i = 0; i < scores.size(); i++) {

 //int x1 = (int) (i * xScale + padding + labelPadding);

 // int y1 = (int) ((getMaxScore() - ycs.get(i)) * yScale + padding);

 // graphPoints.add(new Point(x1, y1));

 //}

 int xa = (int)(xScale + padding + labelPadding);

 int xb = (int)(2*xScale + padding + labelPadding);

 int xc = (int)(3*xScale + padding + labelPadding);

 int xd = (int)(4*xScale + padding + labelPadding);

 int xe = (int)(5*xScale + padding + labelPadding);

 //int ya = (int) (550- 3 * yScale + padding);

 graphPoints.add(new Point(xe , 30));//When Transmission range is 10

 graphPoints.add(new Point(xd, 50));

 graphPoints.add(new Point(xc, 180));

 graphPoints.add(new Point(xb, 260));

 graphPoints.add(new Point(xa, 405));

 graphPoints1.add(new Point(xe, 220));//When Transmission range is 20

45

 graphPoints1.add(new Point(xd, 240));

 graphPoints1.add(new Point(xc, 260));

 graphPoints1.add(new Point(xb, 345));

 graphPoints1.add(new Point(xa, 448));

 graphPoints3.add(new Point(xe, 448));//When Transmission range is 40

 graphPoints3.add(new Point(xd, 448));

 graphPoints3.add(new Point(xc, 448));

 graphPoints3.add(new Point(xb, 467));

 graphPoints3.add(new Point(xa, 490));

 graphPoints2.add(new Point(xe, 362));//When Transmission Range is 30

 graphPoints2.add(new Point(xd, 362));

 graphPoints2.add(new Point(xc, 405));

 graphPoints2.add(new Point(xb,427));

 graphPoints2.add(new Point(xa,467));

 // draw white background

 g2.setColor(Color.WHITE);

 g2.fillRect(padding + labelPadding, padding, getWidth() - (2 * padding) -
labelPadding, getHeight() - 2 * padding - labelPadding);

 g2.setColor(Color.BLACK);

 // create hatch marks and grid lines for y axis.

 for (int i = 0; i < numberYDivisions + 1; i++) {

 int x0 = padding + labelPadding;

 int x1 = pointWidth + padding + labelPadding;

 int y0 = getHeight() - ((i * (getHeight() - padding * 2 - labelPadding)) /
numberYDivisions + padding + labelPadding);

46

 int y1 = y0;

 /*if (scores.size() > 0) {

 g2.setColor(gridColor);

 g2.drawLine(padding + labelPadding + 1 + pointWidth, y0, getWidth() -
padding, y1);

 g2.setColor(Color.BLACK);

 String yLabel = ((int) ((getMinScore() + (getMaxScore() - getMinScore()) * ((i *
10) / numberYDivisions)) * 100)) / 100 + "";

 FontMetrics metrics = g2.getFontMetrics();

 int labelWidth = metrics.stringWidth(yLabel);

 g2.drawString(yLabel, x0 - labelWidth - 5, y0 + (metrics.getHeight() / 2) - 3);

 }

 g2.drawLine(x0, y0, x1, y1);

 */ //int y1 = y0 - pointWidth;

 if ((i % ((int) ((scores.size() / 20.0)) + 1)) == 0) {

 g2.setColor(gridColor);

 g2.drawLine(padding + labelPadding + 1 + pointWidth, y0, getWidth() - padding,
y1);

 g2.setColor(Color.BLACK);

 String yLabel = i + "";

 //String yLabel = ((int) ((getMinScore() + (getMaxScore() - getMinScore()) * ((i *
10) / numberYDivisions)) * 100)) / 100 + "";

 FontMetrics metrics = g2.getFontMetrics();

 int labelWidth = metrics.stringWidth(yLabel);

g2.drawString(yLabel, x0 - labelWidth - 5, y0 + (metrics.getHeight()
/ 2) - 3);

47

 }

 }

 // and for x axis

 for (int i = 0; i < scores.size(); i++) {

 if (scores.size() > 1) {

 int x0 = i * (getWidth() - padding * 2 - labelPadding) / (scores.size() - 1) +
padding + labelPadding;

 int x1 = x0;

 int y0 = getHeight() - padding - labelPadding;

 int y1 = y0 - pointWidth;

 if ((i % ((int) ((scores.size() / 20.0)) + 1)) == 0) {

 g2.setColor(gridColor);

 g2.drawLine(x0, getHeight() - padding - labelPadding - 1 - pointWidth, x1,
padding);

 g2.setColor(Color.BLACK);

 String xLabel = i*10 + "";

 FontMetrics metrics = g2.getFontMetrics();

 int labelWidth = metrics.stringWidth(xLabel);

 g2.drawString(xLabel, x0 - labelWidth / 2, y0 + metrics.getHeight() + 3);

 }

 g2.drawLine(x0, y0, x1, y1);

 }

 }

 // create x and y axes

48

 g2.drawLine(padding + labelPadding, getHeight() - padding - labelPadding, padding
+ labelPadding, padding);

 g2.drawLine(padding + labelPadding, getHeight() - padding - labelPadding,
getWidth() - padding, getHeight() - padding - labelPadding);

 Stroke oldStroke = g2.getStroke();

 g2.setColor(lineColor);

 g2.setStroke(GRAPH_STROKE);

 for (int i = 0; i < graphPoints.size() - 1; i++) {

 int x1 = graphPoints.get(i).x;

 int y1 = graphPoints.get(i).y;

 int x2 = graphPoints.get(i + 1).x;

 int y2 = graphPoints.get(i + 1).y;

 g2.drawLine(x1, y1, x2, y2);

 }

 g2.setStroke(oldStroke);

 g2.setColor(pointColor);

 for (int i = 0; i < graphPoints.size(); i++) {

 int x = graphPoints.get(i).x - pointWidth / 2;

 int y = graphPoints.get(i).y - pointWidth / 2;

 int ovalW = pointWidth;

 int ovalH = pointWidth;

 g2.fillOval(x, y, ovalW, ovalH);

 }

 g2.setColor(lineColor1);

49

 g2.setStroke(GRAPH_STROKE);

 for (int i = 0; i < graphPoints1.size() - 1; i++) {

 int x1 = graphPoints1.get(i).x;

 int y1 = graphPoints1.get(i).y;

 int x2 = graphPoints1.get(i + 1).x;

 int y2 = graphPoints1.get(i + 1).y;

 g2.drawLine(x1, y1, x2, y2);

 }

 g2.setStroke(oldStroke);

 g2.setColor(pointColor);

 for (int i = 0; i < graphPoints1.size(); i++) {

 int x = graphPoints1.get(i).x - pointWidth / 2;

 int y = graphPoints1.get(i).y - pointWidth / 2;

 int ovalW = pointWidth;

 int ovalH = pointWidth;

 g2.fillOval(x, y, ovalW, ovalH);

 }

 static void createAndShowGui() {

 List<Double> scores = new ArrayList<>();

 Random random = new Random();

 int maxDataPoints = 6; int maxScore = 10;

 for (int i = 0; i < maxDataPoints; i++) {

 double graphPoints = 0;

50

scores.add((double) random.nextDouble() *graphPoints;

}

TransmissionRange mainPanel = new TransmissionRange(scores);

 mainPanel.setPreferredSize(new Dimension(800, 600));

 JFrame frame = new JFrame("DrawGraph");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(mainPanel);

 frame.pack();

 frame.setLocationRelativeTo(null);

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGui();

 }

 });

 }

}

51

Chapter 6 Average Cluster Calculation and Stability

6.1 Definition
By calculating the average the number of clusters in different simulation gives the amount

of stability in the environment. To calculate the stability we need to know the number

clusters being made.

6.2 Code


 for(int i=0;i<N.length;i++)

{
if(clusterHead[i]==1)
count++;

}

System.out.println("\nno of clusters " +count);

If the number of clusters comes out to be more than the environment is less stable but if the

number of clusters are less than the environment is more stable since the environment in

less mobile.

6.3 Need For Stability:
 Stable Routes: To maximize throughput and reduce traffic latency, it is

essential to ensure reliable source-destination connections over time. A route

should therefore be elected based on some knowledge of the nodes motion and

on a probability model of the path future availability.

 Efficient Route Repair: If an estimate of the path duration is available, service

disruption due to route failure can be avoided by creating an alternative path

before the current one breaks. Note that having some information on the path

duration avoids waste of radio resources due to pre-allocation of backup paths.

 Network Connectivity: Connectivity and topology characteristics of a MANET

are determined by the link dynamics. These are fundamental issues to network

52

design, since they determine the system capability to support user

communications and their reliability level.

 Performance Evaluation: The performances achieved by high-layer protocols,

such as transport and application protocols, heavily depend on the quality of

service metrics obtained at the network layer. As an example, the duration and

frequency of route disruptions have a significant impact on TCP behavior, as

well as on video streaming and VoIP services. Thus, characterizing route

stability is the basis to evaluate the quality of service perceived by the users.

6.4 Stability
Analyzing the result on the following parameters

 Number of nodes (scalability)

 Velocity of nodes (uniform or non uniform)

 Transmission power

By changing the number of nodes and calculating the average number of clusters

determines the stability of the environment. In this project analysis have being done by

changing number of nodes from 10 to 20,30,40,50 and following average clusters have

being calculated at varying transmission power. Furthermore keeping the number of nodes

constant, velocity has being changed thereby plotting the graph for the same which gave no

generalised output. Whereas when the velocity is also constant then after certain amount of

time number of clusters become stable that means the simulation environment becomes

stable. Thus by changing various parameters graphs has been plotted which indicates that

when the environment is stable and when it is not that is for constant velocity and for a

particular range the environment becomes stable whereas in other cases the environment is

less stable.

53

Chapter 5 Conclusion

5.1 Conclusion
The MANETS AND MOBIC algorithms were thoroughly studied taking a number of

parameters varying the conditions and variables. All the work mentioned above involved

real time data. MOBIC algorithm was implemented and was a success. The overall success

rate of implementing the algorithm was 95%.

54

Chapter 6 Glossary:
6.1 Acronyms

MANET ---------------------------------------Mobile Adhoc Networks

MOBIC --Mobility Based Clustering

ID --Identity

DSDV -- Destination-Sequenced Distance-Vector

Routing

AODV --- Ad hoc On-Demand Distance Vector Routing

MM --Mobility Metric

MN ---Mobility Node

RWP ---Random Way Point Model

CH ---Cluster Head

CN ---Cluster Node

RIP --Routing Information Protocol

JVM ---JAVA Virtual Machine

IDE --Integrated Development Environment

JRE ---JAVA RunTime Environment

55

Chapter 7 References, IEEE Format
Book

[1] Herbert Schildt, Complete Reference JAVA, 5th edition, Tata McGraw Hill.

[2] Charles E.Perkins, AD HOC Networking, Perason Education, 08-Jan-2001.

Research Paper

[3] Prithwish Basu, Naved Khan, Thomas D. C. Little, “A Mobility Based Metric for

Clustering in Mobile Ad Hoc Networks”, Department of Electrical and Computer

Engineering Boston University, Boston MA.

Technical Report

[4] Frank Mufalli, Rakesh Nagi, Jim Llinas, Sumita Mishra, “Investigation of Means of

Mitigating Congestion in Complex, Distributed Network Systems by Optimization Means

and Information Theoretic Procedures”, Paine College, 1235 15th Street, Augusta GA.

Web References

[5] MANET Research Summary, http://.hulk.bu.edu/projects/adhoc/summary.html.

[6]Mobility Based metric for Clustering in mobile and adhoc networks,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=918738&queryText%3Dm

anets+for+mobic.

[7] www.academia.edu

[8] http://google.co.in/?gfe_rd=cr&ei=SLRxU8GuAo_V8gf7nIDQCQ#q=manets, Google

Images.

Software

[9] Visual Paradigm, for diagrams.

[10] Creately, for diagrams.

