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Abstract In 4G broadband wireless communications, multiple transmit and receive anten-
nas are used to form multiple input multiple output (MIMO) channels to increase the capacity
(by a factor of the minimum number of transmit and receive antennas) and data rate. In this
paper, the combination of MIMO technology and orthogonal frequency division multiplex-
ing (OFDM) systems is analyzed for wideband transmission which mitigates the intersymbol
interference and hence enhances system capacity. In MIMO-OFDM systems, the coding is
done over space, time, and frequency domains to provide reliable and robust transmission
in harsh wireless environment. Also, the performance of space time frequency (STF) coded
MIMO-OFDM is analyzed with space time and space frequency coding as special cases. The
maximum achievable diversity of STF coded MIMO-OFDM is analyzed and bit error rate
performance improvement is verified by simulation results. Simulations are carried out in
harsh wireless environment, whose effect is mitigated by using higher tap order channels.
The complexity is resolved by employing sphere decoder at the receiver.

Keywords MIMO-OFDM · STF coding · Diversity analysis · DFE · ML equalizer ·
Sphere decoder

1 Introduction

Next generation wireless systems require high system capacity, high voice quality and high
data rate compared to current cellular mobile radio standards. In addition, they should oper-
ate reliably in various practical environments like macro, micro and picocellular, urban,
sub-urban and rural, indoor and outdoor. In previous systems, the use of higher bandwidth
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achieved these goals. Due to its scarcity, the increase in bandwidth is an impractical method.
In the last decade, research is done towards efficient coding and modulation schemes that
improve the quality and bandwidth efficiency of wireless systems. MIMO [1] antenna systems
is a powerful tool to achieve these requirements in current wireless systems. The key advan-
tages of employing multiple antennas are, (a) the improvement in reliability performance
through diversity, and (b) increase in data rate through spatial multiplexing. In wireless
environment the signal propagates through different paths referred as multipath. Diversity
describes the available degrees of freedom present in the MIMO channel. To obtain diversity,
the signal is transmitted through multiple independent fading paths in time, frequency or
space domains and combined constructively at the receiver. Further, in MIMO systems, same
information can be transmitted from multiple antennas and received at multiple antennas
simultaneously.

In order to take advantage of the spatial and temporal diversity, a number of ST coding [2–
7] and modulation methods have been proposed. In ST coding, the maximum achievable
diversity is equal to the product of number of transmit and receive antennas. It is proved
that ST coding has simple implementation that provides minimal decoding complexity, but
it does not provide multipath diversity or high rate. To exploit frequency diversity, MIMO
system is combined with OFDM [8]. In OFDM, a high data rate stream is split into a number
of low rate streams, and each stream is modulated with orthogonal subcarrier. The number
of subcarriers is decided in such a way that each subcarrier has bandwidth much less than
the coherence bandwidth of channel. Therefore, the intersymbol interference (ISI) on each
subcarrier is very small. ISI can be further mitigated by adding cyclic prefix (CP) to each
OFDM symbol.

In MIMO-OFDM systems [9], it is desirable to have multipath propagation along with
space diversity gain. SF codes have been proposed to exploit the spatial and frequency diver-
sity present in frequency selective MIMO channels. SF coding [10,11] distributes the channel
symbols over different transmit antennas and OFDM tones within one OFDM block. If longer
decoding delay and higher decoding complexity are allowed, one may consider coding over
several OFDM block periods, resulting in STF codes [12]. It is proved that a MIMO-OFDM
system can achieve a maximum diversity gain equal to the product of transmitting antennas,
receiving antennas and multiple paths present in the frequency selective channel if the chan-
nel correlation matrix is full rank [10]. In [13,14] it is proved that STF codes can achieve
a diversity order equal to product of transmitting antennas, receiving antennas, independent
channel taps and the rank of temporal correlation matrix of channel.

ST coded OFDM was first introduced in [2]. It uses space time trellis codes over fre-
quency tones. The resulting codes achieve spatial diversity instead of full diversity. In [14]
space frequency time method over MIMO-OFDM channels is introduced, but with more than
two transmitting antennas it provides a rate of only 3/4. To reduce the complexity of code
design, a grouping method with precoding and bit-interleaving is proposed in [15,16]. In
[17], the repetition mapping technique to transform existing ST codes to full diversity SF
codes is proposed. This method provides a trade off in diversity and symbol rate. A rate 1 SF
codes are proposed in [10] where the target diversity was obtained but decoding complexity
increases exponentially with diversity.

This paper gives a general performance analysis for MIMO-OFDM systems with ST, SF
and STF coding schemes based on Alamouti coding. MIMO-OFDM system is analyzed in
quasi static Rayleigh frequency flat and selective channel with higher tap order. We simulated
the space–time (ST)/ space–frequency (SF)/ space–time–frequency (STF) codes in severely
faded channel environment. In such channel environments, channel coefficients are close
to signal amplitudes and the signal is severely faded. It is very difficult to decode signal
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in such a channel scenario. In this paper, the decoding is done by increasing the diversity
order without employing precoding as done in existing literature. The results plotted in the
results section verify this for higher SNR region. We determine the maximum achievable
diversity with Alamouti based ST, SF and STF based coding with repetition techniques but
in more severely faded environment. It is shown that if channel changes independently from
one block to another, Then STF coding will show a significant improvement compared to
the SF coding approach. Also we resolved the increased decoder complexity as in [14] by
employing SD on receiver side. This work can be extended to more practical high altitude
platform (HAP) [18] MIMO channels along with more number of users. In such cases, we
have to employ multi-user detection algorithms [19,20].

The major advantage of using MIMO technology in any wireless system includes, increase
in its array gain, diversity gain, multiplexing gain and also reduction in co-channel interfer-
ence. Increase in array gain and diversity gain increases the coverage distance and improves
quality of service (QoS) of a system. Multiple antenna system also increases data rate and
system capacity (by a factor of the minimum number of transmit and receive antennas).
In MIMO systems, interference is quite less as compared to other techniques and it fur-
ther decreases after combining MIMO with OFDM. There are some standards based upon
MIMO technology like IEEE 802.11n, 3GPP LTE and IEEE 802.16e (Mobile Wi-MAX)
etc. All upcoming 4G systems will employ MIMO technology. MIMO applications can be
extended to multi-users also like cross-layer MIMO, cognitive MIMO, cooperative MIMO
etc. Its target applications include large files backup, HD streams, online interactive gaming,
home entertainment, in Ad-Hoc networks (to get high capacity links) and in RFID technology
(to increase read range and throughput).

The rest of the paper is organized as follows. In Sect. 2, a general MIMO-OFDM structure
is introduced and ST, SF and STF code design criteria are reviewed in Sect. 3. In Sect. 4,
performance design criteria and formulation for diversity analysis are derived for STF coding
with ST and SF as its special cases. In Sect. 5, various equalizers and decoders are presented.
Simulation results of ST, SF and STF coding with equalizers are given in Sect. 6 and paper
is concluded in Sect. 7.

2 MIMO-OFDM Transceiver Model

Before introducing the system model, the list of notations used in this paper are tabulated in
Table 1.

A general systematic transceiver model of MT × MR MIMO-OFDM system is shown
in Fig. 1, where MT is number of transmit antenna and MR is number of receive antennas.
Initially, the incoming bit stream is mapped into data symbols via modulation technique like
BPSK. Then a block of data symbols is encoded into a codeword matrix C of size NcT×MT,

which will then be sent through MT transmit antennas in T OFDM blocks i.e. c1
i ,c2

i , . . . cT
i .

Each OFDM block consists of NC subcarriers which will be transmitted from ith transmitting
antenna in OFDM blocks 1, 2,…,T. The codeword matrix C [21] can be expressed as

CST =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1,1 c1,2 . . . c1,MT

c2,1 c2,2 . . . c2,MT

. . . . . . . . . . . .

cT,1 cT,2 . . . cT,MT

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ CNCT×MT (1)
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Table 1 Notations and symbols

Notation Meaning Notation Meaning

(·)∗ Complex conjugation L Number of channel taps

(·)T Transposition W Matrix of w = e−j2π�f of size
NC × L

( )H Hermitian transposition. Ai,j Matrix of channel gain coefficients α

between transmitting antenna i and
receive antenna j

|| · ||F Frobenius norm �T Time correlation matrix

MT,MR Number of transmitting and
receiving antennas

�F Frequency correlation matrix

NC Number of subcarriers ν Rank of �o R
A o B Hadamard product of matrices A

and B
w̃ Weight vector

A⊗B Kroneckor product of A and B Nr Number of iterations

CST,CSF, CSTF Codeword matrix in space–time,
space–frequency and
space–timer-frequency domain

μ Step size of equalization algorithm

Hk
i,j Channel between transmitting

antenna i and receiving antenna j
during kth block

d Desired response

yk
j Received signal at jthreceive antenna

for nth subcarrier during kth block
H ↓ Pseudo inverse of channel matrix H

S0, S1 Simultaneously transmitted symbols
from antenna 1 and 2

rS Radius of search hyper-sphere

∧
S0,

∧
S1 Receiver estimates of S0 and S1 � Complex lattice

Z Additive complex Gaussian noise
vector

U Upper triangular matrix

ρ Average signal to noise ratio ZS Unconstrained solution of Frobenius
norm of Y- CH

IMR Identity matrix of size MR and MR d2
KS

Distance between codeword and
centre of ks- dimensional sphere

D Diagonal matrix constructed from � Correaltion matrix of channel H

λ Non-zero eigenvalues P(D → D̃) Pairwise error probability(PEP)
between two codeword’s D and D̃

r Rank of matrix(
D − D̃

)
R

(
D − D̃

)H
E Expectation operator

The codeword matrix in (1) encodes the data symbols in space–time (ST) domain. It can be
modified to form space–frequency (SF) [21] codeword matrix CSF as

CSF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(0)
1 c(0)

2 . . . c(0)
MT

c(1)
1 c(1)

2 . . . c(1)
MT

. . . . . . . . . . . .

c1(Nc − 1) c2(Nc − 1) . . . cMT(Nc − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ CNC×MT (2)

123



ST/SF/STF Block Coded MIMO-OFDM System 1951

 Tx Antenna 1 

Rayleigh 
Mobile 
Radio 

Channel 

O/P Bits 

Receiver

S/P 

Symbol  
Mapping 
(BPSK) 

  ST/ SF / 
STF 

Encoder 

IFFT

IFFT

CP

CP

P/S 

P/S 

 TX Antenna MT

S/P 

S/P 

CP 
Removal

CP 
Removal

FFT

FFT 

Linear 
Combining 

Frequency 
Domain 

Equalization 
and 
P/S 

Symbol  
De-

Mapp 

I/P Bits 

Transmitter

 Rx Antenna 1

 RX Antenna MR

Fig. 1 ST/ SF / STF coded MT × MR MIMO-OFDM transceiver structure

A space–time–frequency codeword [22,23] has an additional dimension of time diversity
added to the above SF codeword as shown below

CK
STF=

⎡
⎢⎢⎢⎢⎢⎣

cK
1 (0) cK

2 (0) . . . cK
MT

(0)

cK
1 (1) cK

2 (1) . . . cK
MT

(1)

. . . . . . . . . . . .

cK
1 (NC − 1) cK

2 (NC − 1) . . . cK
MT

(NC − 1)

⎤
⎥⎥⎥⎥⎥⎦

∈ CNCK×MT
T (3)

The OFDM transmitter performs an NC—point inverse fast fourier transform (IFFT) to each
column of matrix C. ISI caused due to multiple delays of channel is removed by addition
of CP to each OFDM symbol but its addition reduces spectral efficiency. The length of CP
should be equal to or greater than delay spread of channel. The OFDM symbol corresponding
to the ith (i = 1, 2, . . ., MT) column of C is transmitted by transmit antenna i. The infor-
mation is then passed through MIMO channel which is characterized by Jake’s model [24]
for both Rayleigh frequency flat and selective channels. After removing the CP and applying
FFT on frequency tones, the received signal at jth receive antenna for nth subcarrier during
kth block is given by

yk
j (n) =

√
ρ

MT

MT∑
i=1

Hk
i,j(n)Ck

i,j(n)+Zk
j (n) (4)

For 1 ≤ k ≤ K, 0 ≤ n ≤ NC − 1, 1 ≤ i ≤ MT, and 1 ≤ j ≤ MR also Hk
i,j (n) given by

Hk
i,j(n) =

L−1∑
l=0

αk
i,j(l)e

−j2 π n�f ζL (5)

represents channel frequency response at the nth subcarrier between transmit antenna i and
receive antenna j, �f = 1/T is the subcarrier separation in frequency domain and T is the
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OFDM symbol period. L is the number of channel taps in time domain which are 12 for
flat and 34 for selective channels. Such a higher tap order channel is chosen to combat deep
fades due to harsh wireless channels. It is assumed that channel state information (CSI) is
perfectly known at receiver but not at the transmitter. Due to this assumption, there is no
need of estimating channel coefficients. Otherwise, channel coefficients can be estimated
by techniques like pilot symbols, decision directed via mean square criterion [25,26] in
MIMO-OFDM systems. System performance can be improved further if we estimate the
carrier frequency offsets [27] in OFDM systems. The channels between different transmit
and receive antenna pairs are assumed to have same power delay profile. Another assumption
is to consider quasi-static channel, where the path gains are constant over a frame of time T
and change from frame to frame. In (4) Zk

j (n) denotes the additive complex Gaussian noise
with zero mean and unit variance at the nth subcarrier and at jth receive antenna. The noise

samples are assumed to be uncorrelated for different j’s and n’s. The factor
√

ρ

MT
ensures

that, ρ is the average signal to noise ratio (SNR) at each receive antenna, and is independent
of the number of transmit antennas. The linear combiner combines the output from FFT’s
to form composite output signal. The combining scheme for 2 × 2 system is suggested by
Alamouti [3]. Let H11, H21, H12 and H22 be the channel coefficients between transmitter
and receiver pair. The combined signals are given by

∧
S0 = H∗

11y11 + H∗
12y12 + H∗

21y21 + H∗
22y22 (6)

∧
S1 = H∗

12y11 − H12y∗
12 + H∗

22y22 − H22y∗
22 (7)

In (7), ya,b represents the received signals at receiver a from the transmitter b. These signals
are given by

y11 = H11S0 + H12S1 + n0

y12 = −H11S1∗ + H12S0∗ + n1

y21 = H21S0 + H22S1 + n2

y22 = −H21S1∗ + H22S0∗ + n3 (8)

Here S0 and S1 are the simultaneously transmitted symbols from antenna 1 and 2. The
combined signal is then equalized by applying different equalizers like decision feedback
equalization (DFE), maximum likelihood (ML) detector and SD.

3 ST/SF/STF Coding of MIMO-OFDM

In ST coding scheme [2], the coding is combined with transmit diversity to achieve high
diversity performance in wireless systems. It can be implemented in two ways one is ST
Trellis and other is ST Block coding. In ST trellis scheme, data symbols are encoded via
MT convolutional encoders to get MT streams of symbols. In this scheme, the decoding
complexity would increase exponentially with reference to diversity level i.e. by increasing
number of transmit and receive antennas and transmission rate [28]. Alamouti [3] proposes
orthogonal ST block code (OSTBC) design for 2 × 1 and 2 × 2 systems to alleviate above
problem. Alamouti suggested that at a particular time instant two symbols can be simulta-
neously transmitted from the two antennas. Let the symbols transmitted from antenna 1 and
2 are S0 and S1 during time instant t and −S1∗ is transmitted symbol from antenna 1 and S0*
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Table 2 Space time scheme for
2 × 1 system

Transmitter antenna 1 Transmitter antenna 2

Time (t) S0 S1

Time (t + T) −S1* S0*

Table 3 Received signals at two
receivers

Receiver antenna 1 Receiver antenna 2

Time (t) y11 y21

Time (t + T) y12 y22

Table 4 SF coding for two
transmit antenna

OFDM-Subcarrier

K L

Transmitting antenna 1 S0 −S1∗
Transmitting antenna 2 S1 S0∗

Table 5 STF coding for two
transmit antenna

OFDM-Subcarrier

K L

Transmitting antenna 1 S0 −S1∗ OFDM Block (n)

Transmitting antenna 2 S1 S0∗ OFDM Block (n+1)

from antenna 2 during next time instant t + T, where * is the complex conjugate operation.
This scheme is illustrated in Table 2.

Diversity order can be increased for more reliable communication by employing two
receiver antennas on receiver side as in Table 3.

Alamouti code can provide full diversity of 2 with rate 1 along with simple single sym-
bol detection due to its orthogonal nature. It can further be generalized for higher number of
transmit antennas case based upon theory of orthogonal design. In such cases OSTBC cannot
provide rate more than 3/4 [17]. In ST coding full multipath diversity can not be achieved,
to exploit it coding is done across antennas and OFDM subcarriers called SF coding [17].
Alamouti based SF coding can be realized by spreading Alamouti code across two subcarriers
in one OFDM block as shown in Table 4.

Table 4 shows that two symbols S0 and −S1∗ are sent from subcarriers K and L of the
same OFDM block through transmitting antenna 1. Similarly symbols S1 and S0∗ are sent
from subcarriers K and L of the same OFDM block but through transmitting antenna 2. This
code still can’t achieve full diversity especially in frequency selective channels. Performance
can be further enhanced by spreading Alamouti coding across space, time and frequency
called STF codes. Table 5 shows that two symbols S0 and −S1∗ are sent from subcarriers K
and L of OFDM block n through transmitting antenna 1. Similarly symbols S1 and S0∗ are
sent from subcarriers K and L of OFDM block (n + 1) through transmitting antenna 2.
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4 Performance Design Criteria

In this section ST, SF and STF coding approaches for MIMO-OFDM are analyzed and their
performance criteria are derived [14]. These coding schemes can be compared in terms of
coding rate, diversity gain and decoding complexity. The code rate generally defined as
the ratio of total number of information symbols sent per channel and mathematically, it is
approximately equal to Ng/NCT symbols per channel use (PCU), which means Ng informa-
tion symbols are sent over NCT channels where NC channels are used in T times. Diversity
gain is the number of faded replicas of same information symbol that can be provided to
the receiver in the form of redundancy in various domains like space, time and frequency.
Since the probability that all the signal replicas fade equally and simultaneously is extremely
small, thus receiver performance is enhanced significantly. In flat MIMO channels, full diver-
sity gain is MTMR whereas in frequency-selective MIMO channels it is MTMRL. ST coded
MIMO-OFDM has a simple implementation with minimal decoding complexity, but it can-
not achieve multipath diversity nor high rate. SF coding can achieve maximum diversity and
full rate over multipath fading channels, but the decoding complexity is increased. A joint
ML decoding method is needed for such cases. STF coded MIMO-OFDM can achieve full
diversity and full rate. However, its decoding complexity is higher than ST and SF coding.

4.1 Pairwise Error Probability (PEP) Criteria

The design criteria for performance evaluation of STF coded MIMO-OFDM is derived [14],
which serve us a formulation to evaluate any coding scheme. The received signal in (4) can
be rewritten in vector form as

Y =
√

ρ

MT
DH + Z (9)

In (9), D is a KNCMT × KNCMTMR matrix constructed from STF codeword in (3) is given
by

D = IMR ⊗ [
D1 D2 D3 . . . DMT

]
(10)

where ⊗ denotes Kronecker product, IMR is the identity matrix of size MR × MR and

Di = diag{Ci(0),Ci(1), . . . Ci(KNC − 1)}. (11)

For any i = 1, 2, . . ., MT. Each Di in (11) is related to ith column of the STF codeword in
(3). The channel vector H of size KNCMTMR × 1 can be combined as

H =
[

HT
1,1 . . . HT

MT,1 HT
1,2 . . . HT

MT,2
. . . HT

1,MR
. . . HT

MT,MR

]T

(12)

where

Hi,j=
[

Hi,j(0) Hi,j(1) . . . . . . Hi,j(KNC − 1)
]T

(13)

The received signal vector Y of size KNCMR × 1 is given by

Y =
[

y1(0) . . . y1(KNc − 1) y2(0) . . .

. . . yMR
(0) . . . . . . yMR

(KNC − 1)

]T
(14)
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And noise vector Z is same as of Y, i.e.

Z =
[

z1(0) . . . z1(KNc − 1) z2(0) . . .

. . . zMR (0) . . . . . . zMR (KNC − 1)

]T
(15)

Suppose that D and D̃ are two different matrices related to two different STF codewords C
and C̃ respectively. Then, the pairwise error probability (PEP) between D and D̃ can be upper
bounded as

P(D → D̃) ≤
(

2r − 1
r

)(
r∏

i=1

λi

)−1 (
ρ

MT

)−r
(16)

where r is the rank of (D → D̃)�(D → D̃)
H

, λ1, λ2, λ3… λr are the non-zero eigenvalues

of (D → D̃)�(D → D̃)
H

, and � = E
{
HHH

}
is the correlation matrix of H. The superscript

H stands for Hermitian operator, which means complex conjugate and transpose of a matrix.
E stands for expectation operator. Based on the upper bound on the PEP in (16), two general
STF performance criteria are derived as follows

Diversity Criteria: It is also called rank criteria, which proposes that minimum rank of

(D → D̃)�(D → D̃)
H

over all pairs of different codewords C and C̃ should be as large as
possible.

Product Criteria: It proposes that minimum value of the product
∏r

i=1 λi over all pairs of
different codewords C and C̃ should be maximized.

4.2 Diversity Analysis Criteria

In spatially uncorrelated MIMO channels [14], the channel taps αk
i,j (l) between each pair

of transmit antenna i and receive antenna j are independent of each other. Thus, correlation
matrix R of size KNCMTMR × KNCMTMR can be combined as

� = diag

(�1,1, . . . �MT,1, �1,2, . . .

. . . �MT,2, . . . �1,MR , . . . �MT,MR

)
(17)

where

Ri,j = E
[
Hi,jH

H
i,j

]
(18)

is the correlation matrix of the channel frequency response from transmit antenna i to receive
antenna j. Using notation w = e−j2π�f , Hi,j can be decomposed as

Hi,j = (IK ⊗ W)Ai,j (19)

where

W =

⎡
⎢⎢⎣

1 1 . . . 1
wτ0 wτ1 . . . wτL−1

. . . . . . . . . . . .

w(Nc−1)τ0 w(NC−1)τ1 . . . w(NC−1)τL−1

⎤
⎥⎥⎦

NC×L

(20)

which is related to delay distribution, and

Ai,j =
[

α1
i,j(0), α1

i,j(1), . . . α1
i,j(L − 1) . . .

. . . αk
i,j (0), αk

i,j (1), . . . αk
i,j(L − 1)

]T

(21)
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This is related to the power distribution of the channel impulse response. In general, W is
not a unitary matrix. If all of the L delay paths fall at the sampling instances of the receiver,
then W is a part of the DFT matrix which is unitary. The correlation matrix of the channel
frequency response vector between transmit antenna i and receive antenna j can be calculated
as

�i,j = E
{
(Ik ⊗ W) Ai·jAH

i,j (Ik ⊗ W)H
}

(22)

�i,j = (Ik ⊗ W) E
{

Ai,jA
H
i,j

} (
(IK ⊗ W)H

)
(23)

It is assumed that the path gains are independent for different paths and different pairs of
transmit and receive antennas. The second order statistics of the time correlation is same for
all transmit and receive antenna pairs for all paths. Thus the correlation matrix E{AI,JAH

I,J}
can be expressed as

E
{

Ai,jA
H
i,j

}
= � ⊗ diag

(
δ

2
0, δ

2
1 . . . δ

2
L−1

)
(24)

where �T is temporal correlation matrix of size k × k, thus frequency correlation matrix �F

can also be expressed as

�F = E
{

HK
i,jH

KT

i,j

}
(25)

where, HK
i,j=
HK

i,j(0)…HK
i,j(NC − 1)T� then, �F = W diag

(
δ

2
0, δ

2
1 . . . δ

2
L−1

)
WH As a result

�I,J = (IK ⊗ W )
{�T ⊗ diag

(
δ

2
0, δ

2
1 . . . δ

2
L−1

)} (
IK × W H

)
(26)

�I,J = {�T ⊗ Wdiag
(
δ

2
0, δ

2
1 . . . δ

2
L−1

)} (
WH

)
= �T ⊗ �F (27)

Finally, the expression for r in Eq. (16) can be rewritten as

(
D − D̃

)
R

(
D − D̃

)H = IMR ⊗
⎡
⎣

MT∑
i=1

(
Di − D̃i

)
(�T ⊗ �F)

(
Di − D̃i

)H

⎤
⎦ (28)

= IMR ⊗
{[((

Ci − C̃i

) (
Ci − C̃i

)H
)]

O (RT ⊗ RF)

}
(29)

In (29), symbol o denotes the Hadamard product. Let � ∼=
(

Ci − C̃i

) (
Ci − C̃i

)
and � ∼=

�T ⊗ RF. Substitute (29) into (16) it becomes

P
(

C → C̃
)

≤
(

2 ν MR − 1
ν MR

)(
ν∏

i=1

λi

)−MR (
ρ

MT

)−VMR

(30)

where ν is rank of �oR and λ1, λ2, λ3, . . ., λν are the non-zero eigenvalues of �oR. As
result Diversity and product criteria can be modified as follows.

Diversity (rank) criterion: The minimum rank of �oR over all pairs of distinct codewords
C and C̃ should be as large as possible.

Product criterion: The minimum value of the product
∏ν

i=1 λi over all pairs of distinct
codewords C and C̃ should also be maximized.

If the minimum rank of �o R is ν for any pair of distinct STF codewords C and C̃ Then
STF code achieves a diversity order of vMR for a fixed number of OFDM blocks, transmitting
antennas and correlation matrices RT and RF.
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According to the rank inequalities on Hadamard product and Kronecker product we have

rank (� oR) ≤ rank (�) · rank (RT) · rank (RF) (31)

Since the rank � of is at the most MT, the rank of RF at the most is L, and the rank of o R
is at most KNC , So we get

rank (�oR) ≤ min LMT rank(�T), KNC (32)

Thus, the full achievable diversity is at most min [LMTMRrank(�T), KNCMR]. In rest
of the section, we will show that the above mentioned diversity would be achieved. In
case, if the channel remains constant over multiple OFDM blocks then rank of time cor-
relation matrix would be close to 1. Thus, full diversity in such cases would be min
[LMTMRrank(�T), KNCMR] same as that of SF coding.

4.3 STF Code Design Criteria

In this section, a full diversity STF code criterion is derived from SF coding. For this purpose,
it is assume that the number of subcarriers NC is not less than LMT. Our objective is to show
that the maximum achievable diversity order is [LMTMRrank(�T)]

Suppose CSF is a full diversity code of size NC × MT. We can construct a STF code by
repeating CSF codeword K times (over K OFDM blocks) as shown below

CSTF = 1K×1 ⊗ CSF (33)

where 1K×1 is an all one matrix of size k×1, Let �STF =
(

CSTF − C̃STF

) (
CSTF−C̃STF

)H

and �SF=
(

CSF−C̃SF

) (
CSF−C̃SF

)H
. Also we have

�STF =
[
1K×1 ⊗

(
CSF−C̃SF

)]
×

[
1K×1 ⊗

(
CSF−C̃SF

)H
]

1K×1 ⊗ �SF (34)

Thus

�STFo� = (1K×K ⊗ �SF) o (�T ⊗ �F)

= �T ⊗ (�STFo�) (35)

Since the SF code CSF achieves full diversity in each OFDM block, the rank of �STF◦o�
is LMT. Therefore, the rank of �STF◦o� is LMT rank (RT). It means CSTF achieves full
diversity of LMTMRrank (RT).

It is observed that the maximum achievable diversity depends on the rank of the temporal
correlation matrix RT. If the fading channels are constant during K OFDM blocks, i.e. rank
(RT) = 1, the maximum achievable diversity order for STF codes (coding among several
OFDM blocks) is the same as that for SF codes (coding within one OFDM block). Moreover,
if the channel changes independently in time, i.e. RT = IK, the repetition structure of STF
code CSTF is sufficient, but not necessary to achieve the full diversity. We have

(� oR) = diag (�1oRF, �2oRF . . . �koRF) (36)

where �K =
(

CK−C̃K

) (
CK−C̃K

)H
for 1 ≤ k ≤ for 1 ≤ k ≤ K. Thus, the necessary and

sufficient condition to achieve full diversity KLMTMR is to make �KoRF of rank LMT over
all pairs of distinct codewords for 1 ≤ k ≤ K.
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Desired Response 

Transversal filter

Adaptive weight 
algorithm 

Input Vector

Fig. 2 Schematic of decision feedback equalizer (DFE)

5 Equalization and Decoding

The inter-symbol interference (ISI) caused by multipath MIMO channels distorts the MIMO-
OFDM transmitted signal which causes bit errors at receiver. To minimize errors, equaliza-
tion [29] is needed. Equalizer minimizes the error between actual output and desired output
by continuous updating its filter coefficients. Equalization can be done in both time and
frequency domain. Equalization in frequency domain is simpler to use as compared to time
domain. The important parameter in equalization design is to choose number of taps. The
number of taps is limited by maximum time delay spread offered by the channel. An equal-
izer can equalize for delay intervals less than or equal to the maximum delay within the filter
structure. So it is important to know about the number of taps before selecting an equal-
izer structure and its algorithm. In this paper various equalizers like DFE, ML and SD are
implemented and their performance evaluation is done in terms of BER.

5.1 Decision Feedback Equalizer

The basic idea behind DFE [30] is that once an input symbol has been detected and decided
upon, the ISI that it produces on future symbols can be estimated and subtracted before detec-
tion of subsequent symbols. DFE can be realized in direct transversal form which consists
of feed forward filter (FFF) and a feedback filter (FBF) as shown in Fig. 2. The FBF [31] is
driven by decision on the output of the detector, and its coefficients can be adjusted to cancel
the ISI on the current symbol from past detected symbols.

RLS (recursive least squares) algorithm is used to determine the coefficient of an adaptive
filter. It uses information from all past input samples to estimate the autocorrelation matrix of
the input vector. To decrease the influence of input samples from the past samples, a weight-
ing factor is used for the influence of each sample. DFE equalizer comprises of filtering
and adaptive process. In filtering process, algorithm computes the output of a linear filter in
response to an input signal as given by

y(n) = w̃H (n) C(n) (37)

where y(n) is output of a linear filter. All subscripts are omitted for simplification. Output
y(n) is compared with desired response d (n) to generate estimation error e(n) which is given
by

e(n) = d(n) − y(n) (38)
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In next phase tap-weight vector is updated by incrementing its old value by an amount equal
to the complex conjugate of the estimation error as described in (38).

w̃(nr + 1) = w̃(nr) + μC(n)e∗(n) (39)

where nR the number of iteration and μ is the step size, which controls the convergence rate
and stability of algorithm.

5.2 Maximum Likelihood (ML) Detection

The MSE based linear equalizers are optimum [32] when channel does not introduce much
amplitude distortion. In such situations we choose ML based equalizer which tests all pos-
sible data sequences and chooses the data sequence which has maximum probability at the
output. These equalizers require knowledge of channel characteristics in order to compute the
metrics for making decisions. They also require knowledge of statistical distribution of the
noise, which determines the form of metric for optimum demodulation of the received sig-
nal. Maximum likelihood (ML) decoding [33] finds the codeword Ĉ that solves the following
minimization problem

Ĉ = arg min
Ĉ

[|y − CH|]2
F (40)

where F is Frobenius norm. Equation (16) can be expanded using Frobenius norm as following

Ĉ = arg min
Ĉ

⌊
Tr

∣∣∣(y − CH)H y − CH
∣∣∣
⌋

(41)

Ĉ = arg min
Ĉ

[
Tr

⌈
yH · y + HH CH CH − HH CH y − yH CH

⌉]
(42)

If yH · y is independent of the transmitted codeword (42) can be written as

Ĉ = arg min
Ĉ

[
Tr

⌈
HH CH CH

⌉
− 2 · Real

(
Tr

⌈
HH CH y

⌉)]
(43)

Also (43) can be generalized for multiple receivers as given by

Tr|HH CH CH| =
MR∑
m=1

HH
m CH CHm (44)

Tr|HH CH y| =
MR∑
m=1

HH
m CH ym (45)

Applying (44) and (45) in (43) we get

Ĉ = arg min
Ĉ

⎡
⎣

MR∑
m=1

HH
m CH CHm − 2 · Real

⎛
⎝

MR∑
m=1

HH
m CH ym

⎞
⎠
⎤
⎦ (46)

In case of one receiving antenna, the minimization function reduce to

HH
1 CH CH1 − 2 · Real

(
HH

1 Cy1

)
(47)

For multiple receivers, we can write the function for one receiver and add the correct sum-
mation in front of it to achieve the ML decoding formulas for general case of MR receiving
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antennas. It is equivalent to maximum ratio combining (MRC). In case of ST coding with
Alamouti structure, the above metric can be decomposed into two separate parts for detecting
each individual symbol i.e. ML decoding becomes single symbol decodable ML (SML). In
SF coding, single symbol ML decoder doesn’t yield optimum results because channel ortho-
ganlity is disturbed in case of frequency-selective channels. In such cases, joint ML decoder
(JML) is preferred which detects two symbols jointly. ML decision metric, which detects S0
and S1 jointly is given by

Dm(Ŝ0, Ŝ1) = ([
y − CH

])2 (48)

= [
y0 − H11S0 − H12S1

]2 + [
y1 + H21S1∗ − S0∗]2 (49)

By neglecting the terms that are independent of transmitted symbols S0 and S1, the above
decision metric reduces to

Dm

(
Ŝ0, Ŝ1

)
=

(
[H11]2 + [H22]2

)
[S0]2 +

(
[H12]2 + [H21]2

)
[S1]2 −

2R
[(

H11y∗
0 + H∗

22y1
)

S0 + (H21y∗
0 − H∗

12y1) [S1] + (H12H∗
22 − H11H∗

21)S0S1∗] (50)

5.3 Sphere Decoder (SD)

SD is preferably used [34] when decoder complexity is high, it might be high due to increase
in number of transmit and receive antenna or when coding is in three dimensions like space,
time and frequency. The main idea behind SD is to limit the search space for finding the
closest codeword to the particular received vector. The search space which includes optimal
lattice point is given by a hyper-sphere of radius r centered on the received signal vector.
Equation (4) can be rewritten after omitting all subscripts and superscripts as follows

Y = CH + Z (51)

In ML decoding, we find the codeword C that minimizes the Frobenius norm
[|y-CH|]2

F.
Using a full search for finding the optimal codeword is computationally very demanding.
If the modulation utilizes a constellation with 2b points to transmit b bits, the number of
possibilities for C is 2bM

T. It will become more impractical with higher constellation size
and with more transmitting antennas. Thus in SD, instead of searching all possible vectors
for finding C in the above optimization problem, we will search over a hyper-sphere of
radius rs centered on the received signal vector [35] i.e. we look for vectors C which satisfy
Ĉ = arg minĈ[|y − CH|]2

F ≤ r2
s . If the point is actually found in the sphere, the radius of the

search sphere is lowered to the distance of this point to the center. The algorithm is repeated
until no point is found inside the search sphere.

It comprises of two steps, (1) pre-processing (2) search step. In step 1, we consider the
solution of optimization problem, i.e., to minimize [|y − CH|]2

F is ZS = H↓Y. where H↓
pseudo inverse of matrix H. The optimization problem can equivalently written as

min
�ε�

(C − zS)H HH H(C − zS) (52)

where � is a complex lattice in the sense that each coordinates of C is chosen from the
defined complex constellation. By performing Cholskey decomposition on the HH H matrix,
we obtain the upper triangular matrix U = 〈

uk,l|ukk ∈ rS > 0
〉

such that HH H = UH U. We
now consider the problem of finding solution to [|U (zs −C)|]2 ≤ r2

s .
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In the preprocessing step, the unconstrained solution zs and upper triangular matrix U are
calculated. Then the MTMT matrix Q is formed according to

Q =
∣∣∣∣
qKS,KS

= u2
KsKS

qKS,1 = uKs1/ukS,KS , ks < 1

∣∣∣∣ (53)

In step 2, the points inside the sphere are examined to locate the vector C which has the
lowest distance from the center. Using the fact that the matrix Q is upper-triangular, we can
re-write the problem as follows

KS∑
i=0

∣∣∣∣∣∣
qi,i

(
Ci − zsi

) +
KS∑

j=i+1

qi,j(Cj + zsi )

∣∣∣∣∣∣

2

≤ r2
s (54)

The relation above can be used to find Ck’s, ks = 1, . . ., ks in an iterative fashion. Specifically,
we start with ks = ks and find the distance between Ck and the center of the ks-dimensional
sphere as

d2
ks

=
ks∑

l=k

∣∣∣∣∣∣
ks∑

i=1

ql,i
(
Ci − zsi

)
∣∣∣∣∣∣

2

(55)

If we define

SKS = zSKS
−

KS∑
i=KS+1

qKS,i
(
Ci − zsi

)
(56)

For the other ks −ks elements, the condition for being inside the search sphere can be written
as

d2
KS

= d2
KS+1 + qKS,KS

∣∣CKS − SKS

∣∣2 ≤ r2
S (57)

Thus a search space for SKS can be specified as

∣∣CKS − SKS

∣∣2 ≤ r2
S − d2

KS
+1

qKS,KS

(58)

When ks become equal to 1, a valid vector C is found. If the distance from the center to the
point is found to be less than the radius of the sphere [36], this distance is chosen as the new
radius of the sphere. The procedure is then repeated starting again with ks = ks. If at any
time, d2

KS
is greater than the radius of the sphere, the procedure is terminated.

The decoder complexity is measured and compared in terms of complex valued addi-
tions, subtractions and multiplications required to decode one block of transmitted symbols.
A complex multiplication is equivalent to 4 real multiplications RM and 2 real additions RA,
while a complex addition is equivalent to 2 real additions. Furthermore, the multiplication
of a real valued quantity by a factor 2, like the term on right hand side of Eq. (50), is imple-
mented by means of one real valued addition. In case of ML decoding, we have to compare
single symbol decodable ML and jointly decodable ML. In first case, we need to compute
2b metrics for each of the two transmitted symbols, where b is number of bits per modulated
symbol. In joint ML, we require 22b metrics to determine symbols which jointly minimizes
(50).The number of necessary complex valued additions/subtractions and multiplications are
summarized in Table 6.
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Table 6 Number of complex
valued operations in SML and
JML

Parameter SML JML

Number of addi-
tions/subtractions

4 + 3 ∗ 2b 4 + 3.5 ∗ 22b

Number of complex
multiplications

8 + 2.5 ∗ 2b 10 + 4 ∗ 22b

Table 7 Number of complex valued operations in SML and JML

Parameter BPSK(b = 1) QPSK(b = 2) 16-QAM(b = 4)

SML JML SML JML SML JML

Number of addi-
tions/subtractions

10 18 16 60 52 900

Number of complex
multiplications

13 26 18 74 48 1034

Table 8 Simulation parameters

Parameter Value

Total bandwidth 1 MHz

Number of transmit antenna 2

Number of receiving antenna 1 and 2

Maximum Doppler freq.(fm) 200 Hz

Maximum Doppler shift 2π fm = 1.256 × 10−3

Channel model used [37] Channel coefficients
amplitudes Channel delay spreads (in μ s)
Carrier modulation used

Six-ray urban TU channel model 0.2, 0.5, 0.4,
0.1, 0.06, 0.4 0, 0.2, 0.5, 1.6, 2.3, 5 BPSK

Spectral efficiency 1bit/sec/Hz

Number of data subcarriers 128

Number of pilot-subcarriers None

IFFT size 128

Guard period type Cyclic extension

Cyclic prefix length 32

Window type No windowing used

Number of channel taps 12 and 34 for flat and selective channels

Channel fading Rayleigh independent frequency flat and
selective fading i.e. rank (RT) = 1,

The results of complexity analysis for different modulation techniques like BPSK, QPSK,
and 16-QAM are shown in Table 7.

From Table 7, it is clear that complexity incases with increase in constellation size and
among ML decoders, joint Ml decoder exhibits higher complexity. In SD, complexity is
measured in terms of average floating point operations (FLOPS) which include all arithmetic
operations. Average FLOPS per block in case of SD used in this paper is apprx. 10 for BPSK
and increased up to 400 for 64-QAM; Thus, number of FLOPS are remarkably less than
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number of real multiplications and additions in SML and JML. Thus, SD is considerably less
complex than SML and JML. However, system complexity needs to be put in relation to the
complexity of other functional blocks for e.g. in FFT operation at the receiver, the number
of complex multiplication required for an N-point FFT is N ∗ log2N, which equals to 896
complex multiplications for N = 128.

6 Simulation Results

6.1 Simulation Parameters

Simulation parameters used for simulation of MIMO-OFDM transceiver model mentioned
in Fig. 1 are listed in Table 8. Simulations is done with 2 transmit antenna, 1 receiver antenna
and then with 2 transmit and 1 receive antenna.

6.2 Results

To illustrate analytical results derived in Sect. 3, we plotted simulation results in terms of
BER with variation in signal to noise (SNR) ratio. Simulations are done in two phases. In
phase 1, results are plotted considering two transmit antennas and one receiving antenna
and in 2, with two transmit antennas and two receiving antennas. In both cases the chan-
nel between transmit and receive antenna pair is assumed to be a quasi-static Rayleigh flat
and selective channel with higher tap order. The channel is modeled by Jake’s model which
takes into account the effects of Doppler shift and Doppler spread existing due to relative
motion between transmitter and receiver. Further, the channel experienced by each transmit-
ting antenna is assumed to be independent of channel received by other transmitting antennas.
In addition, the transmitting power of each transmitting antenna is considered same. Further,
we assume that the receiver has perfect knowledge of the channel while transmitter doesn’t
know the channel.

Figures 3 and 4 shows BER performance of 2 × 1 MIMO-OFDM system with different
equalizers in frequency flat and frequency selective channels. It shows STF coding scheme
clearly dominates ST and SF coding, In other words, STF coding showing higher diversity
order than other schemes. In Sect. 4, we conclude that maximum achievable diversity in case
of STF coding is LMRMT, assuming independent channel fading i.e. temporal coefficient
RT = Ik (identity matrix).Therefore, maximum achievable diversity in flat channels with
2 × 1 configuration is 12 ∗ 1 ∗ 2 = 24 (as shown in Fig. 3) and 34 ∗ 1 ∗ 2 = 68 in selective
channels as shown in Fig. 4. The symbols are chosen from BPSK constellation, therefore
ignoring the cyclic prefix, we have a spectral efficiency of 1/bit/s/Hz. Moreover, SF and STF
schemes have same spectral efficiency because full diversity STF coding is obtained from full
diversity SF coding via repetition mapping. Among equalizers, STF with SD outperforms all
other equalizers i.e. STF-ML and STF-DFE by almost 0.5 and 1 dB. Among coding schemes,
STF-SD dominates SF-SD and ST-SD by approximately 2 and 3 dB. Thus, we conclude that
STF coding with SD is the best combinations among all permutations. Comparing results
of Figs. 3 and 4, it clearly shows that BER performance is better in flat channels with all
combinations.

Figures 5 and 6 shows BER performance of 2 × 2 MIMO-OFDM system in both flat
and selective channels. The achievable diversity is 48 and 136 in case of flat and selective
channels with 2 × 2 configuration, higher than that of 24 and 68 with 2 × 1 configuration.
The results also show that employing 2 antennas on receiver side greatly enhance the system
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Fig. 3 Comparison of BER for BPSK using 2 × 1 MIMO-OFDM system in quasi-static Rayleigh frequency
flat channel
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Fig. 4 Comparison of BER for BPSK using 2 × 1 MIMO-OFDM system in quasi-static Rayleigh frequency
selective channel

performance as the diversity order is increased. Further, the BER performance is better in
flat channels than selective channels. Therefore, it can be concluded that STF-SD is the best
coding scheme in both cases.
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Fig. 5 Comparison of BER for BPSK using 2 × 2 MIMO-OFDM system in quasi-static Rayleigh frequency
flat channel. ST-DFE space time with decision feedback equalizer, ST-ML space-time maximum likelihood,
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Fig. 6 Comparison of BER for BPSK using 2 × 2 MIMO-OFDM system in quasi-static Rayleigh frequency
selective channel
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Fig. 7 BER comparison of STFC and SFC with rate-1 for 2×1 MIMO-OFDM system in quasi-static Rayleigh
frequency flat channel

Figure 7 shows the BER comparison of our ST, SF and STF codes with existing codes.
Results show that existing codes dominate the performance in lower SNR region as they use
precoding matrix [10]. In higher SNR region, our ST, SF and STF codes outperforms their
corresponding counterparts as the effect of higher diversity order is more dominating then
using precoding matrix. The superiority of our STF code over that of [14] and [23] is evident
from Fig. 7. In Fig. 7, at almost every point our STF code is better than code of [14] and [23]
by almost 2–3 dB. Our SF codes also dominates SF codes in [10] and [23] by 1–1.5 dB.

7 Conclusion

In this paper, system performance of 2 × 1 and 2 × 2 ST/SF/STF coded MIMO-OFDM is
investigated under broadband wireless channels. Maximum achievable diversity is computed
and verified with simulation results. Simulation is done for both quasi static Rayleigh fre-
quency flat and selective channels modeled by Jake’s model which considers the effect of
Doppler shift and spread along with more multiple paths. Choosing higher number of multiple
paths helps in to achieve higher diversity order, which further helps to combat deep fades
occur due to harsh wireless environment. It is concluded that effects of higher diversity is
more dominating in higher SNR region. Decoder complexity which increases due to increase
in diversity order is resolved by employing SD at receiver. The major limitations of MIMO
technology are to choose antenna spacing which must be appropriate depending upon the
type of channels. The limitation of the proposed design is increased complexity in transmitter
and receiver designs. Work can be done to reduce this complexity. System performance can
be improved further if we increase code rate and coding gain.
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