
1

DESIGNING DSSS COMMUNICATION

SYSTEMS

 Submitted by:-

 MANISH KUMAR – 071074

 DIVESH KUMAR SOLANKI - 071122

 SARVDAMAN SANGRA – 071055

 Project Guide:-

 Prof. T.S. Lamba

 May – 2011

 Submitted in partial fulfilment of the Degree of

 Bachelor of Technology

 Department of ELECTRONICS and COMMUNICATION ENGINEERING

 JAYPEE UNIVERSITY of INFORMATION TECHNOLOGY,

 WAKNAGHAT

2

 TABLE of CONTENTS

S. No. Chapter No. TOPICS Page No

01 Certificate 3

02 Acknowledgement 4

03 Summary 5-6

04 List of Figures 7

05 List of Symbols and acronyms 8

06 Chapter 1 SPREAD SPECTRUM 9-17

07 Chapter 2 PRN SEQUENCES 18-33

08 Chapter 3 GOLD CODES 34-42

09 Chapter 4 TRANSMITTER and RECEIVER for DSSS 43-57

12 CONCLUSION 58

13 APPENDICES 59-75

14 References and Bibliography

76-77

3

 CERTIFICATE

This is to certify that the work entitled “DESIGNING DSSS COMMUNICATION

SYSTEMS” submitted by “MANISH KUMAR (071074) , DIVESH KUMAR

SOLANKI (071122) and SARVDAMAN SANGRA (071055)” in partial fulfilment

for the award of degree of BACHELOR of TECHNOLOGY, of JAYPEE UNIVERSITY

of INFORMATION TECHNOLOGY, Waknaghat, has been carried out under my

supervision. This work has not been submitted partially or wholly to any other

university or institute for the award of this or any other degree or diploma.

Prof. T.S. Lamba

DEAN (A&R)

Department of ECE

Jaypee University of Information Technology,

Waknaghat, Solan.

DATE :-

4

 Acknowledgement

We would like to express our gratitude to our Project guide Prof. T.S. Lamba

for giving us the opportunity and suggesting us a very useful topic to be taken

as the final year B.Tech project for the academic session 2010-2011. The work

which we have done in this project wouldn‟t have been possible without his

support. He guided us by enlightening our path throughout the project and his

attitude has been a morale booster for all of us and we could complete the

project in stipulated time. It has been a pleasure to be working under him, and

we would like to thank him for his support and guidance. Looking forward, to

his support in all future endeavours.

___________ _______________ ______________

Manish Kumar Divesh Kumar Solanki Sarvdaman Sangra

 071074, ECE 071122, ECE 071055, ECE

5

SUMMARY

The purpose of our project is to design DSSS communication systems, in which

many users will communicate with each other in the same channel, without

affecting each other. The main aim of the project was to design a system using

various available code sequences, and analyse their performance.

The present explosion in digital communications and multi-user wireless

cellular networks has urged a demand for more effective modulation methods,

utilizing the available frequency spectrum more efficiently. To accommodate a

large number of users sharing the same available frequency band, our

requirement is the availability of large families of spreading sequences with

excellent Autocorrelation and Cross-Correlation properties. These

spreading sequences also pose the property of orthogonality. And hence these

sets of orthogonal basis functions can be used to extend capacity by exploiting

all available degrees of freedom (e.g. temporal, frequency and spatial

dimensions) or can be used to employ orthogonal multi-code operation in

parallel, such as used in the latest Wide-band Code Division Multiple Access

modulation standards by employing sets of orthogonal codes to improve the

overall data throughput capacity.

It is known that the above property have a large potential for application in

point to point, and particularly micro-cellular WLANs and WLL RF link. Our

focus was on finding the unique large families of spreading sequences with

excellent autocorrelation and cross-correlation properties. Conventional spread

spectrum communication systems employ binary spreading sequences, such as

PRNS or Gold sequences. The practical implementation of such a system is

6

relatively simple. But the further research is going on employing complex

sequences in these systems, and has not been yet implemented on the hardware.

The project work was divided into three parts:-

i. Study of literature available on SPREAD SPECTRUM, and finally

understanding the basic techniques of DSSS transmitter and receiver. The

thorough study of PRN and GOLD codes was also done.

ii. The PRN-Seq. generator was designed both on software (using C++) and

on hardware (on bread board using IC‟s). The result was obtained and

compared with theoretical result available in different literatures.

iii. Finally, the DATA was spread and sent through the channel and at the

receiver end it was de-spread and obtained successfully.

The above mentioned work has also been done for GOLD codes. The

autocorrelation and cross-correlation of PRN-Seq. and GOLD codes are

compared and the better result was taken as final consideration.

 ___________ _______________ ______________

Manish Kumar Divesh Kumar Solanki Sarvdaman Sangra

 071074, ECE 071122, ECE 071055, ECE

7

LIST of FIGURES

S. No. Name of FIGURES Page No.

01 Figure 1:- Spectrum analyzer of a DSSS signal 10

02 Figure 2&3 :- Data & PN-Seq. in time and frequency domain 11

03 Figure 4 :- Spectrum analyzer of a FHSS signal 13

04 Figure 5 :- Frequency domain view of FHSS 13

05 Figure 6 :- Several Spreading techniques 14

06 Figure 7 :- Signal transmission in a multi path 16

07 Figure 8 :- Implementation of LFSR 22

08 Figure 9&10 :- Periodic and Aperiodic Autocorrelation 24

09 Figure 11 :- Implementation of LFSR 25

10 Figure 12 :- Inverting A mplifier 28

11 Figure 13-18 :- Cross-Correlation of PN-Sequences 32-33

12 Figure 19 :- Block diagram of GOLD CODE generation 35

13 Figure 20-23 :- Autocorrelation of GOLD Codes 39

14 Figure 24-29 :- Cross-Correlation of GOLD Codes 41-42

15 Figure 30 :- Generation of modulated data 44

16 Figure 31 :- DSSS Transmitter 44

17 Figure 32 :- DSSS Receiver 47

18 Figure 33 :- Match Filter result for Data Retrieval 51

19 Figure 34 :- Processing Gain Concept at Receiver 55

20 Figure 34 :- Processing Gain effect on narrow band interference 55-56

8

LIST of SYMBOLS and ACRONYMS

S. No. SYMBOLS and

ACRONYMS

DESCRIPTION

01 DSSS Direct Sequence Spread Spectrum

02 FHSS Frequency Hoping Spread Spectrum

03 THSS Time Hoping Spread Spectrum

04 PRN Sequence Pseudo Random Noise Sequence

05 fc and f Chip rate and Bit rate

06 CDMA Code Division Multiple Access

07 LFSR Linear Feedback Shift Register

08 GPS Geo Positioning System

09 LPF Low Pass Filter (or Integrator)

10 CRO Cathode Ray Oscilloscope

11 Ak and Ad Chiping Seq. And Data for user A

12 Bk and Bd Chiping Seq. And Data for user B

13 S =Ak*Ad+Bk*Bd Received Signal

14 XOR Exclusively OR (B1⊕B0)

15 N Band of Frequency for FHSS

16 RF Radio Frequency used in transmission

9

CHAPTER 1

SPREAD SPECTRUM

1.1 INTRODUCTION

With the growth in wireless communication and increasing demand for better methods of

communication has raised the need for more robust and effective technologies to improve

communication systems. One such technique is Spread Spectrum, which has become very

popular and an important method for communication. Spread Spectrum involves spreading

the desired signal over a bandwidth much larger than the minimum bandwidth necessary to

send the signal. Though Spread spectrum was first used for military purposes, but it has

become very popular in commercial communication systems recently. Spread Spectrum

methods have many advantages over other basic communication methods, such as very good

interference performance, resistance to jamming, good performance in multipath fading,

more robust in noise etc. In this chapter we will cover the details behind the method of

Spread Spectrum communications, as well as describe two main types of Spread Spectrum

systems, Direct-Sequence Spread Spectrum (DS-SS) and Frequency-Hopped Spread

Spectrum (FH-SS). We will talk about benefits of Spread Spectrum techniques. We also

discuss in brief that how different Spread Spectrum techniques can be combined to have a

good effective communication system. Finally, a general comparison between the two will be

given, trying to indicate the positives and negatives for each with respect to the other, and to

indicate when one system might be preferable over the other.

1.2 HISTORY

Spread Spectrum scheme was first proposed by a well known Austrian actress Hedy Lamarr

and a music composer George Antheil. This technique was proposed to control torpedoes

over long distances. The traditional guiding system for torpedoes was prone to detection

and can easily be jammed, so to have a better and more robust guiding system which is

immune to jamming and detection the Spread Spectrum technique was proposed. This new

guiding system which mainly implemented the frequency-hopping spread spectrum (FH-SS)

was very effective against jamming and detection as their signal would hop from one

frequency to another in a pseudorandom fashion known only to an authorized receiver (i.e.,

10

the torpedo).This would cause the transmitted spectrum to spread over a range much greater

than the message bandwidth. Later the frequency-hopping spread spectrum (FH-SS) was

patented by Lamarr and Antheil.

1.3 Direct-Sequence Spread Spectrum (DSSS)

In the DSSS technique, the PRN is applied directly to data before the modulation stage. The

modulator has to modulate a much larger data which is because of spreading of data by PRN

sequence just before modulation. At the modulator the spread signal is used for modulation of

the carrier. Thus modulator has to handle a larger data rate, which is the chipping rate of the

PRN sequence. Modulating an RF carrier with such a code sequence produces a direct-

sequence-modulated spread spectrum with ((sin x)/x)² frequency spectrum, centred at the

carrier frequency.

The main lobe of the frequency spectrum null to null has a bandwidth twice the clock rate of

the modulating code, and the side lobes have null-to-null bandwidths equal to the code's

clock rate. Illustrated in Figure 1 is the most common type of direct-sequence-modulated

spread-spectrum signal. Direct-sequence spectra vary somewhat in spectral shape, depending

on the actual carrier and data modulation used. Below is a binary phase shift keyed (BPSK)

signal, which is the most common modulation type used in direct-sequence systems.

Figure 1. Spectrum-analyzer photo of a DSSS signal. Note the original signal (non-spread) would only

occupy half of the central lobe (this fig. Is taken from Maxim Integrated Products Note [d]).

11

Let f be the frequency of the data signal, with appropriate pulse time T=1/f. Let the PRN

sequence be transmitted at a rate fc, so that the increase in the data rate is fc/f. The frequency fc

is known as the chipping rate, with each individual bit in the modulating sequence known as

a chip. Thus the width of each pulse in the modulating sequence is TC, or a chip time. The

following figure illustrates the two signals, the data signal for one pulse width, and the PRN

sequence over the same time (since the PRN sequence takes values of ±1, the indicated PRN

sequence also indicates a normalized version of the signal to be transmitted).

Figure 2. Data signal and PRN sequence in Time Domain

As a result, the frequency domain will look something like the diagram shown in Figure 3.

Figure 3. Data signal and PN sequence modulated in Frequency Domain

Mathematically, the following happens. Let the data signal be D(t), transmitted at frequency

f, and let the PRN sequence be PN(t), with frequency fc. So the transmitted signal is

12

The PN sequence is designed such that it has very good autocorrelation properties:

 Where N is the length of the PRN sequence, therefore, when the signal is correlated with the

PRN sequence at the receiver, the received signal will be recovered exactly (assuming that

there is synchronization between the send and receive PRN sequences), i.e.

1.4 Frequency-Hopping Spread Spectrum (FHSS)

In FHSS method the PRN sequence is applied to frequency synthesizer or local oscillator

such that the local oscillator generates different carrier frequencies at different times in a

random fashion. In this way the carrier frequency keeps hopping from one frequency to other

frequency over a wide band according to a sequence defined by the PRN. The speed at which

the hops are executed depends on the data rate of the original information. There are two

types of FHSS methods one is fast frequency hopping (FFHSS) and other is low frequency

hopping (LFHSS). In low frequency hopping (LFHSS) several consecutive data bits modulate

the same frequency, whereas in fast frequency hopping FFHSS is characterized by several

hops within each data bits.

The transmitted spectrum of a frequency-hopping signal is quite different from that of a

direct-sequence system. Instead of a ((sin x)/x)² - shaped envelope, the frequency hopper's

output is flat over the band of frequencies used (see Figure 4). The bandwidth of a

frequency-hopping signal is simply N times the number of frequency slots available, where N

is the bandwidth of each hop channel.

13

Figure 4. Spectrum-analyzer photo of a FHSS signal (this fig. Is taken from Maxim Integrated

Products Note [d]).

In FHSS, the signal itself is not spread across the entire large bandwidth; instead the wide

bandwidth is divided into N sub-bands, and the signal “hops” from one band to the next in a

pseudorandom manner. The centre frequency of the signal changes from one hop to the next,

changing from one sub-band to another, as shown in Figure 5.

 Figure 5. A Frequency Domain view of FHSS

14

1.5 Different Modulation Spreading Techniques for SPREAD SPECTRUM

Different spread-spectrum techniques are distinguished according to the point in the system

at which a PRN is inserted in the communication channel. If the PRN sequence is applied

before carrier modulation then it is known as Direct Sequence Spread Spectrum (DSSS) (In

practice, the pseudo-random sequence is mixed or multiplied with the information signal,

giving an impression that the original data flow was "hashed" by the PRN). If the PRN

sequence is applied to the frequency synthesizer which generates carrier frequency for

modulation then it is frequency hopped spread spectrum (FHSS). If the PRN acts as an on/off

gate to the transmitted signal, this is a time-hopping spread-spectrum technique (THSS).

There is also the "chirp" technique, which linearly sweeps the carrier frequency in time. This

is very basically illustrated in the RF front-end schematic in Figure 6.

Figure 6. Several spreading techniques are applied at different stages of the transmit chain

(this fig. Is taken from Maxim Integrated Products Note [d]).

One can also mix these different techniques to get a combination. More preferred are DSSS

and FHSS, but these two can be used with THSS for better results.

15

1.6 BENEFITS OF SPREAD SPECTRUM

Resistance to Interference and Anti-jamming Effects

There are many benefits to spread-spectrum technology. Resistance to interference is the

most important advantage. Intentional or unintentional interference and jamming signals are

rejected because they do not contain the spread-spectrum key. Only the desired signal, which

has the key, will be seen at the receiver when the de-spreading operation is exercised. You

can practically ignore the interference, narrowband or wideband, if it does not include the key

used in the de-spreading operation. That rejection also applies to other spread-spectrum

signals that do not have the right key. Thus different spread-spectrum communications can be

active simultaneously in the same band. Note that spread spectrum is a wideband technology,

but the reverse is not true: wideband techniques need not involve spread-spectrum

technology.

Resistance to Interception

Resistance to interception is the second advantage provided by Spread Spectrum techniques.

Because non authorized listeners do not have the key used to spread the original signal, those

listeners cannot decode it. Without the right key, the spread-spectrum signal appears as noise

or as an interferer. (Scanning methods can break the code, however, if the key is short). The

key involved is PRN sequence or other orthogonal sequences like gold and kasami sequences.

Even better, signal levels can be below the noise floor, because the spreading operation

reduces the spectral density. The message is thus made invisible, an effect that is particularly

strong with the direct-sequence Spread Spectrum (DSSS) technique. Other receivers cannot

"see" the transmission; they only register a slight increase in the overall noise level.

Resistance to Fading (Multipath Effect)

Wireless channels often include multiple-path propagation in which the signal has more than

one path from transmitter to the receiver. Such multipath can be caused by atmospheric

reflection or refraction, and by reflection from the ground or from objects such as buildings.

The reflected path (R) can interfere with the direct path (D) in a phenomenon called fading.

Because the de-spreading process synchronizes to signal D, signal R is rejected even though

http://www.maxim-ic.com/glossary/definitions.mvp/term/Resistance/gpk/1023

16

it contains the same key. Methods are available to use the reflected-path signals by de-

spreading them and adding the extracted results to the main one.

 Figure 7. Illustration of how the signal can reach the receiver over multiple paths.

DS suppresses multipath by de-correlating the delayed signal. When multipath signals are

delayed by more than one chip relative to the direct path signal, the direct signal has a

processing gain advantage. When the multipath signal arrives within a one-chip delay, this

creates fading. That is the direct signal can be either enhanced or suppressed. Therefore, for

DS to achieve significant multipath rejection, its bandwidth must be wider than the coherence

delay of the environment.

1.7 FHSS Vs DSSS

Frequency Hopping Spread Spectrum

(FHSS)

Direct Sequence Spread Spectrum (DSSS)

When using FHSS, the frequency spectrum is

divided into channels. Data packets are split

up and transmitted on these channels in a

random pattern known only to the transmitter

and receiver.

The DSSS encoder spreads the data across a

broad range of frequencies using a

mathematical key. The receiver uses the

same key to decode the data.

If interference is present on one channel, data

transmission is blocked. The transmitter and

receiver „hop‟ to the next channel in the hop

table and the transmitter resends the data

packet.

In interference the wider band transmission is

decoded back to its original narrowband

format while the interference is decoded to a

lower power density signal, thereby reducing

its effects. When broadband interference is

present, however, the resulting decoded

17

broadband interference can give a much

higher noise floor, almost as high as the

decoded signal.

Frequency hopping technology works best

for small data packets in high interference

environments.

DSSS works best for large data packets in a

low to medium interference environment

Traditional FH signals lower their average

power spectral density by hopping over many

channels.

DS spreads its energy by rapidly phase

chopping the signal so that it is continuous

only for very brief time intervals. the total

power is the same, but the spectral density is

lower.

18

CHAPTER 2

PRN SEQUENCES

2.1 PRN codes

The PRN codes are set of deterministically generated sequences, which mimic certain

properties of noise. The properties of noise which satisfy the principle properties of PRN

codes are :-

 Sharp Autocorrelation, so that any time shifted version of a PRN code has almost no

correlation with the original sequence.

 Equal number of “1”s and “0”s in any long segment of the sequence, so that the

signal has no bias.

 Random and independent appearance of “1”s and “0”s, so that it is difficult to

reconstruct the sequence from any short segment.

2.2 Generation of PRN Sequences

The PRN generator for spread spectrum is usually implemented as a circuit consisting of

XOR gates and a shift register, called a linear feedback shift register (LFSR). The LFSR is a

string of 1-bit storage devices. Each device has an output line, which indicates the value

currently stored, and input line. At discrete time instants, known as clock times, the value in

the storage device is replaced by the value indicated by its input line. The entire LFSR is

clocked simultaneously, causing a 1-bit shift along the entire register. The LFSR contains n

bits. There are from 1 to (n-1) XOR gates. The presence or absence of a gate corresponds to

the presence or absence of a term in the generator polynomial(X), excluding the X
n

term.

2.2.1 Generating polynomials

Finite (Galois) field mathematics are used to derive m-sequence feedback taps. Any LFSR

can be represented as a polynomial of variable X, referred to as the generator polynomial.

19

The coefficients gi represent the tap weights, and are 1 for taps that are connected (feedback),

and 0 otherwise. The order of the polynomial, m, represents the number of LFSR stages.

Rules of linear algebra apply to the polynomial, but all mathematical operations are

performed in modulo-2:

Modulo-2 addition:

0 + 0 = 0

0 + 1 = 1

1 + 1 = 0

Modulo-2 multiplication:

0 * 0 = 0

0 * 1 = 0

1 * 1 = 1

The generator polynomial of m-sequence is primitive polynomial. g(x) is a primitive

polynomial of degree m if the smallest integer n for which g(x) divides X
n

+ 1 is n=2
m

 – 1.

The generator polynomial is said to be primitive if it cannot be factored (i.e. it is prime).

As mentioned above the sequence for n
th

coefficient can be written in a mathematical

equation as :-

 an = c1an-1+ c2an-2………….+ cran-r = ci
r
i=1 𝑎𝑛−𝑖 (2.1)

 where, c1 to cr are connection variables (1 for connection and 0 for no connection)

multiplication is simple and addition is modulo -2 (or “Exclusive OR”). In the above equation

linear and distributive rule is applicable. In general, the generating function of the sequence ,

with nonnegative index can be defined as

G(D)≜ 𝑎0 + 𝑎1𝐷 + 𝑎2𝐷
2 + ⋯ = 𝑎𝑛𝐷

𝑛∞
𝑛=0 (2.2)

where D is the delay operator and number of clock cycles of delay are the power of D of

polynomial .

20

On combining equation (2.1) and (2.2), now we can reduce the equation (2.1) to finite

recurrence relation

 G(D) = 𝑎𝑛𝐷
𝑛∞

𝑛=0 = 𝑎𝑛𝐷
𝑛𝑟

𝑖=1
∞
𝑛=0

 = 𝑐𝑖𝐷
𝑖𝑟

𝑖=1 𝑎𝑛−𝑖𝐷
𝑛−𝑖∞

𝑛=0

= 𝑐𝑖𝐷
𝑖 𝑎−𝑖𝐷

−𝑖 + ⋯ + 𝑎−1𝐷
−1 + 𝐺(𝐷) ∞

𝑛=0

Now we can express the G(D) as a ratio of finite polynomials as

G(D)(1 − 𝑐𝑖𝐷
𝑖) = 𝑐𝑖𝐷

𝑖 𝑎−𝑖𝐷
−𝑖 + ⋯ + 𝑎−1𝐷

−1 𝑟
𝑖=1

𝑟
𝑖=1

G(D) =
 𝑐𝑖𝐷

𝑖 𝑎−𝑖𝐷
−𝑖+⋯+𝑎−1𝐷

−1 𝑟
𝑖=1

1− 𝑐𝑖𝐷
𝑖𝑟

𝑖=1

≜
𝑔0 𝐷

𝑓 𝐷
 (2.3)

where f(D)=1 − 𝑐𝑖𝐷
𝑖𝑟

𝑖=1 (2.4)

 f(D)is called the characteristics Polynomial of the shift register sequence generator and

depends solely on the connection vector c1…..,cr. The polynomial g0(D) depends as well on the

initial condition vector a-r,a-r-1,…..,a-1. g0(D) can be written as :

g0(D)= 𝑐𝑖(𝑎−𝑖 + 𝑎−𝑖𝐷 + ⋯ +𝑟
𝑖=1 𝑎−𝑖𝐷

𝑖−1) (2.5)

=c1a-1+c2(a-2+a-1D)+ c2 (a-3 + a-2 D + a-1 D
2
)+…+cr (a-r + a-r+1 + … + a-1 D

r-1
).

In the above equation , of all the connection variables, atleast cr=1, for otherwise the shift

register would no longer need to have r stages . Here we consider the initial vector :

a-r=1,a-r+1=…=a-2=a-1=0,

in which case (2.5) and (2.3) reduce to

g0(D) = 1, G(D)=
1

𝑓(𝐷)
 (2.6)

For better understanding of the mathematics used here one can refer to the book entitled

“Wireless Communication” by Andrea Goldsmith [a].

The mathematics used is very useful in determining the Generator polynomial. But,

Engineers don‟t need to do all those calculations, as Generating Polynomials for many m-

21

sequences are available in different literatures. The table given below has been taken from

book entitled “Wireless Communication” by Andrea Goldsmith [a].

 Table for Maximal Length Shift Register Sequences

Number

of Shift

Register

stages, N

Sequence

Length,

L = 2
N
-1

Number of

m-sequences

Example Generating

Polynomial

Tap value of Shift

Register

2 3 1 X
2
+X+1 B1⊕B0

3 7 2 X
3
+X+1 B1⊕B0

4 15 2 X
4
+X+1 B1⊕B0

5 31 6 X
5
+X2+1 B2⊕B0

6 63 6 X
6
+X+1 B1⊕B0

7 127 18 X
7
+X+1 B1⊕B0

8 255 16 X
8
+X

6
+X

5
+X+1 B6⊕B5⊕B1⊕B0

9 511 48 X
9
+X

4
+1 B4⊕B0

10 1023 60 X
10

+X
3
+1 B3⊕B0

11 2047 176 X
11

+X
2
+1 B2⊕B0

Though this table enlist some of the m-sequences, but there are many more sequences

available for a particular length. For more details on this topic one can read a book entitled

“Error Correcting Codes” by W.W Peterson [b].

In our project, we have worked on PN-Seq. of length 31. Hence, the available 6 Generating

Polynomial for PN-Seq. of length 31 are:-

i. 1 + X
2
 + X

5

ii. 1 + X
3
 + X

5

iii. 1 + X
2
 + X

3
 + X

4
 + X

5

iv. 1 + X + X
3
 + X

4
 + X

5

v. 1 + X + X
2
 + X

4
 + X

5

vi. 1 + X + X
2
 + X

3
 + X

5

22

For the above mentioned Generating Polynomials, we have worked on their implementation

on hardware and software using Linear Feedback Shift Register (LFSR). Their

autocorrelation and cross-correlation has also been calculated.

2.2.2 LFSR Generator Implementations

The implementation of a Linear feedback shift register, the content of which is modified at

every step by a binary-weighted value of the output stage using modulo-2 math. For any

given tap, weight gi is either 0, meaning "no connection," or 1, meaning it is fed back. Two

exceptions are g0 and gm, which are always 1 and thus always connected.

Figure 8. implementation of LFSR.

When implemented in hardware, modulo-2 addition is performed using exclusive-OR (XOR)

gates.

2.3 Properties of PN Sequences

Property I – The Shift Property

A cyclic shift(left-cyclic or right-cyclic) of an m-sequence is also an m-sequence.

Property II – The window Property

If a window of width m is slid along an m-sequence in Sm, each of 2
m

-1 nonzero binary

m-tuples is seen exactly once in one period of the sequence.

23

Property III – One more 1 than 0’s

Any m-sequence in Sm contains 2
m-1

 1‟s and 2
m-1

-1 0‟s.

Property IV – The Shift and Add Property

The sum of an m-sequence and a cyclic shift of itself (mod2,term by term) results in to the

shifted version of the same sequence.

Property V – Runs

A run is string of consecutive 1‟s or a string of consecutive 0‟s. In any m-sequence, one-half

of the runs have length 1, one quarter have length 2, one-eighth have length 3, and so on. In

particular, there is one run of length m of 1‟s , one run of length m-1 of 0‟s.

2.3.1 Autocorrelation of PRN Sequences

a. Periodic autocorrelation

i. The Autocorrelation calculated when autocorrelation window is longer than

the length of the sequence for which we are calculating the Autocorrelation.

ii. PRN sequences show very sharp Autocorrelation property, that is they show

very high peak at complete matching of Autocorrelation window with the

sequence or very low negligible value for mismatched window.

24

Figure 9. Periodic autocorrelation.

b. Aperiodic autocorrelation

i. If the autocorrelation window is just one period long or less than that, then we

will get the aperiodic autocorrelation.

 Figure 10. Aperiodic autocorrelation for 7-bit Sequence.

2.4 PROJECT WORK DONE ON PRN-SEQ.

For sequence length of 31 we have used the available m-sequence of order 5. The PN-

Sequence generation has been carried out in two ways:- Computer simulation and Hardware

implementation.

2.4.1 HARDWARE IMPLEMENTATION

i. We have designed PN sequence generator using generating polynomials.

ii. For generating PN sequence of length 7 the polynomial used is :

25

 P(x) = X
3
+X+1

iii. The design was implemented using linear feedback shift-register and exclusive OR-

gate circuits (for 7 bit sequence only).

Figure 11: LFSR arrangement for PN-Sequence of length 7.

Snapshot1:- This snapshot shows the implementation of PN-Sequence generation of length 7.

Snapshot2:- This snapshot shows 7 lengths PN-Sequence on CRO.

26

2.4.2 SOFTWARE SIMULATION

a. The PN code sequences of varying lengths (31, 63,255,511) were generated with the

help of C++.

b. Waveform plots of PN sequences generated were made using graphics user interface

in C++.

c. For generating PN-Sequence of length 31, we use various generating polynomial

available to us. In the example given below, we have used X
5
 + X

3
 + 1. The LFSR

diagram for this polynomial is same as above; the only difference would come for tap

value and number of flip-flops.

d. The Flow chart of the code used for PRN Sequence generator is given below:-

 Start

Enter the seed value x1,x2,x3,x4,x5,

count=0,x0=0,j=0

 L=x3 +x0, x5=L,j=j+1

 Print b1[j],j++

 Shift x4=x5, x3=x4, x2=x1, x0=x1, b1 [j] =x0

 Print b1[j]

 Count=count +1

 Is

count<2n-1

 x1=b1[j]

 Stop

27

OUTPUT and WAVEFORM

Snapshot3:- This snapshot shows 31 lengths PN-Sequence.

28

2.5 PN-Seq. AUTOCORRELATION

The Autocorrelation of PN-Sequence of Length 7 is calculated on the paper using Dixon‟s

method. Then it is verified by Hardware and Software simulation.

2.5.1 HARDWARE IMPLEMENTATION

a. Then we designed the autocorrelator circuit using linear shift registers (for 7 bit

sequence only).

b. For designing of autocorrelator circuit, we used Dixon‟s method.

c. The circuit diagram used to calculate the Autocorrelation using Inverting Amplifier is:

 Figure 12:- Inverting Amplifier.

Snapshot4:- This snapshot shows Autocorrelation of PN-Sequence of Length 31.

-

+

R

R

R

R

V1

!

V2

!

V3

!

Vout

29

2.5.2 SOFTWARE SIMULATION

a. Periodic and aperiodic autocorrelation of the sequences were obtained in C++.

b. Waveforms of these Periodic and aperiodic autocorrelation were premeditated.

c. The Flow chart for the code of Autocorrelation is discussed below for better

understanding of how it is being calculated.

 Start

 Print m

 m=c[i]

 Is

i<2n-1

PN sequence generator b1[j]

c[i]=b[j]+b[i+j]

 j=0,i=0

 Is

j<2n-1
 i=i+1

 j=j+1

 stop

30

OUTPUT and WAVEFORM

Snapshot5:- This snapshot shows Periodic Autocorrelation of 31 lengths PN-Sequence.

Snapshot6:- This snapshot shows Aperiodic Autocorrelation of 31 lengths PN-Sequence.

2.6 PN-Seq. CROSS-CORRELATION

The Cross-Correlation is calculated using the Dixon‟s method (for better understanding of

Dixon‟s method refer to book entitled “Communication Systems” by A. Bruce Carlson , Paul

B. Crilly and Janet C. Rutledge [e].)

Using the concept of Dixon‟s method and employing them in programming the following

Flow chart was prepared, for programming codes look into appendix [c].

31

 Start

 Print m

 m=c[i]

 Is

i<2n-1

PN sequence generator b1[j]

c[i]=b1[j]+b2[i+j]

 j=0,i=0

 Is

j<2n-1
 i=i+1

 j=j+1

 stop

PN sequence generator b2[j]

32

The cross-correlation is calculated using Computer simulation and the value is used to draw

the below graph on Microsoft Excel.

Figure 13:- Cross-Correlation of PN-Seq. generated by Figure 14:- Cross-Correlation of PN-Seq. generated by

(x^5+x^3+1) and (x^5+x^2+1) (x^5+x^3+1) and (x^5+x^4+x^3+x^2+1)

Figure 15:- Cross-Correlation of PN-Seq. generated by Figure 16:- Cross-Correlation of PN-Seq. generated by

(x^5+x^2+1) and (x^5+x^4+x^3+x^2+1) (x^5+x^2+1) and (x^5+x^4+x^2+1)

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40

values values

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40

values values

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40

values values

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40

values values

33

Figure 17:- Cross-Correlation of PN-Seq. generated by Figure 18:-Cross-Correlation of PN-Seq. generated by

(x^5+x^4+x^2+x+1) and (x^5+x^4+x^3+x^2+1) (x^5+x^4+x^2+x+1) and (x^5+x^4+x^3+x+1)

-15

-10

-5

0

5

10

0 10 20 30 40

values values

-10

-5

0

5

10

15

0 10 20 30 40

values values

34

CHAPTER 3

GOLD CODES

3.1 INTRODUCTION

A Gold code, also known as Gold sequence, is a type of binary sequence, used in

telecommunication (CDMA) and satellite navigation (GPS). Gold codes are named after

Robert Gold (The paper entitled “Characteristic linear sequences and their co-set

functions[f]” was published in 1965, gave a brief mathematics behind GOLD CODES). Gold

codes have bounded small cross-correlations within a set, which is useful when multiple

devices are broadcasting in the same range.

3.2 GENERATION of GOLD CODES

These are constructed by EXOR-ing two m-sequences of the same length with each other.

Thus, for a Gold sequence of length m = 2
l
-1, one uses two LFSR, each of length 2

l
-1. If the

LSFRs are chosen appropriately, Gold sequences have better cross-correlation properties than

maximum length LSFR sequences.

Gold sequences help generate more sequences out of a pair of m-sequences giving now many

more different sequences to have multiple users. Gold sequences are based on preferred pairs

m-sequences.

Gold showed that for certain well-chosen m-sequences, the cross correlation only takes on

three possible values, namely -1, -t or t-2. Two such sequences are called preferred

sequences. Here t depends solely on the length of the LFSR used. In fact, for a LFSR with l

memory elements,

 if l is odd, t = 2
(l+1)/2

 + 1, and

 if l is even, t = 2
(l+2)/2

 + 1.

Remember m-sequences gave only one sequence of length 2
l
-1. By combining two of these

sequences, we can obtain up to 31 (2
l
-1) plus the two m-sequences themselves, hence we can

generate upto 33 (2
l

+1) sequences (each one of length 2
l

-1) that can be used to spread

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/CDMA
http://en.wikipedia.org/wiki/GPS
http://www.wirelesscommunication.nl/reference/chaptr05/cdma/codes/codes.htm#ML

35

different input messages (different users CDMA). The m-sequence pair plus the Gold

sequences form the available sequences to use in DSSS. The wanted property about Gold

codes is that they are balanced (i.e. same number of 1 and -1s).

a) For example, let us take two preferred pair of m-sequence of length 31; and

. This example is taken from “CDMA-Principles of Spread

Spectrum Communication” by Andrew J. Veterbi [g].

 Figure 19. Block diagram of GOLD codes generation

3.3 Comparison between PRN-Seq. and GOLD code

i. The cross-correlation of different PN-Seq. and different GOLD codes is calculated.

ii. The normalized value of cross-correlation is noted in a tabular form. This shows that

at the smaller value of sequence length the normalised value of both (PN-Seq. and

GOLD codes) are nearly same. But, for larger value of sequence length, the

36

normalised value for GOLD codes is less as compared to PN-Seq., as for PN-Seq. the

normalised value keeps on increasing as the sequence length increase.

iii. The table is shown for clear verification. This table is taken from a paper entitled

“Code Sequences for Direct Sequence CDMA” by Frank Kamperman” [h].

Table for comparing GOLD and PN Sequences

No. of LFSR

elements, l

Sequence

Length, m

No. of m-

sequence

Max. cross-

correlation

of m-

sequence

Normalised

Cross-

Correlation

of GOLD

Codes, t

Normalised

Cross-

Correlation

t/(2l-1)

3 7 2 0.71 5 0.71

4 15 2 0.69 9 0.69

5 31 6 0.35 9 0.29

6 63 6 0.36 17 0.27

7 127 18 0.32 17 0.13

8 255 16 0.37 33 0.13

10 1023 60 0.37 65 0.03

The above table shows that, with increase in length of sequences the cross-correlation

decreases for both PRN and GOLD. But GOLD has upper hand as it provides the designer a

larger family of sequences for the preferred length.

Thus, we can say that GOLD codes are a better option when used for large number of users,

because it can give more number of sequences so that we can allot them to multiple users.

3.4 PROJECT WORK DONE ON GOLD CODES

The GOLD codes are generated using preferred pairs. The preferred pairs are formed from

the available m-sequences. For length of 31 there are 6 m-sequences possible. Hence we can

have 36 pairs. But all of them are not suitable to generate gold sequences as they do not

http://www.wirelesscommunication.nl/reference/authors/kampermn.htm

37

satisfy the basic properties of gold sequences. Hence only those pairs are preferred which

provide sequences with good balanced property (equal number of 1s and 0s).

The preferred pairs used for generating GOLD sequences are :-

Code A :- X
5
 + X

3
 +1 and X

5
 + X

2
 + 1.

Code B :- X
5
 + X

3
 + 1 and X

5
 + X

4
 + X

3
 + X

2
 + 1.

Code C :- X
5
 + X

2
 + 1 and X

5
 + X

3
 + X

2
 + X +1.

Code D :- X
5
 + X

4
 + X

3
 + X

2
 + 1 and X

5
 + X

3
 + X

2
 + X + 1.

Using any of the preferred pairs we can generate the GOLD Codes in C++, the Flow chart for

the Generating Code is:-

 Start

1st PN sequence

generator b1

2nd PN sequence

generator b2

 c1=b1+b2

Ifc1 ==1

 j=0

 j=j+1
Print r1[j]=1 Print r1[j]=0

Is j<2n-1

 Stop

38

OUTPUT

Using the above preferred pairs we generated different gold codes of length 31.

Code A: 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0

Code B: 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0

Code C: 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0

Code D: 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0

2.5 GOLD Codes autocorrelation

The Flow chart for the GOLD Code autocorrelation is:-

 Start

 Print m

 m=c[i]

Is i<2
n
-1

GOLD sequence generator

b1[j]

c[i]=b[j]+b[i+j]

 j=0,i=0

 Is

j<2n-1

 i=i+1

 j=j+1

 stop

39

The result of Computer simulation using the codes in Appendix and plotting them in Excel

we get the following graphs:-

OUTPUT

 Figure 20: Autocorrelation of Code A Figure 21: Autocorrelation of Code B

 (X
5
 + X

3
 +1 and X

5
 + X

2
 + 1) (X

5
 + X

3
 + 1 and X

5
 + X

4
 + X

3
 + X

2
 + 1)

 Figure 22: Autocorrelation of Code C Figure 23: Autocorrelation of Code D

 (X
5
 + X

2
 + 1 and X

5
 + X

3
 + X

2
 + X +1) (X5

 + X
4
 + X

3
 + X

2
 + 1 and X

5
 + X

3
 + X

2
 + X + 1)

2.5 GOLD Codes cross-correlation

The method used for finding the Cross-Correlation is same as PRN Sequence and the Flow

chart for the GOLD Code cross-correlation used is:-

-15

-10

-5

0

5

10

15

20

25

30

35

0 10 20 30 40

-10

-5

0

5

10

15

20

25

30

35

0 10 20 30 40

-10

-5

0

5

10

15

20

25

30

35

0 10 20 30 40

-15

-10

-5

0

5

10

15

20

25

30

35

0 10 20 30 40

40

 Start

 Print m

 m=c[i]

 Is

i<2n-1

Gold sequence generator g1[j]

c[i]=g1[j]+g2[i+j]

 j=0,i=0

 Is

j<2n-1
 i=i+1

 j=j+1

 stop

Gold sequence generator g2[j]

41

The result of Computer simulation using the codes in Appendix is :-

OUTPUT

Using the codes generated by Flow chart, and finally simulating them on C++. We get the

values for the Cross-Correlation and it is plotted on Microsoft Excel.

Figure 24: Cross-correlation of Code A&B Figure 25: Cross-correlation of Code A&C

Figure 26: Cross-correlation of Code C&B Figure 27: Cross-correlation of Code A&D

-15

-10

-5

0

5

10

15

0 10 20 30 40

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

0 10 20 30 40

-20

-15

-10

-5

0

5

10

15

0 10 20 30 40

-10

-5

0

5

10

15

0 10 20 30 40

42

Figure 28: Cross-correlation of Code D&B Figure 29: Cross-correlation of Code D&C

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40

-10

-5

0

5

10

15

20

0 10 20 30 40

43

CHAPTER 4

TRANSMITTER and RECEIVER for DSSS

4.1 INTRODUCTION

Bandwidth spreading by direct modulation of signals by a wideband spread signal (also

called code) is called direct sequence spread spectrum (DS SS). The DSSS signal is then

modulated by a carrier before final transmission. In DSSS, the base band signals are usually

called bits, and the code bits are called chips. Typically, the baseband signal bandwidth is

multiplies several times by the spreading signals. In other words, the chip rate is much higher

than the bit rate. The spreading signal sequence is unique for a transmitter, and the same chip

sequence is used at the receiver to re-construct the signals (data bits). Correlation is used to

synchronize the received spread signals (that contain data) with the locally generated code. At

maximum received signal strength, correlation said to have occurred. The receiver then enters

the tracking mode, such that the spread signal modulated signals are received without

interruption.

4.2 DSSS Transmitter

In the DSSS transmitter, a code generator is a pseudo random generator that generates a

known pseudo noise code sequence. Normally, the code has finite length (say 1024 chips),

and repeats periodically (For more detail on the topic one can refer to the Book entitled

“Principles of spread spectrum” by Don j. Torrieri [j]). The requirements for a good PN code

was already discussed in the previous chapter named PRN-Sequences.

An XOR gate can be used for spreading the data bits. The input, code, and the resulting

output are displayed in the figure 30 on the next page :

44

Figure 30.Generation of Modulated DATA

In the figure shown above, each data bit is coded with 8 chips. In practice, this would be

much higher, of the order of 1024 or even more (For more detail on the topic one can refer to

the Book entitled “Principles of spread spectrum” by Don j. Torrieri [j]). Higher the number

of chips per bit, higher will be the processing gain. Processing gain is defined below:

Processing Gain: One important parameter of DS SS receiver is the processing gain.

Consider a data rate of 10KBPS, and Chip rate of 1MBPS. The processing gain is given by

10 log [rc/rb], where rc is the chip rate, and rb is the data rate. For a chip rate of 1MBPS, and

a data rate of 1KBPS, the processing gain is 10log[1000] or 30dB. The processing gain is a

measure of immunity to noise, and jamming signals. Higher the processing gain, more the

band spread of the signals.

Higher processing gain results in greater immunity to noise, and interfering signals.

After spreading, the signals are unconverted and transmitted.

Figure 31: DSSS Transmitter

45

Where, d(t) is the input data bits, c(t) is the code bits, x(t) is the frequency converted signal,

ready for transmission.

A note about why frequency up conversion is required for radio transmission: Base band, and

very low frequencies are susceptible to heavy attenuation during transmission. In addition,

imagine every transmitter transmitting in the base band frequencies. It is practically

impossible for everyone to transmit in base band frequencies (A base band frequency is the

frequency spectrum that is occupied by the un-modulated signals). Hence up-conversion of

frequency is normally done to comply with the transmission requirements.

4.2.1 Implementation of DSSS Transmitter

a. First of all, we generated the PRN-Sequence of desired length (in our case length was

31).

b. Then the DATA was XOR-ed with PRN-Sequence. Hence, resulting into the spread

signal.

c. Each bit of DATA was XOR-ed with all the 31 bit of sequence. Hence, the resulting

signal spreads up to the length equals to product of No. of DATA bits and length of

PRN-Seq.(31).

For example:- Let us take an example of 7-bit PRN-Seq. and a 2-bit DATA.

 7-bit PRN-Seq. used here is:-

 1 1 1 0 0 1 0

2-bit DATA used here is:-

1 0

The spread signal is calculated as follows:-

PN-Seq. 1 1 1 0 0 1 0 1 1 1 0 0 1 0

DATA 1 1 1 1 1 1 1 0 0 0 0 0 0 0

SPREAD

SIGNAL

0 0 0 1 1 0 1 1 1 1 0 0 1 0

46

The flow chart for the generation of Spreading Sequence used is:-

 Start

Enter the data d[i],i=0

Pn sequence generator b[i]

r[j]=b[j]+d[i]

If i<4

If

j<31(i+1)

Print r[j]

 i=i+1

 stop

47

OUTPUT and WAVEFORM

 Snapshot 7:- This snapshot shows Modulation of PN-Seq. and DATA 1 1 0 0.

4.3 DSSS Receiver

A simplified DSSS receiver block diagram is shown below.

Figure 32: DSSS Receiver

48

It consists of a PRN generator that feeds the matching chip sequence to an XOR gate to

reproduce the original bit sequence. The PRN generator is driven by an error signal from the

output of the LPF, so that chip timing is adjusted to produce maximum signal threshold.

Normally, the acquisition of the data is done through a two step process. The first is

acquisition, and the second is tracking. Acquisition refers to acquiring the chip timing of the

received signals. This may further be sub-divided into course acquisition, and fine

acquisition. The two are differentiated by the amount of chip timing adjustment. Once the

acquisition is achieved, then the received signals must be tracked properly. Otherwise, you

may lose the lock, resulting in loss of data bits. As with conventional receiver operation, an

error voltage at the output of the LPF (or an Integrator) provides necessary correction to the

PRN Generator.

4.3.1 Implementation of DSSS Receiver

a. On reception of spread signal, the signal is matched with the locally generated PN-

sequence.

b. The matching is done with a matched filter, which matches the local PN-sequence

with the received signal sequence.

c. On full matching of both received signal sequence and local PN-sequence we get a

large positive or a large negative value, in our case we got +31 if 1 is received or -31

if 0 is received.

For example:- Let us take an example of 7-bit PN-Seq. and a 2-bit DATA.

7-bit PN-Seq. used here is:- 1 1 1 0 0 1 0

2-bit DATA used here is:- 1 0

Spread signal is:- 0 0 0 1 1 0 1 1 1 1 0 0 1 0

Note:- for calculating zero is replaced by -1 and 1 remains 1.

 0 0 0 1 1 0 1 1 1 1 0 0 1 0

1 0

0 1 0

49

1 0 1 0

0 0 0 1 0

2 1 0 0 1 0

0 1 1 0 0 1 0

7 1 1 1 0 0 1 0

-1 1 1 1 0 0 1 0

1 1 1 1 0 0 1 0

-1 1 1 1 0 0 1 0

1 1 1 1 0 0 1 0

2 1 1 1 0 0 1 0

-1 1 1 1 0 0 1 0

-7 1 1 1 0 0 1 0

0 1 1 1 0 0 1

-2 1 1 1 0 0

0 1 1 1 0

-1 1 1 1

0 1 1

-1 1

And plotting these values we get the following graph, which shows that, the two peaks +7

corresponds to DATA bit 1 and -7 corresponds to DATA bit 0.

50

Using the above concept in C++, we draw the de-spreading part, the Flow chart for the codes

is:-

 Start

 i=0,j=0

Spreaded data r[j]

d[j]=b[j]+r[j]

If i<4

If

j<31(i+1)

Print d[j]

 i=i+1

 stop

PRN sequence generator b[i]

51

And plotting these values we get the following graph, which shows that, the two peaks +7

corresponds to DATA bit 1 and -7 corresponds to DATA bit 0.

 Figure 33: Matched filter output of 7 length sequence with DATA 1 and 0.

OUTPUT and WAVEFORM

 Snapshot 8:- This snapshot shows Matched filter result for DATA 1 0 0 1.

-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18

52

4.4 Recovery of Spread Spectrum Signals: Timing Signals

In all cases of SS receivers, faithful recovery of the transmitted signals require the following:

i. Correlation Interval Synchronization: Receiving bits is achieved by proper

correlator (or integrator) timing. Proper start/stop times for correlator are required for

minimizing the received bit errors.

ii. SS Generator Synchronization: Timing signals are required to control the SS wave

form generator signals. Direct Sequence systems employ a clock ticking at the chip

rate 1/tc, and FH systems have a clock operating at the hopping rate 1/th.

iii. Carrier Synchronization: Faithful reproduction of the transmitted signals to

baseband requires down-conversion, and demodulation. This can be achieved only if

the locally generated frequency and phase are in sync with the received carrier

frequency.

4.6 Data Retrieval for Multiple Users

In a system with multiple users transmitting at the same time. The signals are overlaid. In

other words, if one does not know the code, then it hears some signal like random noise.

However, for the receiver with the correct code, it will be able to extract from the noise-like

data its expected information.

Each chipping sequence, or code, is a sequence of 0‟s and 1‟s. We will represent that by a

vector. Essentially replace 1 by a corresponding 1 and replace 0 by a corresponding -1. For

example, the Baker code 10110111000 is represented by a vector of dimension 11,

represented by (1,-1, 1, 1,-1, 1, 1, 1,-1,-1,-1).Similarly, we also represent a signal bit of 1 by 1

and a data bit 0 by -1. Now the XOR of two bits is exactly multiplication in this new system.

The XOR of the chipping sequence of the input signal is exactly the bit-wise product in the

vector space. The extraction of the data is the dot product of two vectors: take the bit-wise

product and sum up all the values.

The sender A has data Ad = 1 (stands for bit 1). It will take the product of Ad with the

chipping sequence Ak = 010011 = (-1, 1,-1,-1, 1, 1) Ad . Ak = Ad * (-1,1,-1,-1- 1- 1)

53

The sender B has data Bd = -1 (stands for bit 0), and takes takes the product of Bd with the

chipping sequence Bk = 110101 = (1, 1,-1, 1,-1,1) which is: Bd . Bk = Bd * (1,1,-1, 1,-1, 1)

Since both transmission happen at the same time, the two signals will superimpose on each

other. Thus the receiver of A and B will hear the following signal: S = Ad *Ak + Bd * Bk = (0,

2,-2, 0, 0, 2).Now here is the key point. With the code Ak, a user can decipher from the

superimposed signal the data sent by A. Basically it XOR its code with the signal, or in other

words, performs a dot product of the code Ak with the signal S: Ak . S = (-1, 1,-1,-1, 1, 1). (0,

2,-2, 0, 0, 2)= 6 With the code of Bk, a user can decipher the data sent by B, again, by doing a

dot product of Bk with S: Bk . S = (1, 1,-1, 1,-1,1) .(0, 2,-2, 0, 0, 2)= -6. A value larger than 0

translates to 1 and a value smaller than 0 translates to 0.

OUTPUT and WAVEFORM

The code given in appendix is run on C++ compiler and following values for the signal of 5

users were obtained, it is also been plotted in C++.

Snapshot 9:- This snapshot shows signal values of 5 signals overlaying in a channel.

 Snapshot 10:- This snapshot shows waveform of 5 signal overlaying in a channel.

54

The DATA was received successfully, when the PRN Sequence was generated locally.

 Snapshot 11:- This snapshot shows DATA retrieval for 5 users.

4.6 Role of Processing gain in multi user system and interference

We consider a figure to show the concept of processing gain. The figure used below has been

taken from a book entitled “Processing gain in Spread Spectrum Signals” by John Fakatselis

and Harris Semiconductor [c]. The study of this book gave a better understanding of DSSS

transmitter in view of INTERFERE.

The spread signal is with the addition of the wideband modulation utilizing the PRN code. It

can be seen in the figure 34 that the spread signal is wider in frequency BW but with lower

power spectral density per Hz. The spread signal is shown to be close to the noise floor. PG

for a DS system can be visualized as the margin that exists as the difference between the un-

spread and spread waveforms. The PRN code spreads the transmitted signal in bandwidth and

makes it less susceptible to narrowband interference.

55

 Figure 34 :- Showing processing gain concept at receiver

The receiver of a DSSS system can be viewed as un-spreading the intended signal and at the

same time spreading the interfering waveform. This operation is best illustrated in Figure 35.

Figure 35 depicts the power spectral density (psd) functions of the signals at the receiver

input, the de-spread signal, the bandpass filter power transfer function, and the band pass

filter output. Figure 35 graphically describes the effect of the processing gain on a jammer.

The jammer is narrow, and has a highly peaked psd, while the psd of the DSSS is wide and

low. The de-spreading operation spreads the jammer power psd and lowers its peak, and the

BPF output shows the effect on the signal to jammer ratio.

56

 Figure 35:- processing gain effect on narrow band interference

4.7 Data Retrieval for Multiple Users in presence of interference

In our project it was little difficult for us to introduce the actual scenario of interference.

Because, we were doing the project on Software. So, to introduce the interference in picture,

we manually changed some bits in our transmitted spread signal. We use two cases :-

a. In one case we changed 1-bit of the spread signal after every 5-bit. In this way, we not

only introduce interference but the effect of NOISE also comes into picture. The

retrieved signal after this is:-

Snapshot 12:- This snapshot shows waveform in presence of interference, in which we can

see decrease in value of peaks. But then also we can retrieve the data because of sufficient

difference between main peaks and noise peaks.

57

b. In this case we changed 1-bit of the spread signal after every 10-bit. The retrieved

signal after this is:-

Snapshot 13:- This snapshot shows waveform in presence of interference, in which we can

see decrease in value of peaks. But then also we can retrieve the data because of sufficient

difference between main peaks and noise peaks.

58

CONCLUSION

In our project we studied about the spread spectrum system whose main characteristic is the

presence of a code or key, which must be known in advance by the transmitter and

receiver(s).The spread spectrum system is mainly classified into DSSS and FHSS. We

worked on DSSS. In Spread Spectrum our main concern was to know the type of code we are

going to use. In modern communications the codes are digital sequences that must be as long

and as random as possible to appear as "noise-like" as possible. But in any case, the codes

must remain reproducible, or the receiver cannot extract the message that has been sent.

Thus, the sequence is "nearly random." Such a code is called a pseudo-random number

(PRN) or sequence. The method most frequently used to generate pseudo-random codes is

based on a feedback shift register.

The construction or selection of proper sequences, or sets of sequences, are not trivial. To

guarantee efficient spread-spectrum communications, the PRN sequences must respect

certain rules, such as length, autocorrelation, cross-correlation and bits balancing. We worked

on PRN sequences and Gold Codes. Keep in mind that a more complex sequence set provides

a more robust spread-spectrum link. But there is a cost to this: more complex electronics both

in speed and behaviour, mainly for the spread-spectrum de-spreading operations.

During our project we worked on PRN sequence generation and studied their properties such

as length, autocorrelation, cross-correlation and bits balancing. We studied PRN sequence of

different lengths and found some sequences are more suitable for spreading than others. Then

we also studied Gold sequences and their autocorrelation, cross-correlation, and bits

balancing properties.

On comparing PRN-sequences and gold sequences on basis of their correlation properties we

found that both PRN and gold sequences are suitable for spreading, also the cross-correlation

decreases with increasing length thereby giving good results in presence of interference and

multi user systems, as the processing gain is high. Gold sequences are better if we have to

deal with large number of users, as large number of gold codes are available for a particular

length as compared to PRN-sequences.

http://www.maxim-ic.com/glossary/definitions.mvp/term/Shift-Register/gpk/273

59

APPENDICES

A. CODE for PN-Sequence Generation

#include<iostream.h>

#include<conio.h>

#include<graphics.h>

void main()

{

int x5,x4,x3,x2,x1,a,j=0,x0,b[32];

cout<<"\n Enter the seed value in 1 bit binary:- \n";

cout<<"\tx5 = ";

cin>>x5;

cout<<"\tx4 = ";

cin>>x4;

cout<<"\tx3 = ";

cin>>x3;

cout<<"\tx2 = ";

cin>>x2;

cout<<"\tx1 = ";

cin>>x1;

cout<<"\n the random number sequence is as follows :- ";

cout<<"\n"<<"clk"<<"\tb4"<<"\tb3"<<"\tb2"<<"\tb1"<<"\tb0"<<"\tPNSEQ.;

cout<<"\n"<<j<<"\t"<<x5<<"\t"<<x4<<"\t"<<x3<<"\t"<<x2<<"\t"<<x1<<"\t<<x1 ;

b[0]=x1;

\\ this block implements the basic operation of LFSR for generating PN-Seq. of length 31

 for(j=1;j<32;j++)

{

x0 = x1;

 x1 = x2;

 x2 = x3;

 x3 = x4;

60

x4 = x5;

a = x0 + x3;

b[j]=x1;

if(a == 0 || a == 2)

x5 = 0;

else if(a == 1)

 x5 = 1;

cout<<"\n"<<j<<"\t"<<x5<<"\t"<<x4<<"\t"<<x3<<"\t"<<x2<<"\t"<<x1<<"\t"<<x1 ;

}

getch();

\\this block represents the PN-Seq. in graphical form using GRAPHIC USER INTERFACE

int i,k=50;

 int gd,gm;

 gd=DETECT;

 initgraph(&gd,&gm," ");

 line(0,400,900,400);

 line(50,430,50,50);

 for(i=0;i<32;i++)

 {

 if(b[i]==1)

 bar(k,400,k+10,380);

 else

 bar(k,400,k+10,400);

 k = k+12;

 }

 getch();

 closegraph();

}

B. CODE for PN-Sequence Autocorrelation

I. PERIODIC AUTOCORRELATION

 int p=0,n=0,q=0,m=0,v[63],h=50;

file:\\this

61

 cout<<"\n";

 for(n = 0; n<34; n++)

{

for(p = 0; p<62 ;p++)

{

if(b[p] == 0)

d[p] = -1;

else

d[p] = 1 ;

e[p] = d[p];

c[p] = d[p]*e[p+n];

}

m = c[0];

for(p = 1; p<31 ;p++)

{

m = m + c[p];

 }

 cout<<"\t"<<m;

v[n] = m;

m = 0;

}

getch();

 gd = DETECT;

 initgraph(&gd , &gm, " ");

 line(0,400,900,400);

 line(50,430,50,50);

for (i = 0; i<33; i++)

 {

 float l = (v[i]);

 float z = (400-l);

 bar (h,400,h+7,z);

 h = h+9;

 }

 getch();

62

 closegraph();

II. APERIODIC AUTOCORRELATION

 int p = 0, n = 0, q = 0, m = 0;

 cout<<"\n\n";

 for(n = 0; n<511; n++)

 {

for(p = 0; p<1022; p++)

{

if(b[p] == 0)

d[p] = -1;

else

d[p] = 1 ;

e[p] = d[p];

c[p] = d[p] * e[p + n];

}

m = c[0];

for(p =1 ; p<511; p++)

{

m = m + c[p];

}

cout<<" "<<m;

v[n] = m;

}

getch();

int i; float k = 50;

 int gd,gm;

 gd = DETECT;

 initgraph(&gd, &gm, " ");

 line(0,400,900,400);

 line(50,430,50,50);

 for(i = 0; i<511; i++)

 {

 float l = (1 * v[i]);

63

 float z = (400 - l);

 bar(k, 400, k+1, z);

 k = k + 1.5;

 }

 getch();

 closegraph();

C. CODE for GOLD CODES Generation
#include<iostream.h>

#include<conio.h>

#include<graphics.h>

void main()

{

 int x5,x4,x3,x2,x1,l,j = 0,x0,c1,c4,b[124],b1[124],r1[124],q1[124],i = 0;

 for(int a = 0; a<124; a++)

 {

 b[a]=0;

 b1[a]=0;

 q1[a]=0;

 }

 cout<<"\n Enter the seed value in 1 bit binary:- \n";

 cout<<"\tx5 = ";

 cin>>x5;

 cout<<"\tx4 = ";

 cin>>x4;

 cout<<"\tx3 = ";

 cin>>x3;

 cout<<"\tx2 = ";

 cin>>x2;

 cout<<"\tx1 = ";

 cin>>x1;

 cout<<"\n the random number sequence is as follows :- ";

 cout<<"\n"<<"clk"<<"\tb4"<<"\tb3"<<"\tb2"<<"\tb1"<<"\tb0"<<"\tPNSEQ.";

 cout<<j<<"\t"<<x5<<"\t"<<x4<<"\t"<<x3<<"\t"<<x2<<"\t"<<x1<<"\t"<<x1 ;

64

 b[0] = x1;

 for(j = 1; j<124; j++)

 {

 x0 = x1;

 x1 = x2;

 x2 = x3;

 x3 = x4;

 x4 = x5;

 l = x0 + x2;

 b[j] = x1;

 if(l == 0 || l == 2)

 x5 = 0;

 else if(l == 1)

 x5 = 1;

 cout<<j<<"\t"<<x5<<"\t"<<x4<<"\t"<<x3<<"\t"<<x2<<"\t"<<x1<<"\t"<<x1 ;

 }

 getch();

cout<<"\n Enter the seed value in 1 bit binary:- \n";

cout<<"\tx5 = ";

 cin>>x5;

 cout<<"\tx4 = ";

 cin>>x4;

 cout<<"\tx3 = ";

 cin>>x3;

 cout<<"\tx2 = ";

 cin>>x2;

 cout<<"\tx1 = ";

 cin>>x1;

 cout<<"\n the random number sequence is as follows :- ";

 cout<<"\n"<<"clk"<<"\tb4"<<"\tb3"<<"\tb2"<<"\tb1"<<"\tb0"<<"\tPNSEQ.";

 cout<<j<<"\t"<<x5<<"\t"<<x4<<"\t"<<x3<<"\t"<<x2<<"\t"<<x1<<"\t"<<x1 ;

 b1[0] = x1;

 for(j = 1; j<124; j++)

 {

65

 x0 = x1;

 x1 = x2;

 x2 = x3;

 x3 = x4;

 x4 = x5;

 l = x0 + x3;

 b1[j] = x1;

 if(l == 0 || l == 2)

 x5 = 0;

 else if(l == 1)

 x5 = 1;

 cout<<j<<"\t"<<x5<<"\t"<<x4<<"\t"<<x3<<"\t"<<x2<<"\t"<<x1<<"\t"<<x1 ;

 }

 getch();

 for(i = 0; i<4; i++)

 {

for(j = i*31; j<(i*31) + 31; j++)

 {

 c1 = b[i] + b1[j];

 if(c1 == 0 || c1 == 2)

 r1[j] = 0;

 else if(c1 == 1)

 r1[j]=1;

cout<<"\t r="<<r1[j];

 }

 }

 getch();

 OUTPUT

 Using the above code we generated different gold codes of length 31.

 Code A: 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0

 Code B: 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0

 Code C: 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0

 Code D: 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0

66

D. CODE for Autocorrelation GOLD CODES

for(int h = 0; h<124; h = h + 31)

{

 int x = 31, u = 0, y = h, f = 0,g = h;

while(x >= 0)

 {

for(j = h,f = y; j<(h + x), f<g+31; j++,f++)

 {

 c4 = r1[j] + r1[f];

 if(c4 == 0 | | c4 == 2)

 q1[y] = q1[y] + 1;

 else if(c4 == 1)

 q1[y] = q1[y]-1;

 }

 cout<<"\t q= "<<q1[y];

 x--,y++;

 }

 }

 getch();

 int z,q, k = 50;

 int gd,gm;

 gd = DETECT;

 initgraph(&gd,&gm," ");

 line(0,400,900,400);

 line(50,430,50,50);

 for(z = 0; z<124; z++)

 {

 float l = (3*q1[z]);

 float b1 = (400-l);

 bar(k,400,k+2,b1);

 k = k + 5;

}

getch();

67

closegraph();

E. CODE for Cross-Correlation GOLD CODES

for(int h = 0; h<124; h = h + 31)

{

int x = 31, u = 0, y = h, f = 0, g = h;

while(x >= 0)

 {

for(j = h, f = y; j<(h + x), f<g+31; j++, f++)

 {

 c4 = r1[j] + r2[f];

 if(c4 == 0 | | c4 == 2)

 q1[y] = q1[y] + 1;

 else if(c4 == 1)

 q1[y] = q1[y] - 1;

}

 cout<<"\t q= "<<q1[y];

x--,y++;

}

 }

getch();

int z,q,k = 50;

int gd,gm;

 gd = DETECT;

 initgraph(&gd, &gm, " ");

 line(0,400,900,400);

 line(50,430,50,50);

 for(z = 0; z<124; z++)

 {

 float l = (3*q1[z]);

 float b1 = (400 - l);

 bar(k,400, k + 2, b1);

 k = k + 5;

68

 }

 getch();

 closegraph();

F. CODE for Spread Signal Generation

cout<<"\n Enter the data\n";

for(i = 0; i<4; i++)

{

 cin>>d[i];

}

for(i = 0; i<4; i++)

{

 for(j = 0; j<31; j++)

 {

 c = d[i] + b[j] ;

 if(c == 0 | | c == 2)

 r[q] = 0;

 else if(c == 1)

 r[q] = 1;

 cout<<"\t r= "<<r[q];

 q++;

 }

}

G. CODE for Match Filter Operation

for(int h = 0; h<124; h = h + 31)

{

int x =31,u = 0,y = h,k = 0,l = h,t = 0;

for(t=0;t<150;t++)

 {

 p[t] = 0;

 }

 t = 0;

69

 while(x>=0)

 {

 for(j = h, k = y; j<(h+x),k<l+31;j++,k++)

 {

u=r[k]+b[j];

 if(u == 0||u == 2)

 p[y] = p[y]-1;

 else if(u == 1)

 p[y] = p[y] + 1;

 cout<<"\t p= "<<p[y];

 x--,y++;

}

}

H. CODE for Data Retrieval for Multiple User
cout<<"\n"<<"\n";

int c5[128];

for(j = 0; j < = 123; j++)

{

 c5[j] = c[j] + c1[j] + c2[j] + c3[j] + c4[j];

 cout<<"\tc2 = "<<c5[j];

}

getch();

cout<<"\n first user data" ;

for(i=0 ; i<4 ; i++)

{

 t = 0;

for(q = i*31, j = 0; q < (i+1)*31, j < 31; q++ , j++)

{

int g;

g = c5[q] * o[j];

t = t + g;

}

if(t>0)

70

v = 1;

else if(t<0)

v = 0;

cout<<"\n"<<i<<"bit is"<<v;

}

cout<<"\n second user data" ;

for(i=0; i<4; i++)

{

t = 0;

for(q = i*31,j = 0; q < (i+1)*31, j < 31; q++, j++)

{

int g;

g = c5[q] * o1[j];

t = t + g;

}

if(t > 0)

v = 1;

else if(t < 0)

v = 0;

 cout<<"\n"<<i<<"bit is"<<v;

 }

 cout<<"\n third user data" ;

 for(i = 0; i < 4; i++)

{

t = 0;

for(q = i*31, j=0; q < (i+1)*31, j < 31; q++, j++)

{

int g;

g = c5[q] * o2[j];

t = t + g;

}

if(t>0)

v = 1;

else if(t<0)

71

v = 0;

cout<<"\n"<<i<<"bit is"<<v;

}

cout<<"\n fourth user data" ;

for(i = 0 ; i < 4; i++)

{

t = 0;

for(q=i*31, j=0; q<(i+1)*31, j < 31; q++, j++)

{

int g;

g = c5[q] * o3[j];

t = t + g;

}

if(t > 0)

v = 1;

else if(t < 0)

v = 0;

cout<<"\n"<<i<<"bit is"<<v;

}

cout<<"\n fifth user data" ;

for(i = 0; i < 4; i++)

{

t = 0;

for(q = i*31, j = 0; q < (i+1)*31, j < 31; q++, j++)

{

int g;

g = c5[q] * o4[j];

t = t + g;

}

if(t > 0)

v = 1;

else if(t < 0)

v = 0;

cout<<"\n"<<i<<"bit is"<<v;

72

}

 getch();

}

 int p,k = 50;

 int gd,gm;

 gd = DETECT;

 initgraph(&gd, &gm, " f");

 line(0,400,900,400);

 line(50,430,50,50);

 for(p = 0; p<123; p++)

 {

 float l = (20*c2[p]);

 float z = (400-l);

 bar(k,400,k+2,z);

 k = k+5;

 }

 closegraph();

 getch();

}

I. Collection of Definitions, Useful in understanding of Project

Code Division Multiple Access (CDMA) is a channel access method used by various radio

communication technologies. CDMA employs spread-spectrum technology and a special

coding scheme (where each transmitter is assigned a code) to allow multiple users to be

multiplexed over the same physical channel.

Direct-Sequence Spread Spectrum (DSSS) is a modulation technique. DSSS uses a signal

structure in which the sequence of chips produced by the transmitter is known a priori by the

receiver. The receiver can then use the same PRN sequence to counteract the effect of the

PRN sequence on the received signal in order to reconstruct the information signal.

73

Frequency-Hopped Spread Spectrum (FHSS) is a method of transmitting radio signals by

rapidly switching a carrier among many frequency channels, using a pseudorandom sequence

known to both transmitter and receiver.

A Pseudo-Random Sequence (PRNS) is one that appears to be perfectly random for K

output symbols but then repeats, i.e. it is periodic with a cycle time of K symbols. If K can

be made large enough, this is not a great limitation; any interval up to K symbols will appear

to be perfectly random.

Binary phase shift keying (BPSK) (also sometimes called PRK, Phase Reversal Keying, or

2PSK) is the simplest form of phase shift keying (PSK). It uses two phases which are

separated by 180° and so can also be termed 2-PSK. It does not particularly matter exactly

where the constellation points are positioned, and in this figure they are shown on the real

axis, at 0° and 180°.

The Chip Rate of a code is the number of pulses per second (chips per second) at which the

code is transmitted (or received).

The ratio of chip rate to symbol rate is known as the Spreading Factor (SF) or Processing

Gain. The chip rate is larger than the symbol rate, meaning that one symbol is represented by

multiple chips.

Fading is deviation of the attenuation that a carrier-modulated telecommunication signal

experiences over certain propagation media.

A linear feedback shift register (LFSR) is a shift register whose input bit is a linear function

of its previous state.

A maximum length sequence (MLS) is a type of pseudorandom binary sequence. They are

bit sequences generated using maximal linear feedback shift registers and are so called

because they are periodic and reproduce every binary sequence that can be reproduced by the

shift registers (i.e., for length-m registers they produce a sequence of length 2
m
 − 1). A MLS

is also sometimes called a n-sequence or a m-sequence.

Autocorrelation is the cross-correlation of a signal with itself. Informally, it is the similarity

between observations as a function of the time separation between them.

74

Cross-Correlation is a measure of similarity of two waveforms as a function of a time-lag

applied to one of them. This is also known as a sliding dot product or inner-product. The

cross-correlation is similar in nature to the convolution of two functions. Whereas

convolution involves reversing a signal, then shifting it and multiplying by another signal,

correlation only involves shifting it and multiplying (no reversing).

A Gold code, also known as Gold sequence, is a type of binary sequence. Gold codes have

bounded small cross-correlations within a set, which is useful when multiple devices are

broadcasting in the same range. A set of Gold code sequences consists of 2
n
 − 1 sequences

each one with a period of 2
n
 − 1.

The XOR gate (sometimes EOR gate or EXOR gate) is a digital logic gate that implements

an exclusive disjunction; that is, it behaves according to the truth table shown on the right. A

true output (1) results if one, and only one, of the inputs to the gate is true (1). If both inputs

are false (0) and both are true (1), a false output (0) results. A way to remember XOR is "one

or the other but not both". It represents the inequality function, i.e., the output is HIGH (1) if

the inputs are not alike otherwise the output is LOW (0).

Frequency Multiplier is an electronic circuit that generates an output signal whose output

frequency is a harmonic of its input frequency. Frequency multipliers consist of a nonlinear

circuit that distorts the input signal and consequently generates harmonics of the input signal.

A band-pass filter is a device that passes frequencies within a certain range and rejects

(attenuates) frequencies outside that range. These filters can also be created by combining a

low-pass filter with a high-pass filter.

A Low-pass filter is a filter that passes low-frequency signals but attenuates (reduces the

amplitude of) signals with frequencies higher than the cutoff frequency. The actual amount of

attenuation for each frequency varies from filter to filter.

Synchronization is timekeeping which requires the coordination of events to operate a

system in unison.

A Matched filter is obtained by correlating a known signal, or template, with an unknown

signal to detect the presence of the template in the unknown signal. This is equivalent to

convolving the unknown signal with a conjugated time-reversed version of the template. The

75

matched filter is the optimal linear filter for maximizing the signal to noise ratio (SNR) in the

presence of additive stochastic noise.

Jamming is the transmission of those signals that disrupt communications by decreasing the

signal to noise ratio. Unintentional jamming occurs when an operator transmits on a busy

frequency without first checking whether it is in use, or without being able to hear stations

using the frequency.

76

References and Bibliography

a) Wireless communication and Networks

 - William Stallings.

b) Error Correcting Codes

- W.W. Peterson

c) Processing Gain in Spread Spectrum Signals

-John Fakatselis and Harris Semiconductor

d) Maxim Integrated Products

-Application note 1890

e) Communication Systems

-A. Bruce Carlson, Paul B. Crilly and Janet C. Rutledge

f) Characteristic Linear Sequences and their Co-set functions.

-R. Gold (accepted for publication J. Soc Ind. Appl. Math, May 1965.)

g) CDMA-Principles of Spread Spectrum Communication

 - Andrew J. Veterbi.

h) Wireless Communication

 - Andrea Goldsmith

i) Principles of spread spectrum

– Don j. Torrieri

j) CDMA with direct sequence spread spectrum

– Jie Gao February 13, 2007

k) Spread spectrum and CDMA

- Tan & Fong

77

 g) Spread spectrum techniques and technology

 – Mark a. sturza, 3C Systems Company

h) Spread spectrum systems

 – Robert C. Dixon

i) Yu. V. Stasev , A. A. Kuznetsov, and A. M. Nosik ,”Formation of Pseudorandom

sequences with improved autocorrelation properties” UDC 621.396.

j) Spread spectrum communications Handbook

– Marvin K.simon, Jim K. omura, Robert A. scholtz , Barry K. levitt, Mc Graw Hill.

k) Introduction to Spread Spectrum Communications

 – Robert L. Peterson, Rodger E. ziemer, David E. Borth, Prentice Hall

l) Coherent Spread spectrum systems

 – Jack K. Holmes , Wiley –Interscience

 m) Introduction to Spread-Spectrum Communications

 - By Roger L. Peterson (Motorola), Rodger E. Ziemer (University of Co. at Colorado

Springs), and David E. Borth (Motorola),Prentice Hall, 1995(Navtech order #2430).

 n) Frame , bit and chip error rate evaluation for a DSSS communication system

 – F.R. Castillo –Soria , D. Pacheco-Bautista y M. Sanchez – Meraz , Universidad Del

Istmo, Campus Ixtepec , Oaxaca, Mexico y Departemento de Telecomunicaciones SEPI-

ESMI-IPN , Unidad Profesional “Adolfo Lopez Mateos”,Mexico DF , Ingenieria

Investigacion Y Techno logia IX 271-277 , 2008.

