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Abstract Drug design is a process which is driven by

technological breakthroughs implying advanced experi-

mental and computational methods. Nowadays, the tech-

niques or the drug design methods are of paramount

importance for prediction of biological profile, identifica-

tion of hits, generation of leads, and moreover to accelerate

the optimization of leads into drug candidates. Quantitative

structure–activity relationship (QSAR) has served as a

valuable predictive tool in the design of pharmaceuticals

and agrochemicals. From decades to recent research,

QSAR methods have been applied in the development of

relationship between properties of chemical substances and

their biological activities to obtain a reliable statistical

model for prediction of the activities of new chemical

entities. Classical QSAR studies include ligands with their

binding sites, inhibition constants, rate constants, and other

biological end points, in addition molecular to properties

such as lipophilicity, polarizability, electronic, and steric

properties or with certain structural features. 3D-QSAR has

emerged as a natural extension to the classical Hansch and

Free–Wilson approaches, which exploit the three-dimen-

sional properties of the ligands to predict their biological

activities using robust chemometric techniques such as

PLS, G/PLS, and ANN. This paper provides an overview

of 1-6 dimension-based developed QSAR methods and

their approaches. In particular, we present various dimen-

sional QSAR approaches, such as comparative molecular

field analysis (CoMFA), comparative molecular similarity

analysis, Topomer CoMFA, self-organizing molecular field

analysis, comparative molecule/pseudo receptor interaction

analysis, comparative molecular active site analysis, and

FLUFF-BALL, 4D-QSAR, and G-QSAR approaches.
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Introduction

Identification of promising hits and generation of high-

quality leads are crucial steps in the early stages of drug

discovery processes (Zhao, 2007; Lombardino and Lowe,

2004). Drug discovery is currently driven by the innovation

and knowledge employing a combination of experimental

and computational methods. Knowledge of the structure

and function of the targets as well as the mechanism by

which it interacts with potential drugs is fundamental to

this approach (Guido et al., 2008). Drug design is an iter-

ative process which begins with a compound that displays

an interesting biological profile and ends with optimizing

both the activity profile for the molecule and its chemical

synthesis. The process is initiated when the chemist con-

siders a hypothesis which relates the chemical features of

the molecule or series of molecules to the biological
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activity. Without a detailed understanding of the bio-

chemical processes responsible for activity, the hypothesis

generally is refined by examining structural similarities and

differences for active and inactive molecules. Compounds

are selected for latter based on the presence of functional

groups responsible for activity. In terms of drug design and

structures, refer to the properties or descriptors of the

molecules, their substitution or interaction energy fields,

corresponing to an experimental biological or biochemical

endpoint which includes activity, binding affinity, and

toxicity. Chemometric methods involve MLR, PLS, PCA,

PCR, and ANN (Norinder and Bergstrom, 2006). The

methods have been evolved from Hansch and free–Wil-

son’s 1- or 2-dimensional linear-free energy relationships,

Crammers’s 3-dimensional QSAR to Hopfinger’s 4th, and

Vedani’s 5 and 6 dimensions. All one- and two-dimen-

sional and related methods are commonly referred to as

‘‘classical’’ QSAR methodologies. QSAR plays a vital role

in modern drug design, since this represents a cost effective

as well rapid alternative to the medium throughput in vitro

and low throughput in vivo assays. Whenever compounds

with particular biological activity are known, then the

compounds can be used to design computational screening

model which includes QSAR. In same context, biological

activity should be obtained through reliable experiments

because generated model entirely depends on biological

activity profile of compounds used in model building.

Nowadays, drug development is carried out by QSAR

analysis, optimizing pharmacodynamic and pharmacoki-

netic properties (Salum and Andricopulo, 2009; Santos-

Filho et al., 2009; Andricopulo et al., 2009). Applications

involving genomics, proteomics, cheminformatics, bioin-

formatics, high-throughput X-ray crystallography, targeted

combinatorial libraries, etc. largely aided to increase the

output in the form of quality leads. Many efforts are still

needed to reduce the time, expenditure, and attrition rate in

the drug discovery cycle simultaneously addressing the

huge unmet medical need across the world. Referencing the

survey report, poor pharmacokinetic and preclinical tox-

icity were the major reasons for the failure in the drug

development, in addition to the lack of efficacy and adverse

effects (Stewart et al., 2002; Collins et al., 1998; Muller,

2003; Kennedy, 1997). Currently, the scenario has changed

with more efforts focused on early-stage physicochemical

profiling. The high-level process flow of the QSPR/QSAR

modeling in the data mining (DM) environment is sum-

marized in Fig. 1. This process flow diagram outlines the

two main tasks within this environment—the QSPR/QSAR

model development and the deployment of developed

QSPR/QSAR models. Both of these tasks involve cooper-

ation between different software modules within the data

mining environment, such as quantum chemical (QC)

calculation, molecular descriptor calculation, QSPR/QSAR

model development, and QSPR/QSAR prediction (Katri-

tzky et al., 1995). Based on the way by which the

descriptor values or structural representation are derived,

dimensionally based methods of QSAR are categorized

into the following classes:

• 1D-QSAR correlating activity with global molecular

properties like pKa, log P, etc.

• 2D-QSAR correlating activity with structural patterns

like connectivity indices, 2D-pharmacophores, without

taking into account the 3D-representation of these

properties.

• 3D-QSAR correlating activity with non-covalent inter-

action fields surrounding the molecules.

• 4D-QSAR additionally including ensemble of ligand

configurations in 3D-QSAR.

• 5D-QSAR explicitly representing different induced-fit

models in 4D-QSAR.

• 6D-QSAR further incorporating different solvation

models in 5D-QSAR.

Based on chemometric methods, sometimes QSAR

methods are also classified depending upon the type of

correlation technique employed to establish a relationship

between structural properties and biological activity. This

includes linear methods including linear regression (LR),

multiple linear regression (MLR), partial least squares

(PLS), and principal component analysis/regression (PCA/

PCR). Non-linear methods consist of artificial neural net-

works (ANN), k-nearest neighbors (kNN), and Bayesian

neural nets. As classical QSAR method is much easy to

handle, they are faster and more amenable to automation.

They include defined physicochemical descriptors which

are suited best for the evaluation of large number of mol-

ecules and screening of molecular databases. Moreover,

QSAR methods correlate macroscopic target properties

with computed atom-based descriptors derived from the

Fig. 1 Overview of QSAR/QSPR modeling
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spatial representation of the molecular structures. The

methodology has emerged as a natural extension to the

classical methods of QSAR approaches pioneered by

‘‘Hansch and Free-Wilson.’’ Experimental assays cannot be

replaced by QSAR model because of various obvious

limitations in simulation of real-world situations and

in vivo parameters in QSAR modeling. Although they play

a decisive role in predicting and correlating the biological

profile of molecules, in certain situations and conditions,

they suffer from severe limitations given in the following:

• Lack of sufficient number of training molecules.

• Consideration of only two-dimensional structures.

• Insufficient parameters for relating drug–receptor inter-

actions such as Hammett constant.

• Unavailability of specific physiochemical parameters.

• Unavailability of representation of stereochemistry.

• No unique solution with high risk of failure and chance

correlations.

• Requirement of knowledge of substituent constants and

chemistry utilized to design a molecule.

• Lack of suggestion to synthesize a new compound

through classical QSAR equations with no graphical

output.

Computational chemistry represents molecular struc-

tures as numerical models and simulates their behavior

with the equations of quantum and classical physics.

Available programs enable scientists to easily generate and

present molecular data including geometries, energies, and

associated properties (electronic, spectroscopic, and bulk).

The usual paradigm for displaying and manipulating these

data is a table in which compounds are defined by indi-

vidual rows and molecular properties (or descriptors) by

the associated columns. A QSAR attempts to find consis-

tent relationships between the variations in the values of

molecular properties and the biological activity for a series

of compounds so that these ‘‘rules’’ can be used to evaluate

new chemical entities. A QSAR generally takes the form of

a linear equation

Biological activity ¼ Constant þ C1 � P1ð Þ þ C2 � P2ð Þ
þ C3 � P3ð Þ þ . . .;

where the parameters P1 through Pn are computed for each

molecule in the series and the coefficients C1through Cn are

calculated by fitting variations in the parameters and the

biological activity (Walpole et al., 1993; Kubinyi, 2004).

2D-QSAR with respect to physicochemical properties

While searching, one finds numerous hits for lead candi-

dates, and thus lead optimization is hindered. To get more

target structural information, high-throughput protein

crystallization can be explored (Stewart et al., 2002). Lead

optimization remains the most serious bottleneck. In

addition, 40 % of all development candidates fails due to

absorption, distribution, metabolism, excretion, and toxic-

ity ‘‘ADMET’’ problems. High-throughput screening

(HTS) for pharmaceutical discovery is used as a filter in

order to identify the few potentially promising hits in a

corporation’s synthetic archive. Therefore, HTS data ana-

lysis is focused on hits, and the bulks of the non-hit data are

usually ignored (Manly et al., 2001). Cheminformatics

methods must be applied while generating data using high-

throughput techniques in order to assure that good ADMET

properties are achieved while making and screening com-

pounds, this approach is called a multi-parametric optimi-

zation strategy (Baxter and Lockey, 2001). Several

physicochemical properties of drug molecules such as

aqueous solubility, partition coefficient (log P), distribu-

tion coefficient (log D), ionization constant (pKa), and

topological polar surface area (tPSA) play an important

role in majority of the processes and outlined in Fig. 2.

Undesirable physicochemical properties point to the

potentially undesirable pharmacokinetic behavior.

Solubility

Adequate aqueous solubility is of paramount importance

since dissolution of the active drug in the gastrointestinal

(GI) fluids precedes its oral absorption from the GI tract.

Aqueous solubility, in turn, is dependent on several factors

such as size and shape of the molecule, hydrophobicity,

hydrogen bonding, and crystalline/amorphous state (Wang

et al., 2007). A detailed account on solubility prediction

was reported (Jorgensen and Duffy, 2002). Two aqueous

solubility prediction models, ASMS (aqueous solubility

based on molecular surface) and ASMS-LOGP (aqueous

solubility based on molecular surface using ClogP as a

descriptor) for a diverse data set of 1,708 molecules,

appeared in the literature (Wang et al., 2007). Both the

models performed well in terms of statistics (leave-one-out

q2 = 0.872, RMSE = 0.748 for ASMS model and

q2 = 0.886, RMSE = 0.705 for ASMS-log P model). The

authors proposed these models as possible drug-like filter

which could be used in prioritizing compound libraries

prior to HTS (Wang et al., 2007). In another study

involving the development of QSPR models for predicting

the aqueous solubility, random forest (RF) regression, PLS,

support vector machines (SVM), and ANN methods were

used (Palmer et al., 2007). For screening purpose, aqueous

solubility is usually measured fewer than three experi-

mental conditions PBS (pH 7.4), simulated intestinal fluid

and simulated gastric fluid. These measurements can be
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performed in high-throughput manner, and such data can

be utilized for developing the predictive models.

Permeability

Two main types of permeability, namely human intestinal

permeability and blood–brain barrier (BBB) permeability

(important for the distribution of CNS active agents and

toxicity of non-CNS drugs), are important with respect to

biological profile. Out of these, permeability across human

intestinal membrane represents the major step in the pro-

cess of oral absorption of xenobiotics. Most of drugs cross

intestinal epithelia by passive diffusion mechanism, which

in turn, largely depend on the physicochemical properties

of the drug. Hence, in silico models of human intestinal

permeability is of great significance for ADME/T profiling.

An in silico model was recently developed for the predic-

tion of parallel artificial membrane permeability assay

(PAMPA) permeability using logP, pKa, and PSA

descriptors (Nakao et al., 2009). On the other hand, BBB

permeability is a crucial factor which needs careful con-

sideration in the ADME/T profiling. CNS drugs must cross

BBB to exhibit therapeutic effect, whereas non-CNS drugs

are expected not to cross the BBB to avoid unwanted side

effects. With reference to CNS drug study, a large data set

of 1,593 molecules along with a set of 19 simple molecular

descriptors was used for building BBB prediction models

(Zhao et al., 2007). The H-bonding properties of molecules

were found to modulate the BBB penetration.

pKa

Prediction of pKa from the molecular structure is an

intense area of research as seen from the voluminous work

done in this area (Lee et al., 2008), where the ionic state of

the drug molecule at physiological pH, represented by the

ionization constant, or pKa, can potentially affect its

pharmacokinetic behavior. The pH-dependent distribution

coefficient logD (at pH 6.5, 7.4) is mainly dependent on the

pKa as the drugs experience varying environment (pH 1-3

in stomach, pH 5-7 in duodenum, pH 8 in jejunum and

ileum) during their passage in the GIT. Thus, physico-

chemical properties such as aqueous solubility and lipo-

philicity (logD) are partly dependent on pKa. The need for

in silico models for pKa prediction still persists. Lee et al.

described computational methodology and applications of

a computer program SPARC (SPARC Performs Automated

Reasoning in Chemistry) for the prediction of ionization

state of a drug (Lee et al., 2007). This program is based on

the solid physical chemistry of reactivity models. It pre-

dicts both macroscopic and microscopic pKa values for a

compound simply from the molecular structure. In the

reported study using 123 known drugs, SPARC predicted

pKa values correlated well with the experimental values

(r2 = 0.92 and RMSE = 0.78 log unit).

Lipophilicity

Lipophilicity, represented by logP, affects human intestinal

permeability, drug absorption, distribution and clearance

behavior. Several log P prediction programs are available.

These programs are mainly divided into three categories:

(a) those based on whole molecule approach, (b) fragment-

based approach, and (c) atom-based approach (In et al.,

2005). In addition to log P, log D or distribution coeffi-

cient represents more meaningful lipophilicity parameter

since ionizable drugs exhibit different partition behaviors

in different pH environments in the body (e.g., blood pH

Fig. 2 General layout of drug

designing
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7.4). Bruneau and McElroy (2006) reported predictive

model for log D7.4 using Bayesian regularized neural net-

works (BRNNs) employing automatic relevance determi-

nation (ARD). A data set of in-house compounds

(n = 5,000) was used for developing the in silico models.

BRNN with ARD has been shown to be successfully

applied for logD7.4 prediction.

Most attempts have been made to develop a significant

model as close as possible to real one and for these con-

siderations three-dimensional paradigms have to rely on

basic assumptions like molecular structure which can be

measured and represented with a set of numbers usually

called descriptors which encode all physical, chemical, and

biological properties as there is an underlying relationship

between molecular structure and biological activity.

Receptor binding and biological activity are in direct pro-

portion with differential effects on other signaling steps

which usually transpire between experimentally observed

response and receptor binding. Some major factors like

desolvation energy, temperature, diffusion, transport, pH,

and salt concentration which contribute to the overall free

energy of binding are difficult to handle, and thus usually

ignored. Structural properties which lead to an observable

biological response are most commonly determined by

non-covalent forces, mainly electrostatic and steric, and the

observed biological effect is produced by the modeled

ligand itself, not by its degradation product. With few

exceptions, the geometry of the receptor binding site is

considered rigid. Resulting QSAR model may represent

one of potentially several solutions to the property–activity

correlation problem (Akamatsu, 2002; Matyus and Borosy,

1998; Oprea, 2004).

Methods for building QSAR models

Statistical or chemometric techniques form the mathematic

foundation for building a QSAR model. A brief history

with respect to QSAR analysis (Table 1) and some of the

methods are described briefly (Table 2). Most easily

interpretable method was found to be linear regression

analysis among various statistical methods for QSAR.

These regressions represent direct correlation of indepen-

dent variables (x) with a dependent variable (y). This

model can be considered for prediction of y from the data

of x variables. This can either belong to qualitative or

quantitative set of system (Berk, 2003a). Inclusive variants

can be SLR, MLR, and stepwise MLR. Brief explanation of

these variants is as follows.

Simple linear regression (SLR)

This method performs as a standard linear regression calcu-

lation in generation of QSAR model in the form of equations

Table 1 Brief history of QSAR methodologies

Authors and year Methodologies

Mills (1884) Developed a QSAR model for predicting melting

and boiling points in homologous series,

outcomes were accurate to better than one

Hammett (1935,

1937)

Reported the effect of the substituent addition on

benzoic acid with the dissociation constant,

postulated electronic sigma-rho constants and

established the linear free-energy relationship

(LFER) principle

Albert et al.

(1948)

Investigated the effects of ionization/electron

distribution and steric access on the potencies

of a multitude of aminoacridines

Taft (1952) Postulated a method for separating polar, steric,

and resonance effects and introduced the first

steric parameter, ES

Hansch and Fujita

(1964)

Reported the combination of hydrophobic

constants with Hammett’s electronic constants

to yield the linear Hansch equation and its many

extended forms

Hansch (1969) Developed the Hansch equation for dealing with

extended hydrophobicity ranges

Free and Wilson

(1964)

Formulated an additive model, where the activity

is discretized as a simple sum of contributions

from various substituents

Kubinyi (1976) Determined the drugs transport via aqueous and

lipoidal compartment system and further refined

the parabolic equation of Hansch to develop

non-linear QSAR model superior to the earlier

one

Hansch and Gao

(1997)

Developed comparative QSAR

Labute (1999) Reported binary QSAR to handle binary activity

measurements from high-throughput screening

(e.g., active or inactive), and molecular

descriptor vectors as input. Determination of

probability distribution for actives and inactives

was based on Bayes’ Theorem

Table 2 Statistical techniques for building QSAR models

Linear regression analysis (RA)

Simple linear regression (SLR)

Multiple linear regression (MLR)

Stepwise multiple linear regression

Multivariate data analysis

Principal component analysis (PCA)

Principal components regression (PCR)

Partial least square analysis (PLS)

Genetic function approximation (GFA)

Genetic partial least squares (G/PLS)

Pattern recognition

Cluster analysis

Artificial neural networks (ANNs)

k-Nearest neighbor (kNN)
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which include a single independent descriptors x and y as a

dependent variable. This technique is found to be very

promising for generating structure and activity relationships

by exploring some of the most important descriptors used in

governing the activity, whereas some of multiple descriptors’

interaction was neglected. The simple linear regression can be

expressed by the following equation (Eq. 1):

y ¼ a þ bx; ð1Þ

where y is the dependent variable, x is the independent

variable, a is the constant, and b is the regression

coefficient.

Multiple linear regression (MLR)

This method is the extension of SLR to more than one

dimension. In this method, standard multivariable regression

calculations are performed. Identification of a drug property is

carried out on all of the descriptors under investigation.

Correlation possibility is checked by the value of multiple

correlation coefficient (r), t-value through leave-one-out

method. Correlation is checked by r2 or q2 values which are

usually known as cross-validated correlation coefficient. This

method is also known as linear free-energy relationship

method (LFER). The relationship is expressed in single

multiple-term linear equation (Eq. 2) as follows:

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ � � � þ bmxm þ e: ð2Þ

Stepwise multiple linear regression

This method commonly used variant MLR which creates a

multiple-term linear equation, but not all the independent

variables are used. This method has a good utilization

when the number of descriptors is large and main

descriptors are unknown. Moreover, orthogonal latent

variables can be used in MLR (Berk, 2003b).

Partial least square (PLS)

PLS gives a statistically robust solution even when the

independent variables are highly interrelated among

themselves, or when the independent variables exceed the

number of observations. PLS is an iterative regression

method that produces its solutions based on linear trans-

formation of a large number of original descriptors to a

small number of new orthogonal terms called latent vari-

ables (Wold et al., 1993). Thus, this method is counted as

standard statistical one.

Principal components analysis (PCA)

This method is known to create a new set of orthogonal

descriptors referred to as principal components (PCs)

which describe most of the information contained in the

independent variables in order of decreasing variance. In

this method, QSAR model is not generated but still it

witness for relationship among unlike variables. PCA

reduces dimensionality of data set of descriptors to actual

amount of data. To generate a multiple-term linear equa-

tion, PCR applies the scores from PCA decomposition as

regressors in QSAR model (Dunteman, 1989a, b).

Genetic function approximation (GFA)

This method serves as an alternative to standard regression

analysis for building QSAR equations (Rogers and Hop-

finger, 1994). It can build linear as well as higher order

non-linear equations. Genetic partial least squares (G/PLS

or GA-PLS) is an important tool which has evolved by

combining the best feature of GFA and PLS. This method

is extensively used by the researchers/scientists around the

globe (Dunn and Rogers, 1996; Breu et al., 2007; Datar

et al., 2006; Khedkar et al., 2007; Dhaked et al., 2009;

Verma et al., 2008).

Cluster analysis

This analysis method is a pattern recognition method used

to investigate the relationship between observations asso-

ciated with many other properties and to partition the data

set into categories into similar elements. This also implies

to identify which of the subsets share similar physical

properties (Aldenderfer and Blashfield, 1984).

Artificial neural networks (ANNs)

ANNs are useful tools in QSAR/QSPR studies, and par-

ticularly in case where it is difficult to specify an exact

mathematical model for describing a given structure

property relationship. Most of these works used neural

networks based on the back-propagation learning algo-

rithm, which has some disadvantages such as local mini-

mum, slow convergence, time-consuming non-linear

iterative optimization, and difficulty in explicit optimum

network configuration (Walczak and Massart, 2000). The

method of artificial neural networks originated from the

real neurons that are present in an animal brain. ANNs are

parallel computational systems consisting of groups of

highly interconnected processing elements called neurons,

which are arranged in a series of layers. The input layer as

the very first one and each of its neurons receives data from

user, which corresponds to one of the independent vari-

ables used as inputs in QSAR. After input layer, there are

many layers of neurons, collectively known as the hidden

layers. The last layer is termed to be the output layer, and

its neurons handle the output from the network. Each layer

4996 Med Chem Res (2014) 23:4991–5007
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may make its independent computations and may pass the

results yet to another layer (Baskin et al., 2008). In this, the

result of the transfer function is communicated to the

neurons in the output layer. This is the point where the

results are interpreted and presented finally.

k-Nearest neighbor

The kNN approaches are executed by distances between an

object which is unknown and all the objects in the training

set. Based on the calculation of distances, the objects from

training set most similar to object unknown are selected.

Finally, the optimum k value is selected by optimization

through categorizing the sample test set (Ajmani et al.,

2006). A systematic flowchart with variable selection is

represented as shown in Fig. 3.

Classification of 3D-QSAR Methods

This can be classified in various categories. Some of these

are intermolecular modeling based such as ligand and

receptor. These can also be classified on the basis of che-

mometric methods which are mainly utilized for correla-

tion of structural properties and activities. Moreover,

alignment criterion is also a base of classification. Few of

them are explained briefly:

• Based on intermolecular modeling

Ligand based e.g., CoMFA, CoMMA, CoMSIA, and

GERM.

Receptor based e.g., CoRIA, COMBINE, and AFMoC.

• Based on chemometric methods

Linear 3D-QSAR e.g., CoMFA, CoMSIA, and GERM.

Non-linear 3D-QSAR e.g., COMPASS and QPLS.

• Based on Alignment criterion

Alignment dependent e.g., CoMFA, CoMMA, CoM-

SIA, GERM, and CoRIA.

Alignment independent e.g., WHIM, CoSA, HQSAR,

COMPASS etc.

Comparative molecular field analysis (CoMFA)

It has served as a well-deserving tool in drug designing and

lead optimization for decades. Dynamic-oriented molecular

modeling system which is also been known as DYLOMMS

involves the utilization of PCA from the molecular inter-

action fields and is then correlated with biological profile

(Wise et al., 1983). GRID and PLS were combined to

DYLOMMS as modified techniques of this, in approach to

make it powerful technique, which is known and termed as

CoMFA. A standard procedure which is implemented in

sybyl software from Tripos Inc. (Berman et al., 2000) has

the following steps:

• Bioactive conformations of each molecule are

determined.

• All the molecules are superimposed or aligned using

either manual or automated methods, in a manner

defined by the supposed mode of interaction with the

receptor.

• The overlaid molecules are placed in the center of a

lattice grid with a spacing of 2 Å.

• The algorithm compares, in three dimensions, the steric

and electrostatic fields calculated around the molecules

with different probe groups positioned at all intersec-

tions of the lattice.

• The interaction energy or field values are correlated

with the biological activity data using PLS technique,

which identifies and extracts the quantitative influence

of specific chemical features of molecules on their

biological activity.

• The results are articulated as correlation equations with

the number of latent variable terms, each of which is a

linear combination of original independent lattice

descriptors.

• For visual understanding, the PLS output is presented in

the form of an interactive graphics consisting of colored

contour plots of coefficients of the corresponding field

variables at each lattice intersection, and showing the

imperative favorable and unfavorable regions in 3D-

Fig. 3 Flowchart of kNN with variable selection
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dimensional space which are considerably associated

with the biological activity.

Selection of compounds with biological profile and their

optimization has a significant role in QSAR. To improve

the biological activity and to reduce the side effects, QSAR

has a significant value. To do so, there are many factors to

be stressed on while selecting substituent for the modifi-

cation of compounds. There are some important factors

such as (i) the selected compounds should not be similar to

the existing ones which has decisive role in minimization

colinearity among the variables, (ii) maximize dissimilarity

and orthogonality, and (iii) selection should be based on

descriptor space and least number of compounds should be

considered; moreover, synthetic selected compounds with

good accessibility should be considered. 3D-QSAR can

also be applied to heterogeneous set of data as some bio-

logical data accuracy should be maintained and taken under

consideration. As every computational technique follows

the principle of ‘‘garbage in garbage out,’’ so QSAR

techniques should be operated in such a sophisticated

manner that good model is developed/generated. The

model can be generated as same by having (a) compounds

with specific and same mechanism of action with same

binding mode; (b) compounds should correlate to their

specific binding affinity; (c) molecular data for biological

activity should be obtained by utilizing radioligand,

cofactor, pH, activator, tissue, organism, and protein; and

(d) units should be similar for the data obtained; moreover,

biological data should be symmetrically distributed around

the mean, and skewness can be removed or eliminated by log

transforming the data and expressing it as log 1/C (Oprea,

2004; Hopfinger and Tokarski, 1997; Kim, 1995). This is the

well-known fact that each molecule having one or more

single bonds exists at every moment in many different so-

called rotamers. Multiple conformations can exist at specific

physiological conditions.

One of the most important problems with 3D-QSAR

technique is the alignment of molecules. All the molecules

in a data have common stiff core structures, where mole-

cules can be aligned using least square fitting procedure.

However, in case of structural heterogeneity in the dataset,

alignment of molecules becomes very difficult; in such

case, several approaches have been proposed to superim-

pose the molecules as accurately as possible, some of

which are as follows:

• Atom overlapping-based superimposition: This method

of approach is one of the most popular one and also

known as ‘‘Pharmacophore approach.’’ It basically

involves atom to atom pairing between the molecules

and is utilized in identifying dissimilarities between

similar molecules.

• Pharmacophore-based superimposition: This method is

well utilized as hypothetical pharmacophore and is

useful as common target template. Molecules are

directed conformationals to assume the shape obliga-

tory for its sub-molecular features to match with either

a known pharmacophore which is generated during the

analysis.

• Binding sites-based superimposition: Thus, the method

has application where molecular alignment is obtained.

This is done by superimposing the receptor active sited

or the receptor residue, which interact with ligands.

This technique is found and, moreover, believed to be

more conceivable.

• Multiple conformers-based superimposition: This tech-

nical method is particularly useful where the ligands

may bind to a receptor in multiple and various ways.

COMPASS is one of the examples, which determines

and selects the best bioactive conformation and optical

alignment from a set of initial poses.

Before performing the actual chemometric analysis in

3D-QSAR, the raw data are pretreated to minimize

redundancy (Kim, 1995). Reduction method is based on the

standard deviation cut-off. In this technique, all the energy

columns with a low standard deviation are eliminated from

the data, since they require longer computing time without

contributing to the results. Several variable selection

methods are available like in CoMFA the steric and elec-

trostatic values are amended using cut-offs (±30 kcal/

mol), depending upon the position of the lattice point. After

pretreatment, the data are subjected to scaling which

assigns equal weight to all the descriptors and places them

on a common platform for a meaningful statistical analysis.

Different scaling techniques are available and utilized

effectively in 3D-QSAR approaches. Few of them are

autoscaling in which the variables are scaled to zero mean

and a unit standard deviation by dividing each column with

its standard deviation, block-scaling such as in CoMFA

standard scaling, block-adjusted scaling where the energy

values are the part of analysis, etc. These techniques are

found to contribute in improving the ease of interpretation

and numerical stability. With respect to display of results,

CoMFA generates an equation correlating the biological

activity with interactive energy field’s contribution at every

grid point. Results are generally shown as coefficient

contour plots (Hopfinger and Tokarski, 1997). Two types

of contours are shown for each interaction energy field: the

positive and negative contours. The contours for steric

fields are shown in green (positive contours, more bulk

favored) and yellow (negative contours, less bulk favored),

while the electrostatic field contours are displayed in red

(positive contours, electronegative substituents favored)

and blue (negative contours, electropositive substituents
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favored) colors. As add on, CoMFA also provides two

types of plots from PLS models given as score plots and

loading/weight plots.

Comparative molecular surface analysis (CoMSA)

CoMSA is a non-grid three-dimensional QSAR approach

that makes use of the molecular surface for defining those

regions of the compounds which are required to be com-

pared using the mean electrostatic potentials (Polanski and

Walczak, 2000; Polanski et al., 2002). In this method, the

molecules are subjected in the data set to geometry opti-

mization and assigning them with partial atomic charges.

The Kohonen’s self-organizing maps, a type of neural

network, are then employed to transform the three-

dimensional surface of the molecules into two-dimensional

topographical maps. The partial atomic charges of the

atomic molecular representations are also projected onto

the two-dimensional topographical maps. The molecular

electrostatic potentials are calculated at the surface points,

and a mean value of the potential analogous to the

respective points found in each grid cell. The calculated

mean electrostatic potential values are converted into

vectors, and the vectors expressing all the molecules in the

series are superimposed onto a matrix, by comparing the

respective topographical maps of the molecules. The par-

ative matrix of the mean electrostatic potentials is finally

used to develop a 3D-QSAR model using the PLS tech-

nique. It compares the molecular properties explaining not

a discrete set of points but the average property values

(MEPs) calculated for a certain area of the molecular sur-

face. A receptor-dependent CoMSA model has been

developed for sulforaphane compounds as activators of

quinone reductase (Magdziarz et al., 2009). CoMSA

application includes the modeling of pKa values of benzoic

acids (Gieleciak and Polanski, 2007), and hypolipidemic

asarones (Magdziarz et al., 2006), determination of the

binding mode for a series of benzoxazine oxytocin antag-

onists using docking and 3D-QSAR studies (Jojart et al.,

2005).

CoMSIA

CoMSIA, Comparative Molecular Similarity Indices Ana-

lysis, was mainly developed to overcome the certain lim-

itations of CoMFA. In CoMSIA, molecular similarity

indices calculated from modified SEAL similarity fields are

employed as descriptors to simultaneously consider steric,

electrostatic, hydrophobic, and hydrogen bonding proper-

ties. These indices are estimated indirectly by comparing

the similarity of each molecule in the dataset with a

common probe atom (having a radius of 1 Å, charge of ?1

and hydrophobicity of ?1) positioned at the intersections

of a surrounding grid/lattice. Selected examples of the

applications of this methodology can be found for the

following:

• Use of the Gaussian distribution of similarity indices.

• The choice of similarity probe is not only limited to

either steric or electrostatic potential fields but also

includes hydrophobic and hydrogen bonding including

hydrogen bond acceptors and donors fields.

• Effect of the solvent entropic terms.

• The CoMSIA contours indicate those areas within the

region occupied by the ligands that ‘‘favor’’ or

‘‘dislike’’ the presence of a group with a particular

physicochemical property.

• The relationship between the required properties and a

probable ligand shape.

• Generation of predictive 3D-QSAR models of boron

containing dipeptides as proteasome inhibitors (Zhu

et al., 2009).

• Hydroxamic acid derivatives as urease inhibitors (Ul-

Haq et al., 2009).

• Thiazolidin-4-one derivatives as anti-HIV-1 agents

(Murugesan et al., 2009).

• Thiazolidinediones derivatives as aldose reductase

inhibitors (Liu et al., 2009).

In addition to these methodologies and tactical tech-

niques, several other 3D-QSAR methodologies have been

generated, out of those some are as follows:

CoRIA

• The approach which uses the descriptors that describe

the thermodynamic events involved in ligand binding.

• The methodology simply consisted of calculating the

non-bonded interaction energies between the ligand and

the individual active site residues of the receptor, which

are involved in interaction with the ligand (Datar et al.,

2006; Dhaked et al., 2009).

• This approach was further extended and modified to

develop two new variants of CoRIA: reverse-CoRIA

and mixed-CoRIA.

• These new developed techniques, reverse-CoRIA and

mixed-CoRIA, were used as independent variables that

are correlated to the biological activity by G/PLS

chemometric method (Verma et al., 2008).

Comparative molecule/pseudo receptor interaction

analysis (CoMPIA)

• Based on a common template molecule, the geometry

of the molecules is optimized followed by their

superimposition.
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• The resulting space encompassed by the set of super-

imposed molecules is partitioned into grids with

sufficient number of lattice points to accommodate all

the probe atoms.

• Nine different types of hybrid atoms/probes are distrib-

uted at each lattice point using a genetic algorithm, the

steric, electrostatic, and hydrophobic interactions, and

between different probes and every molecule in the set are

computed and then correlated with the biological activ-

ities using PLS (Zhou et al., 2006).

Comparative molecular active site analysis (CoMASA)

Initially, the molecules are superimposed and their inter-

atomic distances calculation. Afterward, the molecular

representation until the distances between all the atoms/

pseudo atoms is greater than the threshold value of 0.75 Å.

The interaction energies such as steric, electrostatic, and

hydrophobic properties are then computed for each mole-

cule (Kotani and Higashiura, 2004).

FLUFF-BALL

• It is based on a novel field-fitting procedure called

flexible ligand unified force field (FLUFF).

• A semiautomatic superimposition of the molecules is

carried out.

• It is a MMFF94 force field that is customized to impart

flexibility to the ligand to maximize similarity.

• The similarity between ligands and template is evalu-

ated, and the computed steric and electrostatic descrip-

tors are correlated with the biological activities using

the PLS technique (Korhonen et al., 2003).

Receptor surface analysis/modeling, comparative

receptor surface analysis (RSA/RSM/CoRSA)

• Molecules are optimized and superimposed in their

bioactive conformation.

• A receptor-complementary surface is generated using

shape fields which basically represent their aggregate

molecular shape.

• Putative chemical properties of the receptor are computed.

• PLS models are developed that correlate surface proper-

ties with molecular activities (Hahn, 1995; Ivanciuc et al.,

2000).

Self-organizing molecular field analysis (SOMFA)

In this approach, the mean activity of training set is sub-

tracted from the activity of each molecule to obtain their

mean centered activity values, and the grid values for each

molecule are summed up to give the master grids. Finally,

SOMFAproperty,i descriptors from the master grid values are

then calculated and correlated with the log-transformed

molecular activities (Robinson et al., 1999).

Hereby, with respect to the QSAR or computational study,

few of the current contributing studies in support of this

review are presented. Xingyan et al. reported that structure-

based 3D-quantitative structure–activity relationship (QSAR)

studies were performed on a series of dihydropyrazole and

dihydropyrrole derivatives using comparative molecular field

analysis (CoMFA) and comparative molecular similarity

indices analysis (CoMSIA) methods to find the correlation

between Eg5 and its inhibitors. Molecular docking and 3-D

QSAR studies were carried out to explore the binding

mechanism of dihydropyrazole and dihydropyrrole deriva-

tives to EG5. Good prediction of COMFA and COMSIA

models was obtained with LOO cross-validation q2 and con-

ventional r2 values of 0.898, 0.980, and 0.848, 0.992,

respectively. The results suggested that ligands binding in the

hydrophobic part of the inhibitor-binding pocket were found

to be crucial for potent ligand binding and kinase selectivity

(Luo et al., 2012). Some other recent postulates are tabulated

in Table 3; in addition, Table 4 represents some work with

regard to various QSAR methodologies.

4D QSAR

Hopfinger et al. (1997) proposed the 4D-QSAR formalism,

which includes the conformational flexibility and the

Table 3 Some important conformational analysis methods

S.

no.

Conformational

method

Description/utilization

1. Grid search Generates all possible conformations

2. Random search Generates a set of conformations by random

change in Cartesian, bond angles and

torsion angles

3. Monte Carlo Simulates dynamic behavior and generates

conformation by structural changes and

energy comparison

4. Molecular

dynamics

Follows Newton’s second law of motion

(Force = mass 9 acceleration) and

thereby simulates time dependent

movements and changes in conformation

5. Simulated

annealing

Method overcomes the huge energy barriers

and slowly cools down the system

6. Distance

geometry

algorithm

Selects random distances within each pair

of upper and lower bounds to form

constraints in a distance matrix

7. Genetic algorithm Based on biological evolution and works by

forming new conformers
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freedom of alignment by ensemble averaging in the con-

ventional three-dimensional descriptors found in traditional

3D-QSAR methods. Thus, the ‘‘fourth dimension’’ of the

method is ensemble sampling the spatial features of the

members of a training set. In this approach, the descriptors

are the occupancy frequencies of the different atom types

in the cubic grid cells during the molecular dynamics

simulation (MDS) time, according to each trial alignment,

corresponding to an ensemble averaging of conformational

behavior (Albuquerque et al., 1998, 2007). The grid cell

occupancy descriptors, GCODs, are generated for a number

of different atom types, called interaction pharmacophore

elements, IPEs. These IPEs (i.e., atom types), defined as

‘‘any type’’ (A or Any), ‘‘nonpolar’’ (NP), ‘‘polar-positive

charge’’ (P?), ‘‘polar-negative charge’’ (P-), ‘‘hydrogen

bond acceptor’’ (HA), ‘‘hydrogen bond donor’’ (HB), and

‘‘aromatic’’ (Ar), correspond to the interactions that may

occur in the active site, and are related to the pharmaco-

phore groups (Hopfinger et al., 1997; Albuquerque et al.,

1998, 2007; Hopfinger, 2001). Thus, the IPEs are related to

the descriptors’ nature in 4D-QSAR analysis, while the

GCODs are related to the coordinates of IPE mapped in a

common grid. The sampling process, in turn, allows the

construction of optimized dynamic spatial QSAR models

in the form of 3D pharmacophores, which are dependent on

conformation, alignment, and pharmacophore grouping.

One factor driving the development of 4D-QSAR ana-

lysis is the need to take into account multiple (i) confor-

mations, (ii) alignments, and (iii) substructure groups in

constructing QSAR models. These ‘‘QSAR degrees of

freedom’’ are normally held fixed in other 3D-QSAR

analysis. Insofar as 4D-QSAR analysis can meaningfully

predict ‘‘active’’ conformations and the preferred align-

ment for a training set, it may actually serve as a ‘‘pre-

processor’’ for a subsequent CoMFA and/or CoMSIA.

Furthermore, the 4D-QSAR method has been proven both

useful and reliable for the construction of quantitative 3D

pharmacophore models for ligand–receptor data sets

(Andrade et al., 2009; Krasowski et al., 2002; Thipnate

et al., 2009). As an example, Van Daele et al. (2007)

developed RI-4D-QSAR models for a set of thirty-four 50-
aryl-thiourea thymidine analogs, showing inhibitory

activity against thymidine monophosphate kinase from M.

tuberculosis (TMPKmt). This study suggested that the 4D-

QSAR methodology can be used in a receptor-dependent,

RD, mode when the geometry of the receptor is available

as is the case here. However, RD-4D-QSAR analysis

requires a relatively large and chemically diverse training

set, and also definitive information on binding align-

ment(s), in order to achieve a non-ambiguous QSAR

model. The RI-4D-QSAR analysis (Hopfinger et al., 1997;

Andrade et al., 2009) was carried out, and the best 4D-

QSAR model was graphically represented by plotting theT
a
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significant grid cells in space along with their descriptor

attributes (IPEs). The postulated ‘‘bioactive’’ conformation

of the most potent inhibitor, according to the best 4D-

QSAR model, was docked in the active site of the

TMPKmt crystallographic structure. There is a solid con-

sistency between the 3D-pharmacophore sites defined by

the QSAR models and interactions with binding site resi-

dues. Operational steps in performing a RD-4D-QSAR

presented in Fig. 4.

G-QSAR

The proposed new method G-QSAR (Fig. 5) differs from

them in two ways: (i) In G-QSAR method, the fragmentation

of each molecule in the dataset is done with a set of predefined

rules, before calculating their corresponding fragment

descriptors. This is unlike existing methods which search a

predefined fragment (or group) in the molecule and then uses

it as a descriptor either as an indicator variable, their count or

corresponding index e.g., path countor molecular connectiv-

ity index. (ii) G-QSAR method considers cross/interaction

terms as descriptors to account for the fragment interactions in

QSAR model, whereas there is no consideration of these

descriptors in existing methods.

As molecular fragmentation is a prerequisite to perform

G-QSAR (VLifeMDS, 2007), software provides two

methods to fragment the molecules depending on their

chemical diversities.

• Congeneric series: for congeneric series or template-

based series, substituent sites are used to fragment

molecules. Software reads the template where sub-

stituent sites are defined as dummy atoms. It performs

substructure/template search in set of molecules and

then fragments the molecule where the dummy atom

matches with atom of molecule.

• Noncongeneric series: for noncongeneric series or

chemically diverse set molecules, fragments are

derived from fragmentation along specific bonds, bonds

on the ring fusion. Software provides the interface to

define or select the bond for fragmentation for each

molecule.

In case of VLifeMDS software, it provides the following

steps to perform G-QSAR:

• Reads the set of molecules along with experimental

activities.

• Fragmentation of molecules using one of the methods

explained above.

Fig. 4 Operational steps in performing a RD-4D-QSAR

Fig. 5 Flow chart of G-QSAR methodology
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• Calculation of various descriptors for each fragment of

the molecule as well as fragment interaction descriptors

and populating in the worksheet.

• Preprocessing of data (e.g., removing invariable).

• Selection of dependent and independent variables.

• Selection of training and test set: software provides

three methods for selection (Sphere Exclusion (SE),

random, and manual).

Diligence of drug design tools

The US National Cancer Institute (NCI) conducts a drug

discovery program in which *10 000 compounds are

screened every year in vitro against a panel of 60 human

cancer cell lines from different organs of origin. Human

cancer cell lines include eight melanomas, six leukemia’s,

and eight cancers of breast, two of prostate, nine of lung,

seven of colon, six of ovary, eight of kidney, and six of

central nervous system (CNS) origin. Combinatorial

libraries have also been assessed recently. Similarity in

activity patterns very often indicates similarity in mecha-

nism of action, mode of drug resistance, and molecular

structure of tested compounds (Boyd and Paull, 1995; Paull

et al., 1989). Several different algorithms have been

introduced to use the activity information for discovery of

anticancer drugs and for understanding of the molecular

pharmacology of cancer. The COMPARE program (Boyd

and Paull, 1995; Paull et al., 1989; Koo et al., 1996) has

proved very useful for finding agents with activity patterns

similar to that of a ‘‘seed’’ compound and for finding

compounds with activity patterns that correlate well (pos-

itively or negatively) across the 60 cell lines with the

expression levels of particular cellular targets. Back-prop-

agation neural networks, Kohonen self-organizing maps,

and principal component analysis have been used to predict

mechanism of action or to organize compounds into fam-

ilies based on activity patterns. This ‘‘information-inten-

sive’’ approach to the molecular pharmacology of cancer

and anticancer drug discovery (Paull et al., 1989; Wein-

stein et al., 1994) has proved useful in identifying sub-

groups of compounds related to particular biological

targets. The chemical structure (S) databases can be

encoded in terms of any set of 2/3-dimensional molecular

structural descriptors or experimentally measured or theo-

retically calculated physicochemical properties. Analysis

can be carried out via database of activity patterns using

the COMPARE and DISCOVERY program sets in case of

compound search. As part of this process, cluster analysis

leads them to identify agents belonging to cluster families.

Some QSAR-type studies were also implemented for

dye–cellulose fiber interaction, as well as the qualitative

SAR-type relationships, demonstrating at least an appre-

ciable similarity of dye–fiber interactions with receptor–

ligand interactions. Series of anthraquinone vat dyes, mono

and bisazo, and disperse dyes were studied by several

variants of classical QSAR and 3D-QSAR methods. A

comparison of the results demonstrated that these methods

usually agree in the prediction of structural features

favorable for dyeing process. Attractive dye–cellulose

interactions were generally favored along the molecular

axis of the dye molecule and by the length of the molecular

conjugated system. Perhaps, the most interesting result, as

indicated mainly by CoMFA studies concerning the con-

tribution of electrostatic fields, was that an increase of

positive charges in the dye molecule favors dye adsorption

on cellulose (Funar-Timofei et al., 2012).

Conclusion

Overall, the application of in silico predictive methods has

shown accelerated success in recent years. It is anticipated

that this will be a subject of continual development in

future not only in drug design applications but also in the

area of predictive toxicology. QSAR has been observed in

the drug discovery area to enable the design of safe and

potent drug candidates. During drug discovery and devel-

opment phases, pharmacodynamic and pharmacokinetic

profile of molecules can be derived using QSAR models.

These in silico evaluations consist of the prediction of

diverse properties (e.g., physicochemical, ADME) and

activities to assist in the optimization and the prioritization

of drug candidates. Numerous public, commercial, or

corporate in silico tools including SAR/QSAR models,

decision trees, and molecular docking have been proposed

to achieve these aims. The site-specific clues along with the

interpretation of descriptors provided by QSAR techniques

such as G-QSAR will help medicinal chemists to design

better molecules. We have provided an overview of dif-

ferent QSAR methods and recent development in frag-

ment-based approaches using selected studies as an

illustration. Since each QSAR method has its own advan-

tages and disadvantages, researchers should choose

appropriate methods for modeling their systems according

to the information available with respect to target and

ligand. However, given a wide range of choices, it is a

challenging task to pick appropriate models for one’s

studies. This paper outlines many basic principles of new

fragment-based QSAR methods as well as other three-

dimensional and other dimensional QSAR models and

illustrates some examples which may be helpful references

to many researchers. In a nut shell, a comprehensive

understanding and error-free practice of such strategies in
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QSAR modeling should benefit the medicinal chemists to

prioritize their experimental endeavors and considerably

amplify the experimental hit rates.
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