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On Generalized R-norm Measures of Fuzzy

Information

D.S.HOODA AND RAKESH KUMAR BAJAJ

Abstract

In the present paper we characterize a new pafametric generalized R-norm fuzzy entropy and
studied. Further, we introduce a new R-norm fuzzy directed divergence measure and discuss
its validity and monotonic property with respect to the parameter introduced. New generalized

R-norm measures of total fuzzy ambiguity and fuzzy information improvement are also studied.

Mathematics Subject Classification 2000: 94D05, 94A15
Additional Key Words and Phrases: Fuzzy sets, Fuzzy information measure, Fuzzy directed

Divergence Measure, Total ambiguity, Fuzzy information improvement

1. INTRODUCTION

Fuzzy entropy is an important concept for measuring fuzzy information. Fuzzy
entropy of a fuzzy set is a measure of fuzziness which arises from the intrinsic
ambiguity or vagueness carried by the fuzzy set. Shannon (1948) was the first to use
the word “entropy” to measure uncertain degree of the randomness in a probability
distribution. Let X is a discrete random variable with probability distribution P =
(p1,p2, ..., Pn) in an experiment. According to Shannon, the information contained

in this experiment is
H(P)=-) p;logp; 1)
i=1

which is well known Shannon’s entropy (1948).

De Luca and Termini (1972) defined the following fuzzy information measure
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analogous to the Shannon entropy:

n

H(A) = =" [paleo) logpa(@s) + (1 - palw) log (1 - pa(@)]  (2)

=1
On formulating the axioms P1 to P4 mentioned below, which became the essential

properties required by the fuzzy information measure:

—P1 (Sharpness): H(A) is minimum if and only if A is a crisp set, i.e. p Alz) =
0 or 1;Vz.

—P2 (Mazimality): H(A) is maximum if and only if A is most fuzzy set, i.e.
pa(z) =0.5; V.

—P3 (Resolution): H(A) > H(A*), where A* is sharpened version of A.

—P4 (Symmetry): H(A) = H(A), where A is the complement of A i.e. pjz(z;) =
L = g ().

However, we have other fuzzy information measures but (2) can be regarded as
the first correct measure of ambiguity of a fuzzy set. In addition, Yager (1979)
also defined an entropy of a fuzzy set based on the distance from the set to its
complement set. Similarly, Kosko (1986) introduced another kind of fuzzy entropy
by considering the distance from a set to its nearest nonfuzzy set a.nd the distance
from the set to its farthest nonfuzzy set. Another kind of fuzzgr entropy with
an exponential function was introduced by Pal and Pal (1989). Later on, they
introduced the concept of higher rt* order entropy of a fuzzy set in ‘:cheir paper Pal
and Pal (1992). Further, Bhandari and Pal (1993) made a survey on information
measures on fuzzy sets and gave some new measures of fuzzy entrof;y.

Lot Ay ={P = (B89, 450a)s ;T 0, i=1,2....,m and ipz =1} be the
set of all probability distributions associated with a discrete razr?(i;)m variable X
taking finite values z1,zs,...,z,. '

Boekee and Lubbe (1980) defined and studied R-norm information measure of

the distribution P for R € RT as given by

HR(P):% 1—<ipf) ; R>0, R#1. (3)
=1

The measure (3) is a real function from A,, to Rt and is called R-norm informa-
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tion measure. The most important property of this measure is that when R — 1,
it approaches to Shannon’s entropy and in case R — oo, Hg(P) — (1 — maxp;);
i=1,2,...,n

Analogous to measure (3), Hooda (2004) proposed and characterized the following

fuzzy entropy:

HR(A>=§f—1l21— (uh(e:) + (1~ pales) " )%] R>0, R#1  (4)

Further, Hooda and Ram (1998) gave a parametric generalization of (3) by

HG(P) = ml (ZP ) ]; (5)

where 0 < <1, R>0 and R+ 8 # 2.
The measure (5) is called the generalized R-norm entropy of degree 8 and it

reduces to (3), when f — 1. In case R — 1, (5) reduces to

2-8
HO(P) = _1[1—(21)””)) }; (6)

where0<ﬂ<1 R>0 and R+ 8 # 2.
Setting # = 5= in (6), we get

H(P) = _1[1—(Zp,> }; —<0<1 (7

This is an information measure which has been mentioned by Arimoto (1971) as
an example of a generalized class of information measures. It may also be noted
that (7) approaches to Shannon’s entropy when  — 1.

Next, suppose that P = (p1,p2,...,pn) and @ = (q1,¢2,--.,4,) be two given
probability distributions belonging to A,. Kullback and Leibler (1951) obtained

the measure of directed divergence of P from @) as

P:Q)=Y pilog2. ®)
=1 i
Kullback (1959) suggested the measure of symmetric divergence as

J(P:Q)=D(P:Q)+D(Q:P) Z(p, g log— 9)
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Motivated by Kullback and Leibler measure, Bhandari and Pal (1993) suggested

the following fuzzy directed divergence measure of fuzzy set A from B:

n

_ pa(z:) (1 = pa(=s))
14.B) = 3 [uate)log “455 4 (1= pate o ELAED] -y

and the corresponding symmetric divergence measure by

=1

J(A,B) =I(A,B) + I(B, A),

which on simplification gives

n

T4, B) = 3 [(na(e:) — up(a:)]log A4 ZHE= bzl (1)
=k L v

Further, corresponding to Harvda and Charvat’s (1967) measure of directed diver-

gence given by
DAP:Q) =55 (Fdl ™ -1 >0,841, (12)
i=1

Hooda (2004) suggested the following measures of fuzzy directed diveirgence and

symmetric divergence measure:

IP(4,B) = 513 (W@l @) + (1= pa @)’ (1 - () - 1];

: (13)
where >0, 8 # 1 '
and !

J?(A,B) =I°(A,B) + I’(B,4) (14)
respectively.

A new generalized measure of fuzzy information analogous '%;o (5) is proposed and
its validity to be a fuzzy information measure is proved in Se%‘étion 2. In Section 3,
we propose a generalized fuzzy directed divergence measui%e analogous to a R-
norm directed divergence and prove its validity. In Section 'v4, we investigate the
monotonic nature of the generalized measure of fuzzy information and the R-norm
fuzzy directed divergence. R-norm generalized measures of total ambiguity and

Fuzzy information improvement are also studied in Section 5.
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2. A GENERALIZED R-NORM FUZZY INFORMATION MEASURE

Analogous to (5), we propose the following measure of fuzzy information:

2-8

) = e | 1= [ae) ™ + (1= pale) ] ©

]; (15)

where 0 < 8 <1, R>0 R+ 8 # 2 and prove its validity in the next theorem.
Theorem 1: The measure (15) is a valid measure of fuzzy information.
Proof: To prove that the measure (15) is a valid fuzzy information measure, we
shall show that four properties (P1) to (P4) are satisfied.

The measure (15) can be written

=2 {Z 1— [(paes))” + (1 - m(z»)"]y}; (16)
i=1
where)\:ﬂg—_;_;, I/Z%, v>0,v#£L1L
P1 (Sharpness): )
If H3(A) = 0, then
(pa(zi)” + (1 - pa(z:))” = 1. (17)

Since v(# 1) > 0, therefore, (17) is satisfied in case pa(z;)=0o0r1,Vi=1, 2,...

Conversely, if A be a non-fuzzy set, then either p4(z;)= 0 or pa(z;)= 1. It
implies (ua(x;))” +(1—pa(z;))” =1for v > 0, v # 1, for which Hg(A): 0. Hence
H g(A): 0 if and only if A is non-fuzzy set or crisp set.

P2 (Mazimality):
Differentiating H g(A) with respect to pa(z;), we have

B 1—v
SoBh = M(a(e)” + (- pa@)*]

[(ka@))”™ = (1 = paled)) ).

Let 0 < pa(z;) < 0.5, then two cases arise

Case 1: R>2-0
In this case we have A > 0, v > 1 and (ua(;))” ™" = (1 — pa(z;))”~! < 0 which
implies that (—9% =0,

Case 2: R<2-p
In this case we have A<0,v<1and (pa(:)* ™" = (1= palz:))”™* > 0 which

implies that =—~2~ o 0.

Bu (m
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Hence Hg(A) is an increasing function of pa(x;) satisfying 0 < ka(z;) < 0.5.
Similarly, it can be proved that H Ig (A)isa decreasing function of ma(z;) satisfying
0.5 < pa(z;) <1 Itis evident that Wiﬁéﬁ =0, when p4(z;) = 0.5. Hence Hg(A)
is a concave function and it has a global maximum at ta(z;) = 0.5. It shows that
H g(A) is maximum if and only if 4 is the most fuzzy set. V

P3 (Resolution):

Since H g (A4) is an increasing function of Ba(z;) in [0, 0.5) and decreasing function
in (0.5, 1], therefore

#as (20) < pal@s) = HR(A") < H(4) in [0,0.5) (19)

and
#ar (@) 2 pa(:) = H(A") < H(4) in (0.5, 1], (20)

Taking (19) and (20) together, we get Hg(A*) < Hg(A).

P4 (Symmetry):
Clearly from the definition of H g(A)and with pz(z;) =1 - pa(z;), we conclude
that Hpj(d) = H3(4). :

Hence H g (A) satisfies all the properties of fuzzy entropy abnd:1 therefore is a valid
measure of fuzzy entropy. i

It may be noted that (15) reduces to (4), when 8 = 1 and réduces to (2) when
B=land R—1.In case f=1and R — 00, (15) reduces to :

é [ = max{pa(es), 1-pa(as)}). |

3. R-NORM FUZZY DIRECTED DIVERGENCE MEASURES

Let P(py,po, ..., Pn) and Q(q1,qo, .. -»qn) be the posterior and prior probability
distribution of a random variable respectively in an experiment.;-" Recently, Hooda

and Sharma, (2007) defined the R-norm directed divergence given by

Al

Dr(P: Q) = le = [ (Zpﬁq%"*) = 1} (21)

i=1

and R-norm measure of inaccuracy given by
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Dgr(P/Q) = Dr(P: Q) + Hg(P) [(prqzl R) -<ZP5> }
i=1

(22)
It may be seen that when R — 1, (21) reduces to

n
P:Q) =Y plog,
=1 %
which is the measure of directed divergence due to Kullback and Leibler (1951) and
(22) reduces to Kerridge inaccuracy due to Kerridge (1961)

D(P/Q) = sz log ;.

Analogous to (21) we propose the followmg measure of fuzzy directed divergence

of fuzzy set A from fuzzy set B:

R < _ ik
Ir(A,B) = R_—_lz [(Mﬁ(wi)ﬂ}s Bl@s) + (1= pa(2)) (1 - pp(e:)! = —1],
=1
(23)
where R > 0, R # 1 and measure of fuzzy symmetric divergence
Jr(A, B) = Ir(4, B) + Ig(B, A). (24)

Next, we show that Ig(A, B) is a valid measure i.e. Ir(A, B) > 0 with equality
if pa(z;) = pp(zx;) for each i = 1,2,...,n.
n n
Let 3 pa(zi) =s, Y pp(xi) =t, then
i=1 3

=1

Z": (uA(wi))R (usgwi))l—R ~130

i=1

or

n

Zpﬁ (z)py B(z;) > sBH-R, (25)
=1

Similarly, we can write

n

D A= pa@) (1= pp()) R > (n-s)R(n- t)i =R (26)

=1
Adding (25) and (26), we get
n
Zuﬁ (@)up (@) +(1-pa(@:)R(1-pp(2:) "R > s Rt (n—s)F(n—t)! R,
=1
(27)
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Case1: 0<R<1

Let pﬁ(wi)u}{R(w‘i) + (1 - pa(z:)

which implies z; — 1 > (z;)/F —

)B(1— pp(z;))' "8 ==, thenz; <land § > 1
1.

n n
Since #&+ < 0, therefore 7 3" [(z:)/F — 1] > £ 3 (2 — 1).
i=1

Thus, we have

)

Ir(A,B) > [sBtF + (n — s)B(n — )= —n].

R_1
Further let ¢(s) = 72 [sFt'~F + (n — 5)B(n — t)! =% — n], then
B R—1
o) = [R (5" - R (324) " | and
A ) .

o6 =R [F (0" 2 (3=2) ] >0

This shows that ¢(s) is a convex function of s whose minimum value arises when

S n—s

g (: n_t> = 1 and is equal to zero. Hence, ¢(s) > 0 and vanishes only when s = ¢.
Case 2: R>1

In this case (27) can be written

= 1/R
(Z B (@)l R (@) + (1 - pal@) (L - pp(e:) " - 1)
=1

> (sBt R+ (n—s)F(n—t)F - 7;1)1/}2. (28)

¥

Also, we have

n

> [(uﬁ(%)u};‘R(zi) + (1 - palz:))?a - NB(xi))l-R)% - 1]

=1 |

" , 1/R
> (Z ﬁ(wi)u};’*um(1—mmi))ﬂu—ug(winl*—1) (29)

=1

‘
Y

Now (28) and (29) together implies that

=

Ir(A,B) > [thl_R +(n— S)R(n — =R '— n]

R-1
Let ¢(s) = g [sPt!"F + (n— 5)F(n —1)! =% — n], then
#) = 7[R - R (32) " | and

(

9+ & ("——S)R—z] > 0.

n—t

This shows that ¢(s) is a convex function of s whose minimum value arises when

S n—s

s (: n_t) = 1 and is equal to zero. Hence, ¢(s) > 0 and vanishes only when
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s = tie forall R(# 1) > 0, Ig(A,B) > 0 and vanishes only when A = B.
Thus Ig(A, B) is a valid measure of directed divergence of fuzzy set A from fuzzy
set B and consequently, the corresponding measure of fuzzy symmetric divergence
Jr(A, B) is a valid measure.

It may be noted that }lzi_n)llIR(A, B) =I(A,B) and IIZi—TIJR(A’ B) = J(A, B), whe-
re I(A, B) and J(A, B) are the fuzzy directed divergence and symmetric divergence

measures given by (10) and (11) respectively.

4. MONOTONICITY OF FUZZY INFORMATION AND FUZZY DIRECTED DIVER-
GENCE MEASURES

Two fuzzy sets A and B are said to be fuzzy-equivalent if pp(x;) = either p4(z;)
or 1 — pa(x;) for each value of i. It is clear that fuzzy-equivalent sets have the
same entropy but two sets may have the same fuzzy entropy without being fuzzy
equivalent. From the fuzziness point of view there is no essential difference between
fuzzy equivalent sets. A standard fuzzy set is that member of the class of fuzzy
equivalent sets all of whose membership value are < 0.5.

Let A; = (0.2, 0.3, 0.4, 0.2, 0.3), A2= (0.4, 0.3, 0.2, 0.2, 0.4), A3= (0.3, 0.2, 0.3,
0.3, 0.3) be any three fuzzy sets in standard form. Consider four different values
of R, ie., 0.6, 1,2 3, and 0 < 8 < 1. Using (15), we have constructed Table 1
listed below. Looking at Table 1, it is clear that the fuzzy information measure
given by (15) is a monotonically decreasing function of 3 and R. It can be shown
analytically that & (H,‘;(A)) <0; YO<B<1and % (Hg(A)) <0; VR >0
and this implies monotonic decreasing nature of the fuzzy information measure with
respect to 8 and R respectively. However, it is observed that for the most fuzzy
set, the maximum value of H I%(A) depends on the value of § and R, but it will be

less than or equal to n.
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Table 1

8 HE 6(A) HY (4) H (A) HE (A)

Ay As Az Aq Az Az Ay As As Aq Ao As
0.001 7.76 7.86 7.84 4.41 4.47 4.46 2.89 2.96 2.94 2.45 2.52 2.50
0.002 7.75 7.85 7.84 4.41 4.47 4.46 2.89 2.96 2.94 2.45 2.52 2.50
0.005 | 7.74 | 7.83 | 7.82 | 4.40 | 4.47 | 4.46 | 2.89 | 2.95 | 2.94 | 2.45 | 2.52 | 2.50
0.01 01 7.80 7.79 4.39 4.46 4.45 2.89 2.95 2.94 2.45 2.52 2.49
0.02 7.65 TTD 7.73 4.38 4.44 4.43 2.88 2.94 2.93 2.44 2.51 2.49
0.05 7.49 7.58 7.56 4.32 4.39 4.38 2.86 2.92 2.91 2.43 2.50 2.48

0.1 7.22 | 7.31 | 7.29 | 4.24 | 4.30 | 4.29 | 2.83 | 2.89 | 2.88 2.40 | 2.48 | 2.45
0.2 6.71 | 6.80 | 6.79 | 4.06 | 4.13 | 4.12 | 2.76 | 2.83 | 2.81 | 2.36 2.43 | 2.40
0.3 6.25 | 6.33 | 6.32 | 3.90 | 3.96 | 3.95 | 2.70 | 2.76 | 2.75 | 2.31 2.39 | 2.36
0.4 | 582 | 590 | 589 | 3.74 | 3.80 | 3.79 | 2.63 | 2.70 | 2.68 2.26 | 2.34 | 2.31
0.5 5.43 | 5.50 | 5.49 | 3.59 | 3.65 | 3.64 | 2.56 | 2.63 | 2.61 | 2.21 2.29 | 2.26
0.6 5.06 | 5.13 | 5.12 | 345 | 3.50 | 3.49 | 2.50 | 2.57 | 2.54 | 2.16 2.25 | 2.21
0.7 4.73 | 479 | 4.78 | 3.30 | 3.36 | 3.35 | 2.43 | 2.50 | 2.48 | 2.11 2.20 | 2.15
0.8 4.41 4.48 | 4.47 | 3.16 | 3.22 | 3.21 2.36 | 2.43 | 2.40 | 2.06 | 2.15 | 2.10
0.9 4.12 | 4.18 | 4.17 | 3.03 | 3.09 | 3.08 | 2.29 | 2.36 | 2.33 | 2.01 2.10 | 2.04
1 3.85 | 3.91 3.90 | 2.89 [ 2.95 | 2.94 | 2.21 | 229 | 2.26 | 1.95 | 2.05 | 1.99

Similarly, monotonic nature of the fuzzy directed divérgence measure given by
(23) can be observed in the computed Table 2 for three different sample pairs of
standard fuzzy sets given by :

A1 =(0.3, 0.5, 0.3, 0.2, 0.1); 4> = (0.4, 0.3, 0.4, 0.2, 0.5);
A3 =(0.5,0.2, 0.2, 0.3, 0.4); B, = (0.2, 0.4, 0.4, 0.3, 0.2); *
B; = (0.2, 04, 0.4, 0.2, 0.2); and B; = (0.3, 0.4, 0.4, 0.2, 0.3). \

Table 2 shows that the fuzzy directed divergence given byﬁ(23) is monotonic
increasing function of R. This monotonic nature of the fuzzy d{:irected divergence
can also be proved analytically by showing that - (Ir(A, B)) 2 0; VR > 0.

‘
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Table 2
R Ir(A1, By) Ir(A2, B) Ir(As, Bs)
0.1 0.013827 0.029164 0.032484
0.2 0.027531 0.059652 0.065004
0.5 0.067891 0.159083 0.162301
“f 0.8 0.107101 0.269945 0.258256
1 0.132602 0.349394 0.320959
b 1.2 0.157595 0.432339 0.382348
1.5 0.19415 0.561022 0.471532
2 0.252654 0.777309 0.611291
5 0.543459 1.674712 1.207667
10 0.817193 2.156136 1.640287
50 1.11155 - | 2.563536 2.06191
75 1.135962 2.597848 2.096904
100 | 1.148134 2.615028 2.114372
150 | 1.160285 2.632223 2.131821
200 | 1.166353 2.640828 2.140539
300 | 1.172415 2.649436 2.149253
400 | 1.175444 2.653742 2.153608
420 | 1.175877 2.654357 2.15423
430 | 1.176078 2.654644 2.154519
440 | 1.17627 2.654917 2.154795

5. MEASURES OF TOTAL AMBIGUITY AND FUZZY INFORMATION IMPROVE-
MENT

5.1 Total ambiguity

Let A and B be two fuzzy sets. The total ambiguity of the fuzzy set A about set
B is the sum of two components:

—Fuzzy entropy present in the fuzzy set A, and

—fuzzy directed divergence of A from B measured by I (A, B).

Using Harvda and Charvat’s (1967) measure, Kapur (1997) estimated the total
fuzzy ambiguity as

TA= 21 p4(i) (1 = pp % () + Zl (L= pa(@)* (1= (1 - pp(z:))—)|.
1= =
Corresponding to fuzzy information measure (4) and the proposed fuzzy directed

divergence (23), total ambiguity is given by

_—
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TA = -—R}E 1 ; (1 ~ (e + (1 = /LA(-’II,'))R)%
+ 3 [l @) + (1 - pa@)" (1 - w2} - 1]]

pa(z)\* 1-pa(z:)\® i
<NB(371') (M) + (1~ pp(:) (1 _NB(-T»'i)) )

].

Total ambiguity is a fuzzy measure of inaccuracy analogous to Kerridge (1961)

&=

— (bR (@) + 1 — pa(z:)®)

inaccuracy and is related to two fuzzy sets. It is not symmetric as we get something

different if we interchange the role of the fuzzy sets A and B.

5.2 R-norm fuzzy information improvement measure

Let P and @ be observed and predicted distributions of a random variable res-
pectively. Let R = (rq,7s,...,7,) be the revised probability dlStI’lbllthn of @,
then

I(P:Q)— sz log = (30)

which is known as Theil’s measure (1967) of information 1mprove;?%1ent and has found
wide applications in economics, accounts and financial manaéement. Similarly,
suppose the correct fuzzy set is A and originally our estimate fér it was the fuzzy
set B and that was revised to set fuzzy set C. The original a,mbiguity was I(A, B)
and final ambiguity is I(A, C), so the reduction in ambiguity is

I(4,B,C) = I(A,B)-I(A,0), .

n

> [kate 0g 22 §+(1—uA(xz))log§—% (31)

=1

The measure I(A, B, C) given by (31) can be called fuzzy information improvement

measure. Corresponding to fuzzy directed divergence given by (23), the reduction
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in ambiguity is given by

Ir(A,B,C) = Ir(A,B) - Ig(A,C)
- le 14 [{/‘ﬁ(ﬂf'i)ll%—R(l‘i) +(1- NA(%'))R(I _ #B(ib‘i))l—R}%

— (W@l (@) + (L - pa@) P - po@)' R ], (32)

which can be called as R-norm fuzzy information improvement measure. It can
also be proved that Ir(A,B,C) — I(A,B,C) i.e. (32) reduces to (31), provided
R=1.
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