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1  Introduction

Chalcogenide (ChG) are potential candidates in various 
technological applications as optoelectronic [1–3], IR-fiber 
[4, 5] and photonic [6–10] devices. Phase change memory 
materials are the centre of attraction among researchers [8, 
9]. Among phase change materials, Ge2Sb2Te5 (GST) is an 
excellent candidate because of high thermal stability, fast 
crystallization speed, good endurance, scalability and reli-
ability [8–10]. Doping of different elements [11–16] in GST 
has been done to optimize its properties for various techno-
logical applications.

Chalcogenide glasses, when exposed to light or heavy ion 
radiation, show variety of changes in structural, electronic 
and optical properties [17–20]. Chalcogenide glasses con-
sist of a disordered structure having some wrong bonds as 
defects, also known as dangling bonds. Bond breaking and 
bond rearrangement of atoms take place, when these glasses 
are irradiated with heavy ions or light, which results in the 
change in local structure. Exposure of light to the chalcoge-
nide amorphous thin films [21] which excite electron hole 
pairs, produces change in atomic configuration which results 
in structural changes. This further results in change in the 
physical and chemical properties of these materials [22, 23]. 
For various technological applications, the operating mode 
of these materials is based on the change of electronic and 
optical properties as a result of some change in the micro-
scopic structure.

Photo induced changes (structural and optical prop-
erties) in ChG are one of the technologically important 
phenomena such as photo-darkening, photo-bleaching and 
photo-structural change. According to Zakery et al. [24] 
light induced changes in ChG are due to the presence of 
lone pair p-states in their valence band and structural flex-
ibility (low coordination of chalcogens). Vlcek et al. [25] 
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proposed that change in optical properties upon photo-
irradiation and annealing is due to change in density of 
homopolar bonds. These photo-induced changes in ChG 
may be either reversible or irreversible, which favour 
these as potential candidates in various technological 
applications.

In the present study, (Ge2Sb2Te5)100−xAgx (x = 0, 1 and 
3) thin films were fabricated using thermal evaporation. 
The effect of visible light (different intensity and duration) 
on structural and optical properties was discussed.

2 � Experimental

(Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) bulk alloys and thin 
films have been prepared by melt quenching [7, 26] and 
thermal evaporation method [7], respectively. Thin films 
were exposed in an inert environment for different time 
(2, 4, 8 and 20 h) by visible light (25W LED lamp) of 
intensity 104 and 105 Lux measured using Lux meter 
(HTC-LX-102A). The amorphous nature of deposited and 
light exposed thin films was checked by X-ray diffraction 
(XRD) using X-ray diffractometer (X’Pert PRO PANalyti-
cal) with radiation of Cu K

�
(� = 1.5406 Å). Scanning elec-

tron microscopic (SEM) images were taken from JEOL 
JSM-6510 LV. The optical transmission of as-deposited 
and visible light exposed thin films was measured by 
UV–Vis–NIR spectrophotometer (Perkin Elmer Lambda 
750) in the wavelength range of 500-3300 nm.

3 � Results and discussion

3.1 � Structural and morphological study

XRD patterns of (Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) 
as-deposited and visible light (intensity 105 Lux for 8 h) 
exposed thin films are shown in Fig. 1. The absence of 
sharp peaks in XRD patterns confirm the amorphous 
nature of films. All other films show similar XRD patterns 
(results not shown here).

Figure 2a–d show SEM images of (Ge2Sb2Te5)100−xAgx 
(x = 0 and 3) as-deposited and visible light (intensity 105 
Lux for 8 h) exposed thin films, respectively. SEM images 
confirm the uniformity and smoothness of GST thin films. 
SEM images do not show any growth of the particles 
which also confirms the amorphous nature of thin films. 
Other films also show the similar SEM images (results not 
shown here).

3.1.1 � Optical study

Optical absorption coefficient (�) of (Ge2Sb2Te5)100−xAgx 
(x = 0, 1 and 3) as-deposited and light exposed thin films is 
calculated from optical transmission (T) using Eq. (1):

where d is the thickness of deposited thin films measured 
using DTM-101 and was ∼ 700 nm. In high absorption 
region (where � ≥ 104 cm−1), optical band gap (Eg) is cal-
culated using Tauc’s relation [27] given as follow:

where h� is the incident photon energy, B is band tailing 
parameter and m indicates the nature of transition. Ge–Sb–Te 
chalcogenide alloys are direct band gap materials, so m has 
value of 2 [28]. The optical band gap can be obtained by 
extrapolating the straight-line portion of (�h�)1∕2 versus h� 
plot to the energy axis.

The relationship between (�h�)1∕2 and h� for all samples 
is shown in Fig. 3. The values of optical band gap for all the 
samples are listed in Table 1 with maximum uncertainty of 
0.01 eV. The change of optical band gap in chalcogenide 
may be due to structural changes through strong coupling 
of photo-generated carriers with lattice [29].

Figure 4 shows the variation of optical band gap of 
(Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) thin films exposed to 
the light intensity of 104 and 105 Lux with time, respec-
tively. From the figure it is clear that the optical band gap 
changes with Ag incorporation in GST thin film and it also 
varies with exposure time and intensity of light. Singh 
et al. [30] studied the effect of Ag doping on optical band 

(1)� = [1∕d] ln[1∕T]

(2)�h� = B(h� − Eg)
m

Fig. 1   XRD patterns of (Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) as-
deposited and visible light (intensity 105 Lux and time 8 h) exposed 
thin films
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gap of GST thin films. They reported that the optical band 
gap increases with Ag incorporation upto 3% Ag content 
and this increase in optical band gap is due to decrease in 
density of localized states in mobility gap. At higher Ag 
content, the optical band gap started decreasing because of 
distortion in the host GST matrix. The large optical band 
gap reduces the threshold current which further increase 
the switching speed. It is also observed that the optical 
band gap for all thin films decreases with light exposure 
upto 8 h and after that it does not show any significant 

change. Osman et al. [31] also found decrease in opti-
cal band gap in a-GexSe90−xSb10 thin films with illumina-
tion time. Light intensity also effects optical band gap, 
low intensity causes more photo-darkening which can 
be understood from charge exchange between localized 
states representing intrinsic or impurity defects [32–34]. 
The decrease in optical band gap with light exposure 
can be understood in terms of the interaction of band 
gap light with lone pair of electrons of chalcogen atoms. 
Thus photo-darkening may be due to the enhanced lone 

Fig. 2   Scanning electron microscopic images of (a,  b) as-deposited and (c,  d) visible light (intensity 105 Lux and time 8  h) exposed 
(Ge2Sb2Te5)100−xAgx (x = 0 and 3) thin films, respectively

Table 1   Optical band gap 
(E

g
) of (Ge2Sb2Te5)100−xAgx 

(x = 0, 1 and 3) thin films at 
intensity of 104 and 105 Lux for 
different exposure time (0, 2, 4, 
8 and 20 h)

Exposure time 
(h)

E
g
 (eV) at 104 Lux E

g
 (eV) at 105 Lux

GST GST:1Ag GST:3Ag GST GST:1Ag GST:3Ag

0 0.68 0.70 0.73 0.68 0.70 0.73
2 0.61 0.64 0.67 0.63 0.68 0.70
4 0.61 0.62 0.65 0.63 0.67 0.69
8 0.60 0.61 0.62 0.63 0.66 0.69
20 0.60 0.61 0.62 0.63 0.66 0.69
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pair-lone pair interactions which broaden the valence band 
and decrease the optical band gap [35]. 

The photo-darkening can further be understood from 
change in local structure upon light exposure. There is a 

tendency of bond breaking and bond rearrangement in 
all chalcogenide alloys with light exposure. It is assumed 
that the variation of optical band gap with light exposure 
is a result of non-radiative recombination of electron–hole 

Fig. 3   Tauc’s plots of (Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) as-deposited and visible light exposed thin films for different exposure time and 
intensity
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pairs through transient self trapped excitons [36]. During 
this recombination, excess energy is released which over-
comes the activation barriers to form defect pairs, resulting 
in structural changes in the films relative to as-deposited 
films. According to Street [36], the exciton recombination 
in amorphous chalcogenide thin films can occur through 
two different ways: (1) directly to the ground state through 
radiative path, or (2) via non-radiative transition through 
defect creation. However, the probability of non-radiative 
recombination is more because of low photoluminescence 
efficiency of chalcogenide alloys [37]. These defects (D+ 
and D−) are also known as valence alternation pair, where 
D and the superscript denote the chalcogen atom and its 
charge state, respectively. The radiative and non-radiative 
paths can be understood from the schematic diagram [36] 
shown in Fig. 5. In chalcogenide, strong electron–phonon 
coupling was observed due to non-bonding p-orbital. This 
coupling strongly favors the formation of low energy defect 
pairs but the formation energy of these defect pairs is signifi-
cantly less than the bandgap energy and the exciton energy. 
As a consequence, highly unstable excitons interact with 
the lattice to form a D+D− pair, which corresponds to self 

trapping of excitons. During self trapping process of exciton, 
energy is released and this energy modifies the local struc-
ture, which gives rise to the permanent change in optical 
properties.

4 � Conclusion

(Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) thin films, transparent, 
smooth and uniform, are prepared using thermal evaporation 
technique. Effect of visible light is studied for different expo-
sure time and light intensity on (Ge2Sb2Te5)100−xAgx(x = 0, 1 
and 3) thin films. Photo-darkening is observed in all thin 
films. The decrease in the optical band gap (Photo-darken-
ing) is more prominent for smaller exposure time and lower 
light intensity. This may be due to the interaction of band 
gap light with lone pair electrons of chalcogen atom, which 
results in broadening of the valence band.
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