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Abstract Bug report summarization provides an outline of the present status of the
bug to developers. The reason behind highlighting the solution of individual reported
bug is to bring up the most appropriate solution and important data to resolve the
bug. This technique basically limits the amount of time that the developer spent in
a bug report maintenance activity. The previous researches show that till date the
bug report summaries are not up to the developer expectations and they still have
to study the whole bug report. So, in order to overcome this downside, bug report
summarization method is proposed in light of collection of comments instead of
single comment. The informative and phraseness feature are extracted from the bug
reports to generate the all possible subsets of summary. These summary subsets are
evaluated by Particle Swarm Optimization (PSO) to achieve the best subset. This
approach is compared with the existing Bug Report Classifier (BRC) and Email
Classifier (EC). For all approaches, the ROUGE score was calculated and compared
with three human-generated summaries of 10 bug reports of Rastkar dataset. It was
observed that the summary subset evaluated byPSOwasmore effective andgenerated
less redundant, noise reduction summary and covered all the important points of bug
reports due to its semantic base analysis.
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1 Introduction

Other profession individuals have a myth that the software development includes
only programming element; in contrast, this line of work has strong element of sys-
tem information management. The software organization requires the management
and formulation of artifacts like designs, source code with documentation, specifica-
tions, and bug reports. These bug reports are stored into the software bug repositories.
Software bug repositories have extreme information to perform the work on project.
Tester’s needs to understand the artifacts related to project for recording the issues
mentioned by customers and tracks the resolution of bugs. To find the main issue
of a bug, a meaningful and huge conversation could happen between developer and
reporter by bug reports. So the bug reports have a large amount of reported con-
versation in the form of messages from multiple peoples and these messages might
contain few lines or multiple passages of unstructured text. For example, Mozilla
bug #564,243 has 237 sentences and Mozilla bug #491,925 has 91 sentences as
comments. To resolve the bug, the developer has to analyze all the comments in bug
reports. This process can be tedious, time-consuming, burden, and very frustrating for
the tester or developer. Sometimes, the amount of information might be overwhelm-
ing and sometimes, this information leads to duplicate, deserted, and non-optimized
searches, just because the previous bug reports of the project has been ignored. In
[1], the researcher suggested the way to reduce the developer effort and process time,
consumed to identify the factual bug report is to provide bug summary. The ideal
process of bug summarization is to develop a manually abstract of resolved bug by
assigned developer. This summary is used by other developers for better understand-
ing of the bugs. However, the ideal method is very difficult to use in practice because
it demands excessive human effort. Therefore, it is need of automatic bug report
summarization. The factual summary will save the developer efforts and time and
helps in generating up to date summaries of the project on demand. This paper is
focused on four challenges. The first challenge is extractive bug report summariza-
tion that has huge amount of information as comments and large search space cause
NP-complete problem. When working with extensive comments containing a lot of
words, sentence selection and sentence scoring become a difficult job and also affect
the accuracy and speed of summarization. The second challenge is to increase the
ROUGE score by selecting effective semantic text. For example, if there are 20 text
lines to summarize and the user wants 20% summarization, then a total of 25 subsets
are possible of semantic structure; if checked one by one, then this problem goes to
intractable. The third challenge is sparsity of data. For example, suppose that one
query term is not in the document, then the probability of occurrence of that term is
zero to the document. If the probability of query term would be multiplied with the
probability of every term of document, then the document would not be retrieved.
The fourth challenge is reduction of information. Some high important features are
assigned higher weight and low important features are assigned low weight. Fea-
ture Selection (FS) provides various heuristics methods which led to non-exhaustive
search and reduced high-dimensional space by selecting the features. This drops the
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information and decreases the accuracy of summary by only selecting the higher
weight features.

In such situations, the adoption of meta-heuristic, n-gram, and feature weighting
(FW) methods is beneficial in accomplishing the optimal solution to resolve the
problem in a productive way. Previously, there are two methods used for textual
bug report summarization. First one is supervised learning-based method used by
various researchers in [2–5]. The bottom line of this method is as follows: initially
bug reports are manually summarized as training set, then text features are extracted
from summarized bug reports, and statistical model are trained with these reports.
Thereafter, this model is used to determine the features; further, these features are
used to predict the manual summaries presented in training set. Later, the features
are extracted from new bug report and its summary is predicted by using trained
model. Second method is unsupervised learning-based method presented in [6–9].
The basic process of this method is as follows: In this, the centrality and diversity
of the sentences are measured in a bug report to select the relevant sentences to
put into the summary. In order to create effective, flexible bug report summary,
reduce the time, effort of developer, and resolve above four challenges, we proposed
an intelligent method for searching the effective semantic text by particle swarm
optimization approach with concatenate scores of informativeness and phraseness
methods for significant improvement in extractive bug report summarization.

Organization: This paper is divided into five sections: Sect. 2 presents an analysis
by producing the summary of existingwork related to this paper, Sect. 3 demonstrates
the proposed system and algorithm in detail, and Sect. 4 explains the experiments
and results thus exhibited along with an analysis of performance parameters. At last,
the paper concludes and proposes the future work to be done in Sect. 5.

2 Related Work

Bug report summarization is the well-known research area in software industry,
through the summarization dates back to 1958 when Luhn [10] generated the liter-
ature abstract. Text summarization process has been practiced in various domains
like social media [11], videos [12], news articles [13], and audio [14]. From the
past years, summarization process was also used by the incorporated world like
Microsoft’s Office Suite [15], Bug Triage Process [16], and IBM’s Intelligent Miner
for Text [17].

With the time, the summarizationmethod is improved from simple term frequency
methods to complex machine learning and natural language processing techniques.

Automatic bug report summarization is very difficult job; the vital challenge is
how the sentences are picked to generate bug reports summary. To overcome this
problem, the summarization methods are classified into supervised and unsupervised
learning methods to select the appropriate sentences.
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2.1 Supervised Learning Methods

In 2010, Rastkar et al. [1] used existing classifier like Email and Meeting Clas-
sifier (EMC), Bug Report Classifier (BRC), and Email Classifier (EC) to generate
extractive summary. The human annotators generated the summary of 36 bug reports
from (Mozilla, KDE, Eclipse, Gnome), and the bug report classifier performed better
than other two classifiers by having<62% precision. Further in 2014, Murphy et al.
extended the version of [18] by using the same classifier, to check whether the gener-
ated summaries helped in detecting the duplicates bugs. They performed task-based
evaluation and found that summaries save the time as well as helped the developers
in detecting the duplicates bug without the evidence of decreasing accuracy.

2.2 Unsupervised Learning Methods

The work by Mani et al. in 2012 [19] used four unsupervised learning methods to
create the bug report summary. At first, noise reducer is developed to find out the
inessential sentences from the reported bug reports after that Diverse Rank, Centroid,
Grasshopper, and Maximum Marginal Relevance (MMR) approaches were applied
on IBM DB2 bug report. These methods choose the sentences which were central to
the bug reports. The author also compared this unsupervised summarization method
to supervised method of [1] and found better results. Another work in 2012 by
Lotufo et al. [20] modeled user reading process by three hypothetical model and
applied heuristics using Markov chain and PageRank method to rank the sentences
according to the probability of reading and generate summaries by choosing higher
probability sentences. The precision of themodel is improved up to 12% as compared
to EC in [1] on Mozilla, Launchpad, Chrome and Debian projects. In 2016, Ferreira
et al. [21] used Euclidean Distance (ED), Cosine Similarity (CS), PageRank, and
Louvain community detection (LCD) algorithms to generate the summary from the
comments instead of isolated sentences. It was observed that the ranking of the
most appropriate sentences helped the developers in finding the relevant information
as compared to manually generated summary of Angular, Bootstrap, and jQuery
projects.

3 Proposed Summarization System

This section presents the proposed approach and proposed algorithm to generate the
bug report summary.
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3.1 Proposed Approach

The overall proposed system process is shown in Fig. 1; further, this is dived into
summarization process by using particle swarm optimization. At first, the bug reports
(free text) are taken as input, and this text is tokenized. It is then disintegrated into the
sets of paragraphs, D�{PP1, PP2, PP3,…}. Every paragraph is break down into the
number of sentences. P�{SS1, SS2, SS3, …}, each sentence contains many terms
(features), S�{FF1, FF2, FF3, …}. The output of tokenization task is segregated
words, paragraph, and sentences. It has three main tasks: stop word removal, rooting
extraction, and synonym replacement. The output of this phase is normalized text.
The weights of all terms are concatenated to calculate the score of the terms in our
system to provide the effective summary. These terms scores are added to sentences
to gain the sentence score. After preprocessing, the two features scoring methods
are used based on informativeness and phraseness principles [22]: TF-IDF and N-
gram method. The bigram, trigram features are extracted using Eqs. 4–7 to preserve
the semantics to bug summary, which reduced the sparsity of the text [23]. The
TF-IDF features are extracted using Eqs. 1–3 from the normalized data to reflect
how much the term provided the information about a bug report [21]. The matrix
is considered for every bigram and trigram term. The number of rows and column
showed the n-gram words (W) number that are extracted from these bug reports and
their probabilities (P). After all the terms are extracted from bug reports dataset, the
probability of each term is calculated by Eq. 8. This probability score and TF-IDF
score are concatenated to get the combined score of each term. Instead of feature
selection (FS), the feature weighting (FW)method is adopted. FW is a generalization
from of FS which involves much larger searching space and have more flexibility
to assign the continuous relative weight over FS. So these term weights (score) are
added to the sentences to gain the sentence score, and the subsets of summary are
produced by sentences according to user input, and subset score is calculated for each
subset. The subsets of summary are chosen by using Particle Swarm Optimization
(PSO) algorithm [24] due to its selecting nature of optimizing searching. It has global
and local optimization to find effective semantic text and sentence, which increased
the rogue score. This subset act as particles and subset score act as initial position.

Suppose Si is the produced summary according to user input and has n subsets,
S�{s1, s2, s3, …, sn}. These sentences have corresponding weights Wk, W�{W1,
W2, W3, …, Wn}. By assigning weight to each sentence, WS is produced, WS�
{W1S1, W2S2, W3S3, …, WnSn}. PSO algorithm is described as follows: At first,
initialize the each particle’s position to subset score. The swarm is updated at every
cycle with the best value based on Eqs. 9–10. The position best (pbi) is taken as the
fitness value of summary and the global best (gb) is taken as the fitness value found
by swarm best of personal bests. The new fitness value is compared to previous value
of pbi. If new fitness value is surpassed, then the previous value of pbi is updated
to new pbi value. If the pbi value has not changed for any particle, then new pbi is
compared with previous gb value. If the new pbi is surpassed than the previous gb,
the value of pbi is selected as new gb. At each iteration, the gb presented the position
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Fig. 1 Overall proposed system for bug report summarization

of the particle and showed a vector for best selected subset of the current bug report.
The optimized summary is found after several iterations until the condition is not
met. At last, ROUGE score [25] is calculated using Eq. 11.
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3.2 Proposed Algorithm
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4 Experimental Result

In this paper, we used the benchmark Rastkar dataset [1, 18]. The ROUGE score is
calculating based on three manual summaries of each bug report. Based on the above
approach, two experiments are conducted to analyze the approach using ROUGE
evaluation metric at 30% summary percentage given by user. If we decrease the sum-
mary percentage, then the important information is lost. If we increase the summary
percentage, then unwanted data is included in the summary. In this experiment, the
bug report summary is generated of every single bug report by using PSO optimiza-
tion technique. The basic aim of this experiment is to overcome the four challenges
which are discussed in the introduction section. This generated summary is com-
pared with three human-generated summary [1, 18], and ROUGE score is calculated
as demonstrated in Table 1.

It can be seen from Table 1. The range of ROUGE score based on PSO-generated
summary of 10 bug reports was from 72 to 97%. The range of ROUGE score based
on BRC and EC-generated summary of 10 bug reports was from 30 to 93% and 51
to 92%. The summary subsets evaluated by PSO were more effective and generated
less redundant summary and covered all the important points of bug reports because
PSO used n-gram approach for matching which is by default a semantic relation.
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5 Conclusion

It can be concluded that the bug report summarization is very important task for bug
triage process. The developer or user reported the report in BST after observing the
unexpected behavior of software. With the passage of time, valuable information is
accumulated of observed issues. These bug reports are not easy to read. They con-
tained the free text as comments, discussions, and opinions about the bug fixing and
bug resolving. So the reading task of these bug reports is time-consuming and tedious.
To save the developer time and effort by not reading the entire bug report, need of
an Extractive summary generation model of entire bug report. A novel approach is
proposed to generate the bug report summary based on collection of comments. The
PSO optimization technique is used to evaluate the appropriate summary subset.
These subsets are generated by using informative and phraseness feature extraction
methods. This method is comparedwith bug report classifier and email classifier. The
summary subset evaluated by PSO was more effective and generated less redundant
summary and covered all the important points of bug reports due to its semantic base
analysis. In future work, some other optimized techniques will be applied with it to
enhance the accuracy of the summarization.

Acknowledgements We are mightily thankful to researchers Gail C. Murphy, Sarah Rastkar from
the University of Columbia for proving the dataset. This helped us a lot in our research [1, 18].
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