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Abstract Multiple input multiple output (MIMO) communication systems with orthogonal
frequency division multiplexing (OFDM) has a great role to play for 4G broadband wireless
communications. In this paper, a space time frequency (STF) code is presented with reduced
decoder complexity and to achieve code rate MT with full diversity of MTMRNb L i.e.,
product of number of transmit antennas (MT), receive antennas (MR), fading blocks (Nb)

and channel taps (L). The maximum achievable diversity with high rate of STF block coded
MIMO-OFDM is analyzed and verified by simulation results. The decoder complexity is
resolved by employing several approaches like maximum likelihood (ML), sphere decoder
(SD) and array processing. The performance of STF code is compared with existing layered
algebraic STF code in terms of decoder complexity and bit error rate (BER). Further, the
closed form expressions for BER performance of STFBC MIMO-OFDM systems are derived
and evaluated for frequency selective block fading channels with MPSK constellations.

Keywords MIMO-OFDM · STF code design · ML · SD · Array processing · BER analysis

1 Introduction

The growing demand of multimedia applications and the growth of internet related con-
tent lead to increased interest for high speed communications in practical environments like
macro/micro, urban/sub-urban/rural, and indoor/outdoor. Initially, higher bandwidth was sug-
gested for such high data rate applications. Increasing bandwidth is not a realistic method to
achieve above goals and hence some spectral efficient techniques like multiple input multi-
ple output (MIMO) systems [1,2] are designed. The key advantages of employing multiple
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antennas are (a) the improvement in reliability performance through diversity, and (b)

increase in data rate through spatial multiplexing. With MIMO systems, the adverse effects
of wireless propagation environment like fading can be significantly reduced. Fading mitiga-
tion can be accomplished by techniques like transmitter and receiver diversity. The signal is
transmitted through multiple independent fading paths in terms of time, frequency or space
and is combined constructively at the receiver.

For narrowband wireless communication systems, a number of space time (ST) codes
[3–11] with various coding and modulation methods have been proposed. In ST cod-
ing, the maximum achievable diversity is equal to MTMR. In case of broadband wire-
less communications, the fading channel is frequency selective. Orthogonal frequency
division multiplexing (OFDM) [12] is used to transform the frequency selective chan-
nel into a set of parallel frequency flat channels. In other words, high data rate stream
is split into a number of low rate streams and each stream is modulated with orthog-
onal subcarrier. The number of subcarriers is decided such that each subcarrier should
have bandwidth much less than that of coherence bandwidth of the channel. Therefore,
the inter symbol interference (ISI) on each subcarrier is very small. ISI can be further
mitigated by adding cyclic prefix (CP) to each OFDM symbol. Another major perfor-
mance constraint in OFDM systems is inter carrier interference (ICI) [13,14], which occurs
due to carrier frequency offsets between transmitted and received carriers. Recently, the
effect of ICI is estimated in OFDM systems as a function of product of fm and Ts,
frequency tracking factor (ζ) and mobile travel direction (ε) [15,16]. Also ICI can be
significantly reduced with the help of proper pulse shaping [17,18]. In order to take
advantage of both MIMO and OFDM modulation, MIMO-OFDM systems have been
proposed. It results in two major coding approaches. The first approach is space fre-
quency (SF) coding [19–21], where coding is applied within a single OFDM block to
exploit the spatial and frequency diversities. Other one is space time frequency (STF)
coding [22–25], where the coding is applied across multiple OFDM blocks to exploit
the spatial, temporal, and frequency diversities available in frequency selective MIMO
channels.

Earlier works on ST coding uses ST trellis codes [4] over frequency flat channels. The
resulting codes achieve spatial diversity instead of full diversity. In ST coding, full diversity is
equal to the product of number of transmit and receive antennas with single symbol decoding
complexity [5,6]. However, the code rate is reduced if we employ more than 2 transmit and
receive antennas. It is being proved that code rate in such cases is 3/4 [3]. To improve code
rate, quasi-orthogonal STBC was proposed via a constellation rotation [7]. The code rate
with such codes has upper bound of 1 but with higher decoding complexity. To reduce the
complexity of code design, a grouping method [20,26] with precoding and bit-interleaving
was proposed. Recent research proposed algebraic number theory [27,28] to construct ST
codes having code rate larger than 1 but with high decoding complexity. In frequency selec-
tive channels, the full diversity is equal to MRMTL. In MIMO-OFDM, SF block coding was
proposed to achieve full diversity but with code rate less than 1[19]. The repetition mapping
technique [19] used to transform existing ST codes to full diversity SF codes was also pro-
posed but with tradeoff between diversity and symbol rate. Recently, high-rate full-diversity
SF block codes have been proposed with various signal constellations and with any number
of transmit antennas [29–31]. System performance can be improved further by considering
coding across multiple OFDM blocks which results in STF coding [23]. STF coding exploits
all of the available diversities in the spatial, temporal, and frequency domains. It is proved that
a STF block coded MIMO-OFDM system can achieve a maximum diversity gain equal to the
product of number of transmitting antennas, receiving antennas and multiple paths present
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in the frequency selective channel. Initially, STF code design was proposed to achieve max-
imum diversity with rate 1[22]. Recently, the performance of STF codes is studied under
various channel conditions and system configurations [25] over quasi-static channels [22].
However, performance can be improved in terms of diversity gain if we consider general block
fading channels [32,33]. In block fading channels, fading coefficients are constant over one
fading block but are independent from one fading block to another. In [34], a new alge-
braic number theory based STF code design is proposed to achieve rate MT in block fading
channels.

The design is motivated by the fact that there is not much MT rate ST or SF or STF codes
existing that are easy to design and decode for quasi-static as well as block fading channels.
In this paper, a rate MT full diversity STF code is presented with different approach than
algebraic STF codes for block fading channels. The paper addresses the issue of designing
high rate SF and STF codes that are easy to design and decode. The proposed code for 4 × 4
MIMO system along with array processing decoder achieves goals of lower complexity as
shown in Table 6. The codes behave equally well in quasi-static as well as block fading chan-
nels. Several decoding approaches like maximum likelihood (ML), sphere decoder (SD) and
array processing are investigated to resolve the complexity issue. It is also proved that pre-
sented STF code achieves rate MT and full-diversity of MT MR Nb L. The results are verified
by simulation plots. Further, closed form expressions for bit error rate (BER) performance
of STFBC MIMO-OFDM systems are derived and evaluated for frequency selective block
fading channels with MPSK constellations.

The rest of the paper is organized as follows. In Sect. 2, a general MIMO-OFDM trans-
ceiver model is proposed. The STF performance design criteria are given in Sect. 3. In Sect. 4
the code structure and examples of rate MT STF code are addressed. Closed form expressions
for BER performance of STFBC MIMO-OFDM systems are derived in Sect. 5. In Sect. 6,
various decoders are presented to reduce the system complexity. Simulation results are given
in Sect. 7 and the paper is concluded in Sect. 8.

2 Space Time Frequency Coded MIMO-OFDM Systems

The various notations and symbols used in this paper are tabulated in Table 1.
A MIMO-OFDM system shown in Fig. 1 consists of MT transmit and MR receiving

antennas.
Initially, the incoming bit stream is mapped into data symbols via modulation technique

like BPSK, QPSK. The block of data symbols S of size NCMTNbis split into J equal size sub
blocks. These sub blocks can be expressed as

S = [S1T, ST
2 , . . . , ST

J

]T
(1)

The total number of sub blocks is J = NC/K, while K is given by

K = 2(log2 MTL) (2)

Clearly for frequency selective channels, L is always greater than 1 and hence K is always
a power of 4. These symbols are then encoded into STF codeword matrix C ∈ CNc×MTNb ,
where codeword C [22,34] can be written as

C = [C1, C2, . . . , CNb
]

(3)
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Table 1 Notations and symbols [matrices (vectors) are shown by bold upper (lower) case letters]

Notation Meaning Notation Meaning

S Data symbols λ̂rG λ̂u,rGu
Non-zero eigen values of matrix G and Gu

C STF codeword matrix of
size NC × MTNb

X̃i Precoded matrix for subblock i

Cu STF codeword matrix of
size NC × MT during
uth fading block

Bi STF encoded matrix for subblock i

cu
MT

MTth column vector of
codeword matrix Cu

J Number of sub blocks

MT(MR) Number of transmitting
(receiving) antennas

1n×1 Column matrix of 1’s

Nb Number of fading blocks �u Unitary matrix of size
KMT × KMT, where
K = 2(log2 MTL)

NC Number of sub-channels
or frequency tones

BERavg
MPSK Average BER with MPSK

Modulation

Hu
i,j

(
αu

i,j

)
Channel frequency

response (path gains)
between transmitting (i)
and receiving (j)
antenna during uth
block

P(γ) Probability density function (PDF)

z Noise vector of size
NCNbMR

ζ Frequency tracking factor

Yu
j Received signal at jth

receive antenna during
uth fading block

ε Mobile travel direction

(.)T Transpose γs Symbol SNR

()H Hermitian transpose RC Code rate of STFBC system

||.||F Frobenius norm � Null space of matrix

L Number of channel taps M Constellation size

τl Time delay of lth path rs Radius of hyper-sphere

γ̂, γ Average and
instantaneous SNR

β Number of bits/symbol

IMR Identity matrix of size
MR and MR

H ↓ Pseudo inverse of channel matrix H

� Correlation matrix of
channel h

� Complex lattice

⊗ Kronecker product U Upper triangular matrix
◦ Hadamard product ZS Unconstrained solution of

Frobenius norm of Y- CH
E Expectation operator d2

KS
Distance between codeword and

centre of ks-dimensional sphere
G, Gu Block diagonal matrix of size

NbNC × NbMTL and
NC × MTL

Ĥm×m Hadamard matrix of order m × m

rG, rGU Rank of matrix G and Gu fm Maximum Doppler spread

where, the NC × MT matrix Cu is defined as Cu =
[
cu

1, cu
2, . . . , cu

MT

]
for u = 1, 2, . . ., Nb.

The OFDM transmitter performs an NC-point inverse fast Fourier transform (IFFT) to each
column of matrix Cu during the fading block u. After IFFT modulation, CP is added (with
length ≥ channel delay spread) to remove ISI. The information is then passed through MIMO
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Fig. 1 MIMO-OFDM transceiver model

channel which is characterized by Jake’s model [35] as shown below for Rayleigh frequency
selective channels.

hu
i,j(t) =

L−1∑

l=0

αu
i,j(l) δ(t − τl) (4)

Equation (4) represents channel impulse response (CIR) from the ith transmit antenna to jth
receive antenna during uth fading block. Theαu

i,j(l)’s are zero mean complex Gaussian random
variables and independent for any (i, j, u, l), where 1 ≤ i ≤ MT, 1 ≤ j ≤ MR,1 ≤ u ≤ Nb

and 1 ≤ l ≤ L−1. It is further assumed that all path gains follow the same power delay profile

i.e. E

[[
αu

i,j(l)
]2
]

= δ
2
l > 0 for any given (i, j, u, l). The powers of L-paths are normalized

as
∑L−1

l=0 δ
2
l = 1. The MIMO channel experiences frequency selective fading and block

fading simultaneously through L independent paths between each pair of transmitting and
receiving antenna. It is assumed that these path gains are constant over one fading block and
independent from one fading block to another.

At the receiver, the received signals are assumed to be perfectly synchronized. After
removing the CP and applying FFT on frequency tones, the received signal at jth receive
antenna during uth fading block is given by

Yu
j =

MT∑

i=1

diag(cu
i,j)H

u
i,j (5)

where Yu
1 is defined as, Yu

j =
[
yu

j (0), yu
j (1), . . . , yu

j (Nc − 1)
]T

power normalization

and noise terms are neglected for simplification. The channel frequency response [34] is
given by

Hu
i,j = Fhu

i,j (6)

where Hu
i,j =

[
Hu

i,j (0) , Hu
i,j (1) , . . . , Hu

i,j (Nc − 1)
]T

, hu
i,j =

[
αu

i,j (0) , αu
i,j (1) , . . . ,

αu
i,j (L − 1)

]T
and F = [f0, f1, . . ., fL−1]. The column vector fl is defined as fl =

[
1,ωl ,ω

2
l , . . . ,ω

Nc−1
l

]T
where ωl = exp(−j2 π τl

Ts
) and Ts is the effective duration of
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the OFDM symbol. Let Dl = diag(fl), which means Dlcu
i,j = diag(cu

i,j)fl thus (5), can be
written as

Yu
j =

MT∑

i=1

[
D0cu

i,j, D1cu
i,j, . . . , DL−1cu

i,j

]
hu

i,j (7)

By putting ĥu
l, j =

[
αu

1,j (l) , αu
2,j (l) . . . αu

MT,j (l)
]T

for l = 0, 1. . .L − 1, (5) can be written
as

Yu
j =

L−1∑

l=0

[
Dlcu

1,j, Dlcu
2,j, . . . Dlcu

MT,j

]
ĥu

l,j (8)

=
L−1∑

l=0

DlCuĥu
l, j (9)

Also using

Xu = [D0Cu, D1Cu, . . . , DL−1Cu] (10)

and

hu
j =

[[(
ĥu

0,j

)T
,
(

ĥu
1,j

)T
, . . . ,

(
ĥu

L−1,j

)T]]T

(11)

in (7), we get Yu
j = Xuhu

j for u = 1, 2, . . ., Nb and j = 1, 2, . . ., MR. We can further
generalized Y, h and X as

Y =
[(

Y1
1

)T
. . .
(

YNb
1

)T
, . . . ,

(
Y1

MR

)T
. . .
(

YNb
MR

)T
]T

(12)

h =
[(

h1
1

)T
. . .
(

hNb
1

)T
. . .
(
h1

MR

)T
. . .
(

hNb
MR

)T
]

(13)

X = IMR ⊗ diag
(
X1, X2 . . . XNb

)
(14)

Thus we obtain

Y =
√

γ̂

MT
Xh + z (15)

Where the size of Y, X, h and z is NCNbMR, NCNbMR × MTMRNbL, MTMRNbL and

NCNbMR respectively. The factor
√

γ̂

MT
is the power normalization factor.

3 STF Code Performance Design Criteria

Assume that C and Ĉ are two different STF codewords of size NC × MTNb related to S and
Ŝ respectively, the pairwise error probability (PEP) between C and Ĉ can be upper bounded
[19] as

P(C − Ĉ) ≤
(

2r − 1
r

)( r∏

i=1

λ
i

)−1 (
ρ

MT

)−r

(16)
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where r is the rank of (X − X̂)�(X − X̂)H , λ1, . . .,λr is the non-zero eigen values of
(X − X̂)�(X − X̂)H and � = E

{
hhH

}
is the correlation matrix of h. The codewords X

and X̂ are related to C and Ĉ as shown in (10). Based upon PEP criteria two general STF
performance criteria are depicted as follows.

Diversity Criteria: It is also called rank criteria. It states that minimum rank of (X −
X̂)�(X − X̂)H over all pairs of codewords C and Ĉ should be as large as possible.

Product Criteria: It states that minimum value of the product
∏r

i=1 λi over all pairs of
different codewords C and Ĉ should be maximized.

In spatially uncorrelated MIMO channels, the channel taps αu
i,j (l) between each pair of

transmit antenna i and receive antenna j are independent of each other. Thus, correlation
matrix � = E

{
hhH

}
can be written as

� = IMR ⊗ INb ⊗ diag
(
δ

2
0, δ

2
1, . . . , δ

2
L−1

)⊗ IMT (17)

Factorizing� as�=(�1/2
) (�1/2

)H
, we get�1/2 = IMR⊗INb⊗diag

(
δ

2
0, δ

2
1, . . . , δ

2
L−1

)1/2

⊗ IMT . Thus from (14) and (17), we have

(X − X̂)�1/2 = IMR ⊗ G (18)

Block diagonal matrix G can be further written as

G = diag
(
G1, G2 . . . GNb

)
(19)

and the NC×MTL matrix Gu can be represented as Gu = (Xu−X̂u)diag
(
δ

2
0, δ

2
1, . . . , δ

2
L−1

)1/2

for u = 1, 2, . . ., Nb. Let rG and rGU be the rank of G and Gu respectively, where rG can be
represented as rG =∑Nb

u=1 rGU . Let λ̂1, λ̂2, . . . , λ̂rG and λ̂u,1, λ̂u,2, . . . , λ̂u,rGu are non-zero

eigen values of G and Gu. Thus we have
∏rG

i=1 λ̂i = ∏Nb
u=1

(
λ̂u,1, λ̂u,2, . . . , λ̂u,rGu

)
. Further,

(X − X̂)�(X − X̂)H can be simplified to

(X − X̂)�(X − X̂)H = IMR ⊗
(

GGH
)

(20)

The rank of IMR ⊗ (GGH
)

is defined as r = rGMR. Thus, the performance criteria of STF
codes can be modified for frequency selective block fading as follows.

Diversity Criteria for Block Fading: It is also called sum of ranks criteria, which states
that maximum transmit diversity gain is given by

rG =
Nb∑

u=1

rGU (21)

For all pairs of distinct codewords C andĈ.
Product Criteria for Block Fading: Maximize the product value of

rG∏

i=1

λ̂i =
Nb∏

u=1

(
λ̂u,1, λ̂u,2, . . . , λ̂u,rGu

)
(22)

for all pairs of different codewords C and Ĉ. The maximum value is called coding gain.
The MIMO channels will experience frequency selective fading if L > 1. Also, if Nb = 1,

the design rules of STF code will turns to be of SF codes in quasi–static fading channels.
Main aim is to construct high rate codes with full diversity. Full diversity is directly related
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to rank of the STF codes in MIMO frequency selective block fading channels. The rank is
given by

r = rGMR ≤ min (MRNbNc, MRNbMTL) (23)

If we consider NC ≥ MT L then rank r can be approximated as r ≤ MRNbMT L to achieve
the full diversity. The matrix G should also be full rank for every distinct pair of codewords
C and Ĉ.

4 Rate MT STF Code Design

The coding algorithm provides different steps to design rate MT SF and STF codes in quasi-
static and block fading channels. Although some work exits in [29], but the design was not
generalized for STF codes. In the proposed design the algorithm work for STF codes with
SF codes as special case. Initially, the algorithm processes block wise data and precodes it
by multiplying with unitary matrix, and subsequently with Hadamard matrix of order 2×2 or
4×4. The order of Hadamard matrix depends upon number of transmitting antennas used. The
processed block symbols are then concatenated to form complete codeword, which are then
transmitted by MT antennas. The design can be generalized for any number of transmitting
antennas.

4.1 Code structure

The rate MT STF code scheme is shown in Fig. 2. Initially, the block of data symbols S of size
NCMTNb is split into J equal size sub blocks. The total number of sub blocks is J = NC/K,
where K = 2(log2 MTL).

Afterwards, each sub block data symbols Si is sent through STF encoder. The generalized
STF encoder is same for every input sub block Si. The Input block Si is linearly precoded
[36] with a unitary matrix �. The algebraic construction of unitary matrix � [37] per block
is given by

�u = 1√
KMTNb

⎡

⎢⎢⎢
⎣

1 θ
(u)
1(u) θ

2(u)
1(u) · · · θ

KMT−1(u)
1(u)

1 θ
(u)
2(u) θ

2(u)
2(u) · · · θ

KMT−1(u)
2(u)

· · · · · · · · · · · · · · ·
1 θ

(u)
KMT(u) θ

2(u)
KMT(u) . . . θ

KMT−1(u)
KMT(u)

⎤

⎥⎥⎥
⎦

(24)

where θk = e
j
π
(

4k−3
)

2KMT , k = 1, 2, . . ., KMT and u = 1, 2, . . ., Nb. The precoded matrix X̃i can
de expressed as

X̃i = �Si (25)

Fig. 2 Details of rate MT STF
encoder
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Table 2 Different values of L, K
and n with MT = 2 and m=2

L 2 3 4 5 6 7 8

K 4 8 8 16 16 16 16

n 2 4 4 8 8 8 8

Table 3 Different values of L, K
and n with MT = 3 and m=4

L 2 3 4 5 6 7 8

K 8 16 16 16 32 32 32

n 2 4 4 4 8 8 8

Table 4 Different values of L, K
and n with MT = 4 and m=4

L 2 3 4 5 6 7 8

K 8 16 16 32 32 32 32

n 2 4 4 8 8 8 8

The size of X̃i, � and Si is KMTNb. The resultant matrix [29] is reshaped and then some
matrix manipulations are performed on it as shown below

Bi = X̃i ◦
(

Ĥm×MT
⊗ 1n×1

)
(26)

where Ĥm×MT
is the first MT columns of m × m Hadamard matrix Ĥm×m with m =

2(log2 MT) and n = K/m. The values of m, n and K corresponding to MT and L are given in
Tables 2, 3 and 4.

Hadamard matrices of order 2 and 4 is given by

Ĥ2×2 =
[

1 1
1 −1

]
and Ĥ4×4 =

⎡

⎢⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥⎥
⎦ (27)

Finally, Bi matrices are concatenated to from codeword matrix C of size NC × MTNb.

C = [BT
1 , BT

2 . . . BT
J

]T
(28)

4.2 Simulated examples of STF Code Design

The coding strategy is same for every sub block BT
i but with some different variables so we

are considering the formulation of only one sub block.
(1) When MT = 2 with Nb = 1and Nb = 2
Consider NC = 64 and L=2. When Nb = 1, STF codes resembles SF codes. When

MT = 2, we get K = 4, m = 2 and n = 2 from Table 2. STF code corresponding to above
parameters is 4 × 2 matrix as shown below

⎡

⎢⎢
⎣

x1 x5
x2 x6

x3 −x7

x4 −x8

⎤

⎥⎥
⎦ (29)
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where xi’s are elements of matrix X̃i. It can be easily observed that 8 symbols are transmitted
in 4 time slots which results in code rate of 2, which is same as that of MT. Above code
structure can be extended to more than 1 fading block by choosing Nb = 2. The STF code
with above parameters is given as follows

⎡

⎢
⎢
⎣

x1 x5
x2 x6

x3 −x7

x4 −x8

⎤

⎥
⎥
⎦

/⎡
⎢
⎢
⎣

x9 x13

x10 x14

x11 −x15
x12 −x16

⎤

⎥
⎥
⎦ (30)

Comparing the codes in (29) and (30), upper part of code in (30) exactly resembles as that
of (29) with same code rate.

(2) When MT = 3 with Nb = 1 and Nb = 2
In this case, rate 3 STF code is constructed with Nb = 1 and Nb = 2. When MT = 3,

we can get K = 8, m = 4 and n = 2 from Table 3. STF code corresponding to above
parameters is 8 × 3 matrix as shown below

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1 x9 x17

x2 x10 x18

x3 −x11 x19

x4 −x12 x20

x5 x13 −x21

x6 x14 −x22

x7 −x15 −x23

x8 −x16 −x24

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(31)

Above code structure shows code rate of 3. This can be extended to more number of fading
blocks, e.g., Nb = 2. The code structure corresponding to Nb = 2 is as follows

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1 x9 x17

x2 x10 x18

x3 −x11 x19

x4 −x12 x20

x5 x13 −x21

x6 x14 x22

x7 −x15 −x23

x8 −x16 −x24

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

/⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x25 x33 x41

x26 x34 x42

x27 −x35 x43

x28 −x36 x44

x29 x37 −x45
x30 x38 −x46

x31 −x39 −x47

x32 −x40 −x48

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(32)

Where numerator matrix is for fading block 1 and denominator matrix is for fading block 2
with same code rate.

(3) When MT = 4 with Nb = 1 and Nb = 2
The parameter corresponds to MT = 4 are K = 8, m = 4, n = 2 as seen from Table 4.

The STF code structure corresponds to above parameters is 8 × 4 matrix as shown below
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1 x9 x17

x2 x10 x18

x3 −x11 x19

x4 −x12 x20

x5 x13 −x21

x6 x14 −x22

x7 −x15 −x23

x8 −x16 −x24

x25
x26

−x27

−x28

−x29

−x30

x31

x32

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(33)
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The above code structure can be extended to two fading blocks as shown below with same
parameters and same code rate.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x1 x9 x17 x25
x2 x10 x18 x26

x3 -x11 x19 −x27

x4 −x12 x20 −x28

x5 x13 −x21 −x29

x6 x14 −x22 −x30

x7 −x15 −x23 x31

x8 −x16 −x24 x32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

/⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x33 x41 x49 x57
x34 x42 x50 x58
x35 −x43 x51 −x59
x36 −x44 x52 −x60

x37 x45 −x53 −x61

x38 x46 −x54 −x62

x39 −x47 −x55 x63

x40 −x48 −x56 x64

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

(34)

5 BER Performance of STF Coded MIMO-OFDM Systems

In this section, BER expressions for STF block coded MIMO-OFDM systems are derived
and evaluated for frequency selective block fading channels. On the receiver side of MIMO-
OFDM systems data can be extracted and detected through (15), The BER expression [38]
can be written as

BER = 1

NC

NC−1∑

ko=0

BER(ko) (35)

Considering MPSK modulation with gray bit mapping for each subcarrier and ignoring
degradation due to cyclic prefix, instantaneous BER expression for the ko subcarrier [39] can
be represented as

BERMPSK(ko) = 1

β
erfc

(√
γs
[
H2(Ko)

]
sin
( π

2β

))
(36)

The exponential approximation [40] of above expression is given as

BERMPSK(ko) = 0.2 exp

(

−7 γs [H(ko)]2

21.9 β + 1

)

(37)

Thus, BER expression in (35) can be rewritten as

BERMPSK = 1

NC β

NC−1∑

ko=0

erfc

(√
γs
[
H2(Ko)

]
sin
( π

2β

))
(38)

and can be exponentially approximated as

BERMPSK(ko) = 1

NC

NC−1∑

ko=0

0.2 exp

(

−7 γs [H(ko)]2

21.9 β + 1

)

(39)

Now the average BER can be obtained by integrating B E RM P SK over infinite interval as
shown below

BERavg
MPSK =

∞∫

0

BERMPSKP(γ)d γ (40)
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where γ = [H(ko)]2 γs Since H(ko) is Rayleigh distributed with variance 1, H(ko)
2 will be

chi-square PDF with two degree of freedom. Consequently, put (39) in (40) we get

BERavg
MPSK = 0.2

(
1 + 7 γs

21.9 β + 1

)−1

(41)

In (41), BER expression for uncoded OFDM is derived. It can be extended to STF coded
MIMO-OFDM systems with MT transmitting antenna, MR receiving antennas and Nb fading
blocks. The normalized instantaneous SNR [41] in MIMO-OFDM is given as

γ = 1

MTNbRC

MT∑

i=1

MR∑

j=1

Nb∑

u=1

L−1∑

l=0

[
Hu

i,j(ko, l)
]2

γs (42)

Using above expression, BER of MPSK-STFBC-MIMO-OFDM over frequency selective
block fading channels can be expressed as

BERMPSK = 1

NC β

NC−1∑

ko=0

erfc

⎛

⎜
⎜
⎝

√√
√
√

γs

∑MT
i=1

∑MR
j=1

∑Nb
u=1

∑L−1
l=0

[
Hu

i,j(ko, l)
]2

RCMTNb
sin
( π

2β

)

⎞

⎟
⎟
⎠

(43)

It can be exponentially approximated as

BERMPSK(ko) = 0.2

NC

NC−1∑

ko=0

exp

⎛

⎜
⎝−

7 γs
∑MT

i=1

∑MR
j=1

∑Nb
u=1

∑L−1
l=0

[
Hu

i,j(ko, l)
]2

RCMTNb(21.9 β + 1)

⎞

⎟
⎠ (44)

Average BER in (40) can be extended to STFBC-MIMO-OFDM as

BERavg
MPSK =

∞∫

0

. . .

∞∫

0

BERMPSK

⎡

⎢⎢
⎣

P
(
γ1

1,1(l)
)

d γ1
1,1, . . . , P

(
γ1

MT,MR
(l)
)

d γ1
MT,MR

. . .

P
(
γu

1,1(l)
)

d γu
1,1, . . . , P

(
γu

MT,MR
(l)
)

γu
MT,MR

⎤

⎥⎥
⎦

(45)

We know that
[
Hu

i,j(ko, l)
]

is an i.i.d (independent and identically distributed) Rayleigh

channel with variance 1. Its pdf P(γu
i,j(l))is given by

P(γu
i,j(l)) = 1

γ̂
u
i,j(l)

exp

(

−
γu

i,j(l)

γ̂
u
i,j(l)

)

(46)

where γu
j,i ≥ 0. Substituting (44) and (46) in (45) we get

BERavg
MPSK = 0.2

(
1 + 7 γs

RCMTNb(21.9 β + 1)

)−MRMTNbL
(47)

6 Decoding of STFBC MIMO-OFDM

Inter symbol interference caused by multipath MIMO channels distorts the MIMO-OFDM
transmitted signal producing bit errors at receiver. To minimize these errors equalization or
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proper decoding is needed. In this paper various equalizers or decoders like ML, SD and
array processing are implemented and their performance evaluation is done in terms of BER
and complexity.

6.1 Maximum Likelihood (ML)

Linear equalizers are generally used when channel does not introduce much amplitude dis-
tortion. In such situations ML [42] equalizer is chosen as it tests all possible data sequences
and choose the sequence with maximum probability of occurrence. These equalizers require
knowledge of channel characteristics and statistical distribution of noise in order to compute
the metrics for making decisions. In ML decoding, we finds the codeword Ĉu that solves the
following minimization problem [43].

ĉu (ko) = arg min
Cu(ko)

Nb∑

u=1

NC−1∑

ko=0

[∣∣Yu (ko) − cu (ko) Hu (ko)
∣
∣]2

F (48)

The channel is assumed to be constant in one fading block. Expand (48) using Frobenius
norm as follows

ĉu (ko) = arg min
Ĉu(ko)

Nb∑

u=1

NC−1∑

ko=0

[
Tr
∣∣∣
(
Yu (ko)−cu (ko) Hu (ko)

)H (Yu (ko)−cu (ko) Hu (ko)
)∣∣∣
]

(49)

ĉu (ko) = arg min
Ĉ

u
(ko)

[
Tr

⌈
(Yu (ko))

H Yu (ko) + (Hu (ko))
H (cu (ko))

H cu (ko) Hu (ko)−
(Hu (ko))

H (cu (ko))
H Yu (ko) − (Yu (ko))

H cu (ko) Hu (ko)

⌉]

(50)

If (Yu)H Yuis independent of the transmitted codeword, (50) can be written as

cu (ko) = arg min
Ĉ

u
(ko)

Nb∑

u=1

NC−1∑

ko=0

⎡

⎣
Tr
⌈
(Hu (ko))

H (cu (ko))
H cu (ko) Hu (ko)

⌉

−2.Real
(

Tr
⌈
(Hu (ko))

H (cu (ko))
H Yu (ko)

⌉)

⎤

⎦ (51)

(51) can be generalized for multiple receivers as follows

ĉu (ko) = arg min
Ĉu

k(ko)

[∑MR
j=1 (Hu

j (ko))
H (cu (ko))

H (cu (ko))Hu
j (ko)

−2.Real
(∑MR

j=1 (Hu
j (ko))

H (cu (ko))
H Yu

j (ko)
)
]

(52)

In case of ST coding, the above metric can be decomposed into two separate parts for
detecting each individual symbol, i.e., ML decoding becomes single symbol decodable ML
(SML). In SF coding, single symbol ML decoder doesn’t yield optimum results because
channel orthogonality is disturbed in case of frequency-selective channels. In such cases,
joint ML decoder (JML) is preferred which detects two symbols jointly. Similarly in STF
coding, we can detect two symbols jointly in one fading block which increases decoding
complexity.

6.2 Sphere Decoder (SD)

As discussed above the decoding complexity is increased due to coding in three dimen-
sions i.e. space, time and frequency. SD is preferred [44,45] in such cases. The main idea
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behind SD is to limit the search space for finding the closest codeword to the particular
received vector. The search space which includes optimal lattice point is given by a hyper-
sphere of radius rs centered on the received signal vector. Equation (15) can be rewritten
as follows

Y = CH + z (53)

Using full search for finding the optimal codeword in ML requires lot of computations
which further increases with increase in constellation size, typically proportional to2β MT .
Thus in SD, instead of searching all possible vectors for finding optimal codeword, we
will search over a hyper-sphere of radius rs centered on the received signal vector as
shown below

Ĉu = arg min
Ĉu

[∣∣Yu − CuHu
∣
∣]2

F ≤ r2
s (54)

After optimizing Ĉu, the radius of the search sphere is reduced and above procedure is
repeated till no point lie inside the search sphere. It is implemented in two steps, one is
pre-processing and other is search step. In first step, we consider the solution of optimization
problem mentioned in (54) is Zu

S = (Hu)↓Yu. Equation (54) can be written as

min
Cu∈∧

(
Cu − Zu

S

)H
(Hu)H (Hu)(Cu − Zu

S) (55)

Further, Cholskey decomposition is performed on (Hu)H (Hu)matrix to get upper triangu-
lar matrix as U = 〈

ukS,l |ukSkS ∈ rS > 0
〉

such that (Hu)H (Hu) = (Uu)H (Uu). The modified
optimization problem is

[∣∣Uu (Zu
S − Cu)∣∣]2 ≤ r2

s (56)

Thus, after finding unconstrained solution Zu
S and forming upper triangular matrix, a

matrix Qu [45] is formed as follows

Qu =
∣∣∣∣∣∣

qu
KS,KS

=
(

uu
KsKS

)2

qu
KS,1 = uu

Ks1
/uu

kS,KS
ks < 1

∣∣∣∣∣∣
(57)

In search step, the points inside the sphere are examined to locate the optimal codeword.
Thus (54) can be further modified in terms of matrix Q as follows

KS∑

i=0

∣∣∣∣∣∣
qu

i,i

(
Cu

i − Zu
Si

)+
KS∑

j=i+1

qu
i,j(C

u
j + Zu

Si
)

∣∣∣∣∣∣

2

≤ r2
s (58)

To find optimal codeword we start searching with ks = Ks and find the distance between Cu
kS

and the center of the Ks-dimensional sphere as

d2
ks

=
ks∑

l=k

∣∣∣∣∣

ks∑

i=1

qu
l,i

(
Cu

i − Zu
Si

)
∣∣∣∣∣

2

(59)

We choose another variable SKS which is defined as

Su
KS

= zS
u
KS

−
KS∑

i=KS+1

qu
KS,i

(
Cu

i − Zu
Si

)
(60)
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The condition for optimal codeword being inside the search sphere can be written as

d2
KS

= d2
KS+1 + qu

KS,KS

∣
∣Cu

KS
− Su

KS

∣
∣2 ≤ r2

S (61)

Thus a search space for Su
KS

can be specified as

∣
∣Cu

KS
− Su

KS

∣
∣2 ≤ r2

S − d2
KS

+ 1

qu
KS,KS

(62)

When Ks become 1, it means a valid codeword is found. If the distance between center and
the searched point is less than the radius of the hyper sphere [46], this becomes new radius.
The procedure is then repeated starting again and if at any momentd2

KS
is greater than the

radius of the sphere, the procedure is terminated.

6.3 Array Processing Decoder

In ML decoding, the pairs of transmitted symbols are detected jointly which increases decod-
ing complexity. This complexity increases further with modulation level and with higher
number of antennas employed, which in turn increases transmission delay. To overcome this
problem the decoder algorithm is used along with array processing [47]. In this approach
signals which are transmitted via different antennas are separated by null space. Null space
decomposes received symbols into several independent parts which are decoded separately
and linearly. The transmitted signals can be divided into two parts; one part is transmitted by
antenna group 1 which includes 1st and 2nd transmitting antenna and other part by antenna
group 2 which includes 3rd and 4th transmitting antenna. After this division, MIMO channel
per fading block for 4 × MR systems can be written asHu = [Hu

1Hu
2

]
, where Hu

1 and Hu
2 [48]

are given by

Hu
1 = F

⎡

⎢⎢⎢⎢⎢⎢
⎣

hu
1,1 hu

2,1
hu

1,2 hu
2,2

.

.

.

.

.

.

hu
1,MR

hu
2,MR

⎤

⎥⎥⎥⎥⎥⎥
⎦

(63)

and

Hu
2 = F

⎡

⎢⎢⎢⎢⎢⎢
⎣

hu
3,1 hu

4,1
hu

3,2 hu
4,2

.

.

.

.

.

.

hu
3,MR

hu
4,MR

⎤

⎥⎥⎥⎥⎥⎥
⎦

(64)

The null space of a matrix A is the subspace of vectors x for which Ax = 0 and it is orthogonal
complement of the range of AH .There should be more than two antennas at the receiver to
ensure the existence of null space.

�u
1 and �u

2 denotes the null space of Hu
1 and Hu

2 respectively. Thus we have

�u
1(H

u
1)

T = (�u
1)

THu
1 = 0 (65)
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Table 5 Number of complex
valued operations in SML and
JML

Parameter SML JML

Number of additions/subtractions 4 + 3 × 2b 4 + 3.5 × 22b

Number of complex multiplications 8 + 2.5 × 2b 10 + 4 × 22b

Table 6 Number of complex valued operations in SML, JML and array processing decoder

Parameter BPSK (b = 1) QPSK (b = 2) 16-QAM (b = 4) 16-QAM

SML JML SML JML SML JML Array processing
decoder [48]

Number of additions/
subtractions

10 18 16 60 52 900 177

Number of complex
multiplications

13 26 18 74 48 1,034 160

and

�u
2(H

u
2)

T = (�u
2)

THu
2 = 0 (66)

Multiplying (15) with �u
1 and �u

2 respectively, we get

(�u
1)

TYu = (�u
1)

THuXu+(�u
1)

Tzu (67)

and

(�u
2)

TYu = (�u
2)

THuXu + (�u
2)

Tzu (68)

The factor
√

γ̂

MT
is omitted for simplification. Using definition of null matrix [49] we

have

(�u
1)

THuXu = [[0 (�u
1)

THυ
2 ]] [Xu] (69)

(�u
2)

THuXu = [(�u
2)

THυ
1 0

] [
Xu] (70)

where
[
Xu
]

is the rate MT STF code given by (33) and (34) for different number of fading
blocks. During decoding process, the channel matrix is repeated for all sub blocks. Hence
the STF code with 4 transmit antennas can be decoded in two parallel steps. To conclude, the
decoding complexity can be considerably reduced as compared to traditional ML decoding.
Decoding complexity is calculated in terms of number of complex valued additions, subtrac-
tions and multiplications which are performed to decode one block of information. While
one complex multiplication is considered to be equivalent to 4 real multiplications and 2
real additions, the complex addition is considered as 2 real additions. Further, the multipli-
cation of a real valued quantity by a factor 2, like the term on right hand side of Eq. (51) is
implemented using one real valued addition. In case of ML decoding, we have to compare
single symbol decodable ML for ST codes and jointly decodable ML for SF and STF codes.
In the first case, we need to compute 2b metrics for each of the two transmitted symbols,
where b is number of bits per modulated symbol. In joint ML, we require 22b metrics to
determine symbols which jointly minimizes (51). The number of necessary complex valued
additions/subtractions and multiplications are summarized in Table 5.
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Table 7 Simulation parameters Parameter Value

Total bandwidth 20 MHz
Number of transmit antenna 2 and 4

Number of receiving antenna 2 and 4

Number of data subcarriers 64

Number of pilot-subcarriers None

IFFT size 64

Guard period type Cyclic extension

Cyclic prefix length 16

Carrier modulation used BPSK-Rate-4 codes
4-QAM-Rate-2 codes

Channel model Two-ray equal power
delay profile model

Delay spread 0.2μs

Transmission rate 4/bits/s/Hz

Maximum Doppler spread 200 Hz

Maximum Doppler shift 2π fm = 1.256 × 10−3

Frequency tracking factor (ζ) ζ ∼= 1.216 cos ε

Direction of mobile Travel (ε) In the direction of base station

Window type Rectangular pulse

We can compute exact numbers with different modulation schemes like BPSK, QPSK and
16-QAM as shown in Table 6.

From above table, it can be concluded that complexity incases with increase in constella-
tion size and among all decoders array processing decoder exhibits least complexity compared
to ML decoders. In SD complexity is measured in terms of average floating point operations
(FLOPS) which include all arithmetic operations. Average FLOPS per block in case of SD
used in this paper is 10(approx.) for BPSK and increased up to 200 for 16-QAM. Thus,
the FLOPS are considerably less than number of real multiplications and additions in SML
and JML but more than that of array processing decoder. Thus, array processing decoder is
considerably less complex than SML, JML and SD. However, total system complexity also
includes complexity of other functional blocks like calculating IFFT and FFT at transmitter
and receiver end. The complex multiplications required for an N-point FFT is Nlog2N, which
equals to 384 complex multiplications for N = 64.” Although, decoding complexity in array
processing decoder is proportional to

√
M as compared to M2 in ML decoder but for faster

decoding it requires higher power. This decoding scheme can be used even with more number
of transmit antennas.

7 Simulation Results

7.1 Simulation Parameters

The parameters used for simulation of Fig. 1 are listed in Table 7.
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Fig. 3 BER of STFC and SFC for 2×2 MIMO-OFDM system using 4-QAM
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Fig. 4 BER comparison of STFC and SFC with different rates for 2×2 MIMO-OFDM

7.2 Results

In order to support analytical results and formulas derived in previous sections, we are
showing simulation results by plotting BER with variation in signal to noise (SNR) ratio.
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Fig. 5 BER of STFC and SFC for 4×4 MIMO-OFDM system using BPSK
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Fig. 6 BER comparison of STFC and SFC with rate-4 for 2×2 MIMO-OFDM system

Simulations are done in two phases. In phase 1, results are plotted considering two transmit
and two receiving antennas, and in phase 2, with four transmit and four receiving antennas.
Results are also compared with existing codes with same code rate and modulations. The
simulated channel is an MIMO frequency selective block fading channel derived from simple
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Fig. 7 BER of STFC and SFC for 2×2 MIMO-OFDM system with ICI using 4-QAM

two-ray equal power delay profile as per Jake’s Model. The channel also accounts the effects
of Doppler shift and Doppler spread existing due to relative motion between transmitter and
receiver. Further, we assume that the receiver has perfect knowledge of the channel while
transmitter doesn’t know the channel.

Figure 3 shows performance comparison of rate-2 STF codes in (30) with rate-2 SF codes
in (29) implemented with ML, SD and array processing decoders on receiver side. Rate-2 STF
codes have larger slope curves than SF codes due to higher diversity order. Among decoders
STF with SD clearly outperforms the other combinations because in array processing there
is an error in calculating null-matrix with 2 receivers, and in ML, the size of search space
for selecting optimum code is large. Further, it infers that the results using the closed form
expression (CFE) in (47) are very close to the simulation results.

Figure 4 compares STF code in (30) with existing rate-2 STF and rate-1 STF code in
[23,34] with ML and SD on receiver side. It also compares it with rate-2 SF code in (29)
and other existing rate-2 SF [30] and rate-1 SF [20] codes. To fix the transmission rate at
4/bits/sec/Hz, we employed 4-QAM modulation technique for rate-2 codes and 16-QAM for
rate-1 codes. Figure 4 shows that STF code in (30) and SF code in (29) dominates in lower
SNR region but STF code in [34] and SF code in [30] dominates in higher SNR region.
Also Rate-2 STF curve has higher slope than SF due to higher diversity order of 16 instead
of 8.

Figure 5 compares rate-4 STF codes in (34) with rate-4 SF codes in (33) both implemented
in concatenation with ML, SD and array processing decoders. This implies that rate-4 STF
codes with array processing decoders have better performance than all other combinations
because of the benefit of calculating error-free null-matrix with 4 receiving antennas. Further,
it can be seen that the results using the closed form expression in (47) are very close to the
simulation results.
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Fig. 8 BER of STFC and SFC for 4×4 MIMO-OFDM system with ICI using BPSK

Figure 6 compares STF code in (34) with existing rate-4 STF in [34] and rate-4 SF code
in (33) with existing rate-4 SF code in [29]. To fix the transmission rate at 4/bits/s/Hz, we
employed BPSK modulation technique for both rate-4 STF and SF codes. Figure 6 implies
that STF code in (34) and SF code in (33) shows better performance than existing rate-4
STF and SF codes due to reduction in decoder complexity. BER performance can be further
improved by considering higher delay spread. Figures 7 and 8 shows the effect of ICI on
BER performance of rate-2 and rate-4 SF and STF codes with different decoders. Comparing
Figs. 3 and 7, it is observed that the BER performance is degraded due to ICI by almost 1dB
in all cases. Similar pattern is observed with rate-4 codes.

8 Conclusion

In this paper, a rate MT full diversity STF code is presented with an approach different
from algebraic STF codes in block fading channels. STF code presented in this paper is
quite simple to design and easy to decode. It is also proved that STF code achieves rate
MT and full-diversity of MTMRNbL numerically and verified by simulation results. The
performance of STF code is compared with other existing STF codes in terms of BER
and decoder complexity. The decoder complexity is reduced remarkably by using array
processing decoder with 4 antennas at receiver end. Also, the closed form expressions for
BER performance of STFBC MIMO-OFDM systems are very close to simulation results.
Work can be done to increase coding gain and to develop application based upon the presented
codes.
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