
MOVIE RECOMMENDER SYSTEM USING MATRIX

FACTORIZATION AND DEEP LEARNING TECHNIQUES

Project report submitted in partial fulfillment of the requirement

for the degree of Bachelor of Technology

In

Computer Science and Engineering

By

Sparsh Mittal (181272)

Under the supervision of

Dr. Aman Sharma

Assistant Professor (SG)

to

Department of Computer Science &

Engineering and Information Technology

Jaypee University of Information Technology

Waknaghat, Solan -173234, Himachal Pradesh

certi

ackno.

CONTENTS

INTRODUCTION.. 1

LITERATURE SURVEY .. 7

SYSTEM DEVELOPMENT ... 24

PERFORMANCE ANALYSIS ... 35

CONCLUSION .. 41

REFRENCES ... 42

ABSTRACT

Recommendations drive so many of our decisions on a daily basis. Recommender systems

help consumers to find new information, products and services tailored to their

requirements. Recommendation engines use the feedback of users to find new relevant

items for them or for others with the assumption that users who have made homogeneous

choices in past are highly anticipated to make similar choices in forthcoming future. There

are various types of recommendation systems like – non personalized recommender

system, collaborative filtering based recommender systems, deep learning based

recommender systems. The goal of our project is to predict the ratings that users may give

to movies that they have not rated yet and to build and test various recommender systems

and then finally minimize the root-mean-square-error between the projected user ratings

and true ratings of the user using matrix factorization and Deep Learning techniques. The

whole project is based on user movie ratings data, so we need to collect that data. We have

collected the data from movielens website and then we have filtered and processed our data.

The data is then split into training and test sets and the test set. To make our Matrix

Factorization model, we have used SVD, SVD++ and related algorithms and also keras.

For our Deep Learning models, we have built Autoencoders, Matrix Factorization and

Residual Learning in keras. Finally, have calculated RMSEs for each of our recommender

systems and compared them.

1

CHAPTER-1 INTRODUCTION

1.1 INTRODUCTION

Recommendations drive so many of our decisions on a daily basis. Be it obvious

recommendations such as suggestions of new restaurants from friends, or a certain model

of camera discussed in a blog, to less direct recommendations such as Netflix promoting

shows you are likely to enjoy, or Amazon proposing other purchases that go well with what

you are buying. Recommender systems help consumers to find new information, products

and services tailored to their requirements. They are intended to recommend suitable items

to users. Recommender systems are very important in a lot of domains because they can

help produce huge revenues when they are effective and also become a way to stand ahead

from their adversaries.

Recommendation engines target one specific kind of machine learning problem, they are

designed to suggest a product, service, or entity to a user based on other users, and their

own feedback. Let's take some examples. Making a suggestion as to what movie a user

would like based on what genres of movies they have ranked highly in the past would be

suited to a recommendation engine. Predicting whether that movie will do well in the box

office on the other hand would be better suited to a different kind of statistical model.

Recommendation engines use the feedback of users to find new relevant items for them or

for others with the assumption that users who have made homogeneous choices in past are

highly anticipated to make similar choices in forthcoming future like the example here.

Recommendation engines benefit from having a many to many match between the users

giving the feedback, and the items receiving the feedback. In other words, a better

recommendation can be made for an item that has been given a lot of feedback, and more

personalized recommendations can be given for a user that has given a lot of feedback.

2

In a typical scenario users rate multiple items, and each item is rated by multiple users. This

permits us to find other users with homogeneous choices. This is valuable as users who

have made homogeneous choices in past are highly anticipated to make similar choices in

forthcoming future.

In this project, we will build different recommender engines using matrix factorization and

deep learning techniques i.e. Autoencoders and Residual Networks. For each of them we

will test them using RMSE(Root Mean Squared Error).

3

1.2 PROBLEM STATEMENT

Given a user ui and a movie Ij . The user has already watched I1, I7, I8 etc. The goal is to

predict what rating ui will give to Ij. based on users prior history using Movielens 1Million

Dataset and various machine learning and deep learning models.

The algorithms used are

-Matrix Factorization

-Deep Learning and Matrix Factorization

-Autoencoders

-KNN based models

The metrics used for our recommender engines is RMSE.

4

1.3 OBJECTIVE

A Recommendation System predicts the likelihood that whether a user may like a certain

item. Based on user’s previous interaction with the data source from which the system

learns from (besides from other users’ data, or previous trends), the system can make

recommendations of certain item to a user.

The goal of our project is to predict the ratings that users may give to movies that they

have not rated yet and to build and test various recommender systems and then finally

minimize the root-mean-square-error between the projected user ratings and true ratings of

the user using matrix factorization and Deep Learning techniques. Our goal is to find the

best recommender engine for the prediction of movie ratings. The implementation of

Matrix Factorization based algorithms are created using an open source library called

Surprise. The Deep Learning models are made using Keras.

5

1.4 METHODOLOGY

In order to accomplish the objective of our project, the first step is to do sufficient

background study, so the literature survey has been performed. We have learnt various

methods to build recommender systems i.e. Non Personalized Recommender System,

Collaborative Filtering based Recommender System, Machine Learning and Deep

Learning based Recommender Systems. But not all can be applied for our use case. So we

have chosen the ones that will work.

The whole project is based on user movie ratings data, so we need to collect that data. We

have collected the data from movielens website and then we have filtered and processed

our data and perform exploratory data analysis to find important information regarding the

data. The data is utilized in 3 forms – Pandas DataFrame, Surprise Dataframe and Sparse

matrix form.

The data is then split into training and test sets and the test set is also utilized as validation

set.

To make our Matrix Factorization model, we have used SVD, SVD++ and related

algorithms and also keras. For our Deep Learning models, we have built Autoencoders,

Matrix Factorization and Residual Learning in keras.

Finally, have calculated RMSEs for each of our recommender systems and compared them.

6

1.5 REPORT STRUCTURE

CHAPTER 2 –

In chapter 2, we discuss about the theory behind recommender systems. This contains the

details of various types of recommendation system engines and the mathematics behind

them. Also we will discuss the pros and cons of these approaches

CHAPTER 3 –

In chapter 3, we have explained the system development. This includes the information

regarding the dataset, data preprocessing, exploratory data analysis and the architecture of

the models that we built.

CHAPTER 4 –

Chapter 4 contains the results that we achieved after training our recommendation engines

on the dataset described in chapter 3.

CHAPTER 5 –

Chapter 5 contains the conclusion of our project.

7

CHAPTER-2 LITERATURE SURVEY

2.1 RECOMMENDATION SYSTEMS

A recommendation system is a kind of information filtering system. By inferring from large

data sets, the system’s algorithm can discover precise user preferences. Once we know

users’ preferences, we can recommend them new, relevant products. And that includes

everything from movies and music, to online shopping.

Youtube, Netflix, Amazon and Spotify are examples of recommendation systems in effect.

The systems provide users with suitable suggestions based on the choices they make. The

advantages of adding a recommender system include- increment in sales due to user

tailored offers , improved customer experience, increased time spent on the website and

much more.

Epsilon in their study on market discovered that 90% of all users find personalization

attractive. Also, some 80% say that they are more likely to do business with a company if

a personalized experience is provided.

Recommendation engines use the feedback of users to find new relevant items for them or

for others with the assumption that as users who have made homogeneous choices in past

are highly anticipated to make similar choices in forthcoming future like the example here.

Recommendation engines benefit from having a many to many match between the users

giving the feedback, and the items receiving the feedback. In other words, a better

recommendation can be made for an item that has been given a lot of feedback, and more

personalized recommendations can be given for a user that has given a lot of feedback.

Goal of Recommender systems is to predict interests of users and propose items that more

likely are captivating for them. They are one of the most powerful machine learning

systems that online businesses utilize so as to increase their sales.

8

2.2 WHY USE RECOMMENDATION SYSTEMS

“Companies are utilizing recommendation system engines targeting an increase in sales as

a result of user tailored offers and an improved customer experience.

Recommendations often increase search speed and makes it simpler for users to get hold of

the content they like, and entertain the users with suggestions they would have otherwise

never looked for.

In addition, the companies are capable to increase customer base and hold on to existing

customers by sharing out emails containing links to new products that connect with the

interests of the customer, or suggestions of movies and TV series that match with their

preferences.

The user begins feeling familiar and accepted and are therefore highly likely to purchase

additional products or utilize additional content. By knowing what a user’s needs, the

company gains a competitive edge and the risk of losing a customer to adversaries is

reduced.

Catering that extra value to users by incorporating recommendations into systems and

products is attractive. In addition, it permits companies to stay ahead of their adversaries

and ultimately increase their profits.

Epsilon in their study on market discovered that 90% of all users find personalization

attractive. Also, some 80% say that they are more likely to do business with a company if

a personalized experience is provided.”

9

2.3 DATA FOR RECOMMENDATION SYSTEM

The data for recommender are generally represented in the form of a matrix. Let we have

n number of users, m number of products. The ratings Matrix A of can be represented as

A = I1 , I2 … In

 U1

 U2

 ….

 Um

Where Aij = rating given by user Ui on item Ij. If Ui has not interacted with Ij, Aij is null.

The matrix A of ratings is very sparse. This is explained below

Let us suppose we have 1million users and 10K items. So the total cells of our matrix =

1M*10K = 10Billion.

Let us consider an average user rates 50 items. So the total number of ratings =

1M*50 = 50 Million

Sparsity of A = Number of ratings/Total number of cells

 = 50Million/10Billion

 = 0.005

 Aij

10

2.4 NON-PERSONALIZED RECOMMENDER SYSTEMS

The first type of recommendations are called non-personalized recommendations. They are

called this as they are made to all users, without taking their preferences into account. The

common theme of these methods is that it doesn't matter who you are.

Some examples are Reddit, Hacker News, Google Page Rank and Amazon.

When we perform Google Search, we see the same thing as someone else performing the

same search. Other example is recommending the items most frequently seen together like

you can see here on Amazon. This might not select the 'best' items or items that are most

suited to you, but there is a good chance you will not hate them as they are so common.

This is known as stereotyped recommendation system.

Problems might arise if we try to sort by average rating naively. The problem is this doesn't

take into account the number of ratings that an item has received . For example -an item

that has one five star rating is probably not that better than an item that has 1000 ratings

with an average of four stars.

To overcome this challenge, we damp the overall mean using features like minimum

number of ratings. We then cut down our data by creating a mask of only items that have

been reviewed more a fixed times in our dataset. By combining the initial work of counting

occurrences with mean ratings, we can get very useful recommendations.

“Apart from Stereotyped Recommendation System, another class of non-personalized

recommender system use product association to recommend products. These are known as

Product Association Learning based Recommenders.

In Product Association Recommenders, although not personalized, uses the knowledge of

the products that a consumer is looking for and using this knowledge, it provides product

recommendations. One way of providing these recommendations is to go through all the

historical transactions and see what other people have most frequently bought along with

the given product at the same time(like Amazon). For example, apriori based systems”.

11

2.5 CONTENT BASED RECOMMENDATION SYSTEMS

“The recommendations made by finding items with similar attributes are called content-

based recommendations. For example, if a user likes movie A, and we calculate that movie

A and movie B are similar, we believe the user will like book B. We can do so by comparing

the attributes of our items. A big advantage of using an item's attributes over user feedback

is that you can make recommendations for any items you have attribute data on. This

includes even brand new items that users have not seen yet. Content-based models require

us to use any available attributes to build profiles of items in a way that allows us to

mathematically compare between them. This allows us for example to find the most similar

items and recommend them. This is best done by encoding each item as a vector.”

Example -

Let us suppose we have a MOVIE vector consisting of attributes as follows-

GENRE DECADE ACTOR DIRECTOR ETC.

And we have a USER vector consisting of attributes as follows –

GENDER AGE LOCATION PAST GENRE ETC.

We can get feature representation using these 2 vectors. Once we get feature representation,

we can use classification/regression algorithm for predictions.

So, our combined vector X becomes -

GENRE DECADE ACTOR DIR, GENDER AGE PAST.. LOCATION

 Movie Vec. User Vec.

So, we are using meta info to predict and hence this is called content based recommendation

12

2.6 COLLABORATIVE FILTERING BASED RECOMMENDATION

SYSTEMS

A collaborative filtering based recommendation system explores the similarity between

either users or items interactions. It works around the premise that person A has similar

tastes to person B and C. Once the system calculates the similarities, it provides user

recommendations. Generally, users are recommended the items that similar users liked.

We can understand the user item interactions using a matrix, where each cell (i,j) represents

the interaction between user i and item j.

Eg. Following is a matrix of users and the movies they like –

U1 M1 M2 M3

U2 M1 M3 M4

U3 MI

Since U3 LIKES M1 which is also liked by U1 and U2 and U1 and U2 both like M3 also,

so we will recommend M3 to U3 as there are high chances that U3 will like M3. The core

idea encompassing this is - Users who agreed in the past are likely to agree in future.

There are two types of collaborative filtering systems -

1 –“ User user similarity based Collaborative Filtering

2 – Item item similarity based Collaborative Filtering ”

13

2.6.1 User User based Collaborative Filtering

User based recommendations are when we use the mean of the ratings the k most similar

users gave an item, to suggest what rating the target user would give. This method is said

to be “user-centred” as it represent users based on their interactions with items and evaluate

distances between users.

Let us say we have user vectors Ui and Uj which contain ratings of users on items I1, I2

etc.

U =

I1 I2 I3 I4 I5 I6 …….

The first step of user user based collaborative filtering is to find users with homogeneous

taste. Similarity between Ui and Uj can be calculated using similarity formulas. Similarity

measure is such that the users with similar reactions on the same products should be

considered as being near to each other. Eg. Cosine Similarity which is given by –

Cosine (Ui, Uj) =
(UiT)(Uj)

|𝑈𝑖||𝑈𝑗|

We can Calculate the similarity between every pair of users in our dataset. Lets recommend

new item to user Ui . We will calculate the similar users to Ui and filter out the ones with

large similarities. Let U1,U2 and U3 are the most similar users to Ui. We will pick the items

that are liked by U1,U2,U3 and are not yet watched by Ui. These items are the

recommended items for Ui.

14

2.6.2 Item-Item Collaborative Filtering

“To make a new recommendation to a user, the idea of item-item method is to find items

similar to the ones the user already “positively” interacted with. Item-based collaborative-

filtering is different, it assumes users will like items that are similar with items that the user

liked before. Two items are considered to be similar if most of the users that have interacted

with both of them did it in a similar way. This method is said to be item-centred as it

represent items based on interactions users had with them and evaluate distances between

those items. This method is popularized and used by large companies like Amazon.”

Let us consider we have item vectors Ii and Ij which contains ratings of items by users U1,

U2 etc.

I =

U1 U2 U3 U4 U5 U6 …….

The first step of item based collaborative filtering is to find items with similar ratings by

users. Similarity between Ii and Ij are calculated with the help of similarity formulas.

Similarity measure is such that two items with similar ratings by same users should be

considered as being close. Eg. Cosine Similarity which is given by –

Cosine (Ii, Ij) =
(IiT)(Ij)

|𝐼𝑖||𝐼𝑗|

We can Calculate the similarity between every pair of movies in our dataset. Lets

recommend new item to user Ui . We will calculate the similar items to Ii and filter out the

ones with large similarities. Let I1,I2 and I3 are the most similar item to Ii. We will pick

the items that and are not yet watched by Ui. These items are the recommended items for

Ui.

15

2.6.3 Problems With Collaborative Filtering

- “Cold start: We should have enough information (user-item interactions) for the

system to work. If we setup a new e-commerce site, we cannot give

recommendations until users have interacted with a significant number of items.”

- “Adding new users/items to the system: whether it is a new user or item, we have

no prior information about them since they don’t have existing interactions.”

- For User based collaborative filtering, the problem is that the user’s preferences

may change over time and there is no way for the similarity matrix to check for the

same.

- Another problem is that computing similarity scores for millions of users and

products can be computationally expensive and since they need to be updated

regularly, it is a major issue.

- These are not appropriate for global recommendations as the users and items end to

have similar ratings regionally.

16

2.7 MATRIX FACTORIZATION

Recommender system can be represented as Matrix Completion problem. As we have seen

in Section 2.3 , the data is represented in the form of sparse matrix with many empty cells.

So, Matrix completion says – Given a matrix A where some values are given and many are

empty, our job is to fill up empty cells with reasonable values based on values in non empty

cells. So the idea behind Matrix Factorization is that we want to express the Matrix A in

terms of a product of two smaller matrices.

If we decompose a matrix into product of other matrices, it is known as Matrix

Factorization. Let us suppose we have our ratings matrix A, then

 A = B. C (B and C are decomposed matrices) or A = B.C.D

From mathematics point of view PCA is also matrix factorization. This means that just like

PCA, we can represent the users and item vectors using latent features. The model discovers

these features on its own and the users and items are mapped to the dimension with the

features such that they retain the maximal information. As they are learned and not given,

extracted features taken individually have a mathematical meaning but no intuitive

interpretation.

The product of the user and item in latent dimension give us the rating given by the user on

that item.

17

2.7.1 Intuition Behind Matrix Factorization

Let us consider our ratings matrix

R = I1 , I2 … In No. of users = n , No. of items = m

 U1

 U2

 ….

 Um

W = U1 ----------d------------- U = I1 -----------d------------

 U2 -----------d------------ I2 -----------d------------

 …. -----------d------------ …. -----------d------------

 Un -----------d------------ n*d Im ------------d----------- m*d

Rij is a cell in matrix that contains ratings on movie Ij by use Ui. Matrix R is very sparse.

Imagine Rn*m = Wn*d. Ud*m T.

Where R = n * m matrix

 W = n * d matrix

 U = m * d matrix

 d>=0 and d<min(m,n) (Latent dimensions)

So, Rij ~ Ui * Wj
T (matrix multiplication)

Our goal is to find B and C such that whenever we have a non-empty Rij , (Rij – Wj Ui
T)2

is minimum . So -

 Aij

18

So, our matrix factorization has become a simple optimization problem where we have to

minimize the loss between actual R and Ȓ

So, our cost function becomes –

After adding bias, our new equation becomes

Where bi = User bias

 ci = Movie bias

 μ = Global average

Using Stochastic Gradient descent, we can minimize the loss. So, after taking derivatives

for gradient descent, we get –

After adding regularization parameters, our equation becomes –

Thus by using SGD, we can solve Matrix Factorization.

19

2.7.2 Singular Value Decomposition

SVD is a matrix Factorization technique that is related to PCA.

Let us suppose we have a matrix Xn*d . So according to SVD, we can split this matrix as

Xn*d = Un*n . ⅀n*d . Vd*d
T.

The columns of U are known as left singular vectors of X . The ith column of U is the ith

eigen vector of XXT

The columns of V are known as right singular vectors of X. The ith column of V is the ith

eigen vector of XTX

⅀ is a diagonal matrix with s1,s2,s3…..sd as diagonal elements. And these diagonal

elements are known as Singular Values of X.

⅀ = s1 0

 s2

 …..

 sd

 0 0

As we know PCA makes dimensionality reduction on the basis of eigen values. There is a

relation between singular values and eigen values.

(Si)
2/(n-1) = eigen value (lambda)

The singular values that form the central matrix of SVD are roughly square root of eigen

values of X

20

2.7.3 Matrix Factorization For Feature Engineering

“Suppose we have a data set which contains the items ratings given by various users. This

is a typical recommender systems problem where your job is do recommend new items to

the ith user based on the previous items ith user has rated.

Let’s take n : number of users, m : number of items then our rating Matrix will be of the

order of (nxm). After applying Matrix Factorization we get two matrices, user matrix of

shape (nxd) and item matrix of shape (dxm).

ith row in user matrix is the ith user vector, ith column in item matrix is the ith item vector.

All the vectors are Real numbers of dimension d.”

So we user vector Ui =

L1 L2 L3 L4 L5 LD

And item vector Ij =

l1 l2 l3 l4 l5 lD

We can concat these 2 vectors and thus our vector X becomes

L1 L2 … … LD l1 l2 .. lD

Also let y = Aij (Rating by user Ui on movie Ij

So, we have X and Y and we can solve our recommendation problem using classification

or regression techniques based on output.

21

2.7.4 Hyperparameter Tuning W.R.T Matrix Factorization

Hyperparameters are the parameters chosen by the ML engineer himself in order to

recommend with effective predictions. Finding optimal hyperparameters is called

hyperparameter tuning.

Let A = B * CT

Where A = n*m

 B = n*d

 C = m*d

In case of MF, Hyperparameters are the number of latent features to extract (d).

This can be done using elbow method. A typical graph of error vs d for MF looks like –

As d increases, the error decreases but after a certain point, the rate of change of error drops

significantly. This is known as elbow point or inflection point.

22

2.8 AUTO ENCODERS

An auto encoder is just a feed forward neural network that predicts its own input . Its

objective, therefore, is to minimize the error between its output and its own input. So the

only difference between a general neural network and an auto encoder is that instead of

passing in some target, why the target is just input itself.

For encoding operation –

Z = σ(Wx +b)

For decoding operation –

X’ = σ’(W’Z + b’)

23

One of the applications of auto encoders is denoising auto encoders. Basically , the idea is

to pass in a noisy version of our input. The job of autoencoder is to reconstruct the whole

input, even though it is noisy.

So we have to do exactly the same thing for our recommender systems. Here as our noisy

input, we have missing ratings. The job of autoencoder is to predict these missing ratings

so as to make our input complete.

Here, each user is a sample and each feature is a movie rating. To make autoencoder more

predictable, we can add more noise to the data by deleting some ratings so that the neural

network will learn how to predict on actual missing ratings. This is also known as dropout

regularization. The idea is to force the hidden layer to acquire more robust features

24

CHAPTER-3 SYSTEM DEVELOPMENT

3.1 ABOUT THE DATASET

“We have used Movielens 1M dataset by grouplens for our project. The GroupLens

Research Project is a researchers group in University of Minnesota. Members of the

GroupLens Research Project participate in many research projects synonymous to the areas

of information filtering, collaborative filtering, and recommender systems. The project is

headed by professors John Riedl and Joseph Konstan. The project started exploring

automated collaborative filtering in 1992, but is mostly popular for its world wide trial of

an automated collaborative filtering system for Usenet news in 1996. Since then the project

has expanded its scope to research overall information filtering solutions, integrating in

content-based methods as well as improving current collaborative filtering technology.”

The dataset comprises of 1,000,209 ratings of roughly around 3,900 movies made by 6,040

Movie Lens users who joined Movie Lens in 2000.

The ratings are stored in the file "ratings.dat" and follow the following format:

“UserID :: MovieID :: Rating :: Timestamp

- UserIDs range between 1 and 6040

- MovieIDs range between 1 and 3952

- Ratings are made on a 5-star scale (including partial ratings)

- Timestamp is represented in seconds since the epoch as returned by time(2)

- Each user has at least 20 ratings”

25

3.2 EXPLORATORY DATA ANALYSIS

The .dat file is loaded into our python notebook with the help of pd.read_table.

After loading the data, we get following numbers –

This shows that there are some movies which are not present in the ratings data.

3.2.1 Checking For Nan And Duplicate Values

After checking for nan and duplicates, we find 0 nan and duplicate values

3.2.2 Information About Ratings Column

We got the following information after describing ratings column –

1 – The total no. of ratings = 1000209

2 – The mean of all ratings = 3.58

3 – The minimum rating is 1.0 and the maximum rating is 5.0

4 – The standard deviation is 1.11 and the median is 4.0

26

3.2.3 Information About Ratings With Respect To Users

We got the following information after calculating ratings with respect to users

1 – The total number of users = 6040

2 – The average number of movies a user rates = 165.59

3 – Minimum number of movies a user rates= 20 and maximum number of movies a user

rates = 2314

4 – The median number of rating by any user = 96

This is the plot of ratings vs quantitle. It is evident from the graph that there is a sharp jump

in the number of movies rated by a user after 0.95. So , looking at them closely we get

27

3.2.3 Information About Ratings With Respect To Movies

We got the following information after calculating ratings with respect to movies

1 – The total no. of movies = 3706

2 – The average no. of user who rate a movie = 269.88

3 – Minimum number of ratings a movie received= 1 and max number of ratings a movie

received = 3428

4 – The median number of rating of any movie = 123

This is the plot of ratings vs quantitle. It is evident from the graph that there is a sharp jump

in the number of movies rated after 0.9. So , looking at them closely we get

A few movies (the famous ones) is rated by more users.

28

3.3 DATA PREPARATION

Original data file was a .dat format file with fields separated with “::”.

Step 1 – Read the .dat into pandas dataframe using pd.read_table

Step 2 – Since our movieIds are non continuous, we will map them to new concurrent

movieIds and store the mapping as key value pairs in a dictionary

Step 3 – Drop the timestamp column

Step 4 – Split the dataset into training and test set with 80:20 ratio split

3.3.1 Creating Sparse Matrices Of Our Data

We have used csr representation to create sparse matrix for our training and test set.

Train Matrix -

Shape of the Train matrix is : (user, movie) : (6039, 3883)

Sparsity Of Train matrix : 96.58773470766057 %

Test Matrix –

Shape of the Test matrix is : (user, movie) : (6039, 3883)

Sparsity Of Test matrix : 99.14693047854412 %

29

3.5 MODELS

3.5.1 Surprise Baseline Model

This is a linear model and was first proposed by Yehuda Koren in his paper “Factor in the

Neighbors: Scalable and Accurate Collaborative Filtering”. The algorithm predicts the baseline

estimate for given user and item. In a real world scenario, there is a probability that certain

users are more optimistic and tend to give higher ratings to movies while others are

pessimistic or critiques and tend to give lower ratings to movies. This is called user bias.

Also some items tend to receive higher ratings than others. This may be due to brand image

or endorsements etc. This is known as item bias. So by taking these into consideration the

algorithm predicting the baseline estimate for given user and item is–

r̂ = bui = μ + bU + bi

Where-

μ : Mean of all the ratings in our train dataset.

bu : Bias of user

bi : Item bias (here movie biases)

Optimization function (Least Squares Problem)

The above equation is a simple optimizing problem and may be interpreted as Least square

problem using SGD -

Where λ is regularization parameter.

30

3.5.2 Surprise KNNBaseline Model

This model was also proposed by Yehuda Koren in his paper “Factor in the Neighbors:

Scalable and Accurate Collaborative Filtering”. It is a basic collaborative filtering algorithm

built further to our Baseline model baseline rating model. Our objective is to predict rating

given by user Ui on item Ij . Using similarity measures, we can find k similar users or items.

The new ratings can be predicted by taking weighed averages of these ratings. The KNN

can be built using item item similarity or user user similarity.

Algorithm for KNNBaseline using User User similarity –

Algorithm for KNNBaseline using Item Item similarity –

Where

bui : Baseline estimate for user ‘u’ on item ‘i’.

Ni
k(u) : Is a set containing k most similar users of user ‘u’ who rated the movie ‘I’

sim (u, v) : Similarity among the users u and v

This can be solved as simple Optimization Problem

31

3.5.3 Singular Value Decomposition (SVD)

This is a type of Matrix Factorization technique. Our goal is to factorize the users matrix

so as to find the latent features explaining the ratings.

The equation behind this is –

Where

qi : Representing the latent features of item(movie) vector

pu; Representing the latent features of user vector

Optimization Function with regularization:

3.5.4 SVD With Implicit Feedback From User (SVD++)

This model adds implicit feedback of users to SVD model. Lets suppose a user watches a

movie. Now, irrespective of the rating he/she gave, the very fact that the user went on to

see the movie shows that the target user is intrigued by similar movies. This is known as

implicit feedback. On the other hand, explicit feedback of a user are the ratings. So, the

SVD++ takes into account these implicit feedbacks.

The equation for SVD++ is :

Where Iu : is a set containing all the items that user u has rated

32

3.5.5 Matrix Factorization Using Keras

In this model we will implement Matrix Factorization using Keras. Keras is a deep learning

library. For matrix factorization, both gradient descent and alternating least squares are

valid training algorithms. The userIds and movieIds are discrete numerical values. We can

embed every userId and movieId to a corresponding feature vector.

We do this using Keras Embedding layers –

User embedding layer = Embedding(N,K)

Movie embedding layer = Embedding(M,k)

We then dot product these to get rating given by a user on a movie.

We also add bias terms to this rating to get more accurate results

Overall we are calculating – rij = dot(wi,uj) + bi + cj + μ

So, the architecture of our model is -

We have used Keras Callbacks method to save the model at best perfoming epoch and

stop the training is model starts overfitting.

33

3.5.6 Residual Network For Recommendation

The idea behind using residual network for recommendation is – The Matrix Factorization

model that we built is linear which means it wont learn non linear pattern. So we built

branches in out neural network such that MF and Deep Neural Network work in parallel.

We will then add the 2 parts using ADD() layer.

The final architecture of our model is as follows –

34

3.5.7 Autoencoder For Recommendations Using Keras.

Autoencoders are models that reproduce the input itself. The error metrics is such that the

difference between input and regenerated input is minimum. First we create a sparse matrix

using scipy sparse matrix for our ratings data such that each user corresponds to a sample

and each movie rating corresponds to a feature. This is faster than previous deep learning

techniques because earlier we were treating each rating as a unique sample. But, here we

are taking each user as a sample. Finally we add noise to our input using Dropout() Layer.

Keras does not recognize sparse matrix so we will generate batches of input from sparse

matrix separately.

The final architecture of our model is as follows –

35

CHAPTER-4 PERFORMANCE ANALYSIS

4.1 MODEL-1 SURPRISE BASELINE PREDICTOR

4.2 SURPRISE KNNBASELINE USING USER-USER SIMILAR

36

4.3 SURPRISE KNNBASELINE USING MOVIE-MOVIE SIMILAR

4.4 SURPRISE SVD MODEL

37

4.5 SURPRISE SVD++ MODEL

4.6 MATRIX FACTORIZATION USING KERAS

Test Data Score

38

4.7 RESIDUAL NETWORK USING KERAS

Test Data Scores –

39

4.8 AUTOENCODER RECOMMENDER SYSTEM USING KERAS

Test Data Score –

40

4.9 COMPARISION OF MODELS

MODEL TEST RMSE

SURPRISE BASELINE MODEL 0.913

SURPRISE KNNBASELINE USING

USER-USER SIMILAR

0.871

SURPRISE KNNBASELINE USING

MOVIE-MOVIE SIMILAR

0.860

SURPRISE SVD MODEL 0.874

SURPRISE SVD++ MODEL 0.868

MATRIX FACTORISATION USING

KERAS

0.864

RESIDUAL NETWORK USING KERAS 0.867

AUTOENCODER USING KERAS 0.878

So, the best performing model is Surprise KNN Baseline with movie movie similarity with

RMSE = 0.860

41

CHAPTER-5 CONCLUSION

Recommender systems are very powerful tools that are very important for todays

businesses. They help businesses by personalizing choices of customers. Also, since the

number of products are increasing at an exponential rate, we need to recommend only the

best ones.

In this project , we learned about various types of recommender system engines and their

pros and cons. We learnt about Non personalized recommender systems, Collaborative

filtering based approaches, Matrix Factorization, Surprise Library and Deep Learning

based recommender systems. Not only this, we learnt about Auto Encoders which are

another powerful models and can be applied in various fields Eg Computer Vision. We

used Movielens 1M for training and testing. We collected the data, cleaned the data, did

some EDA and finally built 8 models using Matrix Factorization, Surprise Library and

Deep Learning. We achieved the best RMSE of 0.860 with Surprise KNN Baseline

Predictor with User User Similarities.

These concepts can be applied to build other recommender systems with different products

ad different rating methods.

42

REFERENCES

[1] Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for

Recommender Systems," in Computer, vol. 42, no. 8, pp. 30-37, Aug. 2009, doi:

10.1109/MC.2009.263.

[2] Koren, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative

filtering. ACM Trans. Knowl. Discov. Data. 4, 1, Article 1 (January 2010), 24 pages

[3] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.

AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th

International Conference on World Wide Web (WWW '15 Companion).

Association for Computing Machinery, New York, NY, USA, 111–112.

[4] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for

collaborative filtering. In ICML, 2007.

[5] Netflix Recommendations: Beyond the 5 stars (Part 1) by Xavier Amatriain and

Justin Basilico

[6] Netflix Recommendations: Beyond the 5 stars (Part 2) by Xavier Amatriain and

Justin Basilico

[7] http://surprise.readthedocs.io/en/stable/getting_started.html

[8] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. 1999. An

algorithmic framework for performing collaborative filtering. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval (SIGIR '99). Association for Computing Machinery, New

York, NY, USA, 230–237. https://doi.org/10.1145/312624.312682

43

[9] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History

and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4,

Article 19 (December 2015), 19 pages. DOI=http://dx.doi.org/10.1145/2827872

