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Mutation Testing-Based Evaluation M)
Framework for Evaluating Software
Clone Detection Tools

Pratiksha Gautam and Hemraj Saini

Abstract Mutation testing has become a prominent research area in the past few
decades. The mutation testing has been basically used in the testing society. It is a
type of software testing where we mutate (small change, modification in the pro-
gram) source code using mutant operators by introducing potential new bugs in the
program code without changing its behavior. Analogously, mutant operators gen-
erate new clones by copy/paste editing activities. However, several software clone
detection tools and techniques have been introduced by numerous scientists and a
large number of tools comprises for a perceivable evaluation. Moreover, there have
been a lot of efforts to empirically assess and analyze variant state-of-the-art tools.
The current abstraction exhibits that various aspects that could leverage the legiti-
macy of the outcome of such assessment have been roughly anticipated due to lack of
legitimized software clone benchmark. In this paper, we present a mutation testing-
based automatic evaluation structure for valuating software clone detection tools
and techniques. The proposed framework uses the edit-based taxonomy of muta-
tion operator for assessing code clone detection tools. The proposed structure injects
software clones in the source code automatically, and after that, we evaluate clone
detection tools. The clone detection tools are evaluated on the basis of precision
(number of corrected clones) and recall (total number of clones). We visualize that
such a framework will present a valuable augmentation to the research community.

Keywords Mutation analysis - Software clone - Mutation techniques - Mutation
operators
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1 Introduction

The experiential estimation of testing techniques plays a vital role in software testing
as well as in software clone detection research. One frequent usage is inserting flaws,
either manually or by using mutation operators [1]. Generally, empirical evaluations
are used to actuate two or more approaches, which are exclusive for complying with
some detection-related activity. Testing experiments usually entail a set of subject
programs with known faults or errors. Furthermore, in software clone detection,
it also requires some faulty version or duplicated code, to evaluate software clone
detection approaches. Many researchers consequently have taken the methods of
introducing bugs into the correct program to generate faulty variants. These bugs
can be pioneered by hand or generated automatically through a faulty version of
program text. Typically, we view an automatically generated version as an outcome of
employing some editing activities in the source code. However, these editing activities
arc performed according to well-defined rules which are called mutant operators,
and the resulting flawed variants are called mutation generation [2]. The mutation
operators are identically used to generate potential bugs in software code clones so as
to change the original source code [3, 4]. Reusing source code segment by copying
and pasting is acommon practice in software development. As a consequence, similar
copied code fragments are called software clones. and the process is called software
cloning [3]. Earlier study exhibits that a major portion (20-59) of program code in the
software code was duplicated [5—10]. An error detected in one segment of code, and
then, all segments of source code should be checked for the same error [11]. Copied
code can also considerably augment the effort to be thorough when intensifying or
complying source code [8]. However, several software clone detection approaches
have been anticipated, and there have been a number of comparisons and valuation
abstractions relating them in different contexts [12-16]. Nonetheless, it is ambitious
to analyze different software clone detection tools, due to software clone detection
techniques having specific features, and thus, these researches present considerable
contributions to the software clone detection research [17]. Typically, insufficient
assessment is aggravated as there are no universal evaluation benchmarks. It is thorny
to find such a general norm as each technique has its own tunable features and is
designed for distinctive reasons.

In this paper, we present a layout of mutation testing-based evaluation frame-
work. The main objective of our abstraction is to draft a mutation-based evaluation
framework which has been used to assess clone detection tools and techniques. The
proposed framework is still under implementation and is manifested for quantifying
and expanding various software clone detection tools. In this paper, we start off by
abstracting the basic introduction of software code cloning and mutation testing from
which an editing taxonomy of mutant operators can be derived. Moreover, on the
basis of these mutation operators, we assert a framework for valuating code clone
detection tools.
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2 Background

Copying source code fragments from one section of source text and reusing them into
another section with or without minor adaptation are frequent activities in software
development process [5]. Software clones can be classified on the basis of their
attributes as textual similarity and functional similarity. Further, the textual similarity-
based clones are also categorized into three types such as (1) type 1(identical code
segment except some variations in whitespace and comments), (2) type 2 (structurally
similar code segments except some modifications in variable names, white spaces and
comments) (3) type 3 (similar code segments with further alterations as statements
deleted, inserted). Functional similarity-based clones are type 4 which have similar
functionality but different structures.

3 Mutation Testing Overview

Mutation is a type of white-box testing, which is mainly used for unit testing where
we transform (mutate) certain statements of a program text and verify if the test cases
are able to find the fault. The adaptation in a mutant program is kept enormously
small, so that it does not change the overall intention of the program. The perception
of mutation testing is to introduce a syntactic transformation into the original source
code, to create a flawed variant (termed as a mutant) as stated by well-defined rules
(mutant operators) [18]. The mutation testing first time emerged in the 1970s by [19],
in a class term paper. The first research paper was published by the authors 1 [20-22].
The author [23] conducted a survey work on the subarea of mutation testing, which
was a weak survey, while the firm mutation provided by [24-27] and they gave an
introductory chapter on mutation testing in their books. In 2000, [28] carried out a
survey work on mutation testing as well as they recapitulated the history of mutation
testing and presented an outline of the existing optimization techniques for mutation
testing. Authors [29] defined mutation testing as a fault-based testing, which presents
a testing standard known as “mutationcompetence score.” The potency of test set can
be quantified by using this score in terms of its facility to detect flaws. A recent review
was accomplished [30]. They provide a methodical literature survey on application
perception of mutation testing. The mutation testing approaches are classified into
three types, and mutant operators can be assorted into two types which are shown
in Fig. 1. Figure la depicts the classification of mutation testing techniques such as
(1) the value mutation testing, which alters the key parameter’s value as well types
of mutation operators. (2) The decision mutation testing, modification in the control
statement of the source code using and, or, not. (3) The statement mutation testing
method, reorder statements of the program. Figure 1b demonstrates types of mutant
operators. The mutant operators can be categorized as traditional mutation operators
and class mutant operators. (1) The traditional mutant operators are further classified
as arithmetic, logical, relational, conditional, etc. (2) The class mutant operator as
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Fig. 1 Taxonomy of a mutation testing, b mutation operators

inheritance (delete a hidden variable), polymorphism (to check methods have the
same name) and encapsulation (transforms, delete and insert instance variables for
generating mutants).

The mutation testing is used to create flawed variants from an original program.
Further, we used mutation operators for creating various types of software clones
which are shown in Fig. 2. Figure 2 shows the mutation operators for software clones.
Software clones can be classified into four types. Type-1 clones can be generated
by using several mutation operators as mCW removes white space, mCW—changes
in blank spaces, mCC—changes in comments, mCF—changes in formatting and
mCNWs—changes in new line spaces. Type-2 clones can be generated by using
mutation operators as mARV—arbitrary renaming variables, mRPE—replacement of
parameters with expressions, nARDT—renaming data types and mARL—arbitrary
renaming of literals. Type-3 clones can be generated by mSDL—small deletions
within a line, mSIL—small insertions within a line, mMLs—modification in the
whole line, mMAOR—changes in arithmetic operators and mDSV—variation data
statements. Type-4 clones can be created by using mROS—reorder the statements,
mCR—replaces one type of control statement with another type of control statement,
mCSS—constant substitution.

4 Related Work

The basic idea behind mutation testing is creating exactly similar variants from orig-
inal program. Each mutant contains at least one artificial modification [31]. There is
no mutation testing-based assessment structure presented in the literature; however,
there are a number of experiments that contrast and valuate software clone detection
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Fig. 2 Taxonomy of mutation operators for software clones

techniques/tools. We present an outline of the existing tool assessment experimen-
tation from the literature. The first experiment was accomplished [14] on two pla-
giarism detection tools and three state-of-the-arts clone detection tools to evaluate
their performance. The first thing they did was verifying the entire duplicated code
clones using all the techniques of their experimentation. Various techniques were then
compared against various parameters by a human oracle, which in turn uses several
metrics that are responsible for measuring different facets of the detected code clones.
Though they efficiently identified all the candidate clones, the main constraints of
this case study are in terms of size and system quality. The primary objective of their
study was to help in a preventive maintenance task which had leverage in validating
the candidate clone. Authors have [12] accomplished tool comparison which was
invented after considering the limitations of [14] experiment. Further, the authors
[12] conducted this experiment with similar three software clone detection tools
which are used [14] in their experiment, and they also used three additional clone
detection tools in their experiments. The system software [14] had used a diverse set,
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accounting to four Java and four C. Moreover, when the authors’ [14] studies were
taken under consideration while validating the candidate clones, a human oracle was
then used for the same. Although being the most comprehensive study till now, the
clone candidate being oracled was only a small proportion considering that other
factors might have affected the results [17]. However, authors [15] extended this
study with a prototype application of several tools, but without addressing anything
to conquer the shortcomings of Bellon et al.’s study. The three envoy software clone
detection techniques valuated [16], and they presented relative fallouts in perspec-
tive of portability, types of replication addressed, scalability, a number of false test
matches and the number of ineffectual matches. Nevertheless, the little size cases
and paradigm implementation were used by them instead of the actual tools. They
intended to conclude appropriateness of the detection technique for a meticulous
task as a substitute to the perceptible evaluation of the detection approaches. The
researchers [13] carried out an interesting study; they evaluated numerous clone
detection techniques in respect of detecting crosscutting apprehensions.

Recently, various researchers proposed number of techniques for mutation testing.
Author [32] proposed an efficient mutation testing framework for multi-threaded
code which can reduce time required for mutation testing of multi-threaded code.
They proposed a tool named as MuTMuT which is based on four optimizations and
one heuristic. The mutation testing method used mutation testing in safety-critical
industry using high-integrity subsets of C and ADA [33]. They recognized most
adequate mutant types and analyzed main reasons of failure in test cases. Moreover,
they also provided a practical evaluation of the application of mutation testing to
airborne software system. One of the main issues regarding mutation testing was
high cost, due to the creation of mutants, execution of mutants and calculation of
their scores. Mateo and Usaola [34] proposed a mutant schema with extra code
(MUSIC) which reduces the mutation cost through uncovered mutants. Though this
technique defines the statements enclosed by the tests in the original system, in order
to out the mutant executions, because tests are only executed against the mutants
whose mutated statement is covered by tests. Authors [35] measured the complexity
of mutants and prioritized them on the basis of how easy or hard to manifest them. The
mutation testing is presented in perspective of Python program [36]. They showed
how mutation testing can be effectively handled in Python environment. A mutation
reduction method is proposed in terms of program structure [37]. Although they
used two path-aware heuristic rules named as loop-depth and module-depth rules
and combined these two rules with operator-based selection and statements for the
development of four mutant reduction approaches. In addition to this, the researchers
[38] have also evaluated mutation at the class level while the existing method analyzes
mutation at the traditional level. Further, they proposed a MuCPP system which is
based on the class mutation operators of C++ programming language. An improved
genetic algorithm is presented [39] which is a search-based approach to reduce the
computational cost of mutation testing. However, they used state-based and control-
oriented fitness function in their tool eMuJava and compared it with other standard
fitness functions. However, aforementioned mutation-based testing approaches have
been presented in the literature. All these approaches were focused on mutation
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testing, while mutation word first time was used [3, 4] in clone detection research
field in a brief way. Although they provided an editing taxonomy for various types
of clone generation and also proposed a mutation/injection-based framework for
evaluation clone detection tools.

As per the authors’ best knowledge, there is no thorough work on mutation testing
operators in perspectives of software clone detection tools. Yet, there is no standard
benchmark available for evaluating clone detection, and there is no empirical evalua-
tion, which explicitly determines the utilization of mutants in clone detection research
field. The author contribution in this manuscript is summarized as follows:

e We used mutation testing concept in clone detection research area.
e We used mutation operators for generating various types of software clones.
e Proposed an evaluation framework using mutated code clones.

We evaluated clone detection tools on the basis of mutated code.

5 Proposed Evaluation Framework

This section presents details of our proposed framework which is based on mutation
testing as shown in Fig. 5. We start with the basic components of the proposed
framework and then thrash out clones terminology, precision and recall of the tools.
Although, this framework is based on mutation testing and it acts in accordance with
the principle of mutation testing.

Figure 5 illustrates conceptual layout of the proposed framework. The proposed
framework 1s categorized into two main phases. Firstly, Clone Generation Phase,
in this phase, software clones are generated from original code with the help of
mutation operator-based editing taxonomy. The second phase is Tools Evaluation
Phase, in which mutated codes are used to evaluate the software clone detection
tools performance. The detailed discussions of the proposed framework are shown
below.

5.1 Validation Study

Input Original Code Base: At the primary step of the framework, we input the target
code base which 1s shown in Fig. 3. To find out which tool would be significant for
such a valuation in terms of recall and precision.

Figure 3 shows an example of code base which is taken as input in the proposed
framework. The original code is retrieved from an open-source project named as wet
lab [40] which is an open-source project of C++ language.

Figure 4 depicts an illustration of duplicated code which is generated using
mutation operators-based editing taxonomy as well as original source code.
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//Date; Oct 4 Start :5:23PM End :5:30PM
/[Find The Pair With Given Sum
//[Complexity : O(n)
#include<iostream>
#include<vector>

using namespace std;

int main()

{

vector<int> v = {1,2,4,5,6,7};
int sum ,left =0 ,right=v.size()-1;
cin>>sum;

while(left<right)

if(v[left]+v(right]==sum)
break;

else if(v[left]+v[right]>sum)
right--;

else

left++;

}

if(left<right)

cout<<"Pair Having Sum “<<sum <<" found at location "< <left+1<<" and "<<right+1<<" value
s are "<<v|left]<<" and "<<v{right];

else

Fig.3 An example of original code base

//Date: Oct 4 Start :5:23PM End :5:30PM

//Find The Pair With Given Sum

\\Testing Comment Inserted//Complexity : O(n)
#include<iostream>

#include<vector>

using namespace std;

int main()

{

vector<int> v = {1,2,4,5,6,7};
int sum ,left =0 right=v.size()-1;
cin>>sum;

while{left<right)

{
if(v[left]+v[right]==sum)
break;
else if(v[left]+v[right]>sum)
right--;
else
left++;

}

if(left<right)

cout<<"Pair Having Sum “<<sum <<" found at location "<<left+1<<" and "<<right+1<<" value
s are "<<v{leftj<<" and "<<v(right];

Fig.4 An illustration of code clone (type-1)

Random Selection of Code Segment

Once the source code is elected, then any preferred fractional number of accessible
source code segment is either selected automatically or randomly from the code
base for clone mutation.
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Fig.5 Proposed mutation-testing-based automatic evaluation framework a Clone Generation Phase
b Clone Tools Evaluation Phase

Stored in Source Database
Randomly selected code segments are stored in the source database, and then,
mutants will be created by using these randomly selected code segments.

Generate Mutant of Random Code Segment

The edit-based taxonomy of mutation operators is used for generating mutant
versions of randomly or sequentially selected code fragments which are stored in
the mutant source database. An example of mutant-version of original code base
is shown in Fig. 4. A number of mutants can be generated for one code segment.

The mutated version of the code base after replacement will be fed as input to
clone detection tool. The detection tool will be evaluated on the basis of how many
clones it will detect accurately and how fast they detect clones.
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5.2 Tools Evaluation Phase

In this phase, each of the mutated code is stored in the database, and then, each
mutated code is fed into clone detection tools as an input for evaluating and comparing
clone detection tools. The main key feature of this phase is threshold. We defined
threshold for clone detection tools. If a tool does not fulfill the threshold limit, then
that will be eradicated and a new tool will be selected for evaluation.

Replace Random Code Segment with Mutants

The mutated code is generated for each of the mutant code variants of the source
code. The generated mutated version of the original code base is replaced with
the randomly selected code segments in the original code base.

Select a Clone Detection Tool
In this phase, a tool will be selected, and then, mutated code base is given as input
into the selected tool.

Run Injected Code Clones on Tool

The mutated version of code base after replacement will be given as input on
clone detection tool. The detection tool will be evaluated on the basis of how
much clone it will detect accurately and how fast they detect clone.

Evaluation Report of Tool

The evaluation report makes a decision for the tool. It analyzes the performance of
the tool on the basis of precision (number of accurately detected clones) and recall
(total number of clones), scalability (tool supports large database) and portability
(language support).

Define Threshold

The key objective of this phase 1s to diminish the execution time and cost of this
process. A threshold will be defined by a user for a clone detection tool, and the
tool crossing the threshold will be eliminated, and it will select a new tool for
evaluation. Further, the tool which has low precision and recall will be discarded
and the high precision—recall tool will be evaluated. It will be useful for those
users who are seeking high precision and recall-based tools.

Eradicate Inefficient Tool

Most of the tools have low accuracy in the sense that they did not detect all clones
(recall), as they returned a large number of false positive (precision). This led
to the cognizance which is a step of valuating the results of tools that should be
saved at the end.

Statistical Analysis Report

Once the experimentation is accomplished, then evaluation database is used to cal-
culate clone detection tools accuracy as precision, recall, portability and scalability
for each type of clone.
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6 Clone Terminology

The clone detection tool returns clones in the form of clone pairs (CP), clone classes
(CC) or both. The similarity relation between two or more clone fragments is illus-
trated by these two terms. Further, the clone similarity relation between code seg-
ments is an equivalence relation which is described in [41]. The clone relation exists
between two segments if they are similar structurally or semantically. A pair of code
fragments is called clone pair if there exists a clone relation, while clone class is a
union of all clone pairs [42].

Definition 1 (Code Segment) A code segment (CS) consists of any subsequence of
code string. It is defined by any type of granularity as fixed (predefined syntactic
boundary as function, begin-end block) or free (no syntactic boundary). A CS is
detected on the basis of granularity in the original program, and it is implied as
(CS.Filename. CS.BeginLine, CS.EndLine).

letP={0,1,2,...) and P+= {1, 2, ...). For p € P, denoted by O (p) A the set
of n operations on A and set OA: = Up € P+ O(p)A. A subset CS C OA.

Definition 2 (Software Clone) A code segment CS2 is a duplicated software clone
of another source segment CS1 if they are identical on the basis of some given
definition of similarity that is f(CS1) = CS2, where f 1s a similarity function (textual
or semantic). Further, when two code segments are similar with each other, they are
called clone pairs.

CP = (CS1, CS2)

Definition 3 (Software Clone Types) Software clones are classified on the basis of
their attributes as textual similarity-based or syntactic-based, and other is functional
similarity-based or semantic-based [5].

Definition 4 (Code Segment Encompassment) If two or more code segments are
contained within same file or the boundary of line numbers of CS1 is within the
boundary of line numbers of CS2.

File contained (CS CS1, CS CS2)

If((CS1.FileName==CS2.FileName) && (CS1.BeginLine>=CS2.BeginLine)
&& (CS1EndLine<=CS2.EndLine))

7 Measuring Recall

The main objective of our proposed framework is to automatically inject software
clones in the source code which are generated by using mutation operators. Further,
we evaluate clone detection tool’s accuracy in terms of precision and recall. The
proposed framework addresses recall for each type of software clones and for each
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type of mutation operators for all the tools. In this proposed framework, the detectable
clones are our injected mutant clone versions of the original source code, and that will
be inserted into mutated source code base, randomly or automatically. The mutation
testing-based techniques make recall simpler. Moreover, if the mutated code segment
as moCS of original code segment oCS inserted into the mutated code base mioCB
of original source code base oCB is “killed,” oCScs and moCS are detected by
clone detector and their threshold level value which returns 1 if detector’s minimum
threshold value is greater than 1 and maximum value less than 100, otherwise it will
return to 0. The main objective of threshold value is to minimize the execution time
and complexity. The threshold value depends on user’s requirements, and the user
can define threshold value between 1 and 100 because recall cannot be less than 1
and cannot be greater than 100.

Recall = (Number of detected clones x 100) /Total number of clones

R T (oCS, moCs) = {return 1, if (oCS, moCS) is detected by tool 7 in
mioCB — THLV (minimum value>=1 & maximum value<=100) otherwise 0.

Where THLV means threshold level value. The similar code segments can be
inserted or injected randomly, any number of times, in the original code base oCB and
generate n different mutated variants of oCB as mioCB1, mioCB2, ..., mioCBn. The
proposed framework used mutation operators for creating various types of mutated
versions of source code and then inserting them randomly several times to check the
sensitivity of clone detector. However, the random segment selector selects m code
base, and each of them will be mutated by mutation operators dmOP for generating
mutated versions of code segments as moCS1, moCS2, ..., moCSm.

Hence, the recall for mutation operator dmOP for clone detector is given as
follows.

RTdmOP = Z n * mRT(0CSi)/n *m

i=1

The type-1 software clones used four types of mutation operators (mCW, mCNWs,
mCC, mCF, mCB) and their combination (mCW + mCNWs), (mCC + mCF), (mCF
+ mCB), (mCW + mCC), (mCW + mCF), (mCW + mCB), (mCNW + mCC),
(MCNWs + mCF), (mCNW + mCB), (mCC + mCB) and mCF 4+ mCB) can be
applied to the m code segments (if we allow operator repetition, then a number of
combination can be generated), and each of which is inserted n times into the code
base. Therefore, the recall of clone detector tool T for type-1 can be defined as:

RTAmOP = ) ._, n s m % (5 + 11) RT(0oCSi, moCSi)/m*n*(5+11) = {return
H, if (n, m) is detected by clone detector tool 7" in mioCBTHLYV (minimum value>=1
& maximum value<=100) otherwise L.

Where H means high recall, L means low recall and 5 indicates number of
operators and 11 indicates number of combinations.

The overall recall of clone detectors can be defined as:
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RTdmOP = } ._, n *m x (S + C) RT(0CSi, moCSi)/m#n*(S+c) = {return H,
if (n, m) is detected by tool 7 in mioCB — THLV (minimum value>=1 & maximum
value<=100) otherwise L.

Where H means high recall, L means low recall and S indicates number clone
mutation operators and C indicates number of combinations.

8 Measuring Precision

Precision measures irrelevant items which appeared in the results. Preferably, preci-
sion should be high when recall increases, but practically, it is difficult to accomplish.
The precision definition is shown below.

Precision = (Number of correctly detected clones x 100)/Total number of detected clones

The precision of a tool can be calculated as a mutated code segment moCS gener-
ated by using mutation operators dmOP, and clone detector tool T returning k clone
pairs, (moCS, CS1), (moCS, CS2)...(moCS, CSK) in mutated code base mioCB.

PTdmOP = w.r.t. t. single insertion of moCS = a/k {return 1, if (0CS, moCS)
is detected by tool 7 in mioCB — THLV (minimum value>=1 & maximum
value<=100) otherwise 0.

Where a means accurate detection and kK means number of clone pairs returned
by a clone detector 7.

The overall precision of clone detector tool in terms of number of mutation oper-
ators and number of combinations which is applied n times to m code segments is
shown below.PTdmOP = Y, _ nsxm* (S+C) /Y ,_ n*m* (S + C) = {return
H., if (n, m) is detected by clone detector tool 7" in mioCBTHLV (minimum value>=1
& maximum value<=100) otherwise L. Where H means high precision and L means
low precision.

9 Conclusion and Future Work

The valuation of code clone detection tools and techniques is an emerging issue in
today’s scenario. The previous studies for experimentally valuating clone detection
tools and techniques had various constraints and hence, cannot present a persuasive
comparable survey. Thus, in this paper, we proposed a peculiar mutation testing-based
evaluation layout, for valuating code clone detection tools which are used by testing
society over the past thirty years. Moreover, this paper encompasses mutation testing,
operators and provides insight into related work on mutation testing. However, we
have not accomplished the execution of the framework until now; we are assured
that such a framework can present truthful analogous outcome for distinct tools,
in finding deliberately generated software code clones. In the proposed structure,
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