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Abstract
Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary 
catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomateri-
als, gained popularity for the enzymes’ improved stability, reusability, and ease of separation from the biocatalytic process. 
Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous 
particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal–organic frameworks, multi-walled or single-walled 
carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical com-
positions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition 
on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understand-
ing, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial 
relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, 
biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and 
their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, 
biofuel production, textile, leather, detergent, food industries and antifouling.
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Introduction

Since the 1960s, the development of immobilized enzymes 
for efficient bio-catalysis has become a fascinating 
research topic, especially due to its reusability potential if 
the enzyme retained its catalytic properties [1, 2]. Immo-
bilization transforms the enzyme from a homogeneous 
catalyst into a heterogeneous one, allowing its easy han-
dling and repeated use in batch processes and the possi-
bility of decoupling biocatalysts in continuous processes 
from the residence time [3]. Enzyme immobilization is 
essential for a number of biomedical, biotechnological and 
industrial applications. The goal is to stabilize and re-use 
the biocatalyst even in unsuitable surroundings (i.e., high 
temperatures or wide pH ranges, high concentrations of 
substrate, and non-aqueous solvents) [4].

A number of immobilization processes have been estab-
lished to date, with each enzyme having its own unique 
support matrix and preferable procedure and conditions [2, 
3]. Some of these processes include the protein modifica-
tion by polymer chains, followed by adhesion, covalent 
binding and entrapment, and have been well established 
and deployed using various support matrices [5, 6].

The extensive progress of nanotechnology is fol-
lowed by the rapid growth of a new field called 

“nanobiotechnology (NBT)”, allowing for new possibili-
ties for the industrial applications of enzymes. Nanomate-
rials (NMs) have high specific surface areas and their own 
unique, exciting features, including physical, magnetic, 
spectroscopic, electrical, and chemical properties [7, 8].

The generation of NBT is based on the fusion of nano-
technology and biotechnology with possible synergistic 
benefits. Thus, an array of enzymes has been immobilized 
onto numerous NMs through conventional approaches, 
e.g., adsorption and covalent attachment/linking, etc. 
[9–11]. The advantageous features of nanostructured mate-
rials include nanopore and NP size, optimized nanofiber or 
nanotube diameter [12, 13], conductivity and magnetism. 
NMs can be prepared with uniform size distribution, which 
is comparable to enzyme molecules. They revolutionized 
the concept of nano-bio-catalysis (NBC) in various areas 
of biotechnology, leading to improved catalytic proper-
ties, stability, and reusability [14–16]. Keeping the above 
key points in mind, we reviewed potential applications of 
nano-enzymes (NEs) in various industrial applications [1, 
17]. More specifically, the applications in different fields, 
including food industry, biosensing, medicine, sewage 
water treatment, antifouling and detergent manufacturing, 
proteomic analysis, and biofuel manufacturing, have been 
discussed with suitable examples [1, 18–22] (Fig. 1).

Fig. 1  Nanomaterials were applied as appropriate tools for different applications due to their many distinctive morphological and structural qual-
ities
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Stability, structure and function of NEs

The fast growth of nanotechnology has substantially 
improved the chance of interaction between enzymes and 
NMs, thus leading to novel NEs [23–25]. Indeed, NMs 
fulfill many ‘ideal’ prerequisites for enzyme immobiliza-
tion [26–31]. For example, due to their high surface to 
volume ratio, they show improved binding efficiency, often 
leading to hyperstability of macromolecules, and might 
improve the performances of enzymatic systems. These 
NEs can be found in a broad spectrum of applications, 
including diagnostics, sensing, and drug delivery (Fig. 2). 
Moreover, the development of biocompatible materials 
with specific functions has been reported [2, 3, 32–35]. 
Several enzyme models, including lipase, laccase, xyla-
nase, lysozyme, horseradish peroxidase (HRP), catalase, 
and trypsin, were adsorbed firmly onto organic and inor-
ganic NPs [36–41]. Enzyme immobilization on NMs can 
substantially improve the enzyme’s catalytic properties in 
accordance with fine-tuning and rational design [36, 37, 
42]. Indeed, in many cases the understanding of surface 
properties of the selected protein and the nanomaterial 
leads to highly active nano-bioconjugates [43]. Neverthe-
less, efforts of manufacturers can be frustrated by adverse 
effects of nanomaterials on biological macromolecules.

A number of enzymes have specific primary, secondary 
and tertiary structures, which result in suitable engage-
ments with NPs and NMs. Indeed, the interaction between 
proteins and nanomaterials, besides covalent binding 
through molecular spacers and non-specific physical 
adsorption, can be obtained by molecular recognition that 
depends on both the structure of the specific protein (pri-
mary, secondary and tertiary structures) and the surface 
features (material nature and size, density and distribu-
tion of functional groups) of the selected nanomaterial 
[44]. In favorable cases, a highly active and very stable 
nano-bioconjugate can be obtained [43, 45]. Nonethe-
less, the orientation of enzymes towards NPs and NMs is 
critical and should be considered with care prior to per-
form their immobilization. This is to partially, or entirely, 
prevent potential blockage or hindrance of the enzyme 
active site [46]. Moreover, also the physical and chemi-
cal characteristics of NMs and reaction conditions (e.g., 
solvents, temperature and pH) may influence the binding 
of enzymes, their stability and substrate availability [47, 
48]. Notably, in several cases the immobilization on NMs 
improves enzyme stability against thermal treatments or 
denaturing agents, such as sub-optimal pH or harsh chemi-
cals [14, 49, 50]. Moreover, the size of NPs could influ-
ence the interaction between enzyme and its supporting 
matrix, thus modulating the function of bound enzymes. 
For the purpose of distinguishing size impacts from other 

factors, various-sized silica NPs (SNPs) (4, 15 and 35 nm) 
have been experimented for effects on structure, thermo-
dynamic and kinetic durability of cytochrome c (cyt c) 
[51]. Specifically, authors observed that the structure and 
stability of cyt c was gradually affected at increasing the 
size of silica NPs, leading to a modification of the heme 
microenvironment.

NEs for biosensor applications

NEs-based biosensing constructs require a detector, con-
nected to a biological sensing element, to detect an ana-
lyte. This detector converts the physicochemical trans-
formation produced by the biological component into a 
measurable signal correlated to analyte concentration [2, 
3, 52–54]. Enzymes are the most common biological com-
ponents used for biosensor development. In the case of 
the signal-transducing format, NEs-based sensors consists 
of four main groups, i.e., (1) electrochemical, (2) optical, 
(3) piezoelectric, and (4) calorimetric devices [53, 55]. 
Enzyme-based biosensors generally show good sensitiv-
ity, rapid response, resistance against electrical and mag-
netic disturbances, geometric versatility, size attribution 
at micro- and nanoscale, low-cost and lightweight, and can 
provide alternatives to laboratory-based sensing bench-
top instrumentation [56, 57]. Several NPs have been used 
for enzyme immobilization in biosensors development, as 

Fig. 2  Schematic representation of large surface of nanostructured 
materials compared to non-nanomaterials
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listed in Table 1. From a general standpoint, NPs present 
a large surface area at the material interface and thus sup-
port enzyme binding with high loading capacity, which 
ultimately can lead to enzyme stabilization by fixing its 
structural conformation [52, 58, 59]. Further, the capabil-
ity to modify NMs suggest excellent potential for improv-
ing the performance of NEs-based sensors [6, 14, 60]. 
Besides, NPs made of noble metals, such as gold, silver 
and platinum, can significantly increase the electrical con-
ductivity of the electrode’s immobilized enzyme layer, 
leading to both improved sensitivity and rapid detection in 
the case of electrochemical biosensors [61, 62]. Moreover, 
noble metal NPs can act as catalysts for electrochemical 
reactions, such as the typical redox catalysis of  H2O2, as 
observed in the construction of glucose biosensors based 
on gold NPs [63–65]. Other NMs can provide an electro-
catalytic support for enzyme binding, such as iron oxides 
[66, 67], and different biosensors were developed [68–70]. 
Moreover, several electrocatalytic magneto-switchable 
biosensors have been developed using a combination of 
macromolecules (enzymes and antibodies) and magnetic 
iron oxide-based NPs or other materials, such as carbon 
nanotubes (CNTs), electroconductive polymers, chitosan, 
and so on [71–76]. Several biosensor devices comprising 
numerous enzymes, e.g., lipase, glucose oxidase (GOx), 
peroxidase, urease, cholesterol oxidase (ChOx), penicillin 
acylase, and different NPs have been extensively applied 
in different sectors, including biomedical, clinical settings, 
environmental recognition, food analysis, and pharma-
ceutical analysis [52, 62, 77, 78]. Examples of enzyme-
based biosensor devices associated with nanomaterials can 
be found in Table 1. Notably, in many cases the use of 
enzymes immobilized to NPs for biosensing can amplify 
their analytical performances and dynamic parameters, 
leading to reduced response time and increased sensitiv-
ity. However, this is not a general behavior, and biosensor 
development should be evaluated case by case [52, 62, 
63, 71, 77]. In any case, the development of the biosens-
ing device should be optimized according to the specific 
industrial application requirements, in terms of limits of 
detection, sensitivity, dynamic range, response time and 
operative conditions.

NEs for biofuel production

Recently, investigations on biofuels have received significant 
recognition, because of the raise of public interest for renew-
able energies aimed at replacing environmentally harmful 
fossil fuels. Biofuel production involving enzymes also 
rapidly grew due to the observed high conversions and fast 
reaction rates [79–84].

Among biofuels, biodiesel is a blend of mono-alkyl esters 
derived from the transesterification of natural long-chain 
fatty acid esters with low molecular weight alcohols. Natural 
triglycerides, usually vegetable oils, have been utilized for 
large-scale biodiesel production with the wide application of 
lipases. Cellulases have also been used for biofuel produc-
tion, in this case for the production of ethanol by glucose 
fermentation [85, 86]. It was observed that the immobili-
zation on NPs can prevent the low stability of enzymes in 
complex environments, and also allowed their reusability, 
with the further advantage of improving the flexibility of 
reactor design. In this view, size, shape, surface properties 
and chemical nature are important parameters for the appli-
cation of nanomaterials as support for enzyme immobiliza-
tion. Once prepared, these nano-enzymes can be used for a 
variety of industrial processes. In this context, the separation 
from the reaction mixture for further re-utilization represents 
one of the most important advantages with respect to soluble 
enzymes as recyclability can lead to a significant reduction 
of the process cost. With the exception of magnetic nano-
materials, characterized by the obvious magnetic drivability 
by magnetophoresis [87], approaches adopted for separating 
nano-enzymes from the reaction mixture are generally based 
on selective filtration, density gradient centrifugation, gel 
permeation chromatography and field flow fractionation. 
Sedimentation and centrifugation represent the most con-
venient solutions for industrial-scale nano-enzyme isolation, 
even if the final result depends on the density difference 
between the nanomaterial and the solvent. Nevertheless, the 
specific technique is still being trialed and challenges remain 
for large-scale operations [88].

Cellulases immobilized on silica [89, 90] and magnetic 
NPs (MNPs) have been successfully used to hydrolyze cel-
lulose to obtain fermentable sugars for biofuel (ethanol) pro-
duction [83]. Examples of nano-enzymes applied for biofuel 
production are reported in Table 2.

Typically, cellulases immobilized on MNPs demonstrated 
high thermostability (up to 80 °C), long half-life, efficient 
recovery, and reusability [83]. Based on a literature report, 
three different types of cellulases immobilized on gold-
coated magnetic silica NPs enabled the single-step hydroly-
sis of complex cellulose starting materials in order to gener-
ate biofuel [91]. Magnetic cross-linked enzyme aggregates 
(mCLEAs), created by cross-linking a mixture of lipases 
covalently bound to magnetic NPs, were able to convert 
(80–85%) different vegetable oils (from olive, microalgal, 
non-edible vegetables or cooking waste) to substrates for 
biodiesel production [84]. Gold NPs were applied for the 
non-covalent immobilization of enzymes, facilitating the 
regeneration of deactivated bioreactors [92]. CNTs, gra-
phene oxide nanosheets (GONS) and magnetic multi-walled 
carbon nanotubes (MWCNTs) were also reported for the 
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immobilization of lipases, and were applied for biofuel pro-
duction [93–95].

Beyond laboratory benchtop, the development of indus-
trial applications of NEs for biofuel production should take 
particularly care of costs related to the preparation of the 
nano-biocatalysts. At the same time, it is important to con-
sider the possible negative impacts of nanomaterials for 
environment and health.

NEs for biomedical applications

Theoretically, enzymes can be used to treat a number of 
heart, oncological, viral and hereditary diseases [96–99]. 
Nevertheless, due to their short lifetime, rapid inactivation 
in the human body, and systemic immune reaction risks, 
enzymes' daily clinical use is not as widespread as it could 
[96]. Indeed, upon introducing a nanomaterial into a bio-
logical fluid, a protein shell is deposited, called protein 
corona, which can be hardly controlled. Notably, this protein 
corona is considered responsible for the awakening of the 
immune system and for the clearance of the nanomaterials 
from the organism. However, enzymes of interest bound to 

nanomaterials could be specifically distributed to the target 
location to tackle the above-mentioned drawbacks. Thus, 
the targeted delivery of NPs can possibly control the ratio 
between bound enzyme and nanocarrier for minimizing 
immunogenicity [100]. Although many NEs with consider-
able therapeutic potential looked promising in vitro and in 
studies using animals, they are not yet in the initial phases 
of clinical trials [100]. Nevertheless, several nanomateri-
als can count on a remarkable number of in vitro studies 
dealing with cell uptake, cytotoxicity, drug delivery and, 
most importantly, providing valuable hints on the correlation 
among nanomaterial nature and cell response.

Recent applications of NEs for biomedicine are reported 
in Table 3. Among the numerous biomedical applications of 
NEs, three areas were selected for a deeper insight, namely 
thrombolytic, anti-inflammatory and anti-bacterial therapies.

NEs for thrombolytic therapy

In order to prevent blood coagulation from acute myocar-
dial infarction or cerebral micro-thrombosis, some enzymes, 
including tissue plasminogen activator (tPA), streptoki-
nase and urokinase-type plasminogen activator (uPA), are 

Table 1  Examples of enzymes immobilized on nanoparticles (NPs) and applied for the development of biosensors

Immobilized enzyme Type of NP Application References

Glucose oxidase Se NPs Biosensor for the determination of glucose in body fluids, 
food and agricultural products

[189]

Uricase ZnO NPs Uric acid biosensor in serum [190]
Glucose oxidase Au NPs Catalytic nanodevice to construct nanoreactors [181]
Laccase Bare and zinc-tetra-aminophthalocya-

nine-Fe3O4–SiO2) NPs
Fiber optic biosensor for catechol and bisphenol A [191–193]

Glucose oxidase NiO NPs Amperometric biosensor for glucose [194]
Glucose oxidase Pt and Au NPs Naked eye detection of glucose [195, 196]
Urease Ag NPs, phosphonate grafted  Fe3O4 NPs Biosensors for urea in blood and urine, alcoholic beverages, 

natural water and environmental wastewaters
[197, 198]

Peroxidase Au-chitosan NPs Biosensor for  H2O2 for water, pharmaceutical and biomedical 
applications

[199]

Glucose oxidase Pt/FGS/chitosan,  SiO2 NP Biosensor for glucose [200–202]
Cyclodextrin glycosyl 

transferase, alcohol 
oxidase

Cellulose-Ag NPs Biosensors for methanol and pectin methyl esters [203–205]

Penicillinase Ag NPs Biosensor for penicillin [62]
DNA ligase Fe3O4 Biosensor for genomic DNA [206]
Glucose oxidase Au Biosensor for glucose [207–209]
DNA methyltransferase Au Electrochemiluminescence biosensor for DNA methyltrans-

ferase activity
[209]

DNA ligase Au Biosensor for genomic DNA [206]
Esterase Au Biosensor for methyl parathion and malathion [210]
Horseradish peroxidase Au Biosensors for cyanide [211]
DNA methyltransferase CdS Electrochemiluminescence biosensor for DNA methyltrans-

ferase activity
[212]

Diamine oxidase Pt Biosensors for histamine [213]
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currently employed in medical practice [100, 101]. MNPs, 
liposomes and polymeric NPs combined with the above-
mentioned thrombolytic enzymes have been applied for their 
action at the blood clot site. The purpose was to eradicate 
the chance of unwanted heavy bleeding triggered by their 
non-targeted and non-specific activation [97]. Magnetic 
NPs were proposed as nanocarrier for targeted therapies to 
localize and concentrate thrombolytic proteins next to the 
coagulation site [98, 102–104]. Notably, properly engineered 
magnetic nanocarriers were applied for the effective sup-
ply of streptokinase to a canine carotid artery thrombosis 
along the external magnetic field [105]. As compared to 
non-mesoporous MNPs, mesoporous MNPs sensationally 
enhanced the thrombolytic activity. In addition, mesoporous 
MNPs are considered excellent candidate materials to 
enhance urokinase loading capacity up to 30-fold [101]. 
Likewise, to achieve ultrasound facilitated thrombolysis, 
tPA was immobilized using echogenic liposomes [106]. In 
another study, polystyrene latex NPs with a 40-nm size were 
used to covalently bind tPA and anti-fibrin antibodies. The 
covalently bound tPA and anti-fibrin antibodies were directly 
delivered at the coagulation location to lessen the possibility 
of systemic toxicity [107].

NEs for inflammation and treatment of oxidative 
stress

Reactive oxygen species (ROS) are unstable species, namely 
superoxide anion  (O2

−), hydrogen peroxide  (H2O2) and 

hydroxyl radical (OH°), which can trigger oxidative stress 
and damages to cell structures [108]. ROS can be enzymati-
cally and non-enzymatically produced by electron transfer 
reactions to molecular oxygen  (O2) in response to a number 
of conditions. ROS also damage various cell types, includ-
ing epithelial cells, macrophages, neutrophils, eosinophils, 
monocytes, and lymphocytes [108–110]. Intense ROS gen-
eration occurs in innate immune cells at the inflammatory 
site. The phenomenon can be linked to chronic inflammatory 
diseases or external agents, such as microorganism infec-
tions or cigarette smoke in the lungs [109]. Furthermore, 
enzymatic sources of ROS, e.g., NADPH oxidases, present 
on the cell surface of active macrophages, produce superox-
ide anions [109, 110]. Cells are generally protected against 
endogenous ROS by the catalytic reactions which involve 
superoxide dismutase (SOD), catalase and peroxidases [111, 
112]. In the case of excess ROS production, exogenous SOD 
and catalase can be provided at the inflammation site, even 
if the stability of these enzymes is relatively low. To shield 
catalase from proteolytic deprivation at the injection site, 
protease-impermeable nanocarriers, such as polyethylene 
glycol (PEG) and polylactic–polyglycolic acid (PLGA) 
copolymer-based substrate-permeable polymeric NPs 
along with oleate coated magnetite NPs, have been used. 
The enclosed catalase or peroxidase-based polymeric NPs 
were demonstrated to protect cell cultures against vascular 
oxidative stress [112]. For instance, polymeric NPs loaded 
with catalase or SOD achieved the pulmonary vasculature at 
33% of intravenous injected dose in 30 min. Moreover, they 

Table 2  Examples of enzymes immobilized on nanomaterials and applied for biofuel production along with their operating conditions, efficiency 
and stability

Enzyme source Nano material Substrate Reaction 
temperature 
(°C)

Conversion 
efficiency 
(%)

Reusability (reac-
tion cycles/operating 
days)

References

Burkholderia cepacia Aminated magnetic NPs Soybean oil 45 75 7 [214]
Burkholderia cepacia Magnetic NPs Soybean oil 40 88 10 [215]
Pseudomonas fluore-

scens
Co2+- magnetic NPs Cooking oil waste 50 83 10 [216]

Rhizopus oryzae Magnetic NP modified 
graphene oxide

Chlorella vulgaris 
bio-oil

45 71 5 [217]

Rhizomucor miehei Magnetic NPs modified 
multi-walled carbon 
nanotube

Cooking oil waste 50 94 10 [218]

Thermomyces lanugi-
nosus

Magnetic NPs Palm oil 50 97 5 [219]

Pseudomonas fluore-
scens

Magnetic NPs modified 
single-walled carbon 
nanotubes

Sunflower oil – 99 20 [220]

Burkholderia cepacia Magnetic NPs modified 
multi-walled carbon

Soybean oil 35 89 20 [221]

Candida antarctica Fe3O4–SiO2 Cooking oil waste 50 100 6 [222]
Burkholderia sp. Fe3O4–SiO2 Olive oil 40 90 10 [223]
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safeguard mice from the endotoxin-induced acute inflamma-
tory effects in the lungs [111]. It should be mentioned that 
the prolonged use of PEGylated materials may result in the 
development of anti-PEG antibodies and in the phenomenon 
described as “accelerated blood clearance” (ABC).

SOD, delivered by NPs specifically to the site, has been 
investigated as an anti-apoptotic and anti-inflammatory 
substance in the central nervous system (CNS). SOD-based 
poly-butyl cyanoacrylate (PBCA) NPs could pierce across 
the blood–brain barrier with ease. SOD bearing NPs also 
targeted the enzyme to the CNS while retaining most of 
the enzymatic functionality and receptor-binding capabil-
ity [113–116]. Lately, mesoporous silica NPs loaded with 
the enzyme fused with a cell-penetrating peptide, which 
arises out of the human immunodeficiency virus 1 (HIV-1) 

transactivator of transcription protein [117], have been 
applied for an effective intracellular SOD delivery.

NEs for antibacterial treatment

There is a plethora of literature available on the use of 
enzyme-conjugated NPs against several human microor-
ganisms, such as M. tuberculosis, E. faecium, S. aureus, 
and P. aeruginosa [118–120]. Most reports deals with the 
application of lysozyme from hen egg white. Lysozyme, 
also referred to N-acetylmuramic hydrolase, is a mono-
meric protein stabilized by disulfide bridges of its polypep-
tide chain, able to cleave β-(1,4)-glycosidic bonds between 
N-acetylmuramic acid and N-acetylglucosamine of bacte-
rial cell wall, showing high antimicrobial efficiency against 
gram-positive bacteria. In this view, lysozyme was coupled 

Table 3  Examples of enzymes immobilized on nanomaterials for biomedical applications

Enzyme Nanomaterial Application References

Tissue plasminogen activator Polystyrene latex NPs Reduce the risk of systemic toxicity dur-
ing thrombolytic treatment

[107]

Urokinase-type plasminogen activator Magnetic NPs Enhanced thrombolysis rate in a microflu-
idic channel

[224]

Tissue plasminogen activator, streptoki-
nase

Cu NPs Restores blood flow in arterial thrombosis [225]

Urokinase-type plasminogen activator Magnetic polyelectrolyte-based compos-
ites

Thrombolytic and anticoagulant properties [226]

Tissue plasminogen activator Magnetic iron oxide micro-rods Enhanced thrombolysis after ischemic 
stroke

[227]

Catalase, SOD Polymeric NPs Protection against inflammation [111]
Catalase, peroxidase xanthine oxidase Polyethylene glycol and poly-lactic/poly-

glycolic acid nanocarriers
Protection and vascular oxidative stress [228]

SOD Poly(lactide-co-glycolide), polybutylcy-
anoacrylate, liposomes

Protection against reperfusion injury [229]

Catalase Poly(lactic co-glycolic acid) NPs Protection of neurons from oxidative 
damage

[230]

Catalase, SOD and glutathione peroxidase Cu5.4O NPs Cytoprotective effects against ROS-medi-
ated damage

[231]

Lysozyme Silver NPs Antibacterial activity against various 
resistant bacterial strains

[119]

lysozyme NPs functionalized with pathogen-specific 
antibodies

Enhanced antimicrobial activity against 
Listeria monocytogenes

[118]

Lysozyme Chitosan NPs Enhanced antimicrobial activity against 
various bacterial strains

[232]

Catalase Mouse anti-human (ICAM-1) nanopar-
ticles

Protection of endothelial cells from oxida-
tive stress

[233]

Lysozyme Selenium NPs Synergistic antibacterial properties [234]
Streptokinase Alumina nanoparticles Thrombolytic colloid with prolonged 

action
[235]

Tissue plasminogen activator, streptoki-
nase

Chitosan nanoparticles Treatment of thrombolytic disorder [236]

Polyethylene glycol, poly(lactic-co-gly-
colic acid, NPs

Enhanced thrombolytic activity [237]

Urokinase Chitosan nanoparticles Enhanced thrombolytic activity [238]
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to polystyrene (PS) NPs against Listeria monocytogenes. 
The enzyme was co-immobilized with an anti-L. monocy-
togenes antibody onto PS-NPs, and presented a higher cata-
lytic activity than both native lysozyme and antibody-free 
lysozyme-modified NPs [118]. Specifically, lysozyme immo-
bilized on immune-nanoparticles at 35 µg/mL final concen-
tration reduced L. monocytogenes from 5 log CFU/mL to 
below the detection limit (< 1 log CFU/mL) in 3 h. Differ-
ently, when lysozyme (500 µg/mL) was used, 2 log CFU/
mL L. monocytogenes cells remained after 5 h treatment. 
Furthermore, AgNPs with notable antimicrobial potential 
have been verified as an effective agent against various silver 
ion resistant bacterial strains with the assistance of lysozyme 
[119].

NEs for biotechnological applications

Lately, molecular biotechnology and nanoscale science 
development showed many improvements, which revealed 
the fine-tuning of protein structures, the management of 
enzyme nano-environments and the properties of nanoma-
terials [6]. In comparison to macroscopic carrier supported 
immobilized-enzymes, a nano-biocatalyst can accomplish 
a higher enzyme loading due to the very high surface to 
volume ratio, often reaching several tens of  m2 of available 
space for enzymes binding per gram of nanomaterial, and 
meaningfully improved mass-transfer efficiency regard-
ing the accessibility of the substrates to the immobilized 
enzyme [121]. Indeed, nano-biocatalysis development led 
to the improvement of different biotechnological processes 
and two examples are hereafter reported.

NEs for proteomic analysis

Proteomic studies based on the development of mass spec-
trometry have received amplified consideration in the past 
several years, mainly because the major proteins involved 
in different biochemical and signaling pathways can be 
elucidated. Moreover, this approach significantly contrib-
uted to the advances of highly effective drug formulations 
[122]. The digestion of proteins in the sample is obtained by 
trypsin, and represents a fundamental step of proteome anal-
ysis by mass spectrometry, mainly because of the enzyme 
high specificity, widespread availability and ease of use. In 
this context, a nano-reactor constituted of nanoporous silica 
has been utilized as trypsin carrier to digest proteins. The 
proposed system accelerated the sample preparation proce-
dure and produced superior trypsin digestion outcomes com-
pared to conventional bulk processes [2, 3, 123–125]. In this 
case, nanoporous silica was used to bind the target protein 

molecules by simple absorption, and then the protein bear-
ing nanomaterial was incubated in a trypsin solution. The 
‘in-nanopore’ protein hydrolysis method improved trypsin 
digestion, allowing a more efficient peptide production, a 
drastic reduction of working time and an optimized mass 
spectrometry analysis. Alternatively, proteases immobi-
lized on nanosized solid supports have gained popularity 
because of the limited volumes employed, which allow to 
obtain high enzyme concentrations. This results in a short 
digestion time, low probability of autolysis and the reusing 
of bound enzymes [126–129]. A number of nanomaterials, 
such as graphene oxide (GO) [130–132], hybrid aerogels 
[133], magnetic NPs [134–136], nanotubes [137, 138] and 
porous reactors [139, 140] have been proposed to immo-
bilize digestive enzymes leading to improved results with 
respect to soluble enzymes.

NEs for antifouling applications

Almost any material, upon introduction in biological sys-
tems, undergoes the nonspecific binding of macromolecules, 
mainly proteins, which completely coat its surface. In the 
presence of microorganisms, the phenomenon is called “bio-
fouling” and leads to microbial cell accumulation on the 
material surface, signifying an obstacle for implants, bio-
sensors, and other hospital equipment [9]. A lot of work has 
been dedicated to the development of antifouling membranes 
to efficiently avoid or lessen biofouling complications. An 
ecological method is represented by the combination of 
enzymes with antifouling paints. For instance, new antifoul-
ing paints were created with different proteases, and tested 
as active antifouling agents to lessen surface protein binding. 
They were able to prevent the formation of protein-based 
glues, and thus deter microorganisms from binding onto sur-
faces [141–143]. Nano-bio-catalytic systems have proven 
their efficacy for reducing protein binding onto surfaces 
due to the effects of nanomaterials on improving enzyme 
stability. As compared to native enzymes, SWNT-protease 
conjugates exhibited a higher enzyme stability [144]. More-
over, SWNT-protease conjugates also proved to be active as 
self-cleaning nano-bio-composite films [145]. Operationally 
stable nano-bio-catalytic systems with antifouling and self-
cleaning features are expected to subsidize the expansion of 
long-lasting antifouling coatings. Such effective antifouling 
can deter or postpone microbes from adhering to surfaces 
of medical implants, and of analytical devices, such as bio-
sensors, which can stand the presence of microorganisms 
for long time.
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NEs for wastewater treatments 
and environmental decontaminations

Common sources of dyes and/or colorants, namely efflu-
ents or sewage water from diverse manufacturing plants, 
including textiles, papermaking, tannery, and printing, are 
considered carcinogenic and dangerous even at low concen-
trations. These effluents can be remedied by using enzymes, 
including laccases, peroxidases, or lipases for lipid wastes 
[86, 146, 147].

Harsh physical and chemical conditions, often encoun-
tered in effluent streams, might lead to modifications of 
the native enzyme conformation, thus altering enzyme 
functionality with the concomitant loss of catalytic activ-
ity. Immobilization on solid supports minimizes the loss 
of enzyme activity under operating conditions, also allow-
ing the biological component to be reused. As an example, 
horseradish peroxidase (HRP) immobilized onto magnetic 
NPs preserved high catalytic properties and durability, per-
forming efficient decolorization of azo-dyes [148]. Likewise, 
recalcitrant contaminants in wastewater were treated using 
oxidative enzymes, such as laccases, immobilized on carbon 
nanotubes [149].

Examples of applications of nano-enzymes for wastewa-
ter treatment are reported in Table 4.

The use of enzymes immobilized on NPs for wastewater 
treatment is of particular interest for encompassing the deg-
radation of pollutants to less-harmful by-products [150]. The 
remediation of polluted wastewater can be accomplished by 
combining experiences on protein chemistry and biochem-
istry and nanotechnology for the development of single 
enzyme NPs, SENs [151]. In the case of environmental 
applications, particular care should be devoted at guaran-
teeing the proper enzyme stability of the NE under possible 
harsh conditions. As an example, SENs can be produced 
by using a porous silicate shell encapsulating the enzyme 
molecule, which remains accessible to substrates. SEN 
preparation aimed at degrading recalcitrant compounds, 
such as phenols, poly-aromatic dyes and pesticides, can be 
conducted by using cell-free unrefined extracts or purified 
enzymes, such as peroxidases, polyphenol oxidases, dehalo-
genases and hydrolases [151]. Moreover, NEs were widely 
used for drinking water purification because of their low 
toxicity and high biodegradability [152].

The use of NEs for the textile and detergent 
industries

Fabric manufacturing is gaining a reputation for substituting 
commonly utilized toxic chemicals with ecological-friendly 
biomolecules [153]. Thus, many textile industry businesses 

developed methods involving enzymes for catalysis rather 
than harmful and polluting substances, such as formal-
dehyde, chlorine and heavy metals [154]. The most used 
enzymes in fabric manufacturing are cellulases, amylases, 
pectin lyases, catalase, laccases, and peroxidases, which 
have been extensively applied for the last stage of denim 
production, cotton softening, scrubbing, bleaching and/or 
bleach termination, and excess dye removal [155]. Among 
these enzymes, cellulases were introduced first and are still 
used in a large amount. As operating conditions in industrial 
plants involve high temperatures and extreme pH values, 
enzyme denaturation could quickly occur. In order to avoid 
this drawback, enzyme immobilization is often applied. As 
an example, the covalent immobilization of cellulase on 
poly-methyl-methacrylate maintained enzyme activity for 
several process cycles [86, 156, 157].

The enzymes belonging to the class of alkaline proteases 
are the most widely utilized in the detergent business. They 
are generally extra-cellular product of several bacterial 
strains and are characterized by excellent catalytic proper-
ties and durability under heat stress, alkaline pH values and 
in the presence of oxidizing agents [158]. These enzymes 
demonstrate good proteolytic activity and high stability due 
to the high degree of hydrogen bonds, disulphide bridges 
and hydrophobic interactions.

Alternatively, amylases, lipases, and cellulases are also 
commonly utilized in the detergent industry for textile clean-
ing [159–161]. An example of the industrial use of NEs is 
α-amylase immobilized on silica NPs, leading to increased 
activity and stability, thus improving cleaning efficiency 
towards starch in laundry detergents [162]. Examples of NEs 
applied in fabric, detergents and tannery manufacturing are 
reported in Table 5.

Applications of NEs for food industry

Food processing commonly utilizes immobilized enzyme 
to improve production processes. Indeed, biocatalysts can 
operate on a specific substrate, leaving all the other food 
components unmodified, at solvent, pH and temperature 
conditions compatible with the preservation of food organo-
leptic properties. Moreover, immobilized enzymes can be 
used in continuous processing techniques, allowing the re-
use of catalysts until their denaturation. The possibility to 
automate the process and consequently save time represents 
another favorable aspect of immobilized enzymes. Regard-
ing enzymes immobilized on nanomaterials, baking, dairy 
production, beverage processing and starch conversion are 
the most important areas of application (Table 6). In particu-
lar, examples of applications and the role of nano-enzymes 
in different food industries are below reported.
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NEs for beverage industry

Glycosidases, which hydrolyze glycosidic linkages, can 
release volatile substances and aromatic scents, and thus 
improve aroma and fragrance of drinks, including alcoholic 
beverages and liquids obtained from fermentation products 
of fruits [163]. As an example, β-glucosidase immobilized 
on chitosan modified multi-walled carbon nanotubes (MWC-
NTs) by covalent binding led to a significant increase of 
aroma compounds in tea. For example, the most impor-
tant tea aroma components such as benzyl alcohol, geran-
iol, nerol, linalool and 2-phenylethanol increase by 160%, 

68.72%, 67.68%, 17.93% and 4.15% in treated green tea, 
respectively. At the same time, immobilization modified the 
optimum temperature of the enzyme from 35 to 45 °C and 
improved its storage stability: immobilized β-glucosidase 
still retained 72% of its original catalytic properties after re-
using 10 times [164]. Moreover, β-glucosidase immobilized 
on  SiO2 NPs significantly increased the amount of polyphe-
nols in sugar cane juice samples [225].

Table 4  Examples of enzymes immobilized on nanomaterials for waste treatment and water decontamination

Enzyme Nanomaterial Application References

Laccase Multi-walled carbon nanotubes Removal of bisphenol A from water [239]
Laccase Cu(II)-chelated chitosan nanoparticles Degradation of phenolic compounds [240]
Horseradish peroxidase Fe3O4/nanotubes Removal of phenols from wastewater [241]
Laccase Inorganic hybrid nanoflowers Bisphenol A degradation in water [242]
Laccase, peroxidase, dioxygenase Chitosan-magnetite nanoparticles Degradation of cibacron redazo dye [243]
Laccases Titania nanoparticles Biotransformation of pollutants such as 

diclofenac and acetaminophen in ground-
water

[244]

Horseradish peroxidase Nanogel Removal of phenolic compounds from waste-
water

[245]

Laccases Mesoporous carbon nanospheres Removal of antibiotic contaminants [246]
Horseradish peroxidase Graphene oxide nanopowder Adsorption of methylene blue from aqueous 

solutions
[247]

Laccase Polyamide 6 nanofibers Biodegradation of endocrine disrupting chemi-
cals, such as triclosan, bisphenol A, and 
17α-ethinylestradiol

[248]

Horseradish peroxidase Graphene oxide  Fe3O4/Au@citric acid nano-
particles,

4-Chlorophenols removal from wastewater [249]

Horseradish peroxidase Fe3O/nanodiamond nanocomposites Phenol degradation [250]
Laccase Polyamide6/chitosan nanofiber Removal of bisphenol A and α-ethinylestradiol [251]
Laccase Chitosan-functionalized supermagnetic hal-

loysite nanotubes
Degradation of Direct Red 80 [252]

Laccase Metal oxides nanomaterials Degradation of alizarin red S dye [253]

Table 5  Examples of enzymes immobilized on nanomaterials and applied in textile, detergents and tannery manufacturing

Enzyme Nanomaterial Application References

Lipase ZnO nanoparticles Applied for removal of oil and grease stains from cotton fibers [254]
Cellulose Nanospheres Stains removal from textiles [255]
α-Amylase Silica nanoparticles Enhanced cleaning efficiency toward starch removal on cotton fabrics [162]
Protease Silica nanoparticles Showed increased cleaning efficiency toward protein soil removal on 

cotton fibers
[256]

Cellulose ZnO/cellulose nanocrystals Absorption of cationic dyes [257]
Metallo-protease Nano-hydroxyapatite Removal of blood stains from textiles [258]
Protease Mesoporous silica nanospheres Used for laundry detergent formulations [259]
Manganese peroxidase Iron oxide/chitosan nanocomposite Discoloration of textile wastewater [260]
Catalase Fe3O4 NPs Decomposition of hydrogen peroxide [261]
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NEs for fruit juice industry

The application of nanotechnology, by using nanoencapsu-
lation and nano-emulsions, to beverages was proposed to 
provide new methods to improve safety and nutritional value 
of products, including a possible reduction of the use of 
preservatives, salt, fat and surfactants.

In the processing of fruit juices, an important complica-
tion is represented by the presence of polysaccharide com-
ponents, such as pectins, in the form of disrupted fruit cell 
walls. Pectins are constituted of d-galacturonic acid mono-
mers, connected by α-1,4-glycosidic linkages [165]. Pecti-
nolytic proteins could be found in plants, bacteria, fungi, and 
yeasts, and are able to hydrolyze α-1,4 glycosidic linkages 
involving d-galacturonic acid monomers [166]. In the food 
industry, basic pectinases are used for retting fruit materials, 
while acidic pectinases are widely used for the precipita-
tion macroscopic materials, for improving extraction and 
fining of juices from vegetables and fruits [167]. Pectinases 
immobilized on chitosan modified magnetic NPs, using dex-
tran polyaldehyde as a macromolecular cross-linker, were 
applied to reduce the turbidity of apple juice [168]. For the 
clarification of pomegranade juice, the immobilization of a 
protease from Penaeus vannamei on chitosan NPs was stud-
ied and compared with the soluble enzyme [24]. P. vannamei 
protease immobilized on chitosan nanoparticles retained an 

activity of 100% at 70 °C for 1 h, whereas the activity of the 
soluble enzyme was only 17% under the same conditions. 
At the same time, the catalytic parameters of the biocatalyst 
resulted practically unmodified upon immobilization.

Xylanase immobilized on 1,3,5-triazine-functionalized 
silica-based magnetic NPs were proposed to aid xylan 
removal [169]. It should be noted that glycosidases, often 
present as impurity in commercial pectinases, cause the 
reduction of juice color due to their action on anthocyanins 
[170].

NEs in milk processing

Milk represents a significant part of the human diet 
in the entire world since ancient times. Lactose, β-d-
galactopyranosyl-(1 → 4)-d-glucose, is the second com-
ponent in milk, comprising about 4.8–5.2%. After intake, 
lactose is commonly hydrolyzed into galactose and glucose, 
which are absorbed by the small intestine. However, the lack 
of adequate amount of lactase (β-d-galactosidase) in the gas-
trointestinal tract is commonly found in non-Caucasians, 
aged people of Western countries, and in several ethnic 
population groups, leading to lactose intolerance. Immobi-
lized lactase (β-galactosidase) converts lactose into glucose 
and galactose, and was proposed in milk processing. Indeed, 
in order to favor lactase-deficient people, lactose-free milk 

Table 6  Examples of enzymes immobilized on nanomaterials for applications in food industry

Enzyme Support material Application References

α-Amylase Cellulose-coated MNPs Starch hydrolysis [262]
α-Amylase TiO2NPs Starch hydrolysis [263, 264]
GOx Thiolated Au NP Determination of glucose [265, 266]
β-Galactosidase Con A layered ZnO NPs Lactose hydrolysis [267]
Diastase Nickel NPs Starch hydrolysis [268]
α-Amylase Au nanorods Starch hydrolysis [19]
Diastase α-amylase AgNPs-doped gum acacia–gelatin–silica nanohybrid Starch hydrolysis [269]
α-Galactosidase Graphene nanosheets Hydrolysis of raffinose oligosaccharides [270]
β-Glucosidase SiO2 NPs Sugarcane juice treatment to increase phenolics [271]
β-Galactosidase ZnO NPs Lactose hydrolysis [272]
β-Galactosidase Fe3O4-chitosan NPs Galactooligosaccharides production [272]
β-Galactosidase MWCNTs Lactose hydrolysis [273]
β-Galactosidase Polysiloxane polyvinyl alcohol magnetic composite Lactose hydrolysis [274]
β-Galactosidase MNPs Galactooligosaccharides production [275]
β-Galactosidase Nanodiamonds Lactose hydrolysis [276]
β-Galactosidase Ag NPs Lactose hydrolysis [277]
β-Galactosidase Polyaniline–chitosan–Ag- Lactose hydrolysis [278]
β-Galactosidase Fe3O4@PANI-GO Lactose hydrolysis [279]
Lipase Nano-cellulose/polypyrrole/GO Synthesis of flavors [280]
Alcohol dehydrogenase Au and Ag NPs Alcohol synthesis [281]
Trypsin Ag-PDA-NC Protein hydrolysis [282]
Raffinase Fe3O4 NPs Galactose and sucrose production [283]
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is commonly produced by a continuous process in a flow 
reactor containing immobilized lactases. Alternatively, the 
enzyme can be immobilized on nanomaterials: Lactase 
(Aspergillus oryzae) was covalently bound to magnetic NPs 
by carbodiimide crosslinker chemistry. The enzyme–NP 
conjugate showed a similar catalytic activity compared to 
the native enzyme [171], and, in comparison with the solu-
ble enzyme, the immobilized lactase can be recovered for 
repeated use with limited loss of enzymatic activity (78% 
activity retention after 5 operative cycles).

NEs in soluble carbohydrate and starch 
manufacturing

α-Amylases hydrolyze endo-α-1,4-glycosidic bonds of starch 
producing smaller molecules, including glucose, maltose 
and other oligomers. Amylases are essential biocatalysts in 
biotechnology, representing about 25% of the entire enzyme 
business of the food industry. α-Amylases are primarily 
found in plants, animals, and microbes [172–174]. They are 
heavily used for the enzymatic hydrolysis of starch to obtain 
glucose-rich solutions. These solutions are then converted 
to high fructose syrup (HFS), which is an ideal substitute 
for sucrose as sweetener, as fructose is 30% sweeter than 
sucrose and is more soluble in water compared to glucose. 
α-Amylases were immobilized by adsorption on the surface 
of ZnO and  Fe3O4 nanoparticles for the optimized hydrolysis 
of starch [175].

Glucose isomerase catalyzes the conversion of glucose 
to fructose, and the final syrup contains 42% w/w fructose. 
Glucose isomerase was immobilized on iron oxide loaded 
mesoporous silica NPs, along with cellulase, for a constant 
high yield of fructose production [175]. The proposed sys-
tem was applied for the optimized multistep conversion of 
cellulose-to-glucose-to-fructose in continuous, with a con-
stant yield (51%) comparable to the maximum obtained in 
food industry.

Alternatively, HFS can be produced from solutions 
obtained from the extraction of sucrose-producing plants 
by the enzyme invertase [176].

NEs in meat industry

The growing demand for sustainable meat production led 
industries to focus on the innovation of the production and 
treatment of processed meat. New functional properties 
were proposed for processed meats and packaging adopt-
ing nanotechnology, with the potential to influence the meat 
processing business [177]. The main advantages of utiliz-
ing nanomaterials in meat are improved bioavailability of 
bioactive compounds, antimicrobial effects for enhancing 
shelf-life and increased sensory acceptance.

The determination of meat quality can be obtained by 
nano-based biosensors for the evaluation of degradation 
products of ATP, namely hypoxanthine. As an example, a 
graphene-titanium dioxide  (TiO2-G) nanocomposite was 
applied as support for the immobilization of xanthine oxi-
dase, which catalyzes the oxidation of hypoxanthine [178]. 
Alternatively, meat quality can be assessed by determining 
the concentration of biogenic amines, such as histamine, 
tyramine, putrescine and cadaverine [179]. As an example, 
tyrosinase was immobilized on functionalized carbon nano-
tubes for the determination of tyramine in fish meat [180].

However, for the direct application on food products, 
doubts on public acceptance, costs and regulation regarding 
the introduction of nanomaterials in meat processing are still 
to present and should be addressed.

NEs for food waste treatment

The application of nano-bio-catalysis systems on food 
wastes for extracting specific natural substances has the dou-
ble advantage of reducing waste quantities and increasing 
economic resources of the agri-food sector [181]. The appli-
cation of cellulolytic enzymes on natural waste sources, such 
as peels, skins and husks of various fruit and vegetables, 
releases several biological compounds, including colored 
compounds, polyphenols, minerals, and other bioactive sub-
stances [182, 183]. Cellulases have been immobilized onto 
 MnO2 NPs with improved activity and applied to break up 
agricultural wastes for obtaining valuable products [184]. 
Glutaraldehyde chemistry was used to co-immobilize pec-
tinase and cellulase onto magnetic NPs through their amino 
groups. These enzymes were utilized to isolate antioxi-
dants and to improve the solvent extraction of carotenoid 
compounds from peels of oranges [185]. Further, magnetic 
NP-immobilized enzymes were reused after many isolation 
processes [186]. The synthesis of galacto-oligosaccharides, 
lactulose and lactosucrose, lactose has been conducted with 
magnetic NP-immobilized β-galactosidase [187]. These 
galacto-oligosaccharides are important components in the 
food processing business and need to be constantly pro-
duced. Therefore the nano-bio-catalysis-mediated approach 
mentioned above has been broadened [188].

Concluding remarks and perspectives

Born as a fusion of nanotechnology and enzyme chemis-
try, nano-bio-catalysis has achieved tremendous progress, 
which revealed advantageous for industrial applications. 
Enzyme immobilization on nanomaterials has made impres-
sive advances in enzyme stabilization and reusability. None-
theless, the large-scale application of nano-bio-catalytic 
systems has several obstacles, such as the complexity of 
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nanomaterial synthesis and the need, in the vast majority 
of cases, of proper coating modifications of the nanosized 
supports for enzyme immobilization. Surface modification 
of nanomaterials in order to stand the different operating 
conditions, such as long-term colloidal stability and spe-
cific surface chemistry, is usually necessary. Unfortunately, 
in many cases the synthesis of nanomaterials involves the 
use of organic solvents or toxic substances, which could 
associate the production of nanoparticles with environmen-
tal impacts. Notably, often immobilization leads to enzyme 
inactivation and to the loss of catalytic properties. Thus, 
both the nanomaterial and the enzyme for NE preparation 
should be properly selected, as well as attention should be 
paid to optimize the immobilization procedure and condi-
tions. Nowadays, a huge amount of different nanomaterials is 
available, each one characterized by specific properties and 
costs. At the same time, enzymes belonging to a wide variety 
of classes and produced by different biological sources are 
available. As a consequence, their catalytic behavior and 
structural stability may be very different. Anyway, the pos-
sibility to reduce the amount of enzyme, representing by far 
the most costly component of the nano-bio-catalyst, worths 
the efforts due to implement these systems in industrial pro-
cesses. Still, for the ultimate and complete introduction of 
nano-bio-catalytic systems at industrial level, several aspects 
of the interactions between enzymes and nanomaterials need 
to be further elucidated.
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