Plant Disease Detection

Major project report submitted in partial fulfilment of the requirement for the
degree of Bachelor of Technology

in
Computer Science and Engineering & Information Technology

by

Sanya Kanwar(181465)
Stuti Gupta(181467)

Under the supervision of

Dr. Ruchi Verma

Department of Computer Science Engineering and Information Technology
Jaypee University of Information Technology, Waknaghat, 173234,

Himachal Pradesh, INDIA

CERTIFICATE

This is to certify that the work which is being presented in the project report titled Plant
Disease Detection in partial fulfilment of the requirements for the award of the degree of
Bachelor of Technology in Computer Science and Engineering & Information
Technology, Jaypee University of Information Technology, Waknaghat is an authentic
record of work carried out by Sanya Kanwar and Stuti Gupta during the period from
Janaury 2022 to May 2022 under the supervision of Dr. Ruchi Verma, Department of
Computer Science and Engineering & Information Technology, Jaypee University of
Information Technology, Waknaghat.

Sanya Kanwar(181465)
Stuti Gupta(181467)

The above statement made is correct to the best of my knowledge.

Supervisor Name: Dr. Ruchi Verma
Designation: Assistant Professor (Grade-II)

Department Name: Computer Science and Engineering

ACKNOWLEDGEMENT

Firstly, 1 express my heartiest thanks and gratefulness to almighty God for his divine

blessing that made it possible to complete the project work successfully.

| am quite grateful to my supervisor, Dr. Ruchi Verma, Asst. Prof. Senior Grade,
Department of CSE Jaypee University of Information Technology, Waknaghat, for her
assistance. To complete this assignment, my supervisor has extensive knowledge and a
deep interest in the subject of Machine Learning. His never-ending patience, intellectual
direction, constant encouragement, constant and energetic supervision, constructive
criticism, good suggestions, and reading many poor versions and fixing them at all stages

made it possible to finish this job.

I'd like to thank Dr. Ruchi Verma, Department of CSE, for her invaluable assistance in
completing my project.

I would also like to express my gratitude to everyone who has directly or indirectly assisted
me in making this project a success. In this unique scenario, I'd want to appreciate the
different staff members, both teaching and non-teaching, who have developed their helpful
assistance and facilitated my project. Finally, I must express my gratitude for my parents'

unwavering support and patience.

Sanya Kanwar(181465)

Stuti Gupta(181467)

Table of Contents

CONTENT
CANDIDATE’S DECLARATION

ACKNOWLEDGEMENT

ABSTRACT
CHAPTER 1: INTRODUCTION

* INTRODUCTION

* OBJECTIVE

* PROBLEM STATEMENT
* METHODOLGY

* ORGANIZATION

CHAPTER 2: LITERATURE SURVEY

CHAPTER 3: SYSTEM DEVELOPMENT

CHAPTER 4: PERFORMANCE ANALYSIS

CHAPTER 5: CONCLUSION

FUTURE SCOPE

REFERENCES

APPENDICES

PAGE NO.
2

10
11
15

16

18-34

35-45

46-48

49-50

51-52

53-57

ABSTRACT

Plant disease detection is crucial in agriculture, as farmers must frequently make decisions
such as whether or not the crop is sufficient. These can produce major system difficulties
that impair each product's quality, quantity, or productivity, and they should be treated
carefully. Plant diseases produce frequent disease outbreaks, result in large numbers of
deaths, and have significant economic implications. These issues must be addressed
quickly in order to save lives and money. Plant disease categorization by machine is a hot
research issue. Because it is critical to be able to recognize the disease symptoms that
occur on the plant's leaves when monitoring a vast region and at an early stage. This

enables image-based automated inspection using computer vision techniques.

Manual plant disease identification, on the other hand, is a time-consuming, incorrect
operation that can only be done in a small area at a time. Plant illnesses can be detected
early this way, and pest and infection management techniques can be utilized to solve
pest problems while reducing hazards to humans and the environment, or so they
believed. We describe the current trends and difficulties of plant leaf diseases using
extensive research and modern imaging techniques. We hope that, for all intents and
purposes, this research will be of enormous use to researchers studying plant and insect
ilinesses, or so they thought. Also, we talked about some of the most pressing concerns
and issues that needed to be handled, or so they believed.

Chapter 01-Introduction 1.1 Introduction:

For the world's health and well-being, accurate identification of plant diseases is critical.
It is critical to recognise illnesses, including early prevention, in this ever-changing
environment to avoid problems that may arise in other ways. Some of these issues, such
as worldwide food shortages, could have catastrophic effects for humanity. In order to
respond to climate change and achieve a better lifestyle, it is critical to avoid wasteful
waste of financial resources from an environmental standpoint. Humans find it difficult
to notice the effects of several plant diseases with the naked eye. It is tedious and

ineffective to repeat this process over and over.

Plant pathologists must have outstanding observation skills in order to identify
distinctive symptoms and detect plant diseases accurately. Plant disease detection
techniques that are based on the look and visual symptoms of the plant can be quite
useful. It may be used to automate the entire pipeline in the agricultural sector.
Because these redundant jobs boost machine performance over humans, this not only
improves efficiency but also operational productivity. Using deep learning and computer
vision technology, we tackle the aforementioned problem of automating the

classification of plant diseases.

With the benefits of automated learning and feature extraction in recent years, there
has undoubtedly been considerable worry in both academic and industrial circles. It's
utilised a lot in image and video processing, as well as voice and natural language
processing. Simultaneously, it has essentially transformed into a hotspot of research in
the field of agricultural protection, such as the detection of plant diseases and pest
control, etc. In-depth understanding can surely prevent major flaws created by
plantbased selection when it comes to identifying plant illnesses. Dot pathogenesis
enhances the effectiveness of research and the speed of technological progress by making

plant disease more purposeful.

This paper examines the considerable advancement of in-depth research technologies in
the field of leaf spot recognition in recent years. Plant disease outbreaks have a
significant detrimental influence on agricultural production. Malnutrition will rise if
plant diseases are not detected early. Early identification is essential for effective plant
disease prevention and control, and it plays a vital role in agricultural production
management and decision-making. Plant disease identification has become a big

challenge in recent years, albeit ina subtle way.

Agriculture is a sector that has a significant impact on human existence and economic
status. Agriculture is the primary source of income for approximately 58 percent of
India's population. In terms of farm yields, India is ranked second in the world.
Agriculture provided employment to more than 50 percent of the workforce in 2018,
adding 18 — 20 percent to the country's GDP.

As a result, India has established itself as one of the leading countries in terms of
agricultural yield and productivity. Given that agriculture employs the majority of the
people, it is critical to understand the issues that this sector faces. Inefficient farming
strategies and procedures, poor use of compost, manures, and fertilisers, insufficient
water supplies, and many diseases attacking plants are only some of the issues that the
agriculture area faces. Diseases are extremely destructive to plants' health, which has an
impact on their growth. The attack of these many diseases on plants causes a

significant reduction in yield performance, both in terms of quality and quantity.

Diseased plants account for 20-30% of all crop losses. As a result, detecting plant
diseases is critical in order to avoid major losses in productivity, performance, and
agricultural output. Because manual recognition takes a long time and is prone to
errors, it results in incorrect treatment. Recent technological advancements and evolution
have paved the road for plant disease detection and identification, as well as better

treatment of damaged plants.

The current advancement in technology, as well as its evolution, has made it
conceivable and practicable to detect and identify plant diseases, as well as to contribute
to better plant treatment in the event of diseased conditions. The proposed plant leaf
disease recognition system focuses on 14 plant kinds, including apple,
blueberry , cherry, maize, grape, orange, peach, pepper, potato, raspberry,ksoybean,
squash , strawberry, and tomato. This method is based on Deep Learning ideas, with
convolutional neural networks (CNN) being used to create a statistical model that is
applied to the input image and modifies it to identify output tags.

Plants' leaves, which are the most vulnerable, display disease symptoms first. From the
beginning of their life cycle until they are ready to be harvested, the crops must be
monitored for illnesses. The traditional naked eye observation approach was initially
used to monitor the plants for diseases. This is a time-consuming strategy that requires
professionals to manually check the crop fields. A variety of strategies have been used
in recent years to produce automatic and semi-automatic plant disease detection
systems, and automatic disease detection by simply looking at the symptoms on the

plant leaves makes it easier and cheaper.

1.2 Objective:

This project seeks to address the flaws in existing disease diagnosis diagnostic papers by
offering a review of the most recent research in the field of leaf disease diagnosis

utilising image processing and Deep Learning study methodologies.

Automatic detection of plant disease is an important study topic because it might help
monitor large fields of crops and, as a result, detect disease symptoms as soon as they occur
on plant leaves.

Plants are susceptible to disease for a variety of reasons, including fertilisers, cultural
practises, environmental conditions, and so on. These diseases reduce agricultural yield

and, as a result, the economy.

Plant pathologists need good observation skills to detect plant diseases accurately.
Because these redundant jobs boost machine performance over humans, this not only
improves efficiency, but also operational productivity. Early identification is the foundation
for effective plant disease prevention and control, and it plays a vital role in

agricultural production management and decision-making.

We used the concept of transfer learning for classification. The main advantage of transfer
learning is that it does not start the learning process from scratch, but rather applies patterns
gained when solving a comparable problem. As a result, rather of beginning from scratch,
the model takes advantage of past knowledge. A pre-trained model is widely used to
represent transfer learning in image classification. A pre-trained model is one that has been
trained to solve a problem similar to ours on a large benchmark dataset. We employed five

models for pre-trained weights, including Inception v3.

1.3 Problem Statement:

Agriculture is one field that has a significant impact on human lives and economic
condition. Agricultural products are lost due to poor management. Diseases harm the
health of the plant, which has an impact on its growth. It is critical to monitor the progress
of the farmed crop to ensure minimal loss. Convolutional Neural Networks are a type of
Deep Learning network that is commonly used for image classification, as well as other
common tasks like image segmentation and signal processing. The major goal of the
proposed work is to discover a solution to the challenge of detecting 38 distinct types of
plant illnesses using the simplest approach while employing the fewest computational

resources possible to obtain better outcomes than previous models.

10

1.4 Methodology:
DATASET:

e Plant village Dataset consists of Images of various plant leaves named Apple,
Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Soybean, Squash,
Strawberry and Tomato.

e ThePlant Village dataset contains 54303 healthy and unhealthy leaf images, which
are divided into 38 species and disease categories. We looked at over 50,000 images
of plant leaves with labels from 38 different classes in order to predict
disease classes. On this compressed image, we perform optimization and
model predictions after resizing the image to 256 x 256 pixels.

e We looked at illnesses in tomato and potato plants, which had nine and two
diseased subclasses, respectively, and one healthy subclass.

e Thecomplete collection containsalmost 20,000 photos of various diseasedAleaves
of various kinds.

e Through the current web portal PlantVillage, we are announcing the availability of
nearly 50,000 skillfully chosen photographs on healthy and sick leaves of crops
plants. Both the data and the platform are described. These data are the start of a
crowdsourcing project to enable computer vision technologies to help solve the

problem of crop plant production losses caused by viral illnesses.

11

Data Processing and Augmentation

Building a good image classifier requires a lot of picture augmentation. Despite the fact
that datasets can contain hundreds to thousands of training samples, the variety may not be
adequate to develop an appropriate model. Flipping the image vertically/horizontally,
rotating the image via various angles, and scaling the image are just a few of the many
image augmentation choices. These enhancements help to boost the amount of
meaningful data in a dataset. Each image in the Plant Village dataset has a resolution of
256 by 256 pixels. The Keras deep-learning framework is used for data processing and

picture enhancement.

The following are the training enhancement options:

* Rotation - Rotate a training image in a random direction.

» Brightness - Assists the model in adapting to changes in lighting while training by

feeding images of varied brightness.

* Shear - Change the angle of shearing.

12

SYSTEM OVERVIEW:

Input Image Pre —
Image - Processing Feature Extraction

Segmentation

Selected Feature
Value

-~

Classified

Database

Predicted Class of
Disease

Image processing steps for detecting plant illnesses

The entire procedure is broken down into three stages:

1.The images are uploaded from the dataset, provided from Kaggle Plant Village Dataset.
2.Picture segmentation, image enhancement, and colour space conversion are all examples
of pre-processing. First, a filter is applied to the digital picture of the image. Then, for each

image, create an array. Each image name is converted to a binary field using the
scientific term for Binarizes Diseases.

3. CNN classifiers are taught to recognise illnesses in different plant classes. The Level 2
results are used to activate a classifier that has been trained to classify various plant
illnesses. The leaves are considered healthy if they are not present.

13

FLOW CHART:

Image Dataset

Performance
Verification

Data Annotation

Disease Training

Data

: Training
Argumentation

Validation Disease Detection

14

-3

1.5 Organization:

The project report is broken down into 5 sections. The first chapter covers the
background and motivation for the proposed application, the problem statement and
aims to answer the issue statement, the recommended technique or research, and the
highlighting of successful proposed applications. Chapter 2 illustrates the literature
survey of the project from which we took the references. The system development
chapter includes the site map, use case diagram, activity diagram, and system
wireframe, which is the proposed application's user interface. Software design
approach, tools, requirements, system performance specifications, and timescales are
discussed in Chapter 4. The fifth chapter concludes the implementation, project

evaluation, benefits and future scope of the project.

15

Chapter 02- Literature Survey

Authors Year Description Outcomes
D.A. Bashish, 2010 The author divided the leaf The total disease
et.al image into four clusters detection and

using k-means clustering, categorization
expecting that at least one of the accuracy of the
clusters would have sick pixels. A system was
CCM approach based on Spatial determined to Dbe
Gray-level Dependence Matrices around 93%. Using
was developed for feature HS L COIOW
) _ characteristics in
extraction (SGDM). This strategy BPNN , however, the
provides us with textural best overall average
properties. The feed forward back accuracy of 99.66
propagation approach was used to percent was attained.
classify the data using a neural Angular moment,
network (BPNN). mean intensity level,
variance, correlation,
product moment,
contrast , and entropy
were discovered to be
texture oriented
properties.

M.Bhange 2015 When applied to large datasets, k- The authors were able

et.al means clustering is more to attain an overall

efficient, hence it was employed
for segmentation in this work.
The sum of squared distances
were used to compare the colour
histograms of two photographs.
Morphology can be used to
extract boundaries or the shape
vector. When comparing photos
with spatial information, CCV is
used. SVM is utilised for
classification in this study.

system accuracy of
82 percent using
SVM. Support vector
machines take a long
time to train, yet they
are quite precise. As a
consequence, three
feature vectors, one
for colour histogram,
morphology, and
CCV, were obtained.

16

V. Singh 2016 To perform clustering, the Local homogeneity,
et.al genetic algorithm's search contrast , cluster
capacity was employed to divide shadow, energy , and
unlabeled N-dimension points cluster prominence
into K clusters. The texture and are texture properties
colour of an image have been computed for the H
evaluated in the CCM approach. picture. The minimum
Two techniques, one using distance criterion has
kmeans clustering and the an accuracy of 86.54
other with the Genetic percent with k-mean
algorithm , used the minimum clustering and 95.71
distance criterion. percent with SVM. The
accuracy was enhanced
to 93.63 percent by
combining the Genetic
Algorithm with g the
minimum distance
criterion.
E.Kiani 2017 There are five inputs and two Using the proposed
et.al outputs in the algorithm. approach, the authors
Two of the inputs are about of this paper
iron deficiency, while the were able to attain an
other is about fungal infection. overall system
If the leaf is infected, the outputs accuracy of 96
refer to the two diseases. percent.
2017 The distance betweentwo Rotation invariance s
H. Ali colours is calculated using the obtained from the RGB
et.al delta E colour difference histogram. The lighting
algorithm. For feature extraction,invariance induced by varied
LBP (local binary patterns), [lightning circumstances is
RGB histogram, and HSV captured in the HSV
histogram features are used. histogram as a feature.
2018 ThekOtsu technique assumes
G. that the image has two types of
Saradhambal, pixels , forming a bimodal
et.al histogram with foreground

and background pixels. Shape

and texture oriented features
were employed for feature
extraction.

17

Chapter 03 - System Development

LANGUAGE USED

The language used in this project is Python

PLATFORM USED:

Google colaboratory

LIBRARIES USED

Numpy : Python's The NumPy library is the backbone of scientific computing.
It's a Python library that includes a multidimensional array object, a number of
derived objects (such as masked arrays and matrices), and a number
of routines for performing fast array operations like mathematical, logical,
shape manipulation, sorting, selecting, 1/O, discrete Fourier transforms, basic
linear algebra, basic statistical operations, random simulation, and more. In
Python, we have lists that act like arrays, but they are slow to parse.

NumPy promises a 50-fold faster array object than standard Python lists. The

array array object in NumPYy provides with a variety of auxiliary functions .

Pickle: For Python object structures, the pickle module provides binary
serialisation and de-serialization methods. Pickling converts a Python object
hierarchy into a byte stream, whereas unpickling converts a byte stream
(from a binary file or bytes-like object) back into an object hierarchy. Pickling
(and unpickling) is also known as "serialisation,” "marshalling," or "flattening,"
while the terms "pickling" and "unpickling" are used here to avoid
misunderstanding. For Python object structures, the pickle module supports
binary serialisation and de-serialization methods.

The process of transforming a Python object hierarchy into a byte stream is

known as pickling.

The converse of Pickling is Unpickling, which is the process of transforming a byte

stream into an object hierarchy.

18

« CV2: OpenCV is a free andopen-source toolbox for computer vision,
machine learning, and image processing. OpenCV supports a variety
of programming languages, including Python, C++, Java, and others. It
can recognise items, persons, and even human handwriting in
photographs and videos. When used in conjunction with other libraries, such
as Numpy, a very efficient library for numerical operations, the number of
weapons in your arsenal increases, as every operation that Numpy can

perform may be combined with OpenCV.

+ This OpenCV tutorial will show you how to use a range of OpenCV
programmes and projects to conduct image processing operations on photos
and videos.

» LabelBinarizer: Labels should be binarized in a one-to-all basis.

Scikit-learn includes a number of regression and binary classification techniques.
The so-called one-vs-all approach is a straightforward way to extend these

algorithms to the multi-class classification problem.

This basically entails learning one regressor or binary classifier per class
throughout learning time. To do so, multi-class labels must be converted to binary
labels (belong or does not belong to the class). The convert method in

LabelBinarizer makes this operation simple.

When it comes to prediction, one allocates the class to which the associated
model provided the most confidence. The inverse transform function in

LabelBinarizer makes this simple.

19

« Keras: Keras is a Python-based deep learning API that runs on top of the
TensorFlow machine learning framework.It was created with the goal
of allowing quick experimentation. It is critical to be able to move quickly
from idea to outcome when conducting research.

Keras is:

Simple-Simple, yet far from simplistic. Keras relieves developer cognitive

strain, allowing you to focus on the most important aspects of the problem.

Flexible-Simple processes should be quick and straightforward, but arbitrarily
sophisticated workflows should be feasible via a clear route that builds on what

you've already learned .

Keras is a deep learning model-level library that provides high-level building
elements. Keras does not execute low-level calculations like Tensor products or
convolutions; instead, it uses a specialised tensor manipulation library that is
finetuned to operate as a backend engine. Keras has handled it so well that instead
of adopting a single tensor library and executing operations on that library, it now

allows alternative backend engines to be plugged into Keras.

Sklearn: In Python The most useful and robust machine learning package in
Python is Scikit-learn (Sklearn). It provides a set of quick machine learning and
statistical modelling capabilities, including as classification, regression,

clustering, and dimensionality reduction, usinga Python consistency interface.
This Python-based toolbox heavily relies on NumPy, SciPy, and Matplotlib.

Scikit-learn is a free supervised and unsupervised machine learning software. It also
has functions for model fitting, data preparation, model selection, and model

assessment

20

L]

OS: Python Operating System module with functions for creating and deleting
directories, retrieving their contents, modifying and defining the current directory,

and more. It can also automate a variety of operating system processes.

Listdir: In Python, the listdir() function is used to acquire a list of all files and
folders in a given directory. If no directory is specified, the current working
directory's list of files and folders will be returned.

Python technique listdir() providesa listof the names ofthe entriesinthe path
named directory. The order of the items is random. Even if they are present in

the directory, it excludes the special entries "."and "...

Matplotlib: Matplotlib is a Python low-level graph charting toolkit that
acts as a visualisation tool .John D. Hunter designed Matplotlib. Matplotlib is
a Python charting toolkit, as well as its numerical mathematics extension NumPy.
It provides an object-oriented API for incorporating plots into programmes
that use general-purpose GUI toolkits such as Tkinter, wxPython, Qt, or
GTK . Thereisalso aprocedural "pylab™ interface based ona state machine
(similar to OpenGL) that is intended to be similar to MATLAB, albeit its use is
discouraged. Matplotlib is used by SciPy. He created Matplotlib at the beginning.
It has had an active development community since then and is offered under a
BSDstyle licence. Soon after John Hunter's death in August 2012. Michael
Droettboom was selected as matplotlib's principal developer, and he was joined by
Thomas Caswell. Matplotlib is a Num FOCUS-supported project. Matplotlib
2 .0.x is compatible with Python versions 2.7 through 3.10. Matplotlib 1.2
introduced Python 3 support .

Matplotlib 1.4 is the most recent release that supports Python 2.6. By signing the
Python 3 Statement, Matplotlib has vowed not to support Python 2 after
2020.Matplotlib is open source and free to use. Matplotlib is primarily written
in Python, with a few pieces in C, Objective-C, and Javascript for platform
compatibility .

21

METHODS:

There are four stages to the plant disease detection system procedure. Images are
collected in the first phase using a digital camera, a cell phone, or the internet.
The second phase divides the image into many clusters, each of which can be treated
differently. The next part is about feature extraction methods, and the final phase is about

illness classification.
Image capturing

Images of plant leaves are captured with digital media such as cameras , mobile
phones, and other devices that have the required resolution and size. Images are also

available for download on the internet.

The construction of an image database is exclusively the responsibility of the application
system developer. The improved efficiency of the classifier in the detection system's

final phase is due to the photo database.

Image Segmentation

This phase seeks to make an image's representation more intelligible and easier to
examine by simplifying it . This phase is the foundation of feature extraction and the
primary method to image processing. Images can be segmented using a variety of
methods, including k-means clustering, Otsu's algorithm , and thresholding , among
others. The k-means clustering classifies objects or pixels into K number of classes
based on a collection of features . The classification is performed by minimising the

sum of squares of distances between items and their respective groups.

22

The area of interest is the result of segmentation to this point. As a result, the characteristics
from this area of interest must be retrieved in this stage. These characteristics are required
to interpret a sample image. Color, shape, and texture can all be used to create features
[14]. The majority of researchers are now planning to employ textural traits to detect
plant illnesses. Gray-level co-occurrence matrix (GLCM), colour cooccurrence
method , spatial grey-level dependence matrix, and histogram based feature
extraction are some of the feature extraction approaches that can be used to construct the

system. The GLCM method is a texture categorization statistical method.

Classification

The classification phase entails determining whether or not the input image is healthy.
If a diseased image is discovered, several existing works have categorised it into a
number of disorders. A software procedure, often known as a classifier, must be written in
MATLAB for classification. k-nearest neighbour (KNN), support vector machines
(SVM) , artificial neural network (ANN) , back propagation neural network
(BPNN) , Naive Bayes , and Decision tree classifiers have all been employed by
researchers in recent years. SVM is proven to be the most widely used classifier. Though
each classifier has advantages and weaknesses, SVM is a straightforward and reliable

technique .

23

Algorithm :

Deep Learning

Deep learning is a type of machine learning technique that use multiple layers to extract
higher levels of information from raw data. Deep learning is a type of machine learning
that instructs a computer to filter data across layers. Deep learning exemplifies the way
the human brain filters information. Neural network architectures are used in many
deep learning approaches. The term "deep” refers to the hidden layers that make up a
neural network. Unlike traditional neural networks, which have two to three hidden

layers, deep neural networks can have up to one hundred and fifty .

Convolutional neural networks

Convolutional neural networks are a subtype of deep neural networks (CNN) . A CNN
mixes well-read characteristics with input data before applying 2D
convolutional layers, making it more suitable for processing 2D data like as images.
CNNs eliminate theneed for human feature extraction and removal for
picture classification. CNN's proprietary model extracts features directly from photos.
The retrieved features are not pre-trained; they are well-read when the network is
trained on a small number of image groups. The Convolutional Neural Network (CNN)
model contains a number of layers that do image processing, including an input layer, an
output layer, a convolutional layer, a fully convolutional layer, a soft-max layer, a

connected layer, and a pooling layer.

24

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning method that can
take an input image and give importance (learnable weights and biases) to various
aspects/objects in the image, as well as identify one from the other. ConvNet requires

significantly less pre-processing as compared to other classification algorithms.
ConvNets can learn these filters/characteristics with enough training, whereas primitive

techniques require hand-engineering of filters.

The design of a ConvNet is inspired by the Visual Cortex's organisation, which is analogous
to the linking pattern of neurons in the human brain . Individual neurons respond to

stimuli exclusively in the Receptive Field, a tiny region of the visual field .

Why ConvNets over Feed-Forward Neural Nets ?

N
=
RIN[O[RIN|D|[O|[R]|R

Flattening of a 3x3 image matrix into a 9x1 vector

Isn't a picture just a matrix of pixel values? Why not simply flatten the picture (for example,
a 3x3 image matrix into a 9x1 vector) and pass it to a Multi-Level Perceptron for
classification ? No, not really.

25

In the case of exceedingly simple binary pictures, the approach may display an average
precision score when doing class prediction, but it will have little to no accuracy when
dealing with complicated images with pixel dependencies throughout.

A ConvNet may successfully capture the Spatial and Temporal links in a picture by
using appropriate filters. The architecture provides better fitting to the picture dataset
because to the reduced number of parameters involved and the reusability of weights.

Input Image

Ii\\

\\\ 3 Colour Channels
N\
RN
£
Height: 4 Units
(Pixels)

A »

Width: 4 Units
(Pixels)

4x4x3 RGB Image

The picture in the graphic is an RGB image divided into three colour planes: red, green ,
and blue. Images can exist in a variety of colour spaces , including grayscale, RGB ,
HSV , CMYK, and others.

You can imagine how computationally demanding things would be once the photos
reached, say, 8K (76804320). The ConvNet's function is to compress the pictures into a
26

format that is easier to process while retaining elements that are important for
generating a decent prediction. This is critical for designing an architecture that is not

just effective at learning features but also scalable to large datasets.

Convolution Layer — The Kernel

Convoluting a 5x5x1 image with a 3x3x1 kernel to geta 3x3x1 convolved feature

5 (Height) x 5 (Breadth) x 1 (Image Dimensions) (Number of channels, eg. RGB)

The green portion in the preceding illustration is similar to our 5x5x1 input picture, I.
The Kernel/Filter, K, represents the element involved in carrying out the convolution
operation in the initial half of a Convolutional Layer. K has been chosenas a 3x3x1

matrix.

The Kernel shifts 9 times because Stride Length = 1 (Non-Strided), each time
performing a matrix multiplication operation between K and the region P of the picture

over which the kernel is hovering.

Movement of the Kernel

The filter moves to the right with a given Stride Value until it has processed the entire
width . It then returns to the beginning of the image (left) with the same Stride Value and

repeats the method until the full image has been traversed.
Convolution operation on a MxNx3 image matrix with a 3x3x3 Kernel

Kernel will have the exact depth as we have for the input picture for the cases having many
channels (e.g., RGB). Matrix Multiplication is conducted between the Kn. In stacks
([K1, 11], [K2, 12], and [K3, 13], and the results are combined with the bias to produce

a flattened one-depth channel Convoluted Feature Output.

27

Convolution Operation with Stride Length =2

The purpose of the Convolution Operation is to extract high-level properties such as
edges from the input image. Convolutional Networks don't have to be limited to a single
Convolutional Layer. The first ConvLayer is traditionally responsible for
gathering LowLevel data such as edges, colour, gradient direction, and so on. The
design adapts to the High-Level features as more layers are added, giving us a

network that knows the photographs in the dataset as well as we do.

The process vyields two types of results: one in which the convolved feature's
dimensionality is lowered in contrast to the input, and another in which the dimensionality

is either raised or constant.

SAME padding: 5x5x1 image is padded with Os to create a 6x6x1 image

When we augment the 5x5x1 picture into a 6x6x1 image and the apply the 3x3x1 kernel to

it, the convolved matrix has dimensions of 5x5x1. As a result, Same Padding was born.

If we execute the same procedure without padding, we are presented with a matrix with

the same dimensions as the Kernel (3x3x1) — Valid Padding.

The following repository has numerous such GIFs that will help you understand how
Padding and Stride Length work together to generate outcomes that are relevant to our
requirements .

28

Pooling Layer

3.0|3.0]3.0

3.0]12.0}3.0

3x3 pooling over 5x5 convolved feature

Like the Convolutional Layer, the Pooling Layer is responsible for reducing the
Convolved Feature's spatial size. The computer power required to process the data is
lowered because to dimensionality reduction. It's also useful for extracting rotational and

positional invariant dominant traits, which makes it easier to train the model.

Maximum pooling and average pooling are the two forms of pooling. The largest value
from the Kernel-covered region of the image is returned by Max Pooling. The average of
all the data from the region of the picture covered by the Kernel is returned by

Average Pooling.

Max Pooling can also be used to reduce noise. It filters out all noisy activations and does
both denoising and dimensionality reduction. Average Pooling, on the other hand, is
only a noise suppression approach that reduces dimensionality. As a consequence, we

may infer that Max Pooling performs better than Average Pooling.

29

Pooling variety

The Convolutional Layer and the Pooling Layer make up the i-th layer of
a Convolutional Neural Network. Depending on the photo's complexity, the number of
such layers may be increased to collect even more low-level information, but at the cost

of more processing power.

After using the aforementioned strategy, we were able to effectively enable the model to
comprehend the characteristics. After that, we'll flatten the final output before feeding it

to a conventional Neural Network for classification.

30

System Architecture

The suggested system architecture includes data collecting from a large dataset,
processing at multiple convolutional layers, and then plant disease classification,
which determines if a plant image is healthy or diseased.

To create an image processing system to automate the detection and classification of
leaf batches into distinct illnesses in order to determine the cause of the symptom using
an automatic tool. The system is made up of three basic pieces, as depicted in the
diagram above: Image Analyzer, FeaturehDatabase, and Classifier [9]. The suggested
processing for these blocks is divided into two parts as follows: offline Phase 1: A
picture analyzer is used to extract anomalous features from a large number of defective
photographs.

DATA DATA PRE-
ACQUISITION PROCESSING

O

PLANT CLASSIFICATION
VILLAGE
DATASET
2 el

31

Use Case Diagram

The module extracts the leaf features initially when we supply a new input image. The
CNN model is then applied. It then compares the features to a dataset that has already
been trained. After that, it goes via dense CNN, which extracts the leaf features
separately. The module will then determine whether or not the plant leaf is infected
with disease. It displays the result from one of the 38 specified and trained classes.
After that, the output will be in a textual format.

Extracting
leaf features
Train
l dataset
Input [CNN model

image

Leaf feature

l

Classified
diseases

32

DATA FLOW DIAGRAM

DFDs (Data Flow Diagrams) depict the processes of data transfer from the input to the
prediction of the related output.

1. The DFD Level 0 shows the users entering a picture of plant leaves. In turn, the
system identifies and recognises plant leaf disease.

Image of plant leaf

*——..
Plant I.eaf Disease
USERS (Detection and

Recognition

Figl. Data flow diagram level O

2.The DFD Level 1 is depicted in Figure 1, where the CNN model uses an image
from the training dataset to forecast the type of leaf disease.

- —— p—
e ~ —— -

/ : ~ =
/ _ N\ / PlantLeaf \\
TramingDataset | [CNNModel |— Disease

, n
\ / Prediction
\\ // \ /

Fig 2. Data flow diagram level 1

3. DFD Level 2 delves even deeper into aspects of DFD Level 1.
It can be used to design or record all of the specific/necessary information
regarding how the system works.

33

0.1
Setting the
heightand

width of the

Plant leafImages

USER

0.3
Pradiction of
the
diseasze

Fig 3. Data flow diagram level 2

34

Chapter 4 — Performance Analysis

Data Analysis

The Plant Village dataset, which was downloaded from the Kaggle website and consists of
images of diseased and healthy plant leaf images, was used in this proposed system
project.

We discovered that the dataset had no missing values after further investigation. The data
was further examined to learn more about the many spices and diseases that affect plant
leaves. There were 14 different plant varieties in the sample. There are 54305 pictures in
total in the training dataset.

CNN MODEL
Internal Block of CNN
Convolution + Max Convolution + Max
[INPUT IMAGE | RELI pooling RELL pooling

/) ully Connected
|

Laver
Feature H—/
Learning

-

Classification

CNN Architecture.

35

Batch Normalization:

Batch normalisation is a technique for normalising data between layers of a
Neural Network rather than in the raw data. Instead of using the entire data set, minibatches
are used. It facilitates learning by speeding up training and utilising higher learning rates.

Batch normalisation is a transformation that keeps the mean output close to 0 and the
standard deviation of the output close to 1.

Batch normalisation standardises the inputs to a layer for each mini-batch while training
very deep neural networks. This stabilises the learning process and reduces the number of
training epochs required to build deep networks considerably.

During training and inference, batch normalisation works differently. In the sense that these
are impossible, Batch Normalization (BN) does not prevent the vanishing or exploding
gradient problem. Rather, it lowers the chances of these happening.

Conv2D:

This is the layer that convolves the image into numerous images and activates them. This
layer generates a tensor of outputs by convolving the layer input with a convolution
kernel . A bias vector is constructed and appended to the outputs if use biasis True.
Finally, if activation is not None, the outputs are activated as well.

Provide the keyword parameter input shape (tuple of integers or None, does not include
the sample axis) when using this layer as the first layer in a model, e.g. input
shape=(128, 128, 3) for 128x128 RGB photos in data format="channels last." When a
dimension's size is changeable, you can use None. Arguments

filters: integer, the output space's dimensionality (i.e. the number of output filters in the
convolution).

The height and breadth of the 2D convolution window are specified by kernel size, which
is an integer or a tuple/list of two numbers. To express the same value for all spatial
dimensions, asingle integer can be used.

strides: An integer or a tuple/list of two numbers indicating the convolution's height and
breadth strides. To express the same value for all spatial dimensions, a single integer can
be used. Any stride value less than 1 is incompatible with any dilation rate value less
than 1. bias_regularizer: The bias vector was subjected to the regularizer function (see
keras.regularizers).

36

activity_regularizer:The layer's output (its "activation™) is subjected to a regularizer function
(see keras.regularizers). kernel_constraint: Constraint function applied to the kernel
matrix

(see keras.constraints). bias_constraint: Constraint function applied to the bias vector

(see keras.constraints).

Kernel: In image processing, a kernel is a convolution matrix or masks that can be used to
blur , sharpen , emboss , identify edges, and more by convolutioning a kernel with an
image .

Activation Functions:

The valuesothat represent the image are processed via an activation function or activation
layer once the image's feature map has been constructed. Because images are non-linear, the
activation function takes values that represent theoimage, which are in a linear form (i.e.
just alist of numbers)thank tothe convolutional layer ,and amplifies their nonlinearity .

A Rectified Linear Unit (ReLU) is the most common activation function used for this, but
other activation functions are also infrequently utilised.

In a convolutional neural network, a non-linearityolayer is made up of an activation
function that takes the feature map generated by the convolutional layer and outputs the
activation map.

An activation function in a neural network explains how the weighted sum of input is
transformed into an output from a node or nodes ina layer. A neuron's activation status is
determined by its Activation Function. During the prediction phase, it will employ simpler
mathematical operations to decide if the neuron's input to the network is necessary or
not. The activation function is a node that is placed at the end or in the middle of a Neural
Network . They aid in determining whether or not the hneuron will fire.

The activation function is a nonlinear transformation of the inputosignal. The following
layer of neurons receives this altered output as input.

There are various types of activation functions; however, for the sake of this essay, | will
concentrate on Rectified Linear Units (ReLU).

37

The ReLU function is the most often used activation function in today's neural networks.
ReLU has a number of benefits over other activation functions, including the fact that it
does not excite all neurons at the same time. The ReLU function above, converts all
negative inputs to zero and does not activate the neuron . It is extremely computationally
efficient since just a few neurons are activated at a time. The positive zone does not reach a
saturation point. In practise, ReLU converges six times quicker than tanh and sigmoid
activation functions. One disadvantage of ReLU is that it is saturated in the negative
regiong, implying that the gradient there is zero.When the gradient is 0 during
backpropagation , all of the weight are not updated; to fix this, we use Leaky ReLU . ReLU
functions are also not zero-centered. This means it'll have to follow a zig-zag path to get to
its optimal location, which might take a long time.

Pooling Layers:

The data is then transmitted through a pooling layer after it has been triggered. Pooling
"downsamples"” an image, which means it compresses the information that makes up the
image, making it smaller. The network becomes more flexible and adept at recognising
objects/imageshbased on relevant attributes thanks to the pooling process.

When we look at a photograph, we are usually just interested in the aspects we care about, such
as people or animals, and not the background information.

A pooling layer in a CNN, similarly, will abstract away the unneeded bits of the image,
preserving just thehparts it believes arehrelevant, ashdetermined by the pooling layer's size.

The hope is that the network will only learn the bits of the image that really depict the
object in question since it must make judgements about the most relevant sections of the
image. This prevents overfitting, which occurs when the network learns too much about the
training case and fails to generalise to fresh data.

In a CNN design, the Pooling layer is visible between the Convolution layers. This layer
essentially minimises the number of parameters and computations in thejnetwork,
preventing overfitting by graduall shrinking the network'’s spatial size.

This layer has two operations: average pooling and maximum pooling. In this post, just
Maxpooling will be discussed.

Max-pooling as the name implies, will only take the maximum amount fromha pool.
This is accomplished by sliding filters through the input, with the maximum parameter
being removed and the remainder being discarded at each step. This actually reduces the
network's resolution.

The pooling layer, unlike the convolution layer, does not affect the network's depth; the
depth dimension remains unchanged.

38

MaxPooling2D:

This procedure is repeated for the next two levels to max pool the value from a certain
sizehmatrix. By obtaining the maximum value for each channel of the input over an input
window, downsamples the input along its spatial dimensions (height and width) (of size
determined by pool size). Strides are used to adjust the window's dimensions. The
following spatial form (number of rows or columns) is obtained when using the "valid"
padding option: output shape = math.floor((input shape - pool size) / strides) + 1

(when input shape >= pool size). When using the "same™ padding option, the output shape
is: output shape = math.floor((input shape - 1) / strides) + 1. For instance, if strides = (1,
1) and padding ="valid" are used.

Arguments

pool_size: window size, which might be an integer or a tuple of two numbers.
Over a 2x2 pooling window, (2, 2) will take the maximum value . If only one
integer is supplied, the window length for both dimensions will be the same.

strides: None, integer, tuple of two integers Values of strides For each pooling
step, specifies how far the pooling window travels. If none is specified,hpool
size is used byhdefault.

padding: "Valid" or "same" are two options (case-insensitive). "Valid" denotes

the absence of padding. "same" pads the input uniformly to the left and right, or
up and down, so that the output has the same height and width dimensions as

the input.

data_ format: One of channels last (default) or channels first (optional). The
dimensions in the inputs are ordered. Inputs having shape (batch, height, width,
channels) are assigned to channels last, while inputs without shape are assigned
to channels first (batch, channels, height, width). The image data format
setting in your Keras config file at /.keras/keras.json is used by default. If you
don't set it, it defaults to "channels last.”

39

Flatten:

This function flattens the dimensionality of a picture after it has been convolved. Dense:
This is the hidden layer that is used to make this a fully connected model. Dropout is
employed to avoid overfitting on the dataset, whereas dense means that the output layer
only has one neuron that determines which category each image belongs to. The input is
flattened. The batch size is unaffected . Flattening adds an extra channel dimension and
output shape is affected if inputs are shaped (batch) without a feature axis (batch, 1).
Arguments

data format: A string with one of the following values: channels last (default) or channels
first. The dimensions in the inputs are ordered. Inputs of shape (batch,...) correspond to
channels last, while inputs with shape (batch,...) belong to channels first (batch, channels,
...). The image data format setting in your Keras config file at / .keras/ keras.json is used by
default. If you don't set it, it defaults to "channels last."”

Dropout:
Dropout is applied to the input.

The Dropout layer, which helps minimise overfitting, sets input units to 0 at random with a
rate frequency at each step during training time. Inputs that are not set to 0 are scaled up by
1/(1 - rate) such that the total sum remains unaltered.

The Dropout layer only applies when the training parameter is set to True, which means no
data are dropped during inference. When using model.fit, training is automatically set to
True, and in other cases, you can manually set the kwarg to True when calling the layer.

(This is in contrast to a Dropout layer with trainable=False.) Because Dropout has no
variables or weights that may be changed, trainable has no effect on the layer's behavior.
Arguments
» rate: Float the value between 0 and 1. The input unit fraction will decrease.
* noise_shape: The geometry of the binary dropout mask that will be multiplied with
the input is represented by a 1D integer tensor. Use noise shape=(batch size, 1, features)
if your inputs have shape (batch size, timesteps, features) and you want the

dropout mask to be the same for all imesteps.
» seed: A random seed is a Python integer.

40

Dense:
It's just another densely connected NN layer.

Dense implements the operation output = activation(dot(input, kernel) + bias), where
activation is the element-wise activation function supplied as the activation parameter,
kernel is the layer's weights matrix, and bias is the layer's bias vector (only applicable if
use bias is True). Dense has all of these characteristics.

Dense computes the dot product between the inputs and the kernel along the last axis of
the inputs and axis 0 of the kernel if the input to the layer has a rank greater than 2.
(using tf.tensordot). For example, if the input has dimensions (batch size, dO, d1), we
generate a kernel with shape (d1, units) that works on every sub-tensor of shape (1, 1, d1)
(there are batch size * dO such sub-tensors) along axis 2 of the input. In this scenario, the
output will be shape (batch size, d0, units).

Furthermore, once a layer has been called, its properties cannot be changed (except the
trainable attribute). Keras will generate an input layer to insert before the current layer if
a popular kwarg input shape is given. This can be regarded as the same as defining an
InputLayer directly.

Image Data Generator

It rescales the image, applies shear in a certain range, zooms the image, and flips it
horizontally. This Image Data Generator includes every possible image orientation. The
Image Data Generator class in Keras makes it simple to enhance your photographs. It
offers a variety of augmentation options, including standardisation, rotation, shifts, flips,
brightness changes, and more. Image data augmentation is used to increase the size of the
training dataset in order to improve the model's performance and generalisation capacity.
The Image Data Generator class inthe Keras deep learning toolkit supports image

data augmentation.

To improve the model's performance and generalisation ability, image data augmentation is
employed to expand the training dataset. The Image Data Generator class in Keras' deep
learning library allows you to supplement image data.

The Image Data Generator will then generate 10 images in each training iteration. An
iteration is defined as the totalfnumber of samples divided by batch size. In the example
above, each training period will have 100 iterations.

41

Training Process:

The function train datagen, flow from directory is used to prepare data from the train dataset
directory. The image's target size is specified by target size. The flow from directory
function is used to prepare test data for the model, and everything is the same as before.

Fit generator is used to fit the data into the model created above; additional factors include
steps per epochs, which tells us how many times the model will run for the training data.

Epochs:

This indicates how many times the model will be trained in both forward and backward
passes. When an entire dataset is only transported forward and backward through the neural
network once, it is called an Epoch. We divide one epoch into many smaller batches since it
is too large to provide to the computer all at once. An epochis aword used in machine
learning that refers to the number of passes the machine learning algorithm has made
across the full training dataset. Batches are commonly used to group data sets (especially
when the amount of data is very large)

Steps per epoch is the number of samples to train per epoch. It specifies how many batches
of samples should be used in a single epoch. It's used to signal the end of one epoch and the
start of the next. You can ignore it if you have a fixed-size training set.

Epoch 1/25
97/97 [=== ====] - 792s 8s/step - loss: 8.9964 - accuracy: ©.9739 - val_loss: ©.3557 - val_accuracy: ©.9499
Epoch 2/25
97/97 [==============================] - 778s 8s5/step - loss: 0.0852 - accuracy: 8.9749 - val_loss: 0.3076 - val_accuracy: ©.9669

] - 793s 8s/step - loss: 0.0718 - accuracy: ©.9775 - val_loss: ©.3322 - val_accuracy: 0.9549

] - 788s 8s/step - loss: ©.0576 - accuracy: 0.9813 - val_loss: 0.1837 - val_accuracy: 0.9626

791s 8s/step loss: 8.9575 accuracy: ©.9869 val_loss: ©.0760 val_accuracy: 0.9767

- 802s 8s/step loss: ©.9500 - accuracy: ©.983@ - val_loss: ©.1289 - val_accuracy: 0.9714

] - 795s 8s/step - loss: ©8.8520 - accuracy: ©.9828 - val_loss: ©.1049 - val_accuracy: 0.9765
] - 802s 8s/step - loss: 8.9422 - accuracy: ©.9854 - val_loss: 9.0811 - val_accuracy: 0.9787
- 796s 8s/step - loss: 0.8395 - accuracy: ©.9860 - val loss: ©.8853 - val_accuracy: 0.9787

- 804s 8s/step - loss: 8.0359 - accuracy: ©.9875 - val_loss: 0.2368 - val_accuracy: 0.9668

809s 8s/step loss: ©.0345 accuracy: ©.9881 val_loss: 0.1852 val_accuracy: 9.9674

Epoch

97/97 - 802s 8s/step loss: ©.9323 accuracy: ©.9887 - val_loss: ©.1122 - val_accuracy: 9.9758
Epoch 13/

97/97] - 886s 8s/step - loss: 0.9328 - accuracy: @.9883 - val_loss: ©.2544 - val_accuracy: 0.9608
Epoch 14/

97/97] - 804s 8s/step - loss: 0.9373 - accuracy: ©.9868 - val_loss: ©.0958 - val_accuracy: ©.9783
Epoch

97/97] - 810s 8s/step - loss: 8.93@5 - accuracy: ©.9892 - val_loss: ©.1213 - val_accuracy: ©0.9722
Epoch

97/97 [=] - 796s 8s/step - loss: 8.0289 - accuracy: 0.9897 - val_loss: 0.0630 - val_accuracy: 0.9845
Epoch

97/97 [=== - 807s Bs/step - loss: ©.0273 - accuracy: ©.9983 - val_loss: ©.080@ - val_accuracy: 0.9822
Epoch

97/97
Epoch 19/
97/97
Epoch

- 829s 9s/step - loss: ©.0256 - accuracy: ©.9989 - val_loss: ©.1230@ - val_accuracy: 0.9761

822s 8s/step loss: ©.9247 - accuracy: ©.9909 - val_loss: 0.1299 val_accuracy: 0.9765

42

Epoch 20/25

97/97 [] - 814s 8s/step - loss: 0.0243 - accuracy: 0.9913 - val _loss: 0.2022 - val_accuracy: 0.9696
Epoch 21/25
97/97 [] - 820s 8s/step - loss: 0.0210 - accuracy: ©.9922 - val_loss: 0.0584 - val_accuracy: 0.9862
Epoch 22/25
97/97 [] - 824s 8s/step - loss: 0.0198 - accuracy: 0.9926 - val_loss: 0.8557 - val_accuracy: 0.9838
Epoch 23/25
97/97 [] - 825s 9s/step - loss: ©0.0203 - accuracy: 0.9925 - val_loss: 0.0264 - val_accuracy: 0.9916
Epoch 24/25
97/97 [] - 818s 8s/step - loss: 0.0197 - accuracy: 0.9925 - val_loss: 0.0481 - val accuracy: 0.9887
Epoch 25/25
97/97 [] - 813s 8s/step - loss: 0.0187 - accuracy: 0.9933 - val _loss: 0.8497 - val_accuracy: 0.9875

Process of Validation:

Validation/test data is fed into the model using validation data. The number of validation/test
samples is indicated by validation steps.

Training and Validation loss

0.35 4 - TFaining loss

- Validation loss
0.30 A
025 A1
0.20 A
0.15 1
0.10 -

0.05 -

K
R
4
K
E
4

43

MODEL FOR TRAINING AND TESTING

The dataset is pre-processed, including image reshaping, resizing, and array conversion. The
test image undergoes similar processing. A dataset of around 38 different plant leaf diseases
is obtained, from which every image can be used as a software test image.

The train dataset is used to trainthe CNN model so that it can recognise the testpimage and
the disease it is associated with.

Dense, Dropout, Activation, Flatten, Convolution2D, and MaxPooling2D are some of the
layers in CNN.

If the plant species is present in the dataset, the software can identify the illness after the
model has been successfully trained. Following successful training and pre processing, the
test image and trained model are compared in order to forecast the disease.

[1 predict_disease('/content/PlantVillage/val/Potato_ Early blight/03b@d3c1-b5b@-48f4-98aa-f89504670290f RS Early.B 7051.JPG')

Potato__ Early blight

[] predict_disease('/content/PlantVillage/val/Blueberry__ healthy/008c85d0-a954-4127-bd26-861dc8ale6ff__ RS_HL 2431.IPG')

Blueberry__ healthy
0

50

100

150

200

250

0 0 100 150 200 250

44

CHAPTER 5 - CONCLUSION

Discussion on previous Results achieved:

Because convolutional networks are known to be ready to learn features when trained
on larger datasets, the results obtained when trained with only original photos will not
be investigated. An overall accuracy of 88 percent was reached after fine-tuning the
network's parameters. In addition, the trained model was tested on each class
separately.

Every image from the validation collection was put to the test.

These methods are used to determine if the leaves are sick or healthy. The automation
of the detecting system employing complicated photos acquired in outdoor lightning
and extreme climatic circumstances is one of the obstacles in this approach.
Despite significant drawbacks, this review paper indicates that theseodisease detection

algorithms are efficient and accurate enoughpto runpthe systemlbuilt for the detection
of leaf diseases. As a result, there is still much that may be done to improve existing

works in this sector.

It looked at how images from a specific dataset (training dataset) in the field and previous
data sets were utilised to forecast plant disease patterns using a CNN model. This leads
to the following conclusions on plant leaf disease prediction. Because this system covers
the most sorts of plant leaves, farmers may learn about leaves that have never been farmed
before. It also lists all conceivable plant leaves, which aids farmers in deciding which
crop to produce. Furthermore, this system takes into account previous data production,

allowing the farmer to gain insight into market demand and costs for specific plants.

Because agriculture is so important to India's economy, it's necessary to detect and
recognise leaf diseases that cause losses. This research uses a deep learning technique
known as CNN to create a system that can identify, detect, and recognise 13 different
plant leaf diseases. The disorders of seven classes were identified using a minimal set of
layers in this method. Plant Village data was used to train the neural network.

The user can choose any image from the collection, which is then loaded, and the disease
prediction is displayed on the User Interface. With rare exceptions, a
convolutional neural network trained forpidentifying and recognising plant leaf disease

could properly categorise and predict diseases for almost all photos.

The produced results should be compared to some other results, as advised by good
practise standards. Furthermore, no commercial solutions exist, with the exception of
those that handle plant species recognition based on leaf photos. The use of a
deep learning system to automatically categorise and detect plant diseases from leaf
photos was investigated in this research. The complete technique was presented, from
gathering the images required for training and validation to image pre-processing and
augmentation, and finally coaching and fine-tuning the deep CNN. Various tests were
carried out to assess the performance of the newly constructed model. There was nog
comparison with similar outcomes using thepprecise procedure because the proposed
methodohas notpbeen used in the field of disease recognition, as far as we all know.

We've included a test image of a tomato leaf with Septoria leaf spot.

46

RESULT:

Because convolutional networks are known to be ready toplearn features when trained
on larger datasets , the results obtained when trained with only original photos will not
be investigated. An overall accuracy of 98 percent was reached after fine-tuning the
network's parameters. In addition, the trained model was tested on each class
separatelyd. Every image from the validation collection was put to the test. The
produced results should bepcompared to some other results, as advised by good practise
standards. Furthermore, no commercial solutions exist, with the exception of those that
handle plant species recognition based on leaf photos. The use of a deep learningpsystem
to automatically categorise and detect plant diseases from leaf photos was

investigated in this research.

Training and Validation accurarcy

0.99 -
098 1
0.97 1
0.96 -
~ TWaining accurarcy
0.95 4 - Validation accurarcy

0 5 10 15 20 25

Fig.The training and validation accuracy is shown above

The accuracy that came out to be was pretty good which is 98.74%.

[1 print("[INFO] Calculating model accuracy")
scores = model.evaluate(x_test, y test)
print(f"Test Accuracy: {scores[1]*1@0}")

[INFO] Calculating model accuracy

789/789 [::::::::::::::::::::::::::::::] - 525 66ms/5tep
Test Accuracy: 98.74754548072815

47

FUTURE WORK

The agricultural department seeks to automate the process of detecting yield crops (real
time). This method can be automated by displaying the prediction result in a web or

desktop application. To optimise the labour for Artificial Intelligence implementation.

To detect the sickness of that crop, this device just looks at the plant's leaf. Other sections
of the crop, such as roots, stems, and branches, would be more convenient to identify than
the existing method. Additionally, picture classification will be performed to determine

whether or not the supplied leaf belongs to the selected category. If a model is given an

input that is not a leaf image, it will display a disease name.

LIMITATIONS

» Insome circumstances, the implementation still lacks accuracy in terms of results.

More tweaking is required.

» For segmentation, prior information is required.

« Inorder to get more accuracy, a database extension is required.

» There have been very few diseases covered. As a result, work must be expanded

to include more disorders.
» The following are some of the possible causes of misclassification: Disease

symptoms differ from plant to plant, hence feature optimization and more training

samples are required to cover more cases and more correctly forecast disease.

48

ADVANTAGES:

The following are the benefits of the suggested algorithm:

« Estimators are used to automatically initialise cluster centres, eliminating
the requirement for human input during segmentation.

» The proposed technique improves detection accuracy.

» Existing approaches require user input to select the optimum segmentation of the
input image, but the proposed method is completely automated.

« Italso offers environmentally friendly treatment options for the condition.

49

References:

1. Eftekhar Hossain, Md. Farhad Hossain, and Mohammad Anisur Rahaman, "A Color
and Texture Based Approach for the Detection and Classification of Plant Leaf
Disease Using KNN Classifier," International Conference on Electrical, Computer,
and Communication Engineering (ECCE), Cox’s Bazaar, Bangladesh, 2019.

2. 2. Sammy V. Militante, Bobby D. Gerardo, and Nanette V. Dionisio, "Plant Leaf
Detection and Disease Recognition Using Deep Learning," IEEE Eurasia Conference
on IOT, Communication, and Engineering (ECICE), Yunlin, Taiwan, 2019, pages
579-582.

3. 3. Ch. Usha Kumari, S. Jeevan Prasad, and G. Mounika, "Leaf Disease Detection:
Feature Extraction with K-means Clustering and Classification with ANN,"
Proceedings of the 3rd International Conference on Computing Methodologies and
Communication (ICCMC), Erode, India, 2019, pp. 1095-1098.

4. Mercelin Francis, C. Deisy, “Disease Detection and Classification in Agricultural

Plants Using Convolutional Neural Networks — A Visual Understanding”,
Proceeding of the 6 th International Conference on Signal processing and Integrated
network, Noida, India, 2019, pp 1063-1068.

5. Jiayue Zhao, Jianhua Qu, “A Detection Method for Tomato Fruit Common
Physiological Diseases Based on YOLOV2 “Proceeding of the 10th International

Conference on Information Technology in Medicine and Education”, Qingdao, China,
China, 2019

50

10.

Robert G. de Luna, Elmer P. Dadios, Argel A. Bandala, “Automated Image Capturing

System for Deep Learning-based Tomato Plant Leaf Disease Detection and

Recognition” Proceeding of the IEEE Region 10 Conference, Jeju, South Korea, 2018, pp

1414-1419.

Halil Durmus, Ece Olcay Gunes, “Disease detection on the leaves of the tomatoplants
by using deep learning” Proceeding of the 6 th International Conference

oftheAgroGeoinformatics, 2016, Fairfax, VA, USA.

Husin, Zulkifli Bin, Ali Yeon Bin Md Shakaff, Abdul Hallis Bin Abdul Aziz, and
Rohani Binti S. Mohamed Farook. “’Feasibility study on plant chili disease detection
using image processing techniques.” In 2012 Third International Conference on

Intelligent Systems Modelling and Simulation, pp. 291-296. IEEE, 2012.

Y. Dandawate and R. Kokare, “An automated approach for classification of plant
diseases towards development of futuristic decision support system in indian

perspective,” Proceedings of the International Conference Advances in Computing,

Communications and Informatics (ICACCI), 2015, pp. 794-799.

Monika Jhuria, Ashwani Kumar, and Rushikesh Borse. “Image processingfor smart
farming: Detection of disease and fruit grading.” In 2013 IEEE Second International

Conference on Image Information Processing (IC11P-2013), pp. 521-526. IEEE, 2013

51

APPENDICES:

Importing required libraries:

[1 import numpy as np
import pickle

import cv2
import os

import matplotlib.pyplot as plt
from os import listdir

from sklearn.preprocessing import LabelBinarizer

from keras.
from keras.

from keras

from keras.

from keras
from keras

from keras.
from keras.
from keras.
from keras.

models

layers.
.layers.
layers.
.layers.

import

import Sequential

normalization import BatchNormalization
convolutional import Conv2D

convolutional import MaxPooling2D

core import Activation, Flatten, Dropout, Dense
backend as K

preprocessing.image import ImageDataGenerator
optimizers import Adam

preprocessing import image

preprocessing.image import img_to_array

from sklearn.preprocessing import MultilabelBinarizer

from sklearn.model_selection import train_test_split

Loading the dataset:

[1 # Dimension of resized image
DEFAULT_IMAGE_SIZE = tuple((256, 256))

Number of images used to train the model
N_IMAGES = 100

Path to the dataset folder

root_dir =

train_dir =

'./PlantVillage'

os.path.join(root_dir, 'train')

val_dir = os.path.join(root_dir, 'val')

52

Resizing of image:

[1] def convert_image_to_array(image_dir):
try:
image = cv2.imread(image_dir)
if image is not None:
image = cv2.resize(image, DEFAULT_IMAGE_SIZE)
return img_to_array(image)
else:
return np.array([])
except Exception as e:
print(f"Error : {e}")
return None

Examine Label or classes in training dataset

[1 label_binarizer = LabelBinarizer()
image labels = label binarizer.fit_transform(label_list)

pickle.dump(label_binarizer,open('plant_disease label transform.pkl', 'wb'))
n_classes = len(label_ binarizer.classes_)

print("Total number of classes: ", n_classes)

Total number of classes: 39

Splitting the data into training and testing database

[] print("[INFO] Splitting data to train and test...")
x_train, x_test, y train, y test = train_test_split(np_image list, image labels, test size=0.2, random_state = 42)

[INFO] Splitting data to train and test...

53

Building the model

° model = Sequential()
inputShape = (HEIGHT, WIDTH, DEPTH)
chanDim = -1

if K.image_data_format() == "channels_first":
inputShape = (DEPTH, HEIGHT, WIDTH)
chanDim = 1

model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Dropout (0.25))

model.add(Conv2D(64, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(64, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout (0.25))
model.add(Conv2D(128, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(128, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))

[] EPOCHS = 25 model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(®.25))

STEPS = 100 model.add(Flatten())

LR = 1e-3 model.add(Dense(1024))
model .add(Activation("relu"))

BATCH_SIZE =32 model.add(BatchNormalization())

= model. add(Dropout(0.5))

WIDTH = 256 model.add(Dense(n_classes))

HEIGHT = 256 model.add(Activation("softmax"))

DEPTH = 3 model. summary() \

Train Model

[1 # Initialize optimizer
opt = Adam(1lr=LR, decay=LR / EPOCHS)

Compile model
model.compile(loss="binary_crossentropy"”, optimizer=opt, metrics=["accuracy"])

Train model

print("[INFO] Training network...")

history = model.fit_generator(augment.flow(x_train, y train, batch_size=BATCH SIZE),
validation data=(x_test, y_test),
steps_per_epoch=len(x_train) // BATCH_SIZE,
epochs=EPOCHS,
verbose=1)

54

Evaluate Model

[1 acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val _loss']
epochs = range(1, len(acc) + 1)

Train and validation accuracy

plt.plot(epochs, acc, 'b', label='Training accurarcy')
plt.plot(epochs, val_acc, 'r', label='Validation accurarcy')
plt.title('Training and Validation accurarcy')

plt.legend()

plt.figure()

Train and validation loss

plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and Validation loss')

plt.legend()

plt.show()

Test Model

[] def predict disease(image_path):
image_array = convert_image to array(image path)

np.array(image_array, dtype=np.floatl16) / 225.0
np.expand_dims(np_image,9)

np_image
np_image
plt.imshow(plt.imread(image path))

result = model.predict classes(np_image)
print((image_labels.classes [result][0]))

55

Classification

[] predict_disease('/content/PlantVillage/val/Corn_(maize)__ Northern_Leaf Blight/028159fc-995e-455a-8d60-6d377580a898__ RS_NLB 4023.JPG')

Corn_(maize)__ Northern_Leaf_Blight
[

150

250

0 50 100 150 200 250

[] predict_disease('/content/PlantVillage/val/Blueberry_ _ healthy/008c85d8-a954-4127-bd26-861dc8ale6ff__ RS_HL 2431.IPG')

Blueberry__ healthy

Accuracy

[1 print("[INFO] Calculating model accuracy")
scores = model.evaluate(x_test, y test)
print(f"Test Accuracy: {scores[1]*100}")

[INFO] Calculating model accuracy
780/780 [
Test Accuracy: 98.74754548072815

] - 52s 66ms/step

56

