Mathematical and Statistical Applications in Food
Engineering

Editors

Surajbhan Sevda
Department of Biosciences and Bioengineering

Indian Institute of Technology Guwahati
Guwabhati-781039, India

Department of Biotechnology
National Institute of Technology Warangal
Warangal-506004, India

Anoop Singh

Department of Scientific and Industrial Research (DSIR)
Ministry of Science and Technology

Government of India, Technology Bhawan

New Delhi-110016, India

CRC Press

Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A SCIENCE PUBLISHERS BOOK



Contents

Foreword

Preface

1L

Role of Mathematical and Statistical Modelling in Food Engineering

Surajbhan Sevda, Vijay Kumar Garlapati and Anoop Singh

Evolutionary Optimization Techniques as Effective Tools for Process Modelling in Food Processing

Lakshmishri Rov, Debabrata Bera and Vijay Kumar Garlapati

Optimization of Food Processes Using Mixture Experiments: Some Applications

Daniel Granato, Verénica Calado and Edmilson Rodrigues Pinto

Microorganisms and Food Products in Food Processing Using Full Factorial Design
Davor Valinger, Jasna Gajdos Kljusuri¢, Danijela Bursa¢ KovaCeviC, Predrag Putnik and Anet ReZek
Jambrak

The Use of Correlation, Association and Regression Techniques for Analyzing Processes and Food
Products
Jimy Oblitas, Miguel De-la-Torre, Himer Avila-George and Wilson Castro

Application of Cluster Analysis in Food Science and Technology

Chapman, J, Power, A, Chandra, S, Roberts, J and Cozzolino, D

Multiway Statistical Methods for Food Engineering and Technology

Smita S Lele and Snehasis Chakraborty

Application of Multivariate Statistical Analysis for Quality Control of Food Products

Soumen Ghosh and Jayeeta Mitra

Importance of Normality Testing, Parametric and Non-Parametric Approach, Association,

Correlation and Linear Regression (Multiple & Multivariate) of Data in Food & Bio-Process
Engineering

Soumen Ghosh and Javyeeta Mitra

Regression Analysis Methods for Agri-Food Quality and Safety Evaluations Using Near-Infrared

(NIR) Hyperspectral Imaging
Chandra B Singh and Digvir S Jayas

Partial Least Square Regression for Food Analysis: Basis and Example

Wilson Castro, Jimy Oblitas, Edward E Rojas and Himer Avila-George



12.

14.

18.

19.

21.

22,

23.

25.

Mathematical Modelling of High Pressure Processing in Food Engineering

Deepak Kadam, Surajbhan Sevda, Namrata Tyagi and Chetan Joshi

Food Process Modeling and Optimization by Response Surface Methodology (RSM)
Narjes Malekjani and Seid Mahdi Jafari

A Mathematical Approach to the Modelling of the Rheological Properties of Solid Foods
Ryszard Myhan and Marek Markowski

. Mathematical Models for Analyzing the Microbial Growth in Food

Jyoti Singh and Vishal Mishra

Computational Fluid Dynamics (CFD) Simulations in Food Processing
Abhishek Dutta, Ferruh Erdofdu and Fabrizio Sarghini

Application of Multivariate Statistical Analysis for Food Safety and Quality Assurance
S Jancy and R Preetha

Mathematical Modelling in Food Science through the Paradigm of Eggplant Drying

Alessandra Adrover and Antonio Brasiello

Use of Mathematical Modelling of Dough Biscuits Baking Behaviour

Noemi Baldino, Francesca R Lupi, Domenico Gabriele and Bruno de Cindio

Applications of Principal Component Analysis (PCA) for Fruit Juice Recovery and Quality Analysis

Debabrata Bera, Lakshmishri Roy and Tanmoy Bhattacharya

Use of Artificial Neural Networks in Optimizing Food Processes
RA Conde-Gutiérrez, U Cruz-Jacobo and JA Herndndez

Application of Neural Networks in Optimizing Different Food Processes: Case Study
KK Dash, GVS Bhagya Raj and MA Gayary

Mathematical Modelling for Predicting the Temperatures During Microwave Heating of Solid
Foods: A Case Study

Coskan llicali, Filiz Icier and Omer Faruk Cokgezme

Microwave Drying of Food Materials Modelled by the Reaction Engineering Approach (REA)—
Framework
Aditya Putranto and Xiao Dong Chen

Modelling of Heat Transfer During Deep Fat Frying of Food
KK Dash, Maanas Sharma and MA Bareen



CHAPTER 2

Evolutionary Optimization Techniques as Effective

Tools for Process Modelling in Food Processing
Lakshmishri Roy,l'-* Debabrata Bera® and Vijay Kumar Garlaparz'3

] Dept. of Food Technology, Techno India, Kolkata, West Bengal-700091, India.
2 Dept. of Food and Biochemical Engineering, Jadavpur University, Kolkata, West Bengal-700032, India

3 Dept. of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat,
Himachal Pradesh-173234, India.
* Corresponding author: lakshmil371 @ gmail.com

1. Introduction

Most food processing firms are making persistent efforts to maximize their returns and minimize their process
costs to compete in the existing market scenario. Consequently, these industries need to opt for advanced
alternative technologies for improving, monitoring, optimizing and controlling process parameters like nutrients,
moisture content, temperatures, etc. (Rodriguez-Fernandez et al., 2007). Processing operations in these industries
are conducted in a dynamic, unpredictable environment, subject to a large number of constraints, i.e., quality of
the final product, financial, environmental, safety aspects, etc. Therefore, extracting an optimal solution from a
large set of options for a food processing problem is an arduous task. Hence, a useful model-based optimization
tool is essential to accomplish it. An exhaustive evaluation of the cons of the existing tools has been summarized
below:

1.1 Limitations of mathematical optimization techniques

Specific characteristics of the food processing operations, like those mentioned below, make it difficult for

application of mathematics-based optimization tools:

* Most of the processes are conducted in a batch or semi-batch mode. Hence, the models employed need to be
dynamic, non-linear models with discrete events.

¢ Many process variables of these studies (temperature, pH, concentration, etc.), are more often spatially
distributed and coupled with transport phenomena, thus making it difficult for mathematical models using
only partial differential equations.

* Complicated nonlinear constraints issued from safety and quality aspects associated with food processing
operations cannot be effectively represented in mathematical optimization models.

* Also, the food processes more often involve coupled time-dependent transport phenomena, making it even
more difficult.

Thus, optimization of such processes requires an alternative physics-based model capable of being used in a
systemic search approach in conjunction with explicit and implicit constraints.

1.2 Empirical equation-based models



Operational barriers limit extensive use of statistical, empirical equation-based models (Garlapati and Roy, 2017;
Chauhan and Garlapati, 2014; Sharma et al., 2016) for optimization in food process engineering operations. Most
of the simulators consequentially developed using these tools trail the traditional path of employing low-level
languages. These tools are both highly resource-consuming and error-prone, thereby making them non-applicable
for plant-wide simulation.

1.3 Challenges in extensive utilization of tools and simulators in food industries

Modern-day simulators can increase productivity much more effectively in comparison to the traditional
modelling approach. These high-level modeling systems are advantageous in terms of (i) better and ease of
maintainability, (ii) flexibility in facilitating effective communication between co-workers and partners, (iii) ease
in development, reusability, etc.

* In spite of their advantages, many of these models lack robust and efficient optimization solvers and, hence,
preclude a more widespread use for optimization studies in the food industry.

* Another type of barrier arises from human-resources and knowledge issues:

In most food processing industries, the managerial and technical human resources are often not familiar with
these simulation and optimization tools. Even competent people with the relevant technological know-how
are skeptical in applying these tools for food industries as these processing operations are incredibly
complex.

* The food industries are need dynamic models that mimic their processes because, for a long time, there have
been a lack of tailor-made modeling and optimization software tools. These may be like the tools developed
by de Prada (2001) for the sugar industry.

* Most of the real-world problems of food processing operations have multiple, often competing for objectives
as the raw materials involved are complex and of wide variations, making it difficult.

¢ Food processing operations more often encompass multiple suboptimal and equivalent solutions, thus posing
a major challenge in developing an optimization model for them adequately.

Non-convex problems of these industries are solvable using conventional global optimization methodologies
but, for issues of non-identifiability, the complexibility to be dealt with persists. Additionally, the desired process
performances of these operations encompass variables and constraints that attribute to the economic impact on
efficiency product quality and safety. A class of linear search algorithms, i.e., Evolutionary Algorithms (EAs), are
seemingly vital tools for challenges that make things difficult in existing search and optimization situations. These
algorithms have gained popularity in recent times because of their ease in the way of handling multiple objective
problems, irrespective of the multi-objective optimization problems being constrained or unconstrained
(Karaboga, 2004; Saputelli et al., 2004). Thus, evolutionary optimization tools may be successfully applied to
these food processing industries.

2. Evolutionary Algorithms/Optimization Tools

These computational biological-inspired optimization algorithms, based on natural evolution and selection
principles, are popularly used for solving non-differentiable, intermittent and multimodal optimization problems.

Salient aspects of EAs include

* They operate on a population of potential solutions and yield effective and improved results using
evolutionary-like operations that work on the principle of survival of the fittest (selection, reproduction and
mutation) (Ronen et al., 2002).



* These optimization tools can generate Pareto optimal solutions for complex processes with many objective
functions and constraints and, hence, can be used for optimization processes (Garlapati et al., 2017;
Garlapati and Banerjee, 2013 Garlapati et al., 2011).

¢ Evolutionary algorithms (EAs) are the ultimate tool to overcome limitations (Price, 1999; Boillereaux et al.,
2003; Mariani et al., 2008) of a situation lacking problem-solving technique because of multiple local

minima due to unidentified process parameters.

EAs differ from the traditional methods in the following aspects

These algorithms work with coded versions of the parameter set and do not operate with the parameters
themselves directly.

* Optimal search is made from a population of points and not a single point.

Objective functions are used, not derivatives or other ancillary information.

Probabilistic transition rules are applied instead of deterministic rules.

3. Basic Operational Characteristics of Evolutionary Algorithms

An evolutionary algorithm is a biologically inspired, generic, population-based optimization algorithm. Its
mechanism includes:

* Reproduction/procreation: The process of producing new “offspring” from their “parents”.

* Mutation: Alteration in the order of the process being considered (e.g., organism, production or business
process, code).

* Recombination: A process of exchange of information between two processes yielding a new combination
of processes (e.g., operations in a workflow process).

* Selection: A method by which traits become either more or less common in a population as a function of the
influence of traits concerning the intended goal (e.g., increased production efficiency in a production
process). Selection is a key evolution mechanism. Probable solutions of the optimization problem for which
an evolutionary algorithm is employed to arrive at, are viewed as entities in a population. A fitness function

is used to assess its suitability as a solution. A fitness function is an objective function that is used to
summarize how close a given solution is to fulfilling the optimization goals. All the stated operators are
applied several times in the process and, hence, the term “evolutionary”.

The evolutionary process thus involves

» Generation of the initial population (i.e., first-generation) of individuals randomly.
# Evaluation of the fitness of each entity of the population based on the optimization criteria given.

» Repetition of the fitness evaluation on this generation till its termination, wherein the termination criteria
can be time limit, etc.

» Selection of the best-fit individuals, i.e., parents for subsequent reproduction.

# Breeding of new individuals through crossover (for bringing in variation from one generation to the other)
and mutation (for varying the programming from one generation to the next) operations to yield offspring

from the best fit individuals.
» Evaluation of the new individuals fitness.

» Replacement of least-fit population with new individuals.



» This sequence of the evolutionary process is repeated until an individual fulfilling the fitness criteria within
the given parameters is obtained.

4. Types of Evolutionary Algorithms

Evolutionary algorithms are robust global optimal solutions that help in overcoming the limitations of traditional
methods. The various evolutionary optimization techniques available include: Genetic algorithm (GA),
differential evolution (DE), particle swarm optimization (PSQO), artificial neural networks (ANNs), fuzzy logic
(FL), and ant colony optimization (ACO) (Bhattacharya et al., 2011; Adeyemo, 2011; Sarker and Ray, 2009;
Kennedy and Eberhart, 1995).

4.1 Genetic Algorithm (GA)

GAs, as depicted in Fig. 1 below, are optimization algorithms that mimic natural evolution (Holland 1975, 1973;
Mohebbi et al., 2008; Babu and Munawar, 2007). They have been employed to obtain near-optimum solutions for
a large number of situations (Gen and Cheng, 1996). One limitation of GAs is the long processing time required
for the near-optimum solution to evolve.

Initialization ofPopulation & Evaluation of Individual’s Fitnass for the First Time

Convert toBinary Vaload Variablas

|

Crossover & Mstzalion

Convert Back toRsal Valuad Varizbles

Endths Alzonithm

Figure 1: Flow chart of GA.

4.2 Differential Evolution (DE)

DE algorithm is a stochastic, population-based optimization method like GA; optimization functions with real
variables and multiple local optima (Storn and Price, 1997; Pierreval et al., 2003) can be effectively optimized
with this algorithm. A mutation is the primary search mechanism (Godfrey and Babu, 2004) for these search
optimization tools. DE is self-adaptive (Karaboga, 2004). These algorithms have many advantages (Abbass et al.,
2001; Strens and Moore, 2002). DE exhibits more convergence speed than genetic algorithms (Abbass et al.,
2001; Strens and Moore, 2002; Karaboga, 2004). Its process flowchart has been depicted in Fig. 2 below.
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Figure 2: Sequence of events in DE.

4.3 Fuzzy Modeling (FM)

It is a robust method, encompassing scientific and heuristic modelling approaches. It mimics human control logic
wherein they utilize the data and expert knowledge. Its input data may be an imprecise, descriptive language as a
human operator (Huang et al., 2010). Fuzzy systems have been extensively applied to solve different problems.
The present trend is towards enhancing their effectivity by employing soft-computing methods, such as fuzzy
genetic systems.

4.4 Particle Swarm Optimization (PSO)

These are metaheuristic algorithms. PSO’s mimic the social behavior of flocks of birds and schools of fish. Its
process flowchart is depicted by Fig. 3.

Towards its Bast Performance

Towards its Best Performance of
its Best Informant

Proper Velocity
Towards the Accessible Point
by following its proper velocity

Figure 3: Process events in PSO.

5. Overview of Application of EA’s in Food Processing Industries



Food processing industries involve a large number of unit operations, each governed by a series of dynamic
conditions that include mass, heat and momentum transfer operations. Likewise, market-driven parameters,
like cost, demand and consumer acceptability factors and the regulatory norms on the quality parameters of the

product, all dictate the decision of fixing the operable strategy for a product. Thus, modeling and optimization
of these processes are highly challenging with the development of models governed by laws of mass, energy, etc.,
and capable of predicting the physicochemical, quality properties and safety aspects of the products. Kinetic
models reflect the change in relevant state variables with time and position when the food sample is subjected

to different processing conditions (Tijskens et al., 2001; Wang and Sun, 2003). The Shelf life of products
impact, shortage and surplus of goods which in turn may impact income for the manufacturing units and, hence,
this aspect also needs to be considered. Therefore, it may be summarized that optimization techniques are
essential tools in food processing operations, used to enhance the economic values of processing and for the
marketing of food.

Table 1: Comparative summary of evolutionary algorithms/optimization techniques.

Algorithm Pros Cons
Genetic algorithms e+ Alter information (crossover or mutation) b Lack retention
+ Effective to solve continuous process issues » Early convergence

 Meager local search ability
» Effective and impressive computational effort

 Challenging to translate a problem in the form of a

chromosome
|Particle swarm * Possesses memory » Early convergence
bptimization * Convenient for execution as it employs a simplep Poor local search ability
operator
* Promising to resolve continuous problems
Ant colony
bptimization * Retains the information * Untimely convergence
* Yields good solutions rapidly « Ineffective local search ability
« Effective in solving discrete and varied types| <« Yields changes in probability distribution with
of problems iterations

* Ineffective in cracking the continuous problems

Currently, there lies a pressing need to ensure admirable product quality. Consequentially, the food industries
are focusing more attention on improving their processing operations (e.g., Effective methods for drying, wetting,
heating, cooling and freezing of foods are necessary (Doganis et al., 2006). Thus, it is becoming imperative to
implement advanced optimization tools like EAs and the related techniques thereof, in the complex operations of
modern food processing industries. EAs, like Differential evolution (DE) algorithms, have been successfully
applied to solve several optimization problems of chemical and biological processes (Liu and Wang, 2010; Cheng
and Ramaswamy, 2002; Chiou and Wang, 2001; Lu and Wang, 2001) while other similar EA tools have been
used for the fuzzy-decision making problems of fuel ethanol production (Wang and Cheng, 1999), fermentation
process (Wang and Cheng, 1999) and other engineering issues (Garlapati et al., 2010; Garlapati and Banerjee,
2010a,b; Babu, 2004, 2007; Angira and Babu, 2006; Babu and Angira, 2002; Babu and Jehan, 2003; Sarimveis
and Bafas, 2003). These studies concluded that these techniques are less time consuming than the existing
techniques and can adequately estimate the optimal parameters. Summarized below is the current status of
application of these tools in various operations.

5.1 Role of EA’s in food-based fermentation

Fermentative processes are dynamic and involve a large number of process variables (e.g., media parameters and



process parameters like aeration rate, temperature, duration of incubation, etc.). These processes are governed by
mass transfer, heat transfer principles, kinetic models and operational constraints. Traditional optimization
techniques for resolving the multiple intended objectives of these operations are mostly non-lucrative.
Evolutionary algorithms (EAs) are preferred alternative methods for monitoring the state variables of these
dynamic fermentative operations (Soons et al., 2008). Artificial neural networks (ANNs) and genetic algorithm
(GA) that mimic different aspects of biological information processing for data modelling and media optimization
have proven to be effective for optimization problems of these sectors (Baishan et al., 2003). Impressive results
have been obtained from ANN-GA for simultaneous maximization of biomass and conversion of product, e.g.,

pentafluoroacetophenon with Synechococcus PCC 7942 (Franco-Lara et al., 2006), and fermentative production
of xylitol from Candida mogii (Desai et al., 2006; Baishan et al., 2003), exopolysaccharides production by
Lactobacillus plantarum isolated from the fermented Eleusine coracan. In the latter application, Plackett Burman

(PB) was applied to identify the three most influential media components, ANN for modeling the nonlinear
relationship between the operating variables and the intended objectives, finally the ANN model was used as an

input for the optimization through GA. The optimization of hydantoinase production from Agrobacterium

radiobacter, lipase production from a mixed culture and glucansucrase production from Leuconostoc dextranicum
NRRL B-1146 was performed with ANN-GA model using RSM-based data by Nagata and Chu, 2003: Haider et
al., 2008; Singh et al., 2008, respectively. Kovarova-Kovar et al., 2000 demonstrated optimization using hybrid
algorithms in the fed-batch process for riboflavin production. GAs with their multi-objective problem-solving
capabilities have been applied in synthesis and optimization of non-ideal distillation systems (Fraga and Senos,
1996), computer-aided molecular design (Shunmugam et al., 2000), optimal design of xylitol synthesis reactor
(Baishan et al., 2003), estimation of parameters in trickle bed reactors (Gonzilez-Sdiz et al., 2008), on-line
optimization of culture temperature for yeast fermentation (Yiizgec et al., 2009) and optimal ethanol production
(Guo et al., 2010; Rivera et al., 2006).

5.2 Evolutionary optimization for extrusion-based processes

RSM integrated GA-based optimization was reported to be effective in predicting the optimal process conditions
with the intended quality of an extruded fish product. The conditions yielded a product with more desirable
features than those obtained by specific condition optimization. Process variables taken for consideration
included: Screw speed, feed moisture content, expansion ratio, water solubility index, barrel temperature, bulk
density, hardness, and fish contents for single-screw extrusion cooking of a fish and rice flour blend (Shankar and
Bandyopadhyay, 2004).

5.3 EA’s application in the dairy industry

Preparation of different types of milk powder, i.e., whole milk powder, spray dried milk powder, skimmed milk
powder, etc., in the dairy industry involves operations with multi-process parameters affecting the final product
quality. Independent parameters required may include screw speed, process temperature, milk powder feed rate to
the drier, addition rate of additive, etc. (Koc et al., 2007). The depended parameters include free fat content,
lactose crystallinity, particle size and colour, while the constraint was desired power consumption. The intended
multi-objectives include maximization of free fat content, the crystallinity of lactose and minimization of particle
size (Koe et al., 2007). Fuzzy logic was also used in the real-time control of a spray—drying of whole milk powder
processing. The algorithm used controlled the process at the desired power consumption and yielded entire milk
products with the desired attributes (Queiroz and Nebra, 2001).

5.4 Application of EA’s in oil processing

Neural network-based genetic algorithm optimization tools have been employed for multi-objective estimations
during oil processing. Experimental data from vegetable oil hydrogenation process plant was used to develop the



model and the intended objectives included minimization of isomer and maximization of cis —oleic acid (Izadifar
and Jahromi, 2007).

5.5 EA tools for food product quality evaluation

Quality parameters of the final food product play an important role in the consumer acceptability and approval by
the food safety standard norms. Quality parameters may vary for the type of food products and the processing
conditions also affect these parameters. Artificial neural networks have been applied in predicting the selected
intended quality parameters with variations in process conditions during different unit operations for varied types
of food products, e.g., extruded products (Linko et al., 1992), rheological dough properties in bakery operations
(Ruan et al., 1997), meat quality (Yan et al., 1998), bakery products (Cho and Kim, 1998) and post-harvest
processed products (Morimoto et al., 1997a.,b). The impact of thawing conditions on Thermal properties of gelatin
was determined using artificial neural networks (Boillereaux et al., 2003). Mittal and Zhang, 2000 developed a
feed-forward neural network to predict the freezing and thawing time of food products with simple regular shapes.
The results demonstrated that the developed ANN-GA-based models were useful for the estimation of parameters
that were usually considered for foods of varied structural, morphological configurations and compositions.

5.6 Utilization of evolutionary optimization tools in drying operations

Performance of a drying process in the food industry is assessed from improvement in manufacturing quality and
reduction in energy consumption. Optimization techniques, when applied to drying operations, are intended for
reduction of drying time and occasionally the process cost. Nonlinear predictive control genetic algorithm and the
like have been developed and reported (Yiizgeg et al., 2006, 2009; Na et al., 2002; Potocnik and Grabec, 2002;
Mankar et al., 2002; Quirijns et al., 2000). The intended objective was final product quality enhancement,
minimal energy consumption during drying and reduced process cost by developing a control procedure for the
drying process.

In recent times, ANNs have been receiving more considerable attention in modelling the drying operations
(Chen et al., 2000; Kaminski et al., 1998; Sreekanth et al., 1998), food rheology (Ruan et al., 1995) and thermal
processing (Sablani et al., 1997a,b). Structural identifiability analysis of model methods for improvement in the
efficacy and robustness of the model parameter has been proposed and demonstrated in many reports (Rodriguez-
Fernandez et al., 2007; Movagharnejad and Nikzad, 2007). ANN model was reported to be more accurate than
empirical correlations in describing the drying behavior of tomato.

The optimization of multiproduct batch plants design issues for protein production using fuzzy multiobjective
algorithm concepts was demonstrated by Dietz et al., 2008. The model developed provided an up-and-coming
framework that could take imprecision into account during the new product development stage and finally in
making the decision. Kiranoudis and Markatos, 2000 considered the multi-objective design of food dryers using a
static mathematical model for simultaneous minimization of economic measure and the colour deviation of the

final product.

6. Case Study of EA in Thermal Processing Operation

Thermal processing is an active food preservation strategy, for inactivation of microbial spores that are a public
health concern or of microbial species responsible for spoilage of foods in containers. These operations are
conducted at temperatures well above the ambient boiling point of water. For these purposes, pressurized steam
retorts/autoclaves are operated at conditions not detrimental to food quality (Simpson et al., 2003; Holdsworth and
Simpson, 2007; Abakarov et al., 2009). For obtaining the extended shelf life of products and their intended safety,
cost-efficient treatments are widely preferred in industries. The imperatives, like health value, drive these thermal
treatment operations and the economic aspects of sustainable food supply, they also minimize food-borne illness
and food waste and retain or enhance nutritive quality to ensure affordability. Thermal treatments are mostly



capable of catering to the imperatives mentioned above. There is an increasing concern regarding the harmful
effects of these thermal treatments, i.e., compromised nutritive quality, deteriorating effects on essential nutrients
and unique bioactive phytochemicals.

6.1 Basic objective

Thermal treatment optimization is a dynamic process where the intended objective is to determine the optimal
heating temperature-time combination that effectively maximizes the final nutrient retention of a per
packaged conduction heated food. The operable constraint involved is that the heating temperature should be
effective to impart microbiological lethality.

Thus, there are two contradictory demands: To obtain the desired minimum lethality, all the sections of the
food must be subjected to a high enough temperature for sufficient duration. However, the same exposure is likely

to destroy nutrients; therefore, it is desired to minimize that undesirable effect.
6.2 Challenges

* Thermal destruction of microbes is conventionally proven to follow a first-order semi-logarithmic rate.
Consequentially, it is not likely that, theoretically, a sterile product can’t be produced with certainty even
after exposure of the food product for long process time.

¢ If the intended product is to be rendered utterly void of microorganisms, then the thermal treatment is likely
to yield a product which is unwholesome or inferior in quality. Thus, commercial sterility or shelf stability of
the products is the most preferred or sought-after objective by the processing authorities of industries.

« Thermal destruction issue is dynamic and, hence, it implicates dynamic optimization techniques to determine
optimal operating policies. The EA techniques are more effective than the traditional (constant temperature)
processes. The optimal strategies can enhance the quality of the final product, and/or reduce the processing
time to yield the desired quality level. Reduced-order models have generated cost-effective simulations
(Banga et al., 2003). With these “accelerated” models, the dynamic optimization issue can be performed in
just a few seconds. Since EA tools are capable of minimizing the complexity of a process model which
seems promising for food process operations with a new avenue for real-time optimization and control.

¢ Treatments engaged in thermal destruction of microbes encompass a multi-objective optimization problem
where the reduction of total process time and significant retention of several nutrients and quality factors
need to be deliberated simultaneously (Fryer and Robbins, 2005). To this effect, Sendin et al., 2006, 2010
proposed and applied a novel multicriteria optimization method to the thermal processing of foods.

6.3 Background and principle

Designing an effective thermal processing strategy makes it imperative to have an extensive understanding of
process methods, the heating behavior of the product and its impact on a target microorganism. Thus, the
dependable factors for gauging the severity of any thermal process must be known and they include:

« The physical characteristics of the food product.
* The type and thermal resistance of the target microorganisms.
* The changes in intrinsic properties of the food which affect the survival of microbes in thermal

processes.

6.4 Basic design premise and concerns of thermal processes

For design optimization studies, the user should be reminiscent of the following:



The heat resistance of microorganisms for each specific product formulation and composition. Thermal
inactivation kinetics of microorganisms is essential and may be obtained from a survivor curve, i.e., a
logarithmic plot of the number of microorganisms surviving a given heat treatment at a given temperature
against the heating time. Thermal inactivation generally follows a first-order reaction. Two key parameters
(D and z values) are then determined by the survivor and resistance curves, respectively.

* The heating rate of the specific product: This is essential for mathematical modeling of experimental data,
which aids in understanding the impact of process parameters, on relevant pathogens. The effective heating
rate of the product is accomplished from a detailed analysis of product and system parameters affecting the
heating behavior of the product.

* The conditions for which such models apply and

* Their limitations since food matrices are complex and can influence microbial resistances in different ways.

Design concerns include

« Simple, Robust, flexible models operable for process deviation analysis and ensuring appropriate levels of
public safety are becoming popular. A single “fit-all-data” model is not effective for explaining or describing
the complex behavior of microbes when subjected to external agents (such as temperature, salt, pH, etc.),
and their interactions.

¢ Varied time-temperature combinations, processing methods, systems or techniques may yield the desired
lethality. However, these variations are also likely to impact the quality of the end product to different
extents. Therefore, minimal changes to the desired sensory and organoleptic attributes of food products are
always intended through process optimization routines and thereby determine system appropriateness using
kinetic data for the most heat-sensitive nutrient.

* The time-temperature history of a product undergoing thermal treatment will depend on several factors that
include but are not limited to: (i) the processing system (conventional, static or agitating retorts, etc.), (ii) the
heating medium (steam, water immersion, etc.), (iii) product characteristics including consistency,
solid/liquid ratio, and thermophysical properties, (iv) product initial and heating medium temperatures, and
(v) container type, shape and size.

6.5 Guidelines for applying evolutionary algorithms for thermal process optimization studies

Step 1: Identification of process parameters affecting the process under consideration.

Step 2: Collection of data from experiments conducted based on chosen Design of experiments (DOE). Selection
of DOE is from amongst Plackett Burman, Factorial designs, Central composite design, etc., to have
representations from the significant combinations of the process parameters (Kumari et al., 2013
Chauhan et al., 2013; Mahapatra et al., 2009).

Step 3: Developing the thermal process schedule, i.e., model development using the experimental data from the
heat penetration and Kinetic data (z and Freq values) by the conventional methods. Formula methods have
been currently developed and employed to impart flexibility to establish times to achieve the desired
cumulative lethality. Incidentally, these formula methods have limited implementation in optimization
studies and automatic control systems as they are incapable of defining dynamic functions during the
entire processing. Artificial neural networks (ANN) are effective to computerize mathematical aspects of
thermal process calculations. These models mitigate the need for a large storage space while
computerizing.

Step 4: Application of optimization tool to the developed model.

The main factors/selected objective functions taken into consideration during the optimization of thermal



processing include final product quality and safety, consumption of energy and total processing time.
The diversity of the sighted processing objectives imposes different optimal conditions to
sterilization/thermal processing. Hence, an algorithm capable of considering various objective functions is
preferred for the determination of the optimal thermal processing of food. These software packages are
intended to ascertain the optimum variable temperature profiles concerning the intended objective
functions, geometric options and constraints chosen by the processor/fuser. The packages should

facilitate/automate the calculation of heat transfer coefficient for irregular or regular geometries,
various shapes and heating conditions, predict moisture loss, shrinkage, yield loss, internal

temperatures and lethality for different sizes of product. These capabilities would make them a useful
tool in taking processing decisions. These algorithm packages should be proficient at simulating food
safety by combining a physics-based model of food processes, with the microbial kinetics and chemical
transformations to provide a microbial count and/or nutrient and/or undesired chemicals amounts at any
time and in any location in the food during processing.

Step 5: Mathematical formulation of the Problem statement for thermal sterilization of foods.
In canning operations, the problems mentioned below may be addressed using modeling and optimization
techniques:

* Estimation of a retort function, where the final quality retention or surface quality retention is maximized,
while the final process lethality is held to a specified minimum.

¢ Determination of a retort function, such that the final process time is minimized subject to the same lethality
requirement, while the quality retention does not fall beneath some specified minimum.

* Fixation of a retort function, where the cooked value is minimized, while the final process lethality is held to
a specified minimum.

« Fixation of a retort function, such that the final process time is minimized subject to the same lethality
requirement, while the quality retention is not below some specified minimum, and the energy consumption
is not above a specified maximum; minimum and maximum values are computed at constant retort
temperature profiles.

¢ The thermal process optimization problem is, thus, posed as a multi-objective optimization problem.

In each of these cases:

* The lethality constraint is specified as: (i)
FO(t)=/0tf 10T-Teffztdt

where Fy) is the final required lethality which is calculated using: JOtf 10T-Teffzfdt

where T is the temperature at the critical point or cold spot, normally the geometric center of the container (in the
case of conduction-heated canned foods), Teff is the reference temperature and Zf the thermal resistance of the

microorganisms.

* The quality retention constraint is specified as:

Cav(th)=1Vtf0Vtexp[ —In10Drefc[Otf10T-TreffZcdt ]dVt

where Cv is the desired volume-average final quality retention value and is calculated using the equation given
above, where Treff is the reference temperature, z ¢ and D are kinetics of the degradation of nutrients.



¢ The surface retention is given by
S(tf)=exp[ —In10Dfefs[0tf10T-TrefsZsdt ]

where Trefs is the reference temperature, z and D are kinetics of the degradation of nutrients, and the surface
retention constraint can be specified as S(t), which is the desired final surface retention value.

* Also, a common relationship for estimating quality losses is the “Cook or Cvalue”, which is calculated using
......... C(th=[0T-TrefvZqdt

where z and Trefv represent the z-value and reference temperature for the most heat-labile component. The z-
value for cooking degradation within the given range corresponds to sensory attributes, texture softening, and
color changes. The z-value of 33.1°C and Tref equal to 100°C are often used to compute a cook value to describe
the overall quality loss. The cook value constraint is specified as Cd, where Cd is the desired minimum final cook
value.

These expressions are standard model equations and, for consideration of new process parameters, model
equations may be obtained using regression analysis or artificial neural network algorithms. The obtained models
are then subjected to numerous iterations within the set range of the individual parameters and subject to the
constraint of the individual problem statements to attain the set levels of the objective functions. The iterations are
performed using evolutionary optimization techniques until the deviations between the set and predicted values
are minimal enough to achieve the optimal conditions, which are further validated by performing the processes at
those conditions.

7. Advantages of EA’s

Evolutionary computation techniques only require an evaluation of the objective function and not an exhaustive
mathematical requirement on the optimization problem. There are zero order methods capable of handling
nonlinear problems and dependent on discrete, mixed or continuous spaces, irrespective of whether they are
unconstrained or constrained using operators that are global in scope.

« Evolutionary algorithms are a potential source of breakthroughs for most of the food industrial engineering
processes that include challenging, unstructured, real-life problems to be modeled as they include unfamiliar
factors ranging from risk factors to aesthetics. They have the potential to provide many near-optimal
solutions at the end of an optimization run which facilitates selection of the best solution later, based on
criteria that were either incoherent from the expert or poorly modeled. The efficiency of EA’s can be
enhanced because of their flexibility and comparative ease of being hybridized with domain-dependent
heuristics.

* These optimizers are global optimization methods that can be scaled up to higher-dimensional problems.
EAs are robust concerning noisy evaluation functions, and can effectively handle evaluation functions which
do not yield a sensible result in a given period.

¢ The algorithms are incredibly flexible and, hence, can be moderated, changed and customized to fit the
problem at hand. They are applicable in many complex problem-solving applications, unlike classical search
and optimization techniques.

* EAs are inspired by natural evolution and, hence, conceptually flexible and straightforward.

* EAs use prior information and, thus, outperform the methods which utilize the prior information minimally
and with restricted search space.

¢ EA is representation independent, i.e., applies to constrained or unconstrained sets and to sets whether
discrete or continuous, unlike most of the numeric techniques.

* Evaluation in Evolutionary optimization processes is performed as a parallel operation and only operations



of the selection process are serially processed.
¢ Evolutionary algorithms that develop adaptability to yield a solution in changing environment are robust,
unlike the traditional optimization tools which vary according to variations in the surrounding environment.
¢ EAs are capable of solving problems without any human intervention, hence, handy tools. However, these
tools do not perform satisfactorily for automating problem-solving routines.

8. Disadvantages of EA’s

¢ Evolutionary algorithms do not always assure an optimal solution to a definite problem within the
anticipated time. There lies a great need for tuning of parameters by trial-and-error, thereby necessitating lots
of computational resources.

* The performance of evolutionary search methods in the optimization of food engineering problems is highly
impacted as the majority of these are constrained problems.

* The confirmatory conclusion of the best suited evolutionary algorithm for a given problem remains
unanswered. The standard values provide good performance, but, interestingly, a variation in configurations
tends to yield better results. The adverse configuration may lead to premature convergence, generating local
optima and not the global optima.

9. Conclusion

This chapter provides an overview of the use of computational-based optimization algorithms in major real-world
applications, intending to find global optimum solutions for food processing industry issues. Multi-objective
optimization problems of modern food processing operations, whether constrained or unconstrained, have been
resolved using new hybrid optimizers. Process treatments affect product quality, safety and marketing. Hence, the
use of new techniques for the optimization of food treatment processes becomes vital. Consequentially, basic
research on the modeling, simulation, designing and evaluation of parameters affecting different food processes is
vital. It is suggestive that EA’s are likely to have a positive impact on solving real-world issues/challenges in the
food processing industries shortly. Also, it is noteworthy that, though these EA’s are extensively applicable in
many areas, these too come with marginal success in performance. Hence, the current efforts are focused on the
application of some parallel algorithms along with Evolutionary Algorithms, that is, to hybridize two or more
algorithms or to improve the existing algorithms.
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