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Abstract Codes having higher information rates are desirable, since a higher rate code
implies a more efficient use of redundancy than a lower rate code. However, when choosing
a code for a particular application, we must also consider the error-correcting capabilities of
the code. There is a basic trade-off between code rate and minimum distance. The smaller the
code rate, the larger is the minimum distance and vice-versa. This paper proposes a simple
coding scheme that can construct a code with higher information rate from an existing code.
First, the paper derives a low-rate C′(n′, k′, d ′)-code from an existing C(n, k, d)-code, where
k
n ≥ k′

n′ . An associated decoding procedure for the newly derived class of low-rate codes is
also described. Finally, the proposed coding scheme combines C and a set of C′s to obtain
a C′′(n′′, k′′, d ′′)-code with k′′

n′′ ≥ k
n ≥ k′

n′ . Kronecker product is used as a basic tool in the
coding procedure.

Keywords Rank distance codes · Rank metric · Code length · Information rate ·
Minimum distance · Rate-increasing procedure

Mathematics Subject Classification 94B05 (Linear codes, general)

1 Introduction

A block code of length n over an alphabet A is a subset C ⊆ An . Usually, the alphabet A
is a finite field Fq , where q is a power of a prime number. An (n, M, d) code over Fq is a
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set of M q-ary codewords such that any two codewords are at a Hamming distance ≥ d . An
(n, M, d) code is said to be linear if it is a linear subspace of F

n
q . A linear code consists of

qk codewords of length n with minimum distance d is denoted by (n, k, d). The information

rate of the code C is defined to be the ratio R = logq |C|
n .

Error-correcting codes were first discovered abstractly in 1945 by Shannon (1948) in his
seminal paper, where he proved that there exist error-correcting codes that can achieve the
channel capacity. An important theme in information theory is that longer block lengths
are required to achieve higher rates and some closer to the channel capacity. A substantial
research work has been devoted to search for codes that can handle a given noisy channel.
Coding theory was born with the work of Hamming, who introduced a family of codes which
are the first single error-correcting codes ever invented (Hamming 1950). Since then most
established codes have been generalizations of Hamming codes: Golay codes (Golay 1949),
Reed–Muller codes (Muller 1954), Reed–Solomon codes (Irving 1960), Bose–Chaudhury–
Hocquenhem codes (Bose and Ray-Chaudhuri 1960), Goppa codes, and Rank Distance codes
(Gabidulin 1985), to name a few. About 50 years after Shannon’s result, turbo codes (Berrou
et al. 1993) were discovered. Further study on turbo codes led to the rediscovery of LDPC
codes (Gallager 1963), a class of codes introduced by Gallager about three decades earlier.
Algebraic structures such as groups, rings and finite fields are most important in the context
of coding theory. A detailed mathematical background on finite fields can be found in Lidl
and Niederreiter (1986). Algebraic characterizations of abstract structures akin to finite fields
and viable code constructions are given in Cazaran and Kelarev (1999) and Kelarev (2002).

The main challenge in the field of algebraic coding theory is to come up with ‘good’
codes along with the efficient coding algorithms. A ‘good’ code is a code that has the poten-
tial to correct as many errors as possible while using as little redundancy as possible. In fact,
these are contradictory goals. A bound that shows the trade-off between minimum distance
and information rate is the singleton bound (Richard 1964). Attempts are made for the con-
structions of asymptotically good error-correcting codes (Guruswami and Indyk 2005) with
linear-time encoding and decoding complexity. Using code concatenation, asymptotically
good codes are obtained (Alon et al. 1992). The main objective of this paper is to construct
codes with higher information rate from existing codes. The information rates of codes were
considered in the monograph (Kelarev 2002, Section 9.1 & 9.2), and also in Kelarev (2004a,b,
2005, 2006, 2007, 2008) and Alfaro and Kelarev (2006). The class of high-rate codes derived
in this paper, though non-asymptotic, equipped with relatively simple encoding and decoding
techniques.

Considering Fq as the alphabet set, almost all coding procedures exist to-date convention-
ally encode qk k-tuples to construct an (n, k, d)-code. The basic idea behind our approach is
as follows. Instead of considering all qk message vectors, why not consider only those mes-
sage vectors which are a (Kronecker) multiple of a single vector (termed as basic message
vector). Generating m > 1 such code sets, each corresponding to a basic message vector and
also making use of these m basic message vectors as side information, one can obtain a code
(n′′, k′′, d ′′) with an increase in the information rate: k′′

n′′ > k
n . Based on this observation, we

propose a coding scheme that constructs a higher rate code. This paper considers only rank
distance codes introduced by Gabidulin (1985). The class of rank distance codes is defined as
subsets of an n-dimensional space F

n
q N of n-vectors over an extension field Fq N , where n ≤ N .

Unlike conventional codes with Hamming metric, rank distance codes are equipped with rank
metric. Though, the concept of rank metric was conceptualized by Loo-Keng Hua (1951)
as Arithmetic distance and by Philippe Delsarte as q-distance on the set of bilinear forms
(Delsarte 1978), Gabidulin introduced rank distance for vector spaces over extension fields.

123



A coding scheme that increases the code rate 577

The following section presents the basic definitions and notations. To facilitate our objec-
tive, the paper first derives, in Sect. 3, a low-rate C′(n′, k′, d ′)-code from an existing C(n, k, d)-
code with k′

n′ ≤ k
n < 1. The coding scheme proposed in section IV combines C(n, k, d)

and C′(n′, k′, d ′) to obtain a code C′′(n′′, k′′, d ′′) having rate higher than that of C and C′:
logqn |C′′|

n′′ ≥ logqn |C|
n ≥ logqn |C′|

n′ . An associated decoding algorithm for the newly constructed
class of codes is also given. The paper is concluded in Section V.

2 Preliminaries

This section describes some fundamentals of rank distance codes introduced by Gabidulin
(1985) and notations used throughout in this paper.

2.1 Rank distance codes

Let V n be an n-dimensional vector space over the field GF(q N ), where q is a power of a
prime and n ≤ N . Assume that u1, u2, . . ., uN is some fixed basis of the field GF(q N ),
regarded as a vector space over GF(q). Then, xi = a1i u1 + a2i u2+ · · · + aNi uN for any xi ∈
GF(q N ). Let x = (x1, x2, . . . , xn) ∈ V n and An

N be the collection of all N × n matrices over
GF(q). Associated with each x ∈ V n , the N × n matrix denoted by A(x) is defined as

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

aN1 aN2 · · · aNn

⎞
⎟⎟⎟⎠

Definition 2.1 The rank of a vector x ∈ V n over GF(q N ) is defined as the rank of the matrix
A(x) and is denoted by r(x; q). The norm r(x; q) specifies a rank metric on V n as d(x, y)

= r(x − y; q) for all x , y ∈ V n .

Definition 2.2 A linear (n, k, d) code which is a k-dimensional subspace of V n is said to be
a rank distance (RD) code if its metric is induced by the rank norm. An (n, k, d) RD code
is said to be a maximum rank distance (MRD) code if d = n - k + 1. Here d is the minimum
distance of the code and is defined as the minimum rank any non-zero codeword can have.

Definition 2.3 An (n, k, d) MRD code is generated by the generator matrix G defined as
follows:

G =

⎛
⎜⎜⎜⎜⎝

g1 g2 · · · gn

gq
1 gq

2 · · · gq
n

...
...

. . .
...

gqk−1

1 gqk−1

2 · · · gqk−1

n

⎞
⎟⎟⎟⎟⎠

where g1, g2, . . . , gn ∈ GF(q N ) are linearly independent over GF(q). The paper considers
the case when n = N .

2.2 Notations and abbreviations

A code of block length n, message length k and minimum distance d consisting of M qn-
ary codewords defined over GF(qn) is denoted by (n, k|M, d). Further, for arbitrary vectors
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a = (
a1, a2, . . . , am1

)
and b = (

b1, b2, . . . , bm2

)
, the concatenation of a and b is defined as

the vector
(
a1, a2, . . . , am1 , b1, b2, . . . , bm2

)
of length (m1 +m2) and abbreviated as (a, b).

Further, whenever to refer two vectors—an m1-tuple and an m2-tuple from two distinct sets
A and B having common terminologies (such as message vector, codeword), we denote the
respective vectors by a(r) and a(s), using a same alphabet:

a(r) = (
ar1, ar2, . . . , arm1

)

and a(s) = (
as1, as2, . . . , asm2

)

for some distinct positive integers r and s.

Definition (Kronecker product) For the above two vectors a and b of respective lengths
m1 and m2, the Kronecker product of a and b is defined as the m1m2-length vector
(a1b, a2b, . . . , am1 b) and denoted by a ⊗ b.

3 Construction of low-rate codes

A normal basis of GF(qn) over GF(q) is a basis of the form
{
α, αq , . . . , αqn−1

}
for some

α ∈ GF(qn). Let {α1, α2, . . . , αn} be a normal basis in GF(qn) with αi = αqi
for 0 ≤ i ≤

n − 1. Then, α
qk

i = αi+k for an integer k, where indices of α are reduced modulo n. It is
known that every GF(qn) has a normal basis over GF(q) (Lidl and Niederreiter 1986). Since
{α1, α2, . . . , αn} being a normal basis, the set {α[ j]

1 , α
[ j]
2 , . . . , α

[ j]
n } also forms a normal basis

in GF(qn) for each j = 1, 2, . . . , n, where here and after [r ] = qr for some positive integer r .
Further, let the normal basis {α1, α2, . . . , αn} of GF(qn) over GF(q) be self-complementary:
a basis {α1, α2, . . . , αn} of GF(qn) over GF(q) is called self-complementary if

tr(αiα j ) =
{

1, i = j
0, i �= j

where tr is the absolute trace from GF(qn) to GF(q) defined as tr(α) = ∑n−1
i=0 αqi

. A criteria
for the existence of self-complementary bases are obtained in Lempel and Weinberger (1988),
where it has been established that GF(qn) has a self-complementary normal basis if and only
if n is odd or n ≡ 2 (mod 4) and q is even.

Consider an (n, k|qnk, d) MRD code C over GF(qn) with its generator matrix G =
[gq j

i ]n,k−1
i, j=0 such that the basis {g1, g2, . . . , gn} is self-complementary in GF(qn). Let G =

[Ik : P], where Ik denotes the k ×k identity matrix and P is some k ×(n −k) matrix. Then,
H = [−PT : In−k] is the parity-check matrix. A procedure for the systematic encoding of
MRD codes can be found in (Vasantha Kandasamy, 2012, Section 4.3). Assume that the code
C is equipped with a rank-error correcting decoding algorithm that can correct up to 
 d−1

2 �
rank errors. The use of self-complementary basis as the row elements in the generator matrix
G plays a crucial role in the decoding of high-rate codes discussed in the next section.

3.1 Encoding the low-rate (secondary) codes

For an integer ko > 0, choose a ko-tuple m(0) = (m01, m02, . . . , m0ko) ∈ [
GF(qn)

]ko

such
that m(0) �= (0). Assume that the ko-tuple m(0) is known to the encoder and decoder. Call
this fixed vector as the basic message vector.
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A coding scheme that increases the code rate 579

For each i = 1, 2, . . . , qnk , let m(i) denote the k-tuple (mi1, mi2, . . . , mik) ∈ [
GF(qn)

]k .
Using these message vectors of C and the basic message vector m(0), generate a new set of
message vectors each of length kko as follows:

m(1) = m(0) ⊗ m(1)

= (
m01m(1), m02m(1), . . . , m0ko m(1)

)

m(2) = m(0) ⊗ m(2)

= (
m01m(2), m02m(2), . . . , m0ko m(2)

)

...

m(qnk ) = m(0) ⊗ m(qnk )

= (
m01m(qnk ), m02m(qnk ), . . . , m0ko m(qnk )

)
.

Considering these qnk newly generated kko-tuples as the actual message vectors to be
transmitted, the construction procedure attempts to channel encode these kko-tuple message
vectors using the k ×n generator matrix G = [Ik : P] as follows. Since m(i) is a kko-tuple,
to encode it using the k × n matrix G, select a k-component m′

(i) from m(i): without loss of

generality, m′
(i) = m01m(i) for each i = 1, 2, . . . , qnk . Since m′

(i) ∈ [
GF(qn)

]k being a
message vector of C, one obtains an n-tuple m′

(i)G = c(i) for each i . Since G is assumed to be
in standard form, each n-tuple c(i) has the well-known representation—the first k components
are the message symbols and remaining n − k components are the parity-check symbols:
c(i) = (

m01m(i), m01m(i)P
)

for each i = 1, 2, . . . , qnk . Clearly, the codeword c(i) ∈ C is
associated with m′

(i).
The newly generated message vectors are then encoded by appending the parity-check

symbols associated with the selected k-component message vectors of C: each of the newly
generated kko-tuple message vector m(i) is encoded by appending the (n − k)-tuple parity-
check-symbol of c(i) to it to form c(i) =

(
m(0) ⊗ m(i), m01m(i)P

)
:

c(1) =
(

m(0) ⊗ m(1), p(1)

)

c(2) =
(

m(0) ⊗ m(2), p(2)

)

...

c(qnk ) =
(

m(0) ⊗ m(qnk ), p(qnk )

)
,

where p(i) = m01m(i)P .
These newly defined codewords constitute an (n + k(ko − 1), kko|qnk, d ′)-code over

GF(qn), say C′. Note that the code C′ thus obtained is not an MRD code and consequently the
minimum distance of the code can be found in the following sense. Rank distance between two
codewords is at most the Hamming distance between them: if d ′ denotes the Hamming dis-
tance, then for all c1, c2 ∈ C, the rank distance satisfies the inequality d(c1, c2) ≤ d ′(c1, c2)

(Gabidulin 1985). The minimum distance d ′ of the derived code C′ can be calculated as
follows. By the very construction of C′, for an arbitrary codeword c(i) ∈ C′, the kko-tuple
message vector can be written in terms of the Kronecker product of m(i) ∈ [

GF(qn)
]k and

m(0) ∈ [
GF(qn)

]ko

: c(i) = (
m(0) ⊗ m(i), m01m(i)P

)
. Consequently, the Hamming weight

of a non-zero codeword c(i) ∈ C′ can be calculated as follows:
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w(c(i)) = w
(

m(i), p(i)

)

= w
(

m(0) ⊗ m(i)

)
+ w(p(i))

= w
(

m(0)
)

w
(
m(i)

) + w(p(i))

= kow(m(i)) + w(p(i))

= kow(m(i)) + w(c(i)) − w(m(i))

≥ kow(m(i)) + d − w(m(i))

= d + w(m(i))(k
o − 1)

≥ d + ko − 1

where 1 ≤ w(m(i)) ≤ k. It follows that, the minimum distance of C′ is d +ko −1. It is easy to
see that d ′ ≥ d . The derived code can be described by its systematic encoding map as follows.
While a qn-ary (n, k|qnk, d)-code C is specified by an injective map E : [

GF(qn)
]k →[

GF(qn)
]n from the qn-ary strings of length k to qn-ary strings of length n, which is a linear

transformation x(0) 
→ (x(0), x(0)P), the derived code C′ has an associated encoding map

E ′ : [
GF(qn)

]kko → [
GF(qn)

]kko+n−k given by m(0)⊗x(0) 
→ (m(0)⊗x(0), x(0)P). Clearly,

C ⊆ [
GF(qn)

]n and C′ ⊂ [
GF(qn)

]kko+n−k with |C| = |C′| = qnk .
As the code C′ is derived from C, we adopt the following terminology: call C as the primary

code and the code C′ that is derived from C as the secondary code. Observe that, the secondary
code C′(n′, k′|M, d ′) satisfies the singleton bound, n′ = n + k(ko − 1), k′ = kko, M = qnk

and d ′ = d + ko − 1:

qn′−d ′+1 = q[n+k(ko−1)]−(d+ko−1)+1

= q(n−k+1)+(kko)−(d+ko−1)

=
(

qn−k+1

qd

)
qkko−(ko−1)

= qkko−(ko−1)

= qko(k−1)+1

≥ q(k−1)+1 for all ko > 0

= qnk .

The block length, message length and minimum distance of C′ are given by n′ = n +
k(ko −1), k′ = kko, and d ′ = d + ko −1, respectively. Note that, each message vector of the
secondary code is a Kronecker product of the message vectors of the primary code with the
basic message vector m(0). As every kko-tuple message vector contains the ko-tuple m(0),
the basic message vector known at the receiver-end will act as a side-information for the
decoder in recovering a received sequence. The decoding technique for the secondary code
described in the next sub-section is based on the decoding technique of the primary code.

3.2 Decoding the secondary codes

Let m(i) = m(0) ⊗ m(i) be the (actual) message vector of length kko to be conveyed to the
receiver. Suppose that c(i) = (

m(i), p(i)
) ∈ C′(n + k(ko − 1), kko|qnk, d + ko − 1), the

codeword associated with the message vector m(i) is transmitted. Let r(i) =
(

r(i)
m , rp(i)

)
be
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the received vector, where r(i)
m = m(i) + e(i) and rp(i) = p(i) + e(i) for some error vectors

e(i) ∈ [
GF(qn)

]kko

and e(i) ∈ [
GF(qn)

]n−k .
Since m(i) = m(0) ⊗ m(i), the associated received message vector can be written as

r(i)
m = m(0) ⊗ m(i) + e(i) = (m01m(i), m02m(i), . . . , m0ko m(i)) + e(i), where e(i) =(
e(i)

1 , e(i)
2 , . . . , e(i)

ko

)
with e(i)

1 , e(i)
2 , . . . , e(i)

ko ∈ [
GF(qn)

]k . On receiving the (kko + n − k)-

tuple r(i), the decoder extracts the k-symbol vector rm
(i) = m01m(i) +e(i)

1 from r(i)
m and forms

the n-tuple r(i) as follows: r(i) =
(

rm
(i), rp(i)

)
. If r(i) has e ≤ 
 d−1

2 � errors, on employing

the error-correcting algorithm associated with the primary code C to r(i), decoder recovers
m01m(i). Since the basic message vector m(0) is known at the receiver-end, upon dividing the
k-tuple m01m(i) by m01, decoder recovers the k-tuple m(i). The decoder then readily obtains
the original transmitted message vector as m(i) = m(0) ⊗ m(i).

Although the message vectors of secondary code are of length kko, the secondary code
has the lower code rate than the primary code. However, an increase in the information rate
can be made by not transmitting the basic message vector m(0), as it is also known at the
receiver-end. A coding technique proposed in the next section accomplishes this.

4 Construction of high-rate codes

Although the transmitted kko-tuple message vector is recovered successfully, the secondary
code C′(n′, k′, d ′) itself is not useful as the code rate is decreasing for increasing values
of ko: k

n′ < k
n for all ko > 1 and k

n′ approaches 0 as ko increases. This is because of the
obvious reason that the Kronecker product merely increases the length of each message vector
(consequently, the codewords) but not the number of codewords of C′. In the following, this
section proposes a coding technique to increase the number of codewords to obtain a code
with higher information rate than primary and secondary codes.

4.1 Encoding the high-rate (tertiary) codes

Consider the primary code C and secondary code C′. Let the k × n generator and (n − k)× n
parity-check matrices of C be such that G = [g1 g2 . . . gk]T and H = [h1 h2 . . . hn−k]T

for some g1, . . . , gk, h1, . . . , hn−k ∈ [
GF(qn)

]n . Consider the following non-zero vectors:

β(1) = (β1, β1, . . . , β1)︸ ︷︷ ︸
n components

β(2) = (β2, β2, . . . , β2)︸ ︷︷ ︸
n components

...

β(qn−1) = (
βqn−1, βqn−1, . . . , βqn−1

)
︸ ︷︷ ︸

n components

where β1, β2, . . . , βqn−1 are the non-zero elements of GF(qn).
Recall that the secondary code C′(n + k(ko − 1), kko|qnk, d + ko − 1) obtained is in

fact generated from the primary code C(n, k|qnk, d) by considering the Kronecker product of
m(0) = (m01, m02, . . . , m0ko) with each of its message vectors. In this way, the secondary
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code C′ is said to be generated by the basic message vector m(0). Considering β( j) as the
basic message vector, let C′

j (n +k(n −1), kn|qnk, d +n −1) denote the j th secondary code

generated by β( j), j = 1, 2, . . . , qn − 1. Then, for each j , the codewords of C′
j are given by

c(i)
j =

(
β( j) ⊗ m(i), β j m(i)P

)
, i = 1, 2, . . . , qnk . Note that for ko = n and m(0) = β(1),

we have C′ = C′
1 generated by β(1). Clearly, |C′

j | = qnk for each j = 1, 2, . . . , qn − 1.

However, |C′
1 ∪ C′

2 ∪ · · · ∪ C′
qn−1| = (qn − 1)qnk − (qn − 2); excluding the common

codeword appearing more than once.
By convenient abuse of notation, we use the same symbol C′ to represent C′

1 ∪ C′
2 ∪ · · · ∪

C′
qn−1 and call it as the secondary code derived from C: C′ = C′

1 ∪ C′
2 ∪ · · · ∪ C′

qn−1. It is
important to note that the kn-length message vectors under consideration for transmission
are from the qn − 1 secondary codes C′

1, C′
2, . . . , C′

qn−1 and the associated (n − k)-length
parity-check vectors are from the primary code C. Consider the kn-tuple (i th message vector)
m(i)

j = β( j) ⊗ m(i) (of j th secondary code C′
j ) that is to be conveyed to the receiver, where

i = 1, 2, . . . , qnk and j = 1, 2, . . . , qn − 1. For each j , since β( j) is also known at the
receiver-end, instead of transmitting the [n + k(n − 1)]-tuple:

c(i)
j =

(
β( j) ⊗ m(i), β j m(i)P

)
∈ C′

j (n + k(n − 1), kn|qnk, d + n − 1)

as done in the last section, the transmitter can send only the n-tuple c j
(i) = (

β j m(i), β j m(i)P
)

∈ C(n, k|qnk, d), which is in turn associated with the k-tuple message vector m j
(i) = β j m(i).

To our surprise, observe that, this n-tuple is from the primary code C(n, k|qnk, d). The
problem for the receiver is to retrieve first the corresponding j th basic message vector
β( j), which would help the decoder to identify the j th secondary code C′

j from which
the codeword was transmitted. In this way, to convey a kn-length message vector, the
transmitter is actually sending only the n-length vector c j

(i) ∈ C, not the [n + k(n − 1)]-
length vector c(i)

j ∈ C′
j ⊆ C′. Consequently, one obtains the code C′′ with parameters

(n, kn|(qn − 1)qnk, d), call it as tertiary code, as it is obtained from the primary and sec-
ondary codes. By the very encoding of the tertiary code C′′, the code can be specified by
the mapping E ′′ : Akn

qn → [
GF(qn)

]n given by β( j) ⊗ x(0) 
→ (β j x(0), β j x(0)P), where

Akn
qn =

{
β( j) ⊗ x(0) | x(0) ∈ [

GF(qn)
]k

, j = 1, 2, . . . , qn − 1
}

.

Example 1 (Construction of tertiary codes) Consider the primary code C(5, 3|215, 3), an
MRD code, with the generator and parity-check matrices:

G =
⎡
⎣

α18 α5 α10 α20 α9

α5 α10 α20 α9 α18

α10 α20 α9 α18 α5

⎤
⎦ and H =

[
α20 α9 α18 α5 α10

α9 α18 α5 α10 α20

]
,

where α is a primitive element of GF(25) such that α5 = α2 + 1. Consider the following
non-zero vectors:

β(1) = (1, 1, 1, 1, 1)

β(2) = (α, α, α, α, α)

...

β(31) = (
α30, α30, α30, α30, α30) ,
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where 1, α, . . . , α30 ∈ GF(25). For each j = 1, 2, . . . , 31, using basic message vector β( j),
the secondary code C′

j can be generated from the primary code C(5, 3|215, 3) by taking

the Kronecker product of β( j) with each of the message vector m(i) ∈ [
GF(25)

]3
of C.

For instance, construction of the secondary code C′
2 using β(2) = (α, α, α, α, α) is

done in what follows. Considering Kronecker product of β(2) with the i th message vector
m(i) = (α, α2, α3) of the primary code C, we construct the second secondary code C′

2 as
done below:

let m(i) = β(2) ⊗ m(i) = (α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4)

be the message vector to be transmitted. To channel encode this 15-tuple message vector
m(i), we select 3-component m′

(i) = (α2, α3, α4) from m(i) and encode conventionally with
the 3 × 5 generator matrix in systematic form:

G = [I3 : P] =
⎡
⎣

1 0 0 α22 α

0 1 0 α24 α7

0 0 1 α5 α10

⎤
⎦ .

Since m′
(i) ∈ [

GF(25)
]3

being a message vector of C, one obtains the 5-tuple m′
(i)G =

c(i) = (α2, α3, α4, α23, α11). Each of the newly generated 15-tuple message vector m(i) is
then encoded by simply appending (n − k = 2)-tuple parity-check symbol of c(i) to it to
form

c(i)
2 = (β(2) ⊗ m(i), β2m(i)P)

= (α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α23, α11).

In this way, the j th secondary code C′
j (17, 15|215, 7) is generated by the basic message

vector β( j) for j = 1, 2, . . . , 31. Let C′ = C′
1 ∪ C′

2 ∪ · · · ∪ C′
31. As β(2) is known to the

receiver, instead of transmitting the 15-tuple c(i)
2 = (α2, α3, α4, α2, α3, α4, α2, α3, α4, α2,

α3, α4, α2, α3, α4, α23, α11) ∈ C′
2 ⊆ C′, transmitter can send only 5-tuple c2

(i) =
(α2, α3, α4, α23, α11) ∈ C(5, 3|215, 3), which is the codeword associated with the 3-tuple
message vector m2

(i) = β2m(i) = (α2, α3, α4). This way of usage of codewords of the

secondary code C′ results in the tertiary code C′′ with parameters (5, 15|31 · 215, 3).

4.2 Decoding the tertiary codes

Recovering the j th basic message vector β( j) from a received n-tuple r j
(i) (say) is not straight-

forward. Even if the decoder recovers β j m(i) from the transmitted c j
(i), determining either

of the unknowns β j ∈ GF(qn) or m(i) ∈ [
GF(qn)

]k is not possible as their product β j m(i)

is not unique. However, retrieving β j is mandatory to determine the actual message vector

m(i) = β( j) ⊗ m(i). To overcome this situation, instead of transmitting the n-tuple c j
(i) ∈ C,

the transmitter transmits the n-tuple c′
(i) = c j

(i) + β j (1), where here and after (1) denotes
the all 1s n-tuple (1, 1, . . . , 1)︸ ︷︷ ︸

n components

.

The addition of n-tuple β j (1) (of unit rank) would enable the decoder to identify the
associated message vector m(i) = β( j) ⊗ m(i), uniquely. However, upon receiving, the

123



584 R. S. Raja Durai, M. Devi

receiver would treat the added n-tuple β j (1) as an error introduced by the channel in addition
to the actual channel error.

4.2.1 Decoding the combined error

Let r j
(i) = c j

(i) + e j
(i) be the received vector, where e j

(i) = β j (1) + e(i) with e(i) =
(e1, e2, . . . , en) ∈ [

GF(qn)
]n being the error-vector due to channel noise. By employing

the rank-error correcting algorithm associated with the primary code C, the k-length vector
m j

(i) = β j m(i) can be recovered provided the combined error e j
(i) has e ≤ 
 d−1

2 � rank errors.

Upon recovering the k-tuple m j
(i) = β j m(i) and the error-vector e j

(i) = e(i) + β j (1), the

decoder then attempts to determine the actual message vector m(i)
j = β( j) ⊗ m(i) originally

transmitted—it remains now for the decoder to retrieve β j (1) from e j
(i) = e(i) + β j (1). To

accomplish this task, we device a simple procedure to obtain the channel error e(i) from

e j
(i) = e(i) + β j (1) using the (n − k)-tuple r j

(i)H
T and k-tuple r j

(i)G
T, respectively termed

as H-syndrome and G-syndrome, which is outlined in the next sub-section.

4.2.2 Decoding the channel error

Consider the H-syndrome of the received n-tuple r j
(i):

SH = r j
(i)H

T

=
(

c j
(i) + β j (1) + e(i)

)
HT

= (s1, s2, . . . , sn−k) , (1)

where

s1 = β j + e(i)hT
1

s2 = β j + e(i)hT
2

...

and sn−k = β j + e(i)hT
n−k

are the elements from the field GF(qn). Further, the G-syndrome of the received vector r j
(i)

is given by,

SG = r j
(i)G

T

=
(

c j
(i) + β j (1) + e(i)

)
GT

= (
β j m(i)G + β j (1) + e(i)

)
GT

= β j m(i) + (
β j (1) + e(i)

)
GT

= (sn−k+1, sn−k+2, . . . , sn) ,

where

sn−k+1 = β j m1 + β j + e(i)gT
1

sn−k+2 = β j m2 + β j + e(i)gT
2
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...

and sn = β j mk + β j + e(i)gT
k

are the elements from the field GF(qn) and GGT = I—an identity matrix—as G =
[gq j

i ]n,k−1
i, j=0 is generated by the self-complementary basis. As m j

(i) = β j m(i) is retrieved
already, subtracting it from the G-syndrome above, one obtains the following k components
of r j

(i)G
T − m j

(i):

let S′
G = r j

(i)G
T − m j

(i) (2)

⇒ s′
n−k+1 = β j + e(i)gT

1

s′
n−k+2 = β j + e(i)gT

2

...

and s′
n = β j + e(i)gT

k .

Observe the presence of the unknown β j = β j (1)HT = β j (1)GT in all the n components
of the equations (1) and (2). Systematically, β j can be eliminated from these n components
to obtain the following n useful quantities:

let r1 = s1 − s2

r2 = s2 − s3

...

rn−k = sn−k − s′
n−k+1

rn−k+1 = s′
n−k+1 − s′

n−k+2

...

rn−1 = s′
n−1 − s′

n

and rn = s′
n − s1.

With the help of these known quantities, decoder then forms the following system of n
equations involving n unknowns e1, e2, . . . , en :

r1 = e(i)(h1 − h2)
T

r2 = e(i)(h2 − h3)
T

...

rn−k = e(i)(hn−k − g1)
T

rn−k+1 = e(i)(g1 − g2)
T

...

rn−1 = e(i)(gk−1 − gk)
T

and rn = e(i)(gk − h1)
T.

Since g1, g2, . . . , gk, h1, h2, . . . , hn−k ∈ [
GF(qn)

]n being linearly independent over
GF(qn), their difference vectors (h1 − h2), (h2 − h3), . . . , (hn−k − g1), (g1 − g2), (g2 −
g3), . . . , (gk−1 − gk), (gk − h1) ∈ [

GF(qn)
]n are also linearly independent over GF(qn). On
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solving the above system for the unknowns e1, e2, . . . , en , one can determine e(i) uniquely.
Thus, the only unknown component β j of the j th basic message vector β( j) can be readily

obtained from e j
(i) = β j (1) + e(i) and consequently, the associated basic message vector

is known to be β( j). Once the j th basic message vector is identified, the original message
vector can be retrieved as m(i)

j = β( j) ⊗ m(i). The decoding algorithm of tertiary codes
described above is demonstrated through the following example, which is a continuation of
previous example.

Example 2 (Decoding tertiary codes) Consider the primary code C(5, 3|215, 3).

Consider m(i) = (α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4).

Then c(i)
2 = (α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α23, α11).

But, we consider c2
(i) = (α2, α3, α4, α23, α11) and transmit c′

(i) = c2
(i) + β2(1).

Decoding the combined error Note that (α13, α28, α14, α12, α5) is the codeword obtained by
encoding the message vector m(i) = (α, α2, α3) with generator matrix G in non-systematic
form which is in fact equivalent to c2

(i) = (α2, α3, α4, α23, α11) that is obtained earlier using
the generator matrix G in systematic form.

Suppose that r2
(i) = (α24, α7, α15, α20, α26) = (α13, α28, α14, α12, α5)+(α, α, α, α, α30)

= c2
(i) + e2

(i) is the received vector, where e2
(i) = (α, α, α, α, α30) = β2(1) + e(i) =

(α, α, α, α, α)+(0, 0, 0, 0, α4) is the combined error with e(i) = (
0, 0, 0, 0, α4

) ∈ [
GF(25)

]5

being the error-vector of unit-rank due to channel noise. By employing the rank-error
correcting algorithm associated with the MRD code C(5, 3|215, 3), the 3-length vector
m2

(i) = β j m(i) = (α2, α3, α4) can be recovered as the combined error e2
(i) has only

e = 
 3−1
2 � = 1 rank error. Upon recovering the 3-tuple m2

(i) = β2m(i) and the error-

vector e2
(i) = e(i) + β2(1), the decoder then attempts to determine the actual message vector

m(i)
2 = β(2) ⊗ m(i) originally transmitted—it remains now for the decoder to retrieve β2(1)

from e2
(i) = e(i)+β2(1). We accomplish this task using the 2-tuple r2

(i)H
T and 3-tuple r2

(i)G
T.

Decoding the channel error Consider H-syndrome of received 5-tuple r2
(i):

SH = r2
(i)H

T

=
(

c2
(i) + β2(1) + e(i)

)
HT

= (
α24, α7, α15, α20, α26

)

⎡
⎢⎢⎢⎢⎣

α20 α9

α9 α18

α18 α5

α5 α10

α10 α20

⎤
⎥⎥⎥⎥⎦

= (
α15, α13

)

= (
s1, s2

)
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Further, the G-syndrome of the received vector r2
(i) is given by,

SG = r2
(i)G

T

= (
α24, α7, α15, α20, α26

)
⎡
⎢⎢⎣

α18 α5 α10

α5 α10 α20

α20 α9 α18

α9 α18 α5

⎤
⎥⎥⎦

= (
α9, α15, α3

)
.

Let S′
G = r j

(i)G
T − m j

(i)

= (
α24, α26, α21

)

= (
s′

3, s′
4, s′

5

)
.

Eliminating the unknown β2 from SH and S′
G:

r1 = s1 − s2 = α18

r2 = s2 − s′
3 = α

r3 = s′
3 − s′

4 = α29

r4 = s′
4 − s′

5 = α23

and r5 = s′
5 − s1 = α11.

With the help of these known quantities, decoder then forms the following system of 5
equations in 5 unknowns e1, e2, e3, e4, e5:

α18 = ei
(
α28 α25 α19 α7 α14

)T

α = ei
(
α25 α19 α7 α14 α28

)T

α29 = ei
(
α19 α7 α14 α28 α25

)T

α23 = ei
(
α7 α14 α28 α25 α19

)T

and α11 = ei
(
α14 α28 α25 α19 α7

)T
.

On solving the above system of equations for the unknowns e1, e2, e3, e4, e5 decoder
obtains the channel error-vector e(i) = (0, 0, 0, 0, α4). Thus, the only unknown component
β2 = α of the basic message vector β(2) can be readily obtained from e2

(i) = β2(1) +
e(i) = (α, α, α, α, α30) and consequently, the associated basic message vector is known to
be β(2) = (α, α, α, α, α). Once β(2) is identified, the original message vector can be retrieved
as

m(i)
2 = β(2) ⊗ m(i)

= β(2) ⊗ (α, α2, α3)

= (α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4, α2, α3, α4).

Systematically, we are transmitting only n symbols to convey kn-length message
symbols—eventually, the information rate R′′ of the tertiary code C′′ = C′

1∪C′
2∪· · ·∪C′

qn−1 is
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logqn |C′′|
n = logqn

[
(qn−1)qnk

]
n = k+[

logqn (qn−1)
]

n > k
n = R. Observe that, |C| = |C′

j | = qnk ,

but |C′| = |C′′| = (qn − 1)qnk .
First choosing a primary code C with the required error correction (for the channel under

consideration) followed by a selection of message length needed (i.e, choosing a ko > 0),
employing the proposed coding technique on C and C′, one in fact obtains the code C′′ with
information rate R′′ higher than the information rate R of C. The increase in the information
rate is made possible because of the addition of unit-rank vector prior to transmission. One

can see that, the increase in code rate is only
logqn (qn−1)

n . However, an improvement over the
coding scheme described in association with the class of T -Direct codes (Vasantha and Raja
Durai 2002; Raja Durai and Devi 2011) would lead to a further increase in the code rate.

5 Conclusion

An important goal of coding theory is to construct codes that achieve a prescribed error-
correction capability with a minimum amount of redundancy. The problem of constructing
error-correcting codes that can meet the optimal trade-off between the information rate and
error-correcting capability is considered. A coding scheme to construct codes (from existing
codes) with higher code rate is proposed. Choosing a ko-tuple with non-zero components,
the paper first generates kko-length message vectors (for transmission) by taking Kronecker
product of each message vector of an C(n, k|qnk, d) MRD (primary) code with the chosen ko-
tuple. Then appending to it the corresponding (n − k)-tuple parity-check symbols as desired,
one obtains a low-rate C′(kko+n−k, kko|qnk, d+ko−1)-code. Finally, the coding technique
proposed combines qn −1 such low-rate secondary codes to obtain an high-rate tertiary code
C′′(n, kn|(qn −1)qnk, d) to harness an increase in the information rate. Associated decoding
procedures to the codes constructed are also given. Further research work on the derived class
of codes—secondary and tertiary codes—in association with the class of T -Direct codes for
a possible increase in the information rate is under consideration by the authors.
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