Lecture Notes in Mechanical Engineering

Vijay Kumar Gupta
Prabhakar V. Varde
P. K. Kankar

Narendra Joshi Editors

Reliability
and Risk
Assessment in
Engineering

Proceedings of INCRS 2018

@ Springer

Editors

Vijay Kumar Gupta Prabhakar V. Varde
Discipline of Mechanical Engineering Reactor Group
PDPM Indian Institute Bhabha Atomic Research Centre
of Information Technology, Design Mumbai, Maharashtra, India
and Manufacturing, Jabalpur
Jabalpur, Madhya Pradesh, India Narendra Joshi

Research Reactor Services Division
P. K. Kankar Bhabha Atomic Research Centre
Discipline of Mechanical Engineering Mumbai, Maharashtra, India

Indian Institute of Technology Indore
Indore, Madhya Pradesh, India

ISSN 2195-4356 ISSN 2195-4364 (electronic)
Lecture Notes in Mechanical Engineering
ISBN 978-981-15-3745-5 ISBN 978-981-15-3746-2 (eBook)

https://doi.org/10.1007/978-981-15-3746-2

© Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names. registered names, trademarks, service marks, ctc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book arc belicved to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Contents

Big Data Analytics and Software Engineering

A Survey of Real-Time Big Data Processing Algorithms 3
Devesh Kumar Lal and Ugrasen Suman

The Internet of Renewable Energy: Big Data-Driven Smart Grid
Management with the Reliability and Security Analysis. 11
P. Vaishnavi and V. Deenadayalan

Mutation Testing-Based Evaluation Framework for Evaluating
Software Clone Detection Tools 21
Pratiksha Gautam and Hemraj Saini

Data Analytics for Reliability: Applications

Optimal Traffic Route Finder System. 39
M. Monica Bhavani and A. Valarmathi
Failure Modes and Effects Analysis of CNC Turning Center...... ... 49

Rajkumar Bhimgonda Patil and Basavraj S. Kothavale

Criticality Analysis of CNC Turning Center Using Analytic
FRTREET DR i3 o s asuitie o ndib e e e o a0 R b e S 61
Rajkumar Bhimgonda Patil and Basavraj S. Kothavale

Condition Monitoring Techniques and Applications

Tool Condition Monitoring in End Milling of Ti-6A1-4V
Using MolUsensory ADDPPOACH. » ¢« cco s o nsins o 8 pina s o poss s & s0s 79
Neelesh Kumar Sahu, Atul B. Andhare, and Abhay Khalatkar

Envelope Spectrum Analysis with Modified EMD for Fault Diagnosis
of Rolng EMOSEL Beartiuu s oo i o oo 3 & 5w 8 5 9995 3 5 dem 91
A. A. Darji, P. H. Darji, and D. H. Pandya

xiil

Xiv Contents

Experimental Investigation of Chatter in CNC Turning Using
Different Shiny Matertal®o« s oves a2 iass 505 s 4 s ass & 5 s 101
C. J. Mevada, H. M. Trivedi, A. A. Darji, and D. H. Pandya

Condition-Based Maintenance Modeling Using Vibration Signature
BRI iand i o iird 0 b bad a8 ed B S b et Bl e i 8k ek 111
A. B. Gholap and M. D. Jaybhaye

Health Monitoring and Management Using Multi-sensors

Experimental Investigation of Nonlinear Dynamic Motion Analysis

of Balanced Rotor Supported by Cylindrical Roller Bearing 125
O. G. Vaghela, A. R. Majmudar, D. P. Mavani, S. A. Patel, S. P. Mehta,

H. K. Yadav, and D. H. Pandya

Safety and Crashworthiness Analysis of Composite Tube Under
BRPRCE LORGENE o5 5 & o o 5 9 oames v ¢ evats 5 & S950E B ¥ S5 @ § EEEE 8§ SeE 135
Shivdayal Patel and Venkata Ravi Vusa

Strategies for Controlling the Accuracy and Reliability of Abrasive
PRI Jeh DBERIIIIE - . o 5 o sommn 0w s o EERE & & RBw s o SR & R 147
Neeraj Kumar Bhoi, Harpreet Singh, and Saurabh Pratap

Environmental Impact Study on Carbon Footprint Emission

and Development of Software Architectural Framework to Measure

the Level of Emission in Cloud Services. 159
P. Vaishnavi and S. Ananthi

Comparative Study of Cepstral Editing and Unitary Sample

Shifted Probability Distribution Function Method for Bearing

Pl EN RIS . o3 5 daed 5 Gadh & S4E 5 5 Uews & 5980 E ¥ 99 & & pas 165
Ankush C. Jahagirdar and Karunesh Kumar Gupta

Study of Emission Pattern of ICs Using Photon
Iheaon NIICHOBCEPN . » s s & wassn 4 o avas 5 & asssn & ¥ % & 8 Saist ¥ W s 171
Rashmi Lalwani, Arihant Jain, V. K. Tapas, N. S. Joshi, and P. V. Varde

Diagnosis and Prognosis of Mechanical Systems

Effect of Lubricant on the Stiffness and Damping Characteristics
in a Single-Stage Gearbox: A Theoretical Analysis 185
Vikas Sharma and Anand Parey

Dynamic Motion Analysis of Reciprocating Vibro-separator 195
V. B. Lalwani, J. V. Desai, and D. H. Pandya

A Review of Fault Detection, Diagnosis, and Prognosis of Rolling

Element Bearing Using Advanced Approaches and Vibration

SRS ARV & s vu 6 5 paes & 5 VeE T & Do & 8 DR B LAEE ¥ § REes 207
Pavan Agrawal and Pratesh Jayaswal

Contents XV

Integrated Model and Machine Learning-Based Approach
for Diagnosis of Bearing Defects 221
N. Upadhyay and P. K. Kankar

Performance Assessment of Dual Fuel Engine Operated
with Agricnloral Waste and DeSE) . . coxo » cwion 0 v 5ss 5 o weves o & wsm 231
Sharad Bhardwaj, Aditya Sharma, Ashish Malik, and K. L. A. Khan

Investigations on Nonlinearity for Health Monitoring of Rotor
I IO o R S R A T A T A S S AT 241
Aditya Sharma, P. K. Kankar, and M. Amarnath

Experimental Investigation of Chatter in Boring Operation
ISEOH SBBO0: 5 i & jans o 0w § 5 0055 & EemNE 8 TAEE & § PO E & VERN ¥ § He 253
N. B. Prajapati, J. V. Desai, and D. H. Pandya

Methodology to Incorporate the Effect of Plant Operating State

During Surveillance Testing in Determining Optimal Surveillance

Tt IRIOENAL. . . oo sovoima s o s s e s TR E B R S B &S e 261
Arihant Jain, N. S. Joshi, and P. V. Varde

Design for Reliability

Design and Development of Steering System for Formula-Styled
Vehicle e 275
Saurabh Bhalerao, Adesh Paramane, and Abhishek Chavan

Crack Propagation Behavior in Spur Gear by XFEM and Its
Influence on Dynamic Characteristics 285
Jay Govind Verma, P. K. Kankar, and Sachin Kumar

Biomechanical Evaluation of Manual Material Handling Task
in the Workplace: A Comprehensive Review 295
Anurag Vijaywargiya and Mahesh Bhiwapurkar

Analysis of Causes of Rail Derailment in India and Corrective
R = U i AW et St | bt h T it b B 305
Prakash Kumar Sen, Mahesh Bhiwapurkar, and S. P. Harsha

Artificial Neural Network (ANN)-Based Response Surface Approach

for Passive System Reliability Assessment 315
R. B. Solanki, Harshwardhan Kulkarni, Suneet Singh, P. V. Varde,

and A. K. Verma

Enhancement of Human Performance by Competency Development
in High-Reliability Organizations (HROs) 32T
K. S. Ramprasad and Prabhat Kumar

XVi Contents

Optimization and Machine Learning Techniques for Industrial
Applications

Mechanical Fault Detection in Steel Plant with Infrared
ERerromapiiys. BRI SRR . o i o b w4 & bk 5k SRR E R 8 A 339
Mahesh Bhiwapurkar

Feature Extraction and Classification from Texture Image

of Machined Surfaces Using Multilevel Wavelet Decomposition

o B T SR T S) O S SN 351
N. Dave, V. Vakharia, U. Kagathara, and M. B. Kiran

Effect of Combining Teaching Learning-Based Optimization (TLBO)
with Diflerént Sénivh Techiumguies . ; < s «oi 5 ¢ vovn o 5 9w 7 & vaien & 5 sees 361
Jaydeep Patel, Vimal Savsani, and Vivek Patel

Fault Diagnosis of Ball Bearing Using Walsh—-Hadamard Transform
and Random Tree Clasafier. -:ovnwoinnnecoves o vmas 373
Vipul Dave and V. Vakharia

Air Engine Efficiency Improvement Using Control System 381
N. J. Chotai, Vimal Savsani, and Vivek Patel

Parametric Analysis of Genetic Algorithm Toolbox for Truss
Problem Optimization 389
Akash Vasani, Rhythm Patel, Vimal Savsani, and Poonam Savsani

An Industrial Heat Exchanger Optimization from Economic
WM POIIE o covos 5omeimn 5 & et 8.8 @i 4 modinss B Sowid 5. & pSinss &8 Buwidis 399
B. D. Raja, Jaydeep Patel, and Vivek Patel

Exploring the Effect of Passing Vehicle Search (PVS) for the Wind
Farm Layout Optimization Problem 411
Jaydeep Patel, Vimal Savsani, Vivek Patel, and Rajesh Patel

Process Parameters Optimization for Inconel-825 in WEDM
Using TLBO AWnrrtnG: . .. & coois o 5 osmn v 0 ndism 5 5 5500 % & 2anscs @ 5 B s 419
D. Saikiran, Arun Kumar Rouniyar, and Pragya Shandilya

Internet of Things: A Review on Major Challenges
Il ADPHERIIME« 5 o com o« sowrms & 5 aoes 5 0 BeEmor & % VB S a Baw % WA 427
Chintan Patel and Nishant Doshi

Development of Computational Decision Making Tool for Predicting

the Growth and Development of Rice Crop Using Location Specific

Diurnal Air Temperature Data 439
A. Alagesan, P. Vaishnavi, and R. Karthikeyan

Contents

Comparative Analysis of Multi-objective Algorithms for Machining

Parameters of Optimization of EDM Process

Vimal Savsani, T. Ramprabhu, Mohak Sheth, N. Radadia,
S. Parsana, N. Sheth, and R. K. Mishra
Performance/Failure Analysis of Materials in Service

Deformation-Induced Surface Roughness and Global Spring Back
Resulted with Different Plastic Strain Levels in Incremental Forming

of Original and Preheated Sheet Samples

Parnika Shrivastava and Puneet Tandon

Salely Asseaent 6L FemE: < o0 50 aie @ 6 oG w0 BRE T T REES 8 ¥ BEhE

Shivdayal Patel, Mradul Awasthi, and Suhail Ahmad

Finite Element Analysis and Failure Mechanisms of Porous

Biomaterial Architecture for Prosthetic Device

Prashant Athanker and Amit Singh

Investigation of Human Errors Using Fuzzy-Bayesian

Belief Networks

M. Karthick, C. Senthil Kumar, and T. Paul Robert

Reliability Issues in Electrical Distribution Systems

Distinctive Architecture Against Conspiring Attacks on Network

Layer Over MANET Smart Grid Management

P. Vaishnavi, G. Vidhyalakshmi, and S. Vaishnavi

Steady-State Analysis of Self-excited Induction Generator to Enhance

Reliability in Isolated Mode

Ashish Gupta and Arvind Kumar Jain

Xvii

Editors and Contributors

About the Editors

Dr. Vijay Kumar Gupta is currently working as a Professor in the discipline of
Mechanical Engineering at PDPM-Indian Institute of Information Technology,
Design and Manufacturing, Jabalpur. He has more than 25 years of teaching and
research experience. He obtained his PhD in Mechanical Engineering from Indian
Institute of Technology Bombay, India. His research interests include smart
structure, vibration, design, reliability, finite element analysis, mechatronics and
robotics, etc. He has published more than 30 papers in refereed journals and con-
ferences and one book. He is recipient of ISAME K. Suryanarayan Rao Memorial
Senior Student Award for R&D in Smart Technology for year 2003. He is a
member of ASME, SPIE, IEEE, SRESA and other professional bodies.

Dr. Prabhakar V. Varde was Associate Director of Reactor Group, Bhabha
Atomic Research Center, Mumbai, India and is Senior Professor, Homi Bhabha
National Institute, Mumbai. He completed his PhD from IIT Bombay in 1996. He
worked as post-doctoral fellow at Korea Atomic Energy Research Institute, South
Korea in 2002 and was visiting professor at CALCE, University of Maryland, USA
in 2012. His research interests are development of prognostic models for nuclear
plants components in general and electronic components in particular. He worked
as a consultant with several international organizations such as OECD/NEA
(WGRISK) Paris, International Atomic Energy Agency, Vienna, etc. He is a chief
editor for International Journal of Life Cycle Reliability and Safety Engineering. He
has over 250 publications, which includes 10 conference proceedings/books, in
national and international publications.

Dr. P. K. Kankar is an Associate Professor in the discipline of Mechanical
Engineering, Indian Institute of Technology Indore. He has over 14 years of
teaching and research experience. He obtained his PhD from Indian Institute of
Technology Roorkee, India. His research interests include vibration, design,

Xix

XX Editors and Contributors

condition monitoring of mechanical components, nonlinear dynamics, soft com-
puting, etc. He has published more than 100 papers in refereed journals and con-
ferences. His work has been cited more than 1500 times. He also served as a guest
editor of special issues of various journals of national and international repute. He is
a member of professional bodies like American Society of Mechanical Engineers,
Society for Reliability and Safety (SRESA), Tribology Society of India and
International Institute of Acoustics & Vibration (IIAV).

Mr. Narendra Joshi is working as Secretary and founder member of the Society
for Reliability & Safety, and is the Managing Editor of SRESA-Springer
International Journal on Life Cycle Reliability and Safety Engineering. He has
over 20 publications to his credit in journals and conferences. Mr. Joshi is currently
looking after the activities of Human Resource Development, Simulator Training,
Root Cause Analysis and safety documentation in research reactors at the Bhabha
Atomic Research Centre, Mumbai. He has also worked in Operation and
Maintenance of research reactors for 13 years. He was involved in preparation of
Probabilistic Risk Assessment of research reactors at Trombay and Risk Informed
In-Service Inspection.

Contributors

Pavan Agrawal Madhav Institute of Technology & Science, Gwalior, MP, India
Suhail Ahmad Indian Institute of Technology Delhi, New Delhi, India

A. Alagesan A. D. Agricultural College & Research Institute, Tamil Nadu
Agricultural University, Tiruchirappalli, India

M. Amarnath Department of Mechanical Engineering, PDPM Indian Institute of
Information Technology, Design and Manufacturing, Jabalpur, India

S. Ananthi Anna University Chennai—BIT Campus, Tiruchirappalli, India
Atul B. Andhare Department of Mechanical Engineering, VNIT, Nagpur, India

Prashant Athanker Department of Mechanical Engineering, MNIT, Jaipur,
Rajasthan, India

Mradul Awasthi Indian Institute of Technology Delhi, New Delhi, India
Saurabh Bhalerao Rajarambapu Institute of Technology, Rajaramnagar, India

Sharad Bhardwaj Department of Mechanical Engineering, ABES Engineering
College, Ghaziabad, U.P., India

Mahesh Bhiwapurkar O. P. Jindal University, Raigarh, India

Editors and Contributors XX
Neeraj Kumar Bhoi Department of Mechanical Engineering, PDPM IIITDM
Jabalpur, Jabalpur, India

Abhishek Chavan Rajarambapu Institute of Technology, Rajaramnagar, India

N. J. Chotai Department of Mechanical Engineering, Marwadi Education
Foundation Group of Institutions, Rajkot, India

A. A. Darji Department of Mechanical Engineering, C. U. Shah University,
Surendranagar, Gujarat, India;

Department of Mechanical Engineering, LDRP Institute of Technology,
Gandhinagar, India

P. H. Darji Department of Mechanical Enginecering, C. U. Shah University,
Surendranagar, Gujarat, India

N. Dave Department of Mechanical Engineering, PDPU, Gandhinagar, India
Vipul Dave Pandit Deendayal Petroleum University, Gandhinagar, India
V. Deenadayalan Anna University, Tiruchirapalli, India

J. V. Desai Paher University, Udaipur, Rajasthan, India;
Department of Mechanical Engineering, LDRP Institute of Technology and
Research, Gandhinagar, Gujarat, India

Nishant Doshi Pandit Deendayal Petroleum University, Gandhinagar, Gujarat,
India

Pratiksha Gautam Department of Computer Science & Engineering, Amity
School of Engineering and Technology, Amity University Madhya Pradesh,
Gwalior, Madhya Pradesh, India

A. B. Gholap Marathwada Mitra Mandal’s College of Engineering Pune, Pune,
India

Ashish Gupta Discipline of Electrical Engineering, NIT Agartala, Agartala,
Tripura, India

Karunesh Kumar Gupta Birla Institute of Technology and Science, Pilani,
Rajasthan, India

S. P. Harsha Indian Institute of Technology Roorkee, Roorkee, India

Ankush C. Jahagirdar Birla Institute of Technology and Science, Pilani,
Rajasthan, India

Arihant Jain Research Reactor Services Division, Reactor Group, Bhabha Atomic
Research Centre, Trombay, India

Arvind Kumar Jain Discipline of Electrical Engineering, NIT Agartala, Agartala,
Tripura, India

Xxii Editors and Contributors

Pratesh Jayaswal Madhav Institute of Technology & Science, Gwalior, MP, India

M. D. Jaybhaye Department of Production Engineering and Industrial
Management, College of Engineering Pune, Pune, India

N. S. Joshi Research Reactor Services Division, Reactor Group, Bhabha Atomic
Research Centre, Trombay, India

U. Kagathara Department of Mechanical Engineering, PDPU, Gandhinagar, India

P. K. Kankar Discipline of Mechanical Engineering, Indian Institute of
Technology Indore, Indore, India;

PDPM Indian Institute of Information Technology, Design and Manufacturing,
Jabalpur, India

M. Karthick AERB-Safety Research Institute, Kalpakkam, India;
College of Engineering, Anna University, Chennai, India

R. Karthikeyan Anna University Chennai—BIT Campus, Tiruchirappalli, India

Abhay Khalatkar Department of Mechanical Engineering, G. H. Raisoni College
of Engineering, Nagpur, India

M. B. Kiran Department of Industrial Engineering, PDPU, Gandhinagar, India

K. L. A. Khan Department of Mechanical Engineering, KIET Group of
Institutions, Muradnagar, Ghaziabad, U.P., India

Basavraj S. Kothavale Department of Mechanical Engineering, MAEER’s MIT
College of Engineering, Kothrud, Pune, Maharashtra, India

Harshwardhan Kulkarni Indian Institute of Technology, Mumbai, India

Prabhat Kumar Bharatiya Nabhikiya Vidyut Nigam (BHAVINI), Kalpakkam,
Tamilnadu, India

Sachin Kumar Department of Mechanical Engineering, Indian Institute of
Technology Ropar, Rupnagar, India

Devesh Kumar Lal School of Computer Science & IT, Devi Ahilya University,
Indore, India

Rashmi Lalwani Manipal University Jaipur, Jaipur, Rajasthan, India

V. B. Lalwani Department of Mechanical Engineering, LDRP-ITR, Gandhinagar,
Gujarat, India

A. R. Majmudar Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

Editors and Contributors XXiii

Ashish Malik Department of Mechanical Engineering, ABES Engineering
College, Ghaziabad, U.P., India

D. P. Mavani Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

S. P. Mehta Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

C. J. Mevada Department of Mechanical Engineering, LDRP Institute of
Technology, Gandhinagar, India

R. K. Mishra CEMILAC, Defence R&D Organization, Bangalore, India

M. Monica Bhavani Department of CSE, Anna University, BIT Campus, Trichy,
Tamilnadu, India

D. H. Pandya Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

Adesh Paramane Rajarambapu Institute of Technology, Rajaramnagar, India

Anand Parey Department of Mechanical Engineering, Indian Institute of
Technology Indore, Indore, India

S. Parsana Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India

Chintan Patel Pandit Deendayal Petroleum University, Gandhinagar, Gujarat,
India

Jaydeep Patel Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

Rajesh Patel Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, India

Rhythm Patel Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

S. A. Patel Department of Mechanical Engineering, LDRP Institute of Technology
and Research, Gandhinagar, Gujarat, India

Shivdayal Patel Discipline of Mechanical Engineering, Indian Institute of
Information Technology, Design and Manufacturing, Jabalpur, India

Vivek Patel Department of Mechanical Engineering, Pandit Deendayal Petroleum
University, Gandhinagar, Gujarat, India

Rajkumar Bhimgonda Patil Center for Advanced Life Cycle Engineering
(CALCE), University of Maryland, College Park, USA;

Department of Mechanical Engineering, Annasaheb Dange College of Engineering
and Technology, Ashta, Sangli, Maharashtra, India

XXV Editors and Contributors

T. Paul Robert College of Engineering, Anna University, Chennai, India

N. B. Prajapati Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

Saurabh Pratap Department of Mechanical Engineering, PDPM IITDM
Jabalpur, Jabalpur, India

N. Radadia Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
B. D. Raja INDUS University, Ahmedabad, Gujarat, India
T. Ramprabhu Materials and Manufacturing Processes, Palakkad, Kerala, India

K. S. Ramprasad Sathyabama Institute of Science and Technology. Chennai,
India

Arun Kumar Rouniyar Department of Mechanical Engineering, Motilal Nehru
National Institute of Technology, Allahabad, Uttar Pradesh, India

Neelesh Kumar Sahu Department of Mechanical Engineering, Medi-Caps
University, Indore, India

D. Saikiran Department of Mechanical Engineering, Motilal Nehru National
Institute of Technology, Allahabad, Uttar Pradesh, India

Hemraj Saini Jaypee University Information Technology, Waknaghat, Solan,
Himachal Pradesh, India

Poonam Savsani Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

Vimal Savsani Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

Prakash Kumar Sen O.P. Jindal University, Raigarh, India
C. Senthil Kumar AERB-Safety Research Institute, Kalpakkam, India

Pragya Shandilya Department of Mechanical Engineering, Motilal Nehru
National Institute of Technology, Allahabad, Uttar Pradesh, India

Aditya Sharma Department of Mechanical Engineering, Faculty of Engineering,
Dayalbagh Educational Institute, Dayalbagh, Agra, India

Vikas Sharma Department of Mechanical Mechatronics Engineering, The LNM
Institute of Information Technology, Jaipur, India

Mohak Sheth Canadore college, North Bay, Canada
N. Sheth Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India

Parnika Shrivastava Mechanical Engineering Department, National Institute of
Technology Hamirpur, Hamirpur, India

Editors and Contributors XXV

Amit Singh Department of Mechanical Engineering, MNIT, Jaipur, Rajasthan,
India

Harpreet Singh Department of Mechanical Engineering, PDPM IIITDM
Jabalpur, Jabalpur, India

Suneet Singh Indian Institute of Technology, Mumbai, India
R. B. Solanki Atomic Energy Regulatory Board, Mumbai, India

Ugrasen Suman School of Computer Science & IT, Devi Ahilya University,
Indore, India

Puneet Tandon Mechanical Engineering Department, PDPM Indian Institute of
Information Technology, Design and Manufacturing, Jabalpur, India

V. K. Tapas Research Reactor Services Division, Reactor Group, Bhabha Atomic
Research Centre, Trombay, India

H. M. Trivedi Department of Mechanical Engineering, LDRP Institute of
Technology, Gandhinagar, India

N. Upadhyay Department of Mechanical Engineering, Indian Institute of
Technology Delhi, New Delhi, India

0. G. Vaghela Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

P. Vaishnavi Department of Computer Applications, Anna University, Chennai—
BIT Campus, Tiruchirappalli, India

S. Vaishnavi Department of Computer Applications, Anna University, Chennali—
BIT Campus, Tiruchirappalli, India
V. Vakharia Department of Mechanical Engineering, Pandit Deendayal

Petroleum University, Gandhinagar, India

A. Valarmathi Department of MCA, Anna University, BIT Campus, Trichy,
Tamilnadu, India

P. V. Varde Bhabha Atomic Research Center, Mumbai, India;
Research Reactor Services Division, Reactor Group, Bhabha Atomic Research
Centre, Trombay, India

Akash Vasani Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

A. K. Verma Western Norway University of Aplied Sciences, Haugesund,
Norway

Jay Govind Verma PDPM Indian Institute of Information Technology. Design
and Manufacturing, Jabalpur, India

XXVi Editors and Contributors
G. Vidhyalakshmi Department of Computer Applications, Anna University,
Chennai—BIT Campus, Tiruchirappalli, India

Anurag Vijaywargiya O.P. Jindal University, Raigarh, India

Venkata Ravi Vusa Discipline of Mechanical Engineering, Indian Institute of
Information Technology, Design and Manufacturing, Jabalpur, India

H. K. Yadav Department of Mechanical Engineering, LDRP Institute of
Technology and Research, Gandhinagar, Gujarat, India

Mutation Testing-Based Evaluation M)
Framework for Evaluating Software
Clone Detection Tools

Pratiksha Gautam and Hemraj Saini

Abstract Mutation testing has become a prominent research area in the past few
decades. The mutation testing has been basically used in the testing society. It is a
type of software testing where we mutate (small change, modification in the pro-
gram) source code using mutant operators by introducing potential new bugs in the
program code without changing its behavior. Analogously, mutant operators gen-
erate new clones by copy/paste editing activities. However, several software clone
detection tools and techniques have been introduced by numerous scientists and a
large number of tools comprises for a perceivable evaluation. Moreover, there have
been a lot of efforts to empirically assess and analyze variant state-of-the-art tools.
The current abstraction exhibits that various aspects that could leverage the legiti-
macy of the outcome of such assessment have been roughly anticipated due to lack of
legitimized software clone benchmark. In this paper, we present a mutation testing-
based automatic evaluation structure for valuating software clone detection tools
and techniques. The proposed framework uses the edit-based taxonomy of muta-
tion operator for assessing code clone detection tools. The proposed structure injects
software clones in the source code automatically, and after that, we evaluate clone
detection tools. The clone detection tools are evaluated on the basis of precision
(number of corrected clones) and recall (total number of clones). We visualize that
such a framework will present a valuable augmentation to the research community.

Keywords Mutation analysis - Software clone - Mutation techniques - Mutation
operators

P. Gautam ()

Department of Computer Science & Engineering, Amity School of Engineering and Technology,
Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, India

e-mail: pratikshamtech20@ gmail.com

H. Saini
Jaypee University Information Technology, Waknaghat, Solan, Himachal Pradesh, India
e-mail: hemraj1977@yahoo.co.in

© Springer Nature Singapore Pte Lid. 2020 21
V. K. Gupta et al. (eds.), Reliability and Risk Assessment in Engineering,

Lecture Notes in Mechanical Engineering,

https://doi.org/10.1007/978-981-15-3746-2_3

22 P. Gautam

1 Introduction

The experiential estimation of testing techniques plays a vital role in software testing
as well as in software clone detection research. One frequent usage is inserting flaws,
either manually or by using mutation operators [1]. Generally, empirical evaluations
are used to actuate two or more approaches, which are exclusive for complying with
some detection-related activity. Testing experiments usually entail a set of subject
programs with known faults or errors. Furthermore, in software clone detection,
it also requires some faulty version or duplicated code, to evaluate software clone
detection approaches. Many researchers consequently have taken the methods of
introducing bugs into the correct program to generate faulty variants. These bugs
can be pioneered by hand or generated automatically through a faulty version of
program text. Typically, we view an automatically generated version as an outcome of
employing some editing activities in the source code. However, these editing activities
arc performed according to well-defined rules which are called mutant operators,
and the resulting flawed variants are called mutation generation [2]. The mutation
operators are identically used to generate potential bugs in software code clones so as
to change the original source code [3, 4]. Reusing source code segment by copying
and pasting is acommon practice in software development. As a consequence, similar
copied code fragments are called software clones. and the process is called software
cloning [3]. Earlier study exhibits that a major portion (20-59) of program code in the
software code was duplicated [5—10]. An error detected in one segment of code, and
then, all segments of source code should be checked for the same error [11]. Copied
code can also considerably augment the effort to be thorough when intensifying or
complying source code [8]. However, several software clone detection approaches
have been anticipated, and there have been a number of comparisons and valuation
abstractions relating them in different contexts [12-16]. Nonetheless, it is ambitious
to analyze different software clone detection tools, due to software clone detection
techniques having specific features, and thus, these researches present considerable
contributions to the software clone detection research [17]. Typically, insufficient
assessment is aggravated as there are no universal evaluation benchmarks. It is thorny
to find such a general norm as each technique has its own tunable features and is
designed for distinctive reasons.

In this paper, we present a layout of mutation testing-based evaluation frame-
work. The main objective of our abstraction is to draft a mutation-based evaluation
framework which has been used to assess clone detection tools and techniques. The
proposed framework is still under implementation and is manifested for quantifying
and expanding various software clone detection tools. In this paper, we start off by
abstracting the basic introduction of software code cloning and mutation testing from
which an editing taxonomy of mutant operators can be derived. Moreover, on the
basis of these mutation operators, we assert a framework for valuating code clone
detection tools.

Mutation Testing-Based Evaluation Framework ... 23

2 Background

Copying source code fragments from one section of source text and reusing them into
another section with or without minor adaptation are frequent activities in software
development process [5]. Software clones can be classified on the basis of their
attributes as textual similarity and functional similarity. Further, the textual similarity-
based clones are also categorized into three types such as (1) type 1(identical code
segment except some variations in whitespace and comments), (2) type 2 (structurally
similar code segments except some modifications in variable names, white spaces and
comments) (3) type 3 (similar code segments with further alterations as statements
deleted, inserted). Functional similarity-based clones are type 4 which have similar
functionality but different structures.

3 Mutation Testing Overview

Mutation is a type of white-box testing, which is mainly used for unit testing where
we transform (mutate) certain statements of a program text and verify if the test cases
are able to find the fault. The adaptation in a mutant program is kept enormously
small, so that it does not change the overall intention of the program. The perception
of mutation testing is to introduce a syntactic transformation into the original source
code, to create a flawed variant (termed as a mutant) as stated by well-defined rules
(mutant operators) [18]. The mutation testing first time emerged in the 1970s by [19],
in a class term paper. The first research paper was published by the authors 1 [20-22].
The author [23] conducted a survey work on the subarea of mutation testing, which
was a weak survey, while the firm mutation provided by [24-27] and they gave an
introductory chapter on mutation testing in their books. In 2000, [28] carried out a
survey work on mutation testing as well as they recapitulated the history of mutation
testing and presented an outline of the existing optimization techniques for mutation
testing. Authors [29] defined mutation testing as a fault-based testing, which presents
a testing standard known as “mutationcompetence score.” The potency of test set can
be quantified by using this score in terms of its facility to detect flaws. A recent review
was accomplished [30]. They provide a methodical literature survey on application
perception of mutation testing. The mutation testing approaches are classified into
three types, and mutant operators can be assorted into two types which are shown
in Fig. 1. Figure la depicts the classification of mutation testing techniques such as
(1) the value mutation testing, which alters the key parameter’s value as well types
of mutation operators. (2) The decision mutation testing, modification in the control
statement of the source code using and, or, not. (3) The statement mutation testing
method, reorder statements of the program. Figure 1b demonstrates types of mutant
operators. The mutant operators can be categorized as traditional mutation operators
and class mutant operators. (1) The traditional mutant operators are further classified
as arithmetic, logical, relational, conditional, etc. (2) The class mutant operator as

24 P. Gautam

1 AriGmne | B 4
A S
| Loghest | 3 \

‘ Taxonamy of Mutation Testing] -y L

T -
[T —— ‘ Ohve tn i Mntatin m ot | W e ‘ | Asvigomnt

- - —— Brnrder A
i] | T _ Sawmnt

| SR |]

] 3

(a) Mbalam

®)

Fig. 1 Taxonomy of a mutation testing, b mutation operators

inheritance (delete a hidden variable), polymorphism (to check methods have the
same name) and encapsulation (transforms, delete and insert instance variables for
generating mutants).

The mutation testing is used to create flawed variants from an original program.
Further, we used mutation operators for creating various types of software clones
which are shown in Fig. 2. Figure 2 shows the mutation operators for software clones.
Software clones can be classified into four types. Type-1 clones can be generated
by using several mutation operators as mCW removes white space, mCW—changes
in blank spaces, mCC—changes in comments, mCF—changes in formatting and
mCNWs—changes in new line spaces. Type-2 clones can be generated by using
mutation operators as mARV—arbitrary renaming variables, mRPE—replacement of
parameters with expressions, nARDT—renaming data types and mARL—arbitrary
renaming of literals. Type-3 clones can be generated by mSDL—small deletions
within a line, mSIL—small insertions within a line, mMLs—modification in the
whole line, mMAOR—changes in arithmetic operators and mDSV—variation data
statements. Type-4 clones can be created by using mROS—reorder the statements,
mCR—replaces one type of control statement with another type of control statement,
mCSS—constant substitution.

4 Related Work

The basic idea behind mutation testing is creating exactly similar variants from orig-
inal program. Each mutant contains at least one artificial modification [31]. There is
no mutation testing-based assessment structure presented in the literature; however,
there are a number of experiments that contrast and valuate software clone detection

Mutation Testing-Based Evaluation Framework ... 25

mCW (Changes in whitespace) mARYVY (Arbitrary renaming of variables (systematically or
non-sy stematically)

mCNWs (Changes in newlines spacc)
mRPE (Replacement of parameters with expressions
mCC (Changes in comments) (systematically or non-systematically)

mCF (Changes in formatting) mARDT (Arbitrary renaming of data tvpes (systcmatically

5 ticall
mCB (Changes in blank space) S

mARL (Arbitniry renaming of Htemls(svstematically or
non-sy siematically)

Mutation Operators

Taxonomy

mDES (Changes in Do statement end substitution) mROS (Reordering of other statements)

mDSV (Changes in DATA statement vanations) mCR (Replacing onc type of control by another)
mAOR (Changes in anthmetic operator) mCSVSS (Constant for scalar vanable substitution)
mROS (Changes in relatiomal opemator substitution) mCSS (Constant substitution)

mSDL (Small deletion within a line) mACS (Aray reference for constant substitution)

mSIL (Small inscrtions within a linc)

mMLs (Modifications of wholc lincs)

Fig. 2 Taxonomy of mutation operators for software clones

techniques/tools. We present an outline of the existing tool assessment experimen-
tation from the literature. The first experiment was accomplished [14] on two pla-
giarism detection tools and three state-of-the-arts clone detection tools to evaluate
their performance. The first thing they did was verifying the entire duplicated code
clones using all the techniques of their experimentation. Various techniques were then
compared against various parameters by a human oracle, which in turn uses several
metrics that are responsible for measuring different facets of the detected code clones.
Though they efficiently identified all the candidate clones, the main constraints of
this case study are in terms of size and system quality. The primary objective of their
study was to help in a preventive maintenance task which had leverage in validating
the candidate clone. Authors have [12] accomplished tool comparison which was
invented after considering the limitations of [14] experiment. Further, the authors
[12] conducted this experiment with similar three software clone detection tools
which are used [14] in their experiment, and they also used three additional clone
detection tools in their experiments. The system software [14] had used a diverse set,

26 P. Gautam

accounting to four Java and four C. Moreover, when the authors’ [14] studies were
taken under consideration while validating the candidate clones, a human oracle was
then used for the same. Although being the most comprehensive study till now, the
clone candidate being oracled was only a small proportion considering that other
factors might have affected the results [17]. However, authors [15] extended this
study with a prototype application of several tools, but without addressing anything
to conquer the shortcomings of Bellon et al.’s study. The three envoy software clone
detection techniques valuated [16], and they presented relative fallouts in perspec-
tive of portability, types of replication addressed, scalability, a number of false test
matches and the number of ineffectual matches. Nevertheless, the little size cases
and paradigm implementation were used by them instead of the actual tools. They
intended to conclude appropriateness of the detection technique for a meticulous
task as a substitute to the perceptible evaluation of the detection approaches. The
researchers [13] carried out an interesting study; they evaluated numerous clone
detection techniques in respect of detecting crosscutting apprehensions.

Recently, various researchers proposed number of techniques for mutation testing.
Author [32] proposed an efficient mutation testing framework for multi-threaded
code which can reduce time required for mutation testing of multi-threaded code.
They proposed a tool named as MuTMuT which is based on four optimizations and
one heuristic. The mutation testing method used mutation testing in safety-critical
industry using high-integrity subsets of C and ADA [33]. They recognized most
adequate mutant types and analyzed main reasons of failure in test cases. Moreover,
they also provided a practical evaluation of the application of mutation testing to
airborne software system. One of the main issues regarding mutation testing was
high cost, due to the creation of mutants, execution of mutants and calculation of
their scores. Mateo and Usaola [34] proposed a mutant schema with extra code
(MUSIC) which reduces the mutation cost through uncovered mutants. Though this
technique defines the statements enclosed by the tests in the original system, in order
to out the mutant executions, because tests are only executed against the mutants
whose mutated statement is covered by tests. Authors [35] measured the complexity
of mutants and prioritized them on the basis of how easy or hard to manifest them. The
mutation testing is presented in perspective of Python program [36]. They showed
how mutation testing can be effectively handled in Python environment. A mutation
reduction method is proposed in terms of program structure [37]. Although they
used two path-aware heuristic rules named as loop-depth and module-depth rules
and combined these two rules with operator-based selection and statements for the
development of four mutant reduction approaches. In addition to this, the researchers
[38] have also evaluated mutation at the class level while the existing method analyzes
mutation at the traditional level. Further, they proposed a MuCPP system which is
based on the class mutation operators of C++ programming language. An improved
genetic algorithm is presented [39] which is a search-based approach to reduce the
computational cost of mutation testing. However, they used state-based and control-
oriented fitness function in their tool eMuJava and compared it with other standard
fitness functions. However, aforementioned mutation-based testing approaches have
been presented in the literature. All these approaches were focused on mutation

Mutation Testing-Based Evaluation Framework ... 27

testing, while mutation word first time was used [3, 4] in clone detection research
field in a brief way. Although they provided an editing taxonomy for various types
of clone generation and also proposed a mutation/injection-based framework for
evaluation clone detection tools.

As per the authors’ best knowledge, there is no thorough work on mutation testing
operators in perspectives of software clone detection tools. Yet, there is no standard
benchmark available for evaluating clone detection, and there is no empirical evalua-
tion, which explicitly determines the utilization of mutants in clone detection research
field. The author contribution in this manuscript is summarized as follows:

e We used mutation testing concept in clone detection research area.
e We used mutation operators for generating various types of software clones.
e Proposed an evaluation framework using mutated code clones.

We evaluated clone detection tools on the basis of mutated code.

5 Proposed Evaluation Framework

This section presents details of our proposed framework which is based on mutation
testing as shown in Fig. 5. We start with the basic components of the proposed
framework and then thrash out clones terminology, precision and recall of the tools.
Although, this framework is based on mutation testing and it acts in accordance with
the principle of mutation testing.

Figure 5 illustrates conceptual layout of the proposed framework. The proposed
framework 1s categorized into two main phases. Firstly, Clone Generation Phase,
in this phase, software clones are generated from original code with the help of
mutation operator-based editing taxonomy. The second phase is Tools Evaluation
Phase, in which mutated codes are used to evaluate the software clone detection
tools performance. The detailed discussions of the proposed framework are shown
below.

5.1 Validation Study

Input Original Code Base: At the primary step of the framework, we input the target
code base which 1s shown in Fig. 3. To find out which tool would be significant for
such a valuation in terms of recall and precision.

Figure 3 shows an example of code base which is taken as input in the proposed
framework. The original code is retrieved from an open-source project named as wet
lab [40] which is an open-source project of C++ language.

Figure 4 depicts an illustration of duplicated code which is generated using
mutation operators-based editing taxonomy as well as original source code.

28 P. Gautam

//Date; Oct 4 Start :5:23PM End :5:30PM
/[Find The Pair With Given Sum
//[Complexity : O(n)
#include<iostream>
#include<vector>

using namespace std;

int main()

{

vector<int> v = {1,2,4,5,6,7};
int sum ,left =0 ,right=v.size()-1;
cin>>sum;

while(left<right)

if(v[left]+v(right]==sum)
break;

else if(v[left]+v[right]>sum)
right--;

else

left++;

}

if(left<right)

cout<<"Pair Having Sum “<<sum <<" found at location "< <left+1<<" and "<<right+1<<" value
s are "<<v|left]<<" and "<<v{right];

else

Fig.3 An example of original code base

//Date: Oct 4 Start :5:23PM End :5:30PM

//Find The Pair With Given Sum

\\Testing Comment Inserted//Complexity : O(n)
#include<iostream>

#include<vector>

using namespace std;

int main()

{

vector<int> v = {1,2,4,5,6,7};
int sum ,left =0 right=v.size()-1;
cin>>sum;

while{left<right)

{
if(v[left]+v[right]==sum)
break;
else if(v[left]+v[right]>sum)
right--;
else
left++;

}

if(left<right)

cout<<"Pair Having Sum “<<sum <<" found at location "<<left+1<<" and "<<right+1<<" value
s are "<<v{leftj<<" and "<<v(right];

Fig.4 An illustration of code clone (type-1)

Random Selection of Code Segment

Once the source code is elected, then any preferred fractional number of accessible
source code segment is either selected automatically or randomly from the code
base for clone mutation.

Mutation Testing-Based Evaluation Framework ... 29

A

Input Random Cencrate
original code selection of Store in mutants of
base code e random
sepment dutabase code

(@) Propesed Framework: Clone Generation Phase

N\

Replace Sclect a Run injected Evaluation
random code clone + codde clone on > report of
mutants in scgment with detection tool tool
Aatahase mutants tool
Define
threshold
Statical analysis
nrpum
Evaluation
report
datubase
""'“" - "':" Eradicate
' inefMicient tools
tl...n

(b) Proposed Framework: Tools Evaluation Phase

Fig.5 Proposed mutation-testing-based automatic evaluation framework a Clone Generation Phase
b Clone Tools Evaluation Phase

Stored in Source Database
Randomly selected code segments are stored in the source database, and then,
mutants will be created by using these randomly selected code segments.

Generate Mutant of Random Code Segment

The edit-based taxonomy of mutation operators is used for generating mutant
versions of randomly or sequentially selected code fragments which are stored in
the mutant source database. An example of mutant-version of original code base
is shown in Fig. 4. A number of mutants can be generated for one code segment.

The mutated version of the code base after replacement will be fed as input to
clone detection tool. The detection tool will be evaluated on the basis of how many
clones it will detect accurately and how fast they detect clones.

30 P. Gautam

5.2 Tools Evaluation Phase

In this phase, each of the mutated code is stored in the database, and then, each
mutated code is fed into clone detection tools as an input for evaluating and comparing
clone detection tools. The main key feature of this phase is threshold. We defined
threshold for clone detection tools. If a tool does not fulfill the threshold limit, then
that will be eradicated and a new tool will be selected for evaluation.

Replace Random Code Segment with Mutants

The mutated code is generated for each of the mutant code variants of the source
code. The generated mutated version of the original code base is replaced with
the randomly selected code segments in the original code base.

Select a Clone Detection Tool
In this phase, a tool will be selected, and then, mutated code base is given as input
into the selected tool.

Run Injected Code Clones on Tool

The mutated version of code base after replacement will be given as input on
clone detection tool. The detection tool will be evaluated on the basis of how
much clone it will detect accurately and how fast they detect clone.

Evaluation Report of Tool

The evaluation report makes a decision for the tool. It analyzes the performance of
the tool on the basis of precision (number of accurately detected clones) and recall
(total number of clones), scalability (tool supports large database) and portability
(language support).

Define Threshold

The key objective of this phase 1s to diminish the execution time and cost of this
process. A threshold will be defined by a user for a clone detection tool, and the
tool crossing the threshold will be eliminated, and it will select a new tool for
evaluation. Further, the tool which has low precision and recall will be discarded
and the high precision—recall tool will be evaluated. It will be useful for those
users who are seeking high precision and recall-based tools.

Eradicate Inefficient Tool

Most of the tools have low accuracy in the sense that they did not detect all clones
(recall), as they returned a large number of false positive (precision). This led
to the cognizance which is a step of valuating the results of tools that should be
saved at the end.

Statistical Analysis Report

Once the experimentation is accomplished, then evaluation database is used to cal-
culate clone detection tools accuracy as precision, recall, portability and scalability
for each type of clone.

Mutation Testing-Based Evaluation Framework ... 31

6 Clone Terminology

The clone detection tool returns clones in the form of clone pairs (CP), clone classes
(CC) or both. The similarity relation between two or more clone fragments is illus-
trated by these two terms. Further, the clone similarity relation between code seg-
ments is an equivalence relation which is described in [41]. The clone relation exists
between two segments if they are similar structurally or semantically. A pair of code
fragments is called clone pair if there exists a clone relation, while clone class is a
union of all clone pairs [42].

Definition 1 (Code Segment) A code segment (CS) consists of any subsequence of
code string. It is defined by any type of granularity as fixed (predefined syntactic
boundary as function, begin-end block) or free (no syntactic boundary). A CS is
detected on the basis of granularity in the original program, and it is implied as
(CS.Filename. CS.BeginLine, CS.EndLine).

letP={0,1,2,...) and P+= {1, 2, ...). For p € P, denoted by O (p) A the set
of n operations on A and set OA: = Up € P+ O(p)A. A subset CS C OA.

Definition 2 (Software Clone) A code segment CS2 is a duplicated software clone
of another source segment CS1 if they are identical on the basis of some given
definition of similarity that is f(CS1) = CS2, where f 1s a similarity function (textual
or semantic). Further, when two code segments are similar with each other, they are
called clone pairs.

CP = (CS1, CS2)

Definition 3 (Software Clone Types) Software clones are classified on the basis of
their attributes as textual similarity-based or syntactic-based, and other is functional
similarity-based or semantic-based [5].

Definition 4 (Code Segment Encompassment) If two or more code segments are
contained within same file or the boundary of line numbers of CS1 is within the
boundary of line numbers of CS2.

File contained (CS CS1, CS CS2)

If((CS1.FileName==CS2.FileName) && (CS1.BeginLine>=CS2.BeginLine)
&& (CS1EndLine<=CS2.EndLine))

7 Measuring Recall

The main objective of our proposed framework is to automatically inject software
clones in the source code which are generated by using mutation operators. Further,
we evaluate clone detection tool’s accuracy in terms of precision and recall. The
proposed framework addresses recall for each type of software clones and for each

32 P. Gautam

type of mutation operators for all the tools. In this proposed framework, the detectable
clones are our injected mutant clone versions of the original source code, and that will
be inserted into mutated source code base, randomly or automatically. The mutation
testing-based techniques make recall simpler. Moreover, if the mutated code segment
as moCS of original code segment oCS inserted into the mutated code base mioCB
of original source code base oCB is “killed,” oCScs and moCS are detected by
clone detector and their threshold level value which returns 1 if detector’s minimum
threshold value is greater than 1 and maximum value less than 100, otherwise it will
return to 0. The main objective of threshold value is to minimize the execution time
and complexity. The threshold value depends on user’s requirements, and the user
can define threshold value between 1 and 100 because recall cannot be less than 1
and cannot be greater than 100.

Recall = (Number of detected clones x 100) /Total number of clones

R T (oCS, moCs) = {return 1, if (oCS, moCS) is detected by tool 7 in
mioCB — THLV (minimum value>=1 & maximum value<=100) otherwise 0.

Where THLV means threshold level value. The similar code segments can be
inserted or injected randomly, any number of times, in the original code base oCB and
generate n different mutated variants of oCB as mioCB1, mioCB2, ..., mioCBn. The
proposed framework used mutation operators for creating various types of mutated
versions of source code and then inserting them randomly several times to check the
sensitivity of clone detector. However, the random segment selector selects m code
base, and each of them will be mutated by mutation operators dmOP for generating
mutated versions of code segments as moCS1, moCS2, ..., moCSm.

Hence, the recall for mutation operator dmOP for clone detector is given as
follows.

RTdmOP = Z n * mRT(0CSi)/n *m

i=1

The type-1 software clones used four types of mutation operators (mCW, mCNWs,
mCC, mCF, mCB) and their combination (mCW + mCNWs), (mCC + mCF), (mCF
+ mCB), (mCW + mCC), (mCW + mCF), (mCW + mCB), (mCNW + mCC),
(MCNWs + mCF), (mCNW + mCB), (mCC + mCB) and mCF 4+ mCB) can be
applied to the m code segments (if we allow operator repetition, then a number of
combination can be generated), and each of which is inserted n times into the code
base. Therefore, the recall of clone detector tool T for type-1 can be defined as:

RTAmOP =) ._, n s m % (5 + 11) RT(0oCSi, moCSi)/m*n*(5+11) = {return
H, if (n, m) is detected by clone detector tool 7" in mioCBTHLYV (minimum value>=1
& maximum value<=100) otherwise L.

Where H means high recall, L means low recall and 5 indicates number of
operators and 11 indicates number of combinations.

The overall recall of clone detectors can be defined as:

Mutation Testing-Based Evaluation Framework ... 33

RTdmOP = } ._, n *m x (S + C) RT(0CSi, moCSi)/m#n*(S+c) = {return H,
if (n, m) is detected by tool 7 in mioCB — THLV (minimum value>=1 & maximum
value<=100) otherwise L.

Where H means high recall, L means low recall and S indicates number clone
mutation operators and C indicates number of combinations.

8 Measuring Precision

Precision measures irrelevant items which appeared in the results. Preferably, preci-
sion should be high when recall increases, but practically, it is difficult to accomplish.
The precision definition is shown below.

Precision = (Number of correctly detected clones x 100)/Total number of detected clones

The precision of a tool can be calculated as a mutated code segment moCS gener-
ated by using mutation operators dmOP, and clone detector tool T returning k clone
pairs, (moCS, CS1), (moCS, CS2)...(moCS, CSK) in mutated code base mioCB.

PTdmOP = w.r.t. t. single insertion of moCS = a/k {return 1, if (0CS, moCS)
is detected by tool 7 in mioCB — THLV (minimum value>=1 & maximum
value<=100) otherwise 0.

Where a means accurate detection and kK means number of clone pairs returned
by a clone detector 7.

The overall precision of clone detector tool in terms of number of mutation oper-
ators and number of combinations which is applied n times to m code segments is
shown below.PTdmOP = Y, _ nsxm* (S+C) /Y ,_ n*m* (S + C) = {return
H., if (n, m) is detected by clone detector tool 7" in mioCBTHLV (minimum value>=1
& maximum value<=100) otherwise L. Where H means high precision and L means
low precision.

9 Conclusion and Future Work

The valuation of code clone detection tools and techniques is an emerging issue in
today’s scenario. The previous studies for experimentally valuating clone detection
tools and techniques had various constraints and hence, cannot present a persuasive
comparable survey. Thus, in this paper, we proposed a peculiar mutation testing-based
evaluation layout, for valuating code clone detection tools which are used by testing
society over the past thirty years. Moreover, this paper encompasses mutation testing,
operators and provides insight into related work on mutation testing. However, we
have not accomplished the execution of the framework until now; we are assured
that such a framework can present truthful analogous outcome for distinct tools,
in finding deliberately generated software code clones. In the proposed structure,

Mutation Testing-Based Evaluation Framework ... 35

18.
19.

20.

21.

24,

25.

26.
27.

28.

29.

30.

31

32.

33.

39.

40.
41.

42.

Offutt J (2011) A mutation carol: past, present and future. Inf Softw Technol 53(10):1098-1107
Lipton RJ (1971) Fault diagnosis of computer programs. Student report, Carnegie Mellon
University

Budd T, Sayward F (1977) Users guide to the Pilot mutation system. Technique report 114,
Yale University, New Haven, CT

Hamlet RG (1977) Testing programs with the aid of a compiler. IEEE Trans Softw Eng 4:279-
290

. DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the practicing

programmer. Computer 11(4):34—41

. DeMillo RA (1989) Completely validated software: test adequacy and program mutation (panel

session). In: Proceedings of the 11th international conference on software engineering. ACM,
Pittsburgh, PA, pp 355-356

Woodward MR (1990) Mutation testing—an evolving technique. In: IEE colloquium on
software testing for critical systems, p 3-1

Woodward MR (1993) Mutation testing—its origin and evolution. Inf Softw Technol
35(3):163-169

Mathur AP (2013) Foundations of software testing, 2/e. Pearson Education India

Ammann P, Offutt J (2016) Introduction to software testing. Cambridge University Press,
Cambridge

Offutt AJ, Untch RH (2001) Mutation 2000: uniting the orthogonal. In: Mutation testing for
the new century. Springer, USA, pp 3444

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. I[EEE
Trans Softw Eng 37(5):649-678

Zhu Q, Panichella A, Zaidman A (2016) A systematic literature review of how mutation testing
supports test activities (No. e2483v1). Peerl Preprints, pp 1-57

Reales P, Polo M, Fernandez-Aleman JL, Toval A, Piattini M (2014) Mutation testing. I[EEE
Softw 31(3):30-35

Gligoric M, Jagannath V, Luo Q, Marinov D (2013) Efficient mutation testing of multithreaded
code. Softw Test Verification Reliab 23(5):375-403

Baker R, Habli I (2013) An empirical evaluation of mutation testing for improving the test
quality of safety-critical software. IEEE Trans Softw Eng 39(6):787-805

. Mateo PR, Usaola MP (2015) Reducing mutation costs through uncovered mutants. Softw Test

Verification Reliab 25(5-7):464-489

. Namin AS, Xue X, Rosas O, Sharma P (2015) MuRanker: a mutant ranking tool. Softw Test

Verification Reliab 25(5-7):572-604
Derezinska A, Hatas K (2015) Improving mutation testing process of python programs. In:
Software engineering in intelligent systems. Springer, Cham, pp 233-242

. Sun CA, Xue F, Liu H, Zhang X (2017) A path-aware approach to mutant reduction in mutation

testing. Inf Softw Technol 81:65-81

. Delgado-Pérez P, Medina-Bulo 1. Palomo-Lozano F, Garcia-Dominguez A, Dominguez-

Jiménez JJ (2017) Assessment of class mutation operators for C++ with the MuCPP mutation
system. Inf Softw Technol 81:169-184

Bashir MB, Nadeem A (2017) Improved genetic algorithm to reduce mutation testing cost.
IEEE Access 5:3657-3674

Wet Lab (1989) Retrieved from http://ftp.gnu.org/gnu/wget/

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans Softw Eng 28(7):654-670

Roy CK, Cordy JR (2007) A survey on software clone detection research. Queen’s School of
Computing TR, 541(115), pp 64-68

