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ABSTRACT 

 

Recommendations drive so many of our decisions on a daily basis. Recommender systems 

help consumers to find  new information, products and services tailored to their 

requirements. Recommendation engines use the feedback of users to find new relevant 

items for them or for others with the assumption that users who have made homogeneous 

choices in past are highly anticipated to make similar choices in forthcoming future. There 

are various types of recommendation systems like – non personalized recommender 

system, collaborative filtering based recommender systems, deep learning based 

recommender systems. The goal of our project is to predict the ratings that  users may give 

to  movies that they have not rated yet and to build and test various recommender systems 

and then finally minimize the root-mean-square-error between the projected user ratings 

and true ratings of the user using matrix factorization and Deep Learning techniques. The 

whole project is based on user movie ratings data, so we need to collect that data. We have 

collected the data from movielens website and then we have filtered and processed our data. 

The data is then split into training and test sets and the test set. To make our Matrix 

Factorization model, we have used SVD, SVD++ and related algorithms and also keras. 

For our Deep Learning models, we have built Autoencoders, Matrix Factorization and 

Residual Learning in keras. Finally, have calculated RMSEs for each of our recommender 

systems and compared them. 
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CHAPTER-1 INTRODUCTION 

 

1.1 INTRODUCTION 

 

Recommendations drive so many of our decisions on a daily basis. Be it obvious 

recommendations such as suggestions of new restaurants from friends, or a certain model 

of camera discussed in a blog, to less direct recommendations such as Netflix promoting 

shows you are likely to enjoy, or Amazon proposing other purchases that go well with what 

you are buying. Recommender systems help consumers to find  new information, products 

and services tailored to their requirements. They are intended to recommend suitable items 

to users. Recommender systems are very important in a lot of domains because they can 

help produce huge revenues when they are effective and also become a way to stand ahead 

from their adversaries.  

Recommendation engines target one specific kind of machine learning problem, they are 

designed to suggest a product, service, or entity to a user based on other users, and their 

own feedback. Let's take some examples. Making a suggestion as to what movie a user 

would like based on what genres of movies they have ranked highly in the past would be 

suited to a recommendation engine. Predicting whether that movie will do well in the box 

office on the other hand would be better suited to a different kind of statistical model. 

Recommendation engines use the feedback of users to find new relevant items for them or 

for others with the assumption that users who have made homogeneous choices in past are 

highly anticipated to make similar choices in forthcoming future like the example here. 

Recommendation engines benefit from having a many to many match between the users 

giving the feedback, and the items receiving the feedback. In other words, a better 

recommendation can be made for an item that has been given a lot of feedback, and more 

personalized recommendations can be given for a user that has given a lot of feedback. 
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In a typical scenario users rate multiple items, and each item is rated by multiple users. This 

permits us to find other users with homogeneous choices. This is valuable as users who 

have made homogeneous choices in past are highly anticipated to make similar choices in 

forthcoming future. 

In this project, we will build different recommender engines using matrix factorization and 

deep learning techniques i.e. Autoencoders and Residual Networks. For each of them we 

will test them using RMSE(Root Mean Squared Error). 
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1.2 PROBLEM STATEMENT 

Given a user ui and a movie Ij . The user has already watched I1, I7, I8 etc. The goal is to 

predict what rating ui will give to Ij. based on users prior history using Movielens 1Million 

Dataset and various machine learning and deep learning models. 

The algorithms used are 

-Matrix Factorization 

-Deep Learning and Matrix Factorization 

-Autoencoders 

-KNN based models 

The metrics used for our recommender engines is RMSE. 
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1.3 OBJECTIVE 

 

A Recommendation System predicts the likelihood that whether a user may like a certain 

item. Based on user’s previous interaction with the data source from which the system 

learns from (besides from other users’ data, or previous trends), the system can make 

recommendations of certain item to a user. 

The goal of our project is to predict the ratings that  users may give to  movies that they 

have not rated yet and to build and test various recommender systems and then finally 

minimize the root-mean-square-error between the projected user ratings and true ratings of 

the user using matrix factorization and Deep Learning techniques. Our goal is to find the 

best recommender engine for the prediction of movie ratings. The implementation of 

Matrix Factorization based algorithms are created using an open source library called 

Surprise. The Deep Learning models are made using Keras. 
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1.4 METHODOLOGY 

In order to accomplish the objective of our project, the first step is to do sufficient 

background study, so the literature survey has been performed. We have learnt various 

methods to build recommender systems i.e. Non Personalized Recommender System, 

Collaborative Filtering based Recommender System, Machine Learning and Deep 

Learning based Recommender Systems. But not all can be applied for our use case. So we 

have chosen the ones that will work. 

The whole project is based on user movie ratings data, so we need to collect that data. We 

have collected the data from movielens website and then we have filtered and processed 

our data and perform exploratory data analysis to find important information regarding the 

data. The data is utilized in 3 forms – Pandas DataFrame, Surprise Dataframe and Sparse 

matrix form. 

The data is then split into training and test sets and the test set is also utilized as validation 

set. 

To make our Matrix Factorization model, we have used SVD, SVD++ and related 

algorithms and also keras. For our Deep Learning models, we have built Autoencoders, 

Matrix Factorization and Residual Learning in keras. 

Finally, have calculated RMSEs for each of our recommender systems and compared them. 

  



6 

 

1.5 REPORT STRUCTURE 

 

CHAPTER 2 –  

In chapter 2, we discuss about the theory behind recommender systems. This contains the 

details of various types of recommendation system engines and the mathematics behind 

them. Also we will discuss the pros and cons of these approaches 

 

CHAPTER 3 –  

In chapter 3, we have explained the system development. This includes the information 

regarding the dataset, data preprocessing, exploratory data analysis and the architecture of 

the models that we built. 

 

CHAPTER 4 –  

Chapter 4 contains the results that we achieved after training our recommendation engines 

on the dataset described in chapter 3.  

 

CHAPTER 5 – 

Chapter 5 contains the conclusion of our project.   
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CHAPTER-2 LITERATURE SURVEY 

 

2.1 RECOMMENDATION SYSTEMS 

A recommendation system is a kind of information filtering system. By inferring from large 

data sets, the system’s algorithm can discover precise user preferences. Once we know 

users’ preferences, we can recommend them new, relevant products. And that includes 

everything from movies and music, to online shopping. 

Youtube, Netflix, Amazon  and Spotify are examples of recommendation systems in effect. 

The systems provide users with suitable suggestions based on the choices they make. The 

advantages of adding a recommender system include- increment in sales due to user  

tailored offers , improved customer experience, increased time spent on the website and 

much more. 

Epsilon in their study on market discovered that 90% of all users find personalization 

attractive. Also, some 80% say that they are more likely to do business with a company if 

a personalized experience is provided. 

Recommendation engines use the feedback of users to find new relevant items for them or 

for others with the assumption that as users who have made homogeneous choices in past 

are highly anticipated to make similar choices in forthcoming future like the example here. 

Recommendation engines benefit from having a many to many match between the users 

giving the feedback, and the items receiving the feedback. In other words, a better 

recommendation can be made for an item that has been given a lot of feedback, and more 

personalized recommendations can be given for a user that has given a lot of feedback. 

Goal of Recommender systems is to predict interests of users and propose items that more 

likely are captivating for them. They are one of the most powerful machine learning 

systems that online businesses utilize so as to increase their sales. 
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2.2 WHY USE RECOMMENDATION SYSTEMS 

“Companies are utilizing recommendation system engines targeting an increase in sales as 

a result of user tailored offers and an improved customer experience. 

 

Recommendations often increase search speed and makes it simpler for users to get hold of 

the content they like, and entertain the users with suggestions they would have otherwise 

never looked for. 

 

In addition, the companies are capable to increase customer base and hold on to existing 

customers by sharing out emails containing links to new products that connect with the 

interests of the customer, or suggestions of movies and TV series that match with their 

preferences. 

 

The user begins feeling familiar and accepted and are therefore highly likely to purchase 

additional products or utilize additional content. By knowing what a user’s needs, the 

company gains a competitive edge and the risk of losing a customer to adversaries is 

reduced. 

 

Catering that extra value to users by incorporating recommendations into systems and 

products is attractive. In addition, it permits companies to stay ahead of their adversaries 

and ultimately increase their profits. 

 

Epsilon in their study on market discovered that 90% of all users find personalization 

attractive. Also, some 80% say that they are more likely to do business with a company if 

a personalized experience is provided.” 
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2.3  DATA FOR RECOMMENDATION SYSTEM 

The data for recommender are generally represented in the form of a matrix. Let we have 

n number of users, m number of products. The ratings Matrix A of can be represented as 

 

A =  I1  , I2     …     In 

 U1  

 U2 

 …. 

 Um   

 

 

Where Aij = rating given by user Ui on item Ij. If Ui has not interacted with Ij, Aij is null. 

The matrix A of ratings is very sparse. This is explained below 

Let us suppose we have 1million users and 10K items. So the total cells of our matrix = 

1M*10K = 10Billion.   

Let us consider an average user rates 50 items. So the total number of ratings =  

1M*50 = 50 Million 

Sparsity of A = Number of ratings/Total number of cells 

           = 50Million/10Billion 

           = 0.005 

  

    

    

  Aij  
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2.4 NON-PERSONALIZED RECOMMENDER SYSTEMS 

The first type of recommendations are called non-personalized recommendations. They are 

called this as they are made to all users, without taking their preferences into account. The 

common theme of these methods is that it doesn't matter who you are.  

Some examples are Reddit, Hacker News, Google Page Rank and Amazon. 

When we perform Google Search, we see the same thing as someone else performing the 

same search. Other example is recommending the items most frequently seen together like 

you can see here on Amazon. This might not select the 'best' items or items that are most 

suited to you, but there is a good chance you will not hate them as they are so common. 

This is known as stereotyped recommendation system. 

Problems might arise if we try to sort by average rating naively. The problem is this doesn't 

take into account the number of ratings that an item has received . For example -an  item 

that has one five star rating is probably not that better than an item that has 1000 ratings 

with an average of four stars. 

To overcome this challenge, we damp the overall mean using features like minimum 

number of ratings. We then cut down our data by creating a mask of only items that have 

been reviewed more a fixed times in our dataset. By combining the initial work of counting 

occurrences with mean ratings, we can get very useful recommendations. 

“Apart from Stereotyped Recommendation System, another class of non-personalized 

recommender system use product association to recommend products. These are known as 

Product Association Learning based Recommenders. 

In Product Association Recommenders, although not personalized, uses the knowledge of 

the products that a consumer is looking for and using this knowledge, it provides product 

recommendations. One way of providing these recommendations is to go through all the 

historical transactions and see what other people have most frequently bought along with 

the given product at the same time( like Amazon). For example, apriori based systems”. 
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2.5 CONTENT BASED RECOMMENDATION SYSTEMS 

 

“The recommendations made by finding items with similar attributes are called content-

based recommendations. For example, if a user likes movie A, and we calculate that movie 

A and movie B are similar, we believe the user will like book B. We can do so by comparing 

the attributes of our items. A big advantage of using an item's attributes over user feedback 

is that you can make recommendations for any items you have attribute data on. This 

includes even brand new items that users have not seen yet. Content-based models require 

us to use any available attributes to build profiles of items in a way that allows us to 

mathematically compare between them. This allows us for example to find the most similar 

items and recommend them. This is best done by encoding each item as a vector.”  

Example - 

Let us suppose we have a MOVIE vector consisting of attributes as follows- 

GENRE DECADE ACTOR DIRECTOR ETC. 

 

And we have a USER vector consisting of attributes as follows –  

GENDER AGE LOCATION PAST GENRE ETC. 

 

We can get feature representation using these 2 vectors. Once we get feature representation, 

we can use classification/regression algorithm for predictions. 

So, our combined vector X becomes -  

GENRE DECADE ACTOR DIR,  GENDER AGE PAST.. LOCATION  

  Movie Vec.     User Vec. 

So, we are using meta info to predict and hence this is called content based recommendation 



12 

 

 

2.6 COLLABORATIVE FILTERING BASED RECOMMENDATION 

SYSTEMS 

 

A collaborative filtering based recommendation system explores the similarity between 

either users or items interactions. It works around the premise that person A has similar 

tastes to person B and C. Once the system calculates the similarities, it provides user 

recommendations. Generally, users are recommended the items that similar users liked. 

We can understand the user item interactions using a matrix, where each cell (i,j) represents 

the interaction between user i and item j. 

Eg. Following is a matrix of users and the movies they like –  

U1 M1 M2 M3 

U2 M1 M3 M4 

U3 MI   

 

Since U3 LIKES M1 which is also liked by U1 and U2 and U1 and U2 both like M3 also, 

so we will recommend M3 to U3 as there are high chances that U3 will like M3. The core 

idea encompassing this is -  Users who agreed in the past are likely to agree in future. 

There are two types of collaborative filtering systems - 

1 –“ User user similarity based Collaborative Filtering 

2 –  Item item similarity based Collaborative Filtering ” 
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2.6.1 User User based Collaborative Filtering 

User based recommendations are when we  use the mean  of the ratings the k most similar 

users gave an item, to suggest what rating the target user would give. This method is said 

to be “user-centred” as it represent users based on their interactions with items and evaluate 

distances between users. 

Let us say we have user vectors Ui and Uj which contain ratings of users on items I1, I2 

etc. 

U =  

I1 I2 I3 I4 I5 I6 ……. 

 

The first step of user user based collaborative filtering is to find users with homogeneous 

taste. Similarity between Ui and Uj can be calculated using similarity formulas. Similarity 

measure is such that the users with similar reactions on the same products should be 

considered as being near to each other. Eg. Cosine Similarity which is given by –  

 

Cosine ( Ui, Uj ) =  
(UiT)(Uj)

|𝑈𝑖||𝑈𝑗|
 

 

We can Calculate the similarity between every pair of users in our dataset. Lets recommend 

new item to user Ui . We will calculate the similar users to Ui and filter out the ones with 

large similarities. Let U1,U2 and U3 are the most similar users to Ui. We will pick the items 

that are liked by U1,U2,U3 and are not yet watched by Ui. These items are the 

recommended items for Ui.   
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2.6.2 Item-Item Collaborative Filtering 

 

“To make a new recommendation to a user, the idea of item-item method is to find items 

similar to the ones the user already “positively” interacted with. Item-based collaborative-

filtering is different, it assumes users will like items that are similar with items that the user 

liked before. Two items are considered to be similar if most of the users that have interacted 

with both of them did it in a similar way. This method is said to be item-centred as it 

represent items based on interactions users had with them and evaluate distances between 

those items. This method is popularized and used by large companies like Amazon.” 

Let us consider we have item vectors Ii and Ij which contains ratings of items by users U1, 

U2 etc. 

I =  

U1 U2 U3 U4 U5 U6 ……. 

 

The first step of item based collaborative filtering is to find items with similar ratings by 

users. Similarity between Ii and Ij are calculated with the help of similarity formulas. 

Similarity measure is such that two items with similar ratings by same users should be 

considered as being close. Eg. Cosine Similarity which is given by –  

 

Cosine ( Ii, Ij ) =  
(IiT)(Ij)

|𝐼𝑖||𝐼𝑗|
 

 

We can Calculate the similarity between every pair of movies in our dataset. Lets 

recommend new item to user Ui . We will calculate the similar items to Ii and filter out the 

ones with large similarities. Let I1,I2 and I3 are the most similar item to Ii. We will pick 

the items that and are not yet watched by Ui. These items are the recommended items for 

Ui. 
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2.6.3 Problems With Collaborative Filtering 

 

- “Cold start: We should have enough information (user-item interactions) for the 

system to work. If we setup a new e-commerce site, we cannot give 

recommendations until users have interacted with a significant number of items.” 

 

- “Adding new users/items to the system: whether it is a new user or item, we have 

no prior information about them since they don’t have existing interactions.” 

 

- For User based collaborative filtering, the problem is that the user’s preferences 

may change over time and there is no way for the similarity matrix to check for the 

same. 

 

- Another problem is that computing similarity scores for millions of users and 

products can be computationally expensive and since they need to be updated 

regularly, it is a major issue. 

 

- These are not appropriate for global recommendations as the users and items end to 

have similar ratings regionally. 
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2.7 MATRIX FACTORIZATION 

 

Recommender system can be represented as Matrix Completion problem. As we have seen 

in Section 2.3 , the data is represented in the form of sparse matrix with many empty cells. 

So, Matrix completion says – Given a matrix A where some values are given and many are 

empty, our job is to fill up empty cells with reasonable values based on values in non empty 

cells. So the idea behind Matrix Factorization is that we want to express the Matrix A in 

terms of a product of two smaller matrices. 

If we decompose a matrix into product of other matrices, it is known as Matrix 

Factorization. Let us suppose we have our ratings matrix A, then 

        A = B. C    (B and C are decomposed matrices) or A = B.C.D 

From mathematics point of view PCA is also matrix factorization. This means that just like 

PCA, we can represent the users and item vectors using latent features. The model discovers 

these features on its own and the users and items are mapped to the dimension with the 

features such that they retain the maximal information. As they are learned and not given, 

extracted features taken individually have a mathematical meaning but no intuitive 

interpretation. 

The product of the user and item in latent dimension give us the rating given by the user on 

that item.  
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2.7.1 Intuition Behind Matrix Factorization 

Let us consider our ratings matrix 

 

R =  I1  , I2     …     In                    No. of users =  n , No. of items = m 

 U1                                                                        

 U2 

 …. 

 Um   

 

 

W =      U1      ----------d-------------               U =   I1       -----------d------------ 

  U2 -----------d------------           I2      -----------d------------ 

 …. -----------d------------           ….    -----------d------------ 

 Un -----------d------------  n*d          Im    ------------d-----------       m*d 

 

Rij is a cell in matrix that contains ratings on movie Ij by use Ui. Matrix R is very sparse. 

Imagine    Rn*m = Wn*d. Ud*m T.   

Where R = n * m matrix 

 W = n * d matrix     

 U = m * d matrix    

 d>=0 and d<min(m,n)   (Latent dimensions) 

So, Rij ~ Ui * Wj 
T   (matrix multiplication) 

Our goal is to find B and C such that whenever we have a non-empty Rij , (Rij – Wj Ui
T)2  

is minimum . So -  

  

    

    

  Aij  
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So, our matrix factorization has become a simple optimization problem where we have to 

minimize the loss between actual R and Ȓ 

So, our cost function becomes –  

 

After adding bias, our new equation becomes 

 

Where bi = User bias 

 ci = Movie bias 

 μ = Global average 

Using Stochastic Gradient descent, we can minimize the loss. So, after taking derivatives 

for gradient descent, we get –  

 

After adding regularization parameters, our equation becomes –  

 

Thus by using SGD, we can solve Matrix Factorization. 
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2.7.2 Singular Value Decomposition 

 

SVD is a matrix Factorization technique that is related to PCA. 

Let us suppose we have a matrix Xn*d . So according to SVD, we can split this matrix as 

Xn*d = Un*n . ⅀n*d . Vd*d
T. 

The columns of U are known as left singular vectors of X . The ith column of U is the ith 

eigen vector of XXT 

The columns of V are known as right singular vectors of X. The ith column of V is the ith 

eigen vector of XTX 

⅀ is a diagonal matrix with s1,s2,s3…..sd as diagonal elements. And these diagonal 

elements are known as Singular Values of X. 

 

⅀ =         s1                       0 

                      s2 

                            ….. 

                                      sd 

                 0                           0 

 

 

 

As we know PCA makes dimensionality reduction on the basis of eigen values. There is a 

relation between singular values and eigen values. 

(Si)
2/(n-1) = eigen value (lambda) 

The singular values that form the central matrix of SVD are roughly square root of eigen 

values of X 
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2.7.3 Matrix Factorization For Feature Engineering 

 

“Suppose we have a data set which contains the items ratings given by various users. This 

is a typical recommender systems problem where your job is do recommend new items to 

the ith user based on the previous items ith user has rated. 

Let’s take n : number of users, m : number of items then our rating Matrix will be of the 

order of (nxm). After applying Matrix Factorization we get two matrices, user matrix of 

shape (nxd) and item matrix of shape (dxm). 

ith row in user matrix is the ith user vector, ith column in item matrix is the ith item vector. 

All the vectors are Real numbers of dimension d.” 

So we user vector Ui =  

L1 L2 L3 L4 L5 .. .. .. LD 

 

And item vector Ij =  

l1 l2 l3 l4 l5 .. .. .. lD 

 

We can concat these 2 vectors and thus our vector X becomes 

L1 L2 … … LD l1 l2 .. lD 

 

Also let y  = Aij (Rating by user Ui on movie Ij 

So, we have X and Y and we can solve our recommendation problem using classification 

or regression techniques based on output.  
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2.7.4 Hyperparameter Tuning W.R.T Matrix Factorization 

 

Hyperparameters are the parameters chosen by the ML engineer himself in order to 

recommend with effective predictions. Finding optimal hyperparameters is called 

hyperparameter tuning. 

Let A = B * CT 

Where A = n*m 

 B = n*d 

 C = m*d 

In case of MF, Hyperparameters are the number of latent features to extract (d). 

This can be done using elbow method. A typical graph of error vs d for MF looks like –  

 

 

As d increases, the error decreases but after a certain point, the rate of change of error drops 

significantly. This is known as elbow point or inflection point. 
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2.8 AUTO ENCODERS 

 

An auto encoder is just a feed forward neural network that predicts its own input . Its 

objective, therefore, is to minimize the error between its output and its own input. So the 

only difference between a general neural network and an auto encoder is that instead of 

passing in some target, why the target is just input itself. 

 

 

 

  

For encoding operation –  

Z = σ(Wx +b) 

For decoding operation –  

X’ = σ’(W’Z + b’) 
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One of the applications of auto encoders is denoising auto encoders. Basically , the idea is 

to pass in a noisy version of our input. The job of autoencoder is to reconstruct the whole 

input, even though it is noisy. 

So we have to do exactly the same thing for our recommender systems. Here as our noisy 

input, we have missing ratings. The job of autoencoder is to predict these missing ratings 

so as to make our input complete. 

Here, each user is a sample and each feature is a movie rating. To make autoencoder more 

predictable, we can add more noise to the data by deleting some ratings so that the neural 

network will learn how to predict on actual missing ratings. This is also known as dropout 

regularization. The idea is to force the hidden layer to acquire more robust features 
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CHAPTER-3 SYSTEM DEVELOPMENT 

 

3.1 ABOUT THE DATASET 

 

“We have used Movielens 1M dataset by grouplens for our project. The GroupLens 

Research Project is a researchers group in University of Minnesota. Members of the 

GroupLens Research Project participate in many research projects synonymous to the areas 

of information filtering, collaborative filtering, and recommender systems. The project is 

headed by professors John Riedl and Joseph Konstan. The project started exploring 

automated collaborative filtering in 1992, but is mostly popular for its world wide trial of 

an automated collaborative filtering system for Usenet news in 1996. Since then the project 

has expanded its scope to research overall information filtering solutions, integrating in 

content-based methods as well as improving current collaborative filtering technology.” 

The dataset comprises of 1,000,209  ratings of roughly around 3,900 movies made by 6,040 

Movie Lens users who joined Movie Lens in 2000. 

The ratings are stored in the file "ratings.dat" and follow the following format: 

 

“UserID :: MovieID :: Rating :: Timestamp 

- UserIDs range between 1 and 6040  

- MovieIDs range between 1 and 3952 

- Ratings are made on a 5-star scale (including partial ratings) 

- Timestamp is represented in seconds since the epoch as returned by time(2) 

- Each user has at least 20 ratings”  
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3.2 EXPLORATORY DATA ANALYSIS 

The .dat file is loaded into our python notebook with the help of pd.read_table. 

After loading the data, we get following numbers –  

 

  

This shows that there are some movies which are not present in the ratings data. 

3.2.1 Checking For Nan And Duplicate Values 

After checking for nan and duplicates, we find 0 nan and duplicate values 

 

3.2.2 Information About Ratings Column 

We got the following information after describing ratings column –  

1 – The total no. of ratings = 1000209 

2 – The mean of all ratings = 3.58 

3 – The minimum rating is 1.0 and the maximum rating is 5.0 

4 – The standard deviation is 1.11 and the median is 4.0 
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3.2.3 Information About Ratings With Respect To Users 

We got the following information after calculating ratings with respect to users 

1 – The total number of users = 6040 

2 – The average number of movies a user rates = 165.59 

3 – Minimum number of movies a user rates= 20 and maximum number of movies a user 

rates = 2314 

4 – The median number of rating by any user = 96 

 

 

 

This is the plot of ratings vs quantitle. It is evident from the graph that there is a sharp jump 

in the number of movies rated by a user after 0.95. So , looking at them closely we get   
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3.2.3 Information About Ratings With Respect To Movies 

We got the following information after calculating ratings with respect to movies 

1 – The total no. of movies = 3706 

2 – The average no. of user who rate a movie = 269.88 

3 – Minimum number of ratings a movie received= 1 and max number of ratings a movie 

received = 3428 

4 – The median number of rating of any movie = 123 

 

 

 

This is the plot of ratings vs quantitle. It is evident from the graph that there is a sharp jump 

in the number of movies rated after 0.9. So , looking at them closely we get   

 

 

A few movies (the famous ones) is rated by more users. 
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3.3 DATA PREPARATION 

 

Original data file was a .dat format file with fields separated with “::”. 

Step 1 – Read the .dat into pandas dataframe using pd.read_table 

Step 2 – Since our movieIds are non continuous, we will map them to new concurrent 

movieIds and store the mapping as key value pairs in a dictionary 

Step 3 –  Drop the timestamp column 

Step 4 – Split the dataset into training and test set with 80:20 ratio split 

 

3.3.1 Creating Sparse Matrices Of Our Data 

We have used csr representation to create sparse matrix for our training and test set. 

 

Train Matrix -  

Shape of the Train matrix is : (user, movie) :  (6039, 3883) 

Sparsity Of Train matrix : 96.58773470766057 %  

 

Test Matrix –  

Shape of the Test matrix is : (user, movie) :  (6039, 3883) 

Sparsity Of Test matrix : 99.14693047854412 % 
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3.5 MODELS 

 

3.5.1 Surprise Baseline Model 

 

This is a linear model and was first proposed by Yehuda Koren in his paper “Factor in the 

Neighbors: Scalable and Accurate Collaborative Filtering”. The algorithm predicts the baseline 

estimate for given user and item. In a real world scenario, there is a probability that certain 

users are more optimistic and tend to give higher ratings to movies while others are 

pessimistic or critiques and tend to give lower ratings to movies. This is called user bias. 

Also some items tend to receive higher ratings than others. This may be due to brand image 

or endorsements etc. This is known as item bias. So by taking these into consideration the 

algorithm predicting the baseline estimate for given user and item is–  

 

r̂ = bui = μ + bU + bi 

 

Where- 

μ : Mean of all the ratings in our train dataset. 

bu : Bias of user 

bi : Item bias (here movie biases) 

Optimization function ( Least Squares Problem ) 

The above equation is a simple optimizing problem and may be interpreted as Least square 

problem using SGD -  

 

Where λ is regularization parameter. 

 



30 

 

3.5.2 Surprise KNNBaseline Model 

This model was also proposed by Yehuda Koren in his paper “Factor in the Neighbors: 

Scalable and Accurate Collaborative Filtering”. It is a basic collaborative filtering algorithm 

built further to our Baseline model baseline rating model. Our objective  is to predict rating 

given by user Ui on item Ij . Using similarity measures, we can find k similar users or items. 

The new ratings can be predicted by taking weighed averages of these ratings. The KNN 

can be built using item item similarity or user user similarity. 

Algorithm for KNNBaseline using User User similarity –  

 

Algorithm for KNNBaseline using Item Item similarity – 

       

Where  

bui :           Baseline estimate for user ‘u’ on item ‘i’. 

Ni
k(u) :     Is a set containing k most similar users of user ‘u’ who rated the movie ‘I’ 

sim (u, v) : Similarity among the users u and v 

This can be solved as simple Optimization Problem 
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3.5.3 Singular Value Decomposition (SVD) 

This is a type of Matrix Factorization technique. Our goal is to factorize the users matrix 

so as to find the latent features explaining the ratings. 

The equation behind this is –  

 

Where 

qi : Representing the latent features of item(movie) vector 

pu; Representing the latent features of user vector 

Optimization Function with regularization: 

 

 

3.5.4 SVD With Implicit Feedback From User (SVD++) 

This model adds implicit feedback of users to SVD model. Lets suppose a user watches a 

movie. Now, irrespective of the rating he/she gave, the very fact that the user went on to 

see the movie shows that the target user is intrigued by similar movies. This is known as 

implicit feedback. On the other hand, explicit feedback of a user are the ratings. So, the 

SVD++ takes into account these implicit feedbacks. 

The equation for SVD++ is : 

 

Where Iu :  is a set containing all the items that user u has rated 
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3.5.5 Matrix Factorization Using Keras 

 

In this model we will implement Matrix Factorization using Keras. Keras is a deep learning 

library. For matrix factorization, both gradient descent and alternating least squares are 

valid training algorithms. The userIds and movieIds are discrete numerical values. We can 

embed every userId and movieId to a corresponding feature vector. 

We do this using Keras Embedding layers –  

User embedding layer = Embedding(N,K) 

Movie embedding layer = Embedding(M,k) 

We then dot product these to get rating given by a user on a movie. 

We also add bias terms to this rating to get more accurate results 

Overall we are calculating – rij = dot(wi,uj) + bi + cj + μ 

So, the architecture of our model is -  

 

                                                                                                                                              

 

 

 

We have used Keras Callbacks method to save the model at best perfoming epoch and 

stop the training is model starts overfitting. 
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3.5.6 Residual Network For Recommendation 

The idea behind using residual network for recommendation is – The Matrix Factorization 

model that we built is linear which means it wont learn non linear pattern. So we built 

branches in out neural network such that MF and Deep Neural Network work in parallel. 

We will then add the 2 parts using ADD() layer. 

 

 

 

The final architecture of our model is as follows –  
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3.5.7 Autoencoder For Recommendations Using Keras. 

Autoencoders are models that reproduce the input itself. The error metrics is such that the 

difference between input and regenerated input is minimum. First we create a sparse matrix 

using scipy sparse matrix for our ratings data such that each user corresponds to a sample 

and each movie rating corresponds to a feature. This is faster than previous deep learning 

techniques because earlier we were treating each rating as a unique sample. But, here we 

are taking each user as a sample. Finally we add noise to our input using Dropout() Layer.  

Keras does not recognize sparse matrix so we will generate batches of input from sparse 

matrix separately.  

 

The final architecture of our model is as follows –  
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CHAPTER-4  PERFORMANCE ANALYSIS 

 

4.1 MODEL-1 SURPRISE BASELINE PREDICTOR 

 

 

 

4.2 SURPRISE KNNBASELINE USING USER-USER SIMILAR 
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4.3 SURPRISE KNNBASELINE USING MOVIE-MOVIE SIMILAR 

 

 

4.4 SURPRISE SVD MODEL 
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4.5 SURPRISE SVD++ MODEL 

 

4.6 MATRIX FACTORIZATION USING KERAS 

 

 

 

  

Test Data Score 
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4.7 RESIDUAL NETWORK USING KERAS 

 

 

 

 

Test Data Scores –  
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4.8 AUTOENCODER RECOMMENDER SYSTEM USING KERAS 

 

 

 

 

Test Data Score –  
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4.9 COMPARISION OF MODELS 

MODEL TEST RMSE 

SURPRISE BASELINE MODEL 0.913 

SURPRISE KNNBASELINE USING 

USER-USER SIMILAR 

0.871 

SURPRISE KNNBASELINE USING 

MOVIE-MOVIE SIMILAR 

0.860 

SURPRISE SVD MODEL 0.874 

SURPRISE SVD++ MODEL 0.868 

MATRIX FACTORISATION USING 

KERAS 

0.864 

RESIDUAL NETWORK USING KERAS 0.867 

AUTOENCODER USING KERAS 0.878 

 

So, the best performing model is Surprise KNN Baseline with movie movie similarity with 

RMSE = 0.860 
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CHAPTER-5 CONCLUSION 

 

Recommender systems are very powerful tools that are very important for todays 

businesses. They help businesses by personalizing choices of customers. Also, since the 

number of products are increasing at an exponential rate, we need to recommend only the 

best ones. 

In this project , we learned about various types of recommender system engines and their 

pros and cons. We learnt about Non personalized recommender systems, Collaborative 

filtering based approaches, Matrix Factorization, Surprise Library and Deep Learning 

based recommender systems. Not only this, we learnt about Auto Encoders which are 

another powerful models and can be applied in various fields Eg Computer Vision. We 

used Movielens 1M for training and testing. We collected the data, cleaned the data, did 

some EDA and finally built 8 models using Matrix Factorization, Surprise Library and 

Deep Learning. We achieved the best RMSE of 0.860 with Surprise KNN Baseline 

Predictor with User User Similarities. 

These concepts can be applied to build other recommender systems with different products 

ad different rating methods. 
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