
DEVELOPMENT OF CRYPTOGRAPHIC

TOOLS AND THEIR CRYPTANALYSIS

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology

in

Computer Science Engineering

under the Supervision of

Brig. (Retd.) S.P. Ghrera

By

Shivi Gandhi (091204)

AdityaSrivastava (091268)

AshmitaLucktoo (091327)

Kanika Gupta (091258)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

CERTIFICATE

This is to certify that the work entitled “Development of Cryptographic Tools and

Their Cryptanalysis” submitted by Shivi Gandhi (091204), Aditya Srivastava

(091268),Ashmita Lucktoo (091327) and Kanika Gupta (091258), in partial

fulfillment for the award of degree of Bachelor of Technology of Jaypee University

of Information Technology, Waknaghat has been carried out under my supervision.

This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma.

Signature of Guide:

Name of Guide: Brig. (Retd.) S.P. Ghrera

Designation: Head of Department

Date: May 16, 2013

ACKNOWLEDGEMENT

This project could not have been at the stage it is right now had it not been for the

cooperation of Brig. (Retd.) S.P. Ghrera, our project guide, who was always there to

tell us how to go about our project in a systematic manner and who always took out

time to help us with our technical and non-technical doubts at various stages of the

project.

Equally important was the contribution of Dr. Nitin, our project supervisor, who kept

faith in our ability to complete the project well and on time.

Last but not the least; it was the teachers and Ph.D. students of the Jaypee University

of Information Technology, Waknaghat, particularly Mr. Amol Vasudeva, Mr. Shiv K.

Gupta, Mr. Amit Srivastava, Mrs. Anshul Sood and Ms. Rashmi who came to our

rescue whenever we got stuck in any piece of code or otherwise.

Names of Students:

Shivi Gandhi (091204)

Aditya Srivastava (091268)

Ashmita Lucktoo (091327)

Kanika Gupta (091258)

Date:

May 16, 2013

CONTENTS

CERTIFICATE..2

ACKNOWLEDGEMENT...3

CONTENTS..5

ABSTRACT..8

USE CASE DIAGRAM...9

LITERATURE SURVEY..10

PHISHING:...10

List of phishing techniques:...10

LINKGUARD ALGORITHM (ANTI-PHISHING TECHNIQUE):...12

BRUTE FORCE ATTACKS:...13

FEW MAIN WAYS TO STOP A BRUTE FORCE ATTACK:...14

BRUTE FORCE BY LIMITING THE NUMBER OF ATTEMPTS:...15

BRUTE FORCE BY IMPOSING A TIME LIMIT:..16

RESOURCE METERING:..17

PORT SCANNING:..18

Idle scan of an open port:..18

Idle scan of a closed port:..19

Idle scan of a filtered port:..19

METHODS TO AVOID MALICIOUS USE OF PORT SCANNING:......................................20

CONSUMER BEST PRACTICES:..21

TRIPLE-DES:..23

DES DESIGN CONTROVERSY:...23

STRENGTH OF DES – KEY SIZE:..24

POSSIBLE ANALYTIC ATTACKS:...25

DIAGRAMMATIC OVERVIEW:..26

TRIPLE DES OVERVIEW:...27

Page 5 of 104

RSA..28

RSA SECURITY:..28

PUBLIC-KEY CRYPTOGRAPHY:...29

RSA KEY SETUP:..30

KEY DISTRIBUTION CENTRE...31

CLIENT SIDE FLOW CHART..32

SERVER SIDE FLOW CHART...33

WINDOWS SERVER 2003...35

CREATING THE FIRST WINDOWS SERVER 2003 DOMAIN CONTROLLER IN A

DOMAIN..36

CREATING A NEW USER ON WINDOWS SERVER 2003..46

CODES..50

SERVER SIDE:..50

CLIENT SIDE:...53

USER AUTHENTICATION:...56

BRUTE FORCE BY LIMITING THE NUMBER OF ATTEMPTS:...60

BRUTE FORCE METHOD BY IMPOSING A TIME LIMIT:...61

SQL CONNECTIVITY:..62

TRIPLE - DES:..67

RSA:...69

ECHO CLIENT – SERVER:..71

KDC:..76

HOLDER:...78

DES WORKING WITH KDC:..79

DES DECRYPTION:...81

RSA ENCRYPTION:..82

RSA DECRYPTION:...84

OUTPUTS...85

BASIC INTERACTION BETWEEN CLIENT AND SERVER:...85

ECHO CLIENT SERVER:...86

Page 6 of 104

USER INTERFACE FOR CREATING NEW USER OR SIGNING UP FOR EXISTING USER:.. .87

3DES:...89

RSA:...89

SQL CONNECTIVITY:..91

CONCLUSION...95

REFERENCES...96

Page 7 of 104

LIST OF FIGURES

Figure 1: Use case diagram ..10

Figure 2: Idle scan of an open port...19

Figure 3: Idle scan of a closed port..20

Figure 4: Idle scan of a filtered port...20

Figure 5: Simplified Model of Conventional Encryption..25

Figure 6: DES overview...29

Figure 7: Triple-DES overview..30

Figure 8: RSA overview...33

Figure 9: Key Distribution Centre..34

Figure 10: Client side flow chart..35

Figure 11: Server side flow chart...37

Page 8 of 104

ABSTRACT

Today, security is one of the foremost concerns in the transmission of data over the

internet or over any other network. We will thus develop applications to implement

various security services that will help the individuals in the network to maintain their

safety and privacy. Also, the strength of these security solutions will be cryptanalyzed

through study of various networking attacks and developing countermeasures against

them like,

 Brute Force Method implemented on the basis of limiting the number of

attempts,

 Brute Force Method implemented on the basis of imposing a time limit,

 RSA, 3DES, KDC

The strength of the cryptographic tools implemented will thus be tested against these

implemented attacks.

While the cryptographic techniques have to be implemented all at once, the

cryptanalysis is done one algorithm at a time, as only one type of attack will be

launched by an attacker at one time.

Page 9 of 104

USE CASE DIAGRAM

Figure 1: Use case diagram 

Page 10 of 104

LITERATURE SURVEY

Phishing:

It is the act of sending an e-mail to a user falsely claiming to be an established

legitimate enterprise, in order to scam the user into surrendering private information

that can then be used for identity theft. The e-mail directs the user to visit a Web

site where they are asked to update personal information, such as passwords and

credit card, social security, and bank account numbers, that the legitimate organization

already has.

List of phishing techniques:

 Spear Phishing: Phishing attempts directed at specific individuals or

companies. Attackers may gather personal information about their target to

increase their probability of success.

 Clone Phishing: A type of phishing attack whereby a legitimate, and

previously delivered, email containing an attachment or link has had its

content and recipient address(es) taken and used to create an almost identical

or cloned email. The attachment or link within the email is replaced with a

malicious version and then sent from an email address spoofed to appear to

come from the original sender. It may claim to be a re-send of the original or

an updated version to the original.

Page 11 of 104

 Whaling:Several recent phishing attacks have been directed specifically at

senior executives and other high profile targets within businesses, and the

term whaling has been coined for these kinds of attacks.

Page 12 of 104

LinkGuard Algorithm (Anti-phishing technique):

 In its main routine LinkGuard, it first extracts the DNS names from the actual

and the visual links. It then compares the actual and visual DNS names, if

these names are not the same, then it is of phishing category.

 If dotted decimal IP address is directly used in actual DNS, then a possible

phishing attack.

 If the actual link or the visual link is encoded: first decode the links, then

recursively call LinkGuard to return a result.

 When there is no destination information (DNS name or dotted IP address) in

the visual link, LinkGuard calls AnalyzeDNS to analyze the actual DNS.

 LinkGuard therefore handles all the categories of phishing attacks.

Page 13 of 104

Brute force attacks:

 Manual login attempts, they will try to type in a few usernames and

passwords

 Dictionary based attacks, automated scripts and programs will try

guessing thousands of usernames and passwords from a dictionary file,

sometimes a file for usernames and another file for passwords

 Generated logins, a cracking program will generate random usernames

set by the user. They could generate numbers only, a combination of numbers

and letters or other combinations.

Page 14 of 104

Few Main Ways to Stop a Brute Force Attack:

• restricting the amount of login attempts that a user can perform

• banning a user’s IP after multiple failed login attempts

• the most obvious way to block brute-force attacks is to simply lock out

accounts after a defined number of incorrect password attempts

• Since the success of the attack is dependent on time, inject random pauses

when checking a password. Adding even a few seconds' pause can greatly

slow a brute-force attack but will not bother most legitimate users as they log

in to their accounts

• to lock out an IP address with multiple failed logins

• after one or two failed login attempts, you may want to prompt the user not

only for the username and password but also to answer a secret question

• for advanced users who want to protect their accounts from attack, give them

the option to allow login only from certain IP addresses

• use a CAPTCHA to prevent automated attacks

Page 15 of 104

Brute Force by limiting the number of attempts:

RealVNC Anti 3.x Brute Force Algorithm

if (strcmp (current ->machineName, Machine) == 0)

{

if (current-> blocked)

return;

current->lastRefTime.QuadPart = now.QuadPart + 10;

current->failureCount++;

if (current->failureCount> five)

current-> blocked = TRUE;

return;

}

Page 16 of 104

Brute Force by imposing a time limit:

RealVNC 4.x Anti Brute Force algorithm

if ((*i).second.marks>= THRESHOLD)

{

time_t now = time (0);

if (now >= (* i). second.blockUntil)

{

(*i). second.blockUntil = now + (*i).second.blockTimeout;

(*i).second.blockTimeout = (*i).second.blockTimeout * 2;

return false;

}

return True;

}

(*i).second.marks++;

return false;

Page 17 of 104

Resource metering:

• Resource metering is a technique designed to restrict the repetition frequency

of data submission to an application or host system. To be successful, a

resource metering solution should enforce restrictions at the client-side and not

consume additional resources at the server-side.

• The most practical method of implementing resource metering is through the

use of cryptographic hashes. The use of a cryptographic hash in this fashion is

sometimes referred to as requiring an “electronic payment” before processing

the customer’s submission. In essence, the server-side application requires the

customer’s client to compute a value that is computationally intensive, but

easy to validate, before processing the submitted data.

Page 18 of 104

Port Scanning:

 The act of systematically scanning a computer's ports. Since a port is a place

where information goes into and out of a computer, port scanning identifies

open doors to a computer. Port scanning has legitimate uses in managing

networks, but port scanning also can be malicious in nature if someone is

looking for a weakened access point to break into your computer.

The following three diagrams show exactly what happens in the three cases of an

open, closed, and filtered port.

 the attacker, the zombie, and the target.

Idle scan of an open port:

Figure 2: Idle scan of an open port

Page 19 of 104

Idle scan of a closed port:

Figure 3: Idle scan of a closed port

Idle scan of a filtered port:

Figure 4: Idle scan of a filtered port

Page 20 of 104

Methods to avoid malicious use of Port Scanning:

 TCP Idle Scan: Idle scan allows for completely blind port scanning. Attackers

can actually scan a target without sending a single packet to the target from

their own IP address. Instead, a clever side-channel attack allows for the scan

to be bounced off a dumb “zombie host”.

 SYN Scan: SYN scanning is a tactic that a malicious cracker can use to

determine the state of a communications port without establishing a full

connection. This approach, one of the oldest in the repertoire of crackers, is

sometimes used to perform denial-of-service (DoS) attacks. SYN scanning is

also known as half-open scanning.

 One way to determine whether a TCP port is open is to send a SYN (session

establishment) packet to the port. The target machine will respond with a

SYN/ACK (session request acknowledgment) packet if the port is open and

RST (reset if the port is closed.

 A machine that receives an unsolicited SYN/ACK packet will respond with a

RST. An unsolicited RST will be ignored.

 Every IP packet on the Internet has a fragment identification number (IP

ID). Since many operating systems simply increment this number for each

packet they send, probing for the IP ID can tell an attacker how many packets

have been sent since the last probe.

Page 21 of 104

Consumer Best Practices:

• Automatically block malicious/fraudulent E-mail: Spam detectors can help keep

theconsumer from ever opening the suspicious E-mail, but they aren’t fool proof.

• Automatically detect and delete malicious software: Spyware is often part of a

phishingattack, but can be removed by many commercial programs.

• Automatically block outgoing delivery of sensitive information to malicious

parties: Even if the consumer can’t visually identify the true web site that will receive

sensitive information, there are software products that can.

• Be suspicious: If you aren’t sure if an E-mail is legitimate, call the apparent sending

institution to verify the authenticity.

None of these remedies individually provides a complete answer to the problem. A

combination of countermeasures is recommended that will:

• minimize the number of phishing attacks delivered to consumers;

• increase the likelihood that the consumer will recognize a phishing attack; and

• minimize the opportunities for the consumer to inadvertently release sensitive

information.

Education remains critical so consumers are aware of both the phishing techniques

and how legitimate entities will communicate with them via E-mail and the web.

Page 22 of 104

Fundamentally, an idle scan consists of three steps that are repeated for each port:

 Probe the zombie's IP ID and record it.

 Forge a SYN packet from the zombie and send it to the desired port on the

target. Depending on the port state, the target's reaction may or may not cause

the zombie's IP ID to be incremented.

 Probe the zombie's IP ID again. The target port state is then determined by

comparing this new IP ID with the one recorded in step 1.

 After this process, the zombie's IP ID should have increased by either one or

two. An increase of one indicates that the zombie hasn't sent out any packets,

except for its reply to the attacker's probe. This lack of sent packets means that

the port is not open (the target must have sent the zombie either a RST packet,

which was ignored, or nothing at all). An increase of two indicates that the

zombie sent out a packet between the two probes. This extra packet usually

means that the port is open (the target presumably sent the zombie a

SYN/ACK packet in response to the forged SYN, which induced a RST packet

from the zombie). Increases larger than two usually signify a bad zombie host.

It might not have predictable IP ID numbers, or might be engaged in

communication unrelated to the idle scan.

Page 23 of 104

TRIPLE-DES:

The most widely used private key block cipher, is the Data Encryption Standard

(DES). It was adopted in 1977 by the National Bureau of Standards as Federal

Information Processing Standard 46 (FIPS PUB 46). DES encrypts data in 64-bit

blocks using a 56-bit key. The DES enjoys widespread use. It has also been the

subject of much controversy its security.

Page 24 of 104

Symmetric key cryptography:

A symmetric encryption scheme has five ingredients:

 Plaintext: This is the original intelligible message or data that is fed into the
algorithm as input.

 Encryption algorithm: The encryption algorithm performs various
substitutions and transformations on the plaintext.

 Secret key: The secret key is also input to the encryption algorithm. The key
is a value independent of the plaintext and of the algorithm. The algorithm will
produce a different output depending on the specific key being used at the
time. The exact substitutions and transformations performed by the algorithm
depend on the key.

 Ciphertext: This is the scrambled message produced as output. It depends
on the plaintext and the secret key. For a given message, two different keys
will produce two different ciphertexts. The ciphertext is an apparently random
stream of data and, as it stands, is unintelligible.

 Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

Figure 5: Simplified Model of Conventional Encryption

Page 25 of 104

DES Design Controversy:

Before its adoption as a standard, the proposed DES was subjected to intense &

continuing criticism over the size of its key & the classified design criteria.

Recent analysis has shown despite this controversy, that DES is well designed. DES is

theoretically broken using Differential or Linear Cryptanalysis but in practise is

unlikely to be a problem yet. Also rapid advances in computing speed though have

rendered the 56 bit key susceptible to exhaustive key search, as predicted by Diffie&

Hellman.

DES has flourished and is widely used, especially in financial applications. It is still

standardized for legacy systems, with either AES or triple DES for new applications.

Page 26 of 104

Strength of DES – Key Size:

Since its adoption as a federal standard, there have been lingering concerns about the

level of security provided by DES in two areas: key size and the nature of the

algorithm.

With a key length of 56 bits, there are 2^56 possible keys, which is approximately

7.2*10^16 keys. Thus a brute-force attack appeared impractical.

However DES was finally and definitively proved insecure in July 1998, when the

Electronic Frontier Foundation (EFF) announced that it had broken a DES encryption

using a special-purpose "DES cracker" machine that was built for less than $250,000.

The attack took less than three days. The EFF has published a detailed description of

the machine, enabling others to build their own cracker [EFF98].

There have been other demonstrated breaks of the DES using both large networks of

computers & dedicated h/w, including:

- 1997 on a large network of computers in a few months

- 1998 on dedicated h/w (EFF) in a few days

- 1999 above combined in 22hrs!

It is important to note that there is more to a key-search attack than simply running

through all possible keys. Unless known plaintext is provided, the analyst must be

able to recognize plaintext as plaintext.

Clearly must now consider alternatives to DES, the most important of which are AES

and triple DES.

Page 27 of 104

Possible analytic attacks:

Another concern is the possibility that cryptanalysis is possible by exploiting the

characteristics of the DES algorithm.

The focus of concern has been on the eight substitution tables, or S-boxes, that are

used in each iteration. These techniques utilise some deep structure of the cipher by

gathering information about encryptions so that eventually you can recover some/all

of the sub-key bits, and then exhaustively search for the rest if necessary. Generally

these are statistical attacks which depend on the amount of information gathered for

their likelihood of success.

Attacks of this form include the following

 Timing attack

 differential cryptanalysis,

 linear cryptanalysis and

 related key attacks.

Page 28 of 104

Diagrammatic Overview:

Figure 6: DES overview

Page 29 of 104

Triple DES overview:

Triple-DES with two keys is a popular alternative to single-DES, but suffers from

being 3 times slower to run. The use of encryption & decryption stages are equivalent,

but the chosen structure allows for compatibility with single-DES implementations.

3DES with two keys is a relatively popular alternative to DES and has been adopted

for use in the key management standards ANS X9.17 and ISO 8732. Currently, there

are no practical cryptanalytic attacks on 3DES. Coppersmith notes that the cost of a

brute-force key search on 3DES is on the order of 2^112 (=5*10^33) and estimates

that the cost of differential cryptanalysis suffers an exponential growth, compared to

single DES, exceeding 10^52.

Figure 7: Triple-DES overview

Page 30 of 104

RSA

RSA is the best known, and by far the most widely used general public key encryption

algorithm, and was first published by Rivest, Shamir &Adleman of MIT in 1978

[RIVE78]. Since that time RSA has reigned supreme as the most widely accepted and

implemented general-purpose approach to public-key encryption. It is based on

exponentiation in a finite (Galois) field over integers modulo a prime, using large

integers (eg. 1024 bits). Its security is due to the cost of factoring large numbers.

RSA Security:

Possible approaches to attacking RSA are:

 brute force key search (infeasible given size of numbers)

 mathematical attacks (based on difficulty of computing ø(n), by factoring

modulus n)

 timing attacks (on running of decryption)

 chosen ciphertext attacks (given properties of RSA)

Page 31 of 104

Public-Key Cryptography:

Public-key/two-key/asymmetric cryptography involves the use of two keys:

 a public-key, which may be known by anybody, and can be used to encrypt

messages, and verify signatures

 a private-key, known only to the recipient, used to decrypt messages, and

sign (create) signatures

It is consideredasymmetric becausethose who encrypt messages or verify signatures

cannot decrypt messages or create signatures

Public-Key algorithms rely on two keys where:

 it is computationally infeasible to find decryption key knowing only algorithm

& encryption key

 it is computationally easy to en/decrypt messages when the relevant

(en/decrypt) key is known

 either of the two related keys can be used for encryption, with the other used

for decryption (for some algorithms)

Page 32 of 104

RSA Key Setup:

RSA key setup is done once (rarely) when a user establishes (or replaces) their public

key, using the steps as shown. The exponent e is usually fairly small, just must be

relatively prime to ø(n). Need to compute its inverse mod ø(n) to find d. It is critically

important that the factors p & q of the modulus n are kept secret, since if they become

known, the system can be broken. Note that different users will have different moduli-

n.

Figure 8: RSA overview

Page 33 of 104

KEY DISTRIBUTION CENTRE

The strength of any cryptographic system depends on the key distribution technique.

For two parties A and B, key distribution can be achieved in a number of ways:

 A can select key and physically deliver to B

 third party can select & deliver key to A & B

 if A & B have communicated previously can use previous key to encrypt a

new key

 if A & B have secure communications with a third party C, C can relay key

between A & B

Page 34 of 104

Figure 9: Key Distribution Centre

Page 35 of 104

CLIENT SIDE FLOW CHART

Figure 10: Client side flow chart

Page 36 of 104

SERVER SIDE FLOW CHART

Page 37 of 104

Figure 11: Server side flow chart

Page 38 of 104

WINDOWS SERVER 2003

 It includes all the functionality customers expect from a critical Server

operating system, such as security, reliability, availability, and scalability.

 We created a domain controller (DC) in the network which includes DNS

server setup in windows server 2003 .We installed DNS server for DC,

without which the client computers wouldn’t know which one is DC. Some of

its most well-known features are its ability to store user names and passwords

on a central computer (the Domain Controller)

 We have assigned a static IP address to our server.

 Creating new user(s): One of the “administrator’s group” and one “regular”

user.

 It is not necessary to create a secondary account, but it is recommended in

case you stay logged on, and someone gains control of the desktop (locally or

remotely).

Page 39 of 104

Creating the first windows server 2003 domain controller in

a domain

Page 40 of 104

Page 41 of 104

We create a domain in a new forest, because it is the first DC

Page 42 of 104

Page 43 of 104

Page 44 of 104

Page 45 of 104

Page 46 of 104

Click ok, and then in the Local Area Connection properties, click "Internet Protocol

(TCP/IP)" and then "Properties"

Page 47 of 104

Page 48 of 104

Page 49 of 104

Creating a New User on Windows Server 2003

Page 50 of 104

Page 51 of 104

Page 52 of 104

Page 53 of 104

CODES

Server side:

import java.io.*;

import java.net.*;

publicclass Provider{

ServerSocketproviderSocket;

Socket connection = null;

ObjectOutputStreamout;

ObjectInputStreamin;

String message;

void run()

{

try{

providerSocket = newServerSocket(2004,10);

System.out.println("Waiting for connection");

connection = providerSocket.accept();

System.out.println("Connection received from " +

connection.getInetAddress().getHostName());

out = newObjectOutputStream(connection.getOutputStream());

out.flush();

in = newObjectInputStream(connection.getInputStream());

sendMessage("Connection successful");

do{

try{

message = (String)in.readObject();

Page 54 of 104

System.out.println("client>" + message);

if (message.equals("bye"))

sendMessage("bye");

}

catch(ClassNotFoundExceptionclassnot){

System.err.println("Data received in unknown

format");

}

}while(!message.equals("bye"));

}

catch(IOExceptionioException){

ioException.printStackTrace();

}

finally{

try{

in.close();

out.close();

providerSocket.close();

}

catch(IOExceptionioException){

ioException.printStackTrace();

}

}

}

voidsendMessage(String msg)

{

try{

out.writeObject(msg);

out.flush();

System.out.println("server>" + msg);

}

catch(IOExceptionioException){

ioException.printStackTrace();

}

Page 55 of 104

}

publicstaticvoid main(String args[])

{

Provider server = newProvider();

while(true){

server.run();

}

}

}

Page 56 of 104

Client side:

import java.io.*;

import java.net.*;

publicclass Requester{

Socket requestSocket;

ObjectOutputStreamout;

ObjectInputStreamin;

String message;

void run()

{

try{

requestSocket = new Socket("localhost", 2004);

System.out.println("Connected to localhost in port 2004");

out =

newObjectOutputStream(requestSocket.getOutputStream());

out.flush();

in = newObjectInputStream(requestSocket.getInputStream());

do{

try{

message = (String)in.readObject();

System.out.println("server>" + message);

sendMessage("Hi my server");

message = "bye";

sendMessage(message);

}

catch(ClassNotFoundExceptionclassNot){

System.err.println("data received in unknown

format");

Page 57 of 104

}

}while(!message.equals("bye"));

}

catch(UnknownHostExceptionunknownHost){

System.err.println("You are trying to connect to an unknown

host!");

}

catch(IOExceptionioException){

ioException.printStackTrace();

}

finally{

try{

in.close();

out.close();

requestSocket.close();

}

catch(IOExceptionioException){

ioException.printStackTrace();

}

}

}

voidsendMessage(String msg)

{

try{

out.writeObject(msg);

out.flush();

System.out.println("client>" + msg);

}

catch(IOExceptionioException){

ioException.printStackTrace();

}

}

publicstaticvoid main(String args[])

{

Page 58 of 104

Requester client = newRequester();

client.run();

}

}

Page 59 of 104

User authentication:

importjava.awt.*;

importjavax.swing.*;

importjava.awt.event.*;

publicclass Info implementsActionListener

{

publicintflag = 0;

DataInsertiondi = newDataInsertion();

publicJFramef;

publicJLabelname,pass,intr;

publicJTextFieldtname;

publicJPasswordFieldtpass;

publicJButtonbi,bu,ex,su;

public Info()

{

f = newJFrame();

f.setLayout(newGridLayout(1,2));

ex = newJButton("EXISTING USER");

su = newJButton("SIGN UP");

}

publicvoid page1()

{

f.add(ex);

f.add(su);

ex.addActionListener(this);

su.addActionListener(this);

f.setSize(400,200);

f.setLocation(400,200);

Page 60 of 104

f.setVisible(true);

}

publicvoid page2()

{

f.setVisible(false);

f = newJFrame();

f.setLayout(newGridLayout(6,1));

// f.setBackground(Color.WHITE);

// f.setForeground(Color.BLUE);

intr = newJLabel("SIGN IN");

name = newJLabel("NAME");

tname = newJTextField(30);

pass = newJLabel("PASSWORD");

tpass = newJPasswordField(20);

bi = newJButton("SUBMIT");

f.getRootPane().setDefaultButton(bi);

f.add(intr);

f.add(name);

f.add(tname);

f.add(pass);

f.add(tpass);

f.add(bi);

bi.addActionListener(this);

f.setSize(400,200);

f.setLocation(400,200);

f.setVisible(true);

}

publicvoidsignUp()

{

f.setVisible(false);

f = newJFrame();

f.setLayout(newGridLayout(6,1));

intr = newJLabel("SIGN UP");

Page 61 of 104

name = newJLabel("NAME");

tname = newJTextField(30);

pass = newJLabel("PASSWORD");

tpass = newJPasswordField(20);

bu = newJButton("SUBMIT");

f.add(intr);

f.add(name);

f.add(tname);

f.add(pass);

f.add(tpass);

f.add(bu);

f.getRootPane().setDefaultButton(bu);

bu.addActionListener(this);

f.setSize(400,200);

f.setLocation(400,200);

f.setVisible(true);

}

publicvoidactionPerformed(ActionEvent e)

{

if(e.getSource() == bi)

{

try

{

char[] ch = (char[]) tpass.getPassword();

String str = newString(ch);

//System.out.println("Password = " + str);

f.setVisible(false);

di.checkIn((String) tname.getText(),str);

}

catch(Exception ex)

{}

}

elseif(e.getSource() == bu)

{

Page 62 of 104

try

{

char[] ch = (char[]) tpass.getPassword();

String str = newString(ch);

//System.out.println("Password = " + str);

f.setVisible(false);

di.insertIn((String) tname.getText(),str);

}

catch(Exception ex)

{}

}

elseif(e.getSource() == ex)

{

flag = 1;

page2();

}

elseif(e.getSource() == su)

{

flag = 2;

signUp();

}

}

/*public static void main(String args[])

{

Info i = new Info();

i.page1();

}*/

}

Page 63 of 104

Brute Force by limiting the number of attempts :

publicclass BruteForce1 {

publicint attack1(intctr)

{

if(ctr> 5)

return 1;

elseif(ctr == 5)

return 0;

else

return 2;

}

}

Page 64 of 104

Brute Force Method by imposing a time limit :

publicclass BruteForce2 {

publicint attack2(java.util.Datefrst)

{

java.util.Date today = newjava.util.Date();

if((today.compareTo(frst) > 0)&&(today.compareTo(frst) < 300000))

return 2;

elseif(today.compareTo(frst) == 300000)

return 0;

else

return 1;

}

}

Page 65 of 104

SQL connectivity:

import java.io.*;

importjava.sql.*;

importjava.awt.*;

importjavax.swing.*;

publicclassDataInsertion

{

JFramef;

JLabeljl;

staticintctr = 0;

BruteForce1 b1 = newBruteForce1();

BruteForce2 b2 = newBruteForce2();

java.util.Datefrst;

publicvoidiniti()

{

f = newJFrame();

f.setLayout(newBorderLayout());

jl = newJLabel("CONNECTING...............");

f.add(jl,BorderLayout.CENTER);

f.setSize(400,200);

f.setLocation(400,200);

f.setVisible(true);

}

publicvoidinsertIn(String name, String pass1) throwsIOException

{

initi();

String url = "jdbc:mysql://localhost:3306/db";

Page 66 of 104

Connection conn;

ResultSetrs;

try

{

Class.forName("com.mysql.jdbc.Driver");

conn = DriverManager.getConnection(url,

"root", "root");

Statement statement = conn.createStatement();

String query = "insert into authvalues('" + name

+ "','" + pass1 + "'," + "'unblocked','123')";

int i = statement.executeUpdate(query);

if(i!=0)

{

System.out.println("The record has been

inserted");

}

else

{

System.out.println("Sorry!! Failure");

}

rs = statement.executeQuery("select * from

auth");

System.out.println(" NAME \t\t\t\t PASSWORD

\t\t\t\t STATUS");

while(rs.next())

System.out.println(" " + rs.getString(1) +

" \t\t\t\t " + rs.getString(2) + " \t\t\t\t " + rs.getString(3));

rs.close();

statement.close();

}

catch (Exception e)

Page 67 of 104

{

System.out.println(e);

}

}

publicvoidcheckIn(String name, String pass) throwsIOException

{

Info in = newInfo();

String url = "jdbc:mysql://localhost:3306/db";

Connection conn;

ResultSetrs;

try

{

Class.forName("com.mysql.jdbc.Driver");

conn = DriverManager.getConnection(url,

"root", "root");

Statement statement = conn.createStatement();

int flag = 0;

rs = statement.executeQuery("select * from

auth");

//System.out.println(" NAME \t\t\t\t

PASSWORD \t\t\t\t STATUS");

initi();

while(rs.next())

{

if((rs.getString(1).equals(name))&&(rs.getString(2).equals(pass)))

{

if((rs.getString(3).equals("unblocked")))

{

flag = 1;

Page 68 of 104

jl.setText("LOGIN

SUCCESSFUL");

}

else

{

flag = 2;

jl.setText("BLOCKED

ACCOUNT CONTACT ADMINISTRATOR");

}

}

}

if(flag == 0)

{

jl.setText("INCORRECT

ID/PASSWORD TRY AGAIN");

for(int i=1; i<=10000000; i++);

ctr++;

intct = b1.attack1(ctr);

if(ct == 0)

{

rs =

statement.executeQuery("select * from auth");

while(rs.next())

{

if(rs.getString(1).equals(name))

{

statement.executeUpdate("update auth set status='blocked' where username='"

+ name + "'");

jl.setText("ACCOUNT BLOCKED");

}

Page 69 of 104

}

}

in.page2();

if(ctr == 1)

{

frst = newjava.util.Date();

//System.out.println(frst.toString(

));

}

int ta = b2.attack2(frst);

if(ta == 0 &&ctr>= 5)

{

rs =

statement.executeQuery("select * from auth");

if(rs.getString(1).equals(name))

{

statement.executeUpdate("update auth set status='blocked' where username='"

+ name + "'");

jl.setText("ACCOUNT BLOCKED");

}

}

}

rs.close();

statement.close();

}

catch (Exception e)

{

System.out.println(e);

} }}

Page 70 of 104

Triple- DES:

importjava.security.*;

importjavax.crypto.*;

publicclass Encrypt {

privatestatic String algorithm = "DESede";

privatestatic Key key = null;

privatestatic Cipher cipher = null;

privatestaticvoidsetUp() throws Exception

 {

key = KeyGenerator.getInstance(algorithm).generateKey();

cipher = Cipher.getInstance(algorithm);

 }

publicstaticvoid main(String[] args) throws Exception

 {

setUp();

byte[] encryptionBytes = null;

 String input = "453";

System.out.println("Entered: " + input);

encryptionBytes = encrypt(input);

System.out.println(encryptionBytes);

System.out.println("Recovered: " + decrypt(encryptionBytes));

 }

privatestaticbyte[] encrypt(String input)throws

InvalidKeyException,BadPaddingException,IllegalBlockSizeException

 {

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] inputBytes = input.getBytes();

returncipher.doFinal(inputBytes);

 }

Page 71 of 104

privatestatic String decrypt(byte[] encryptionBytes)throws

InvalidKeyException,BadPaddingException,IllegalBlockSizeException

 {

cipher.init(Cipher.DECRYPT_MODE, key);

byte[] recoveredBytes = cipher.doFinal(encryptionBytes);

 String recovered = newString(recoveredBytes);

return recovered;

 }

 }

Page 72 of 104

RSA:

importjava.security.*;

importjavax.crypto.*;

publicclass Encrypt {

privatestatic String algorithm = "DESede";

privatestatic Key key = null;

privatestatic Cipher cipher = null;

privatestaticvoidsetUp() throws Exception

 {

key = KeyGenerator.getInstance(algorithm).generateKey();

cipher = Cipher.getInstance(algorithm);

 }

publicstaticvoid main(String[] args) throws Exception

 {

setUp();

byte[] encryptionBytes = null;

 String input = "453";

System.out.println("Entered: " + input);

encryptionBytes = encrypt(input);

System.out.println(encryptionBytes);

System.out.println("Recovered: " + decrypt(encryptionBytes));

 }

privatestaticbyte[] encrypt(String input)throws

InvalidKeyException,BadPaddingException,IllegalBlockSizeException

 {

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] inputBytes = input.getBytes();

returncipher.doFinal(inputBytes);

 }

Page 73 of 104

privatestatic String decrypt(byte[] encryptionBytes)throws

InvalidKeyException,BadPaddingException,IllegalBlockSizeException

 {

cipher.init(Cipher.DECRYPT_MODE, key);

byte[] recoveredBytes = cipher.doFinal(encryptionBytes);

 String recovered = newString(recoveredBytes);

return recovered;

 }

 }

Page 74 of 104

Echo Client – Server:

importjava.awt.*;

importjava.awt.event.*;

import java.io.*;

import java.net.*;

importjava.util.Scanner;

importjavax.swing.*;

importjavax.swing.text.DefaultCaret;

publicclassSerCliimplementsActionListener, Runnable {

privatestaticfinal String HOST = "127.0.0.1";

privatestaticfinalintPORT = 2004;

privatefinalJFramef = newJFrame();

privatefinalJTextFieldtf = newJTextField(25);

privatefinalJTextAreata = newJTextArea(15, 25);

privatefinalJButtonsend = newJButton("Send");

volatilePrintWriterout;

private Scanner in;

private Thread thread;

private Kind kind;

public String str;

publicstaticenum Kind {

Client(100, "Trying"), Server(500, "Awaiting");

privateintoffset;

private String activity;

private Kind(int offset, String activity) {

Page 75 of 104

this.offset = offset;

this.activity = activity;

 }

 }

publicSerCli()

 {

 }

publicSerCli(Kind kind) {

this.kind = kind;

f.setTitle("Echo " + kind);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.getRootPane().setDefaultButton(send);

f.add(tf, BorderLayout.NORTH);

f.add(newJScrollPane(ta), BorderLayout.CENTER);

f.add(send, BorderLayout.SOUTH);

f.setLocation(kind.offset, 300);

f.pack();

send.addActionListener(this);

ta.setLineWrap(true);

ta.setWrapStyleWord(true);

DefaultCaret caret = (DefaultCaret) ta.getCaret();

caret.setUpdatePolicy(DefaultCaret.ALWAYS_UPDATE);

display(kind.activity + HOST + " on port " + PORT);

thread = new Thread(this, kind.toString());

 }

publicvoid start() {

f.setVisible(true);

thread.start();

 }

//@Override

Page 76 of 104

publicvoidactionPerformed(ActionEventae) {

 String s = tf.getText();

if (out != null) {

out.println(s);

 }

display(s);

tf.setText("");

 }

//@Override

publicvoid run() {

try {

 Socket socket;

if (kind == Kind.Client)

 {

socket = new Socket(HOST, PORT);

 }

else

 {

ServerSocketss = newServerSocket(PORT);

socket = ss.accept();

 }

in = new Scanner(socket.getInputStream());

out = newPrintWriter(socket.getOutputStream(), true);

display("Enter Existing User/Sign Up:");

str = in.nextLine();

while (true) {

display(str);

 }

 } catch (Exception e) {

display(e.getMessage());

e.printStackTrace(System.err);

 }

Page 77 of 104

 }

void display(final String s) {

EventQueue.invokeLater(new Runnable() {

publicvoid run() {

ta.append(s + "\u23CE\n");

 }

 });

 }

publicstaticvoid main(String[] args) {

EventQueue.invokeLater(new Runnable() {

publicvoid run() {

SerCliser = newSerCli(Kind.Server);

ser.start();

SerCli cli = newSerCli(Kind.Client);

cli.start();

 Info inf = newInfo();

/*if(str == "existing user")

 {

str = "";

inf.page2();

 }

else if(str == "existing user")

 {

str = "";

inf.signUp();

 }*/

/*if(inf.flag == 1)

out.write("Existing User");

else if(inf.flag == 2)

Page 78 of 104

ser.display("Signing Up");*/

 }

 });

 }

}

Page 79 of 104

Key Distribution Centre

KDC:

importjava.security.*;

importjavax.crypto.*;

publicclass KDC {

publicstatic Key key = null;

publicstatic Cipher cipher = null;

public KDC()throws Exception

{

String algorithm = "DESede";

key = KeyGenerator.getInstance(algorithm).generateKey();

cipher = Cipher.getInstance(algorithm);

}

public Key getKey()

 {

/*String algorithm = "DESede";

 //private static int[] key = new int[24];

key = KeyGenerator.getInstance(algorithm).generateKey();

cipher = Cipher.getInstance(algorithm);*/

returnkey;

 }

Page 80 of 104

public Cipher getCipher()

 {

returncipher;

 }

staticPublicKeypubli = null;

staticPrivateKeyprivatei = null;

publicvoidkeyRsa() throws Exception

{

KeyPairGeneratorkpg = KeyPairGenerator.getInstance("RSA");

kpg.initialize(512);

KeyPairkp = kpg.genKeyPair();

publi = kp.getPublic();

privatei = kp.getPrivate();

//return kp;

}

publicPublicKeygetPublicKey()

{

returnpubli;

}

publicPrivateKeygetPrivateKey()

{

returnprivatei;

}

}

Page 81 of 104

Holder:

importjava.security.*;

publicclass Holder

{

publicstaticvoid main(String args[])

{

try

{

KDC k = newKDC();

k.keyRsa();

PublicKeypubli = k.getPublicKey();

PrivateKeyprivatei = k.getPrivateKey();

RSAEncrypt en = newRSAEncrypt();

byte[] cipherData = en.encryption(publi);

RSADecrypt de = newRSADecrypt();

de.decryption(privatei, cipherData);

}

catch(Exception e)

{

System.out.println(e.getMessage());

} } }

Page 82 of 104

DES working with KDC:

importjava.security.*;

importjavax.crypto.*;

importjava.util.Scanner;

publicclass DES {

//private static String algorithm = "DESede";

/*private static Key key = null;

 //private static int[] key = new int[24];

private static Cipher cipher = null;*/

publicstaticvoid main(String[] args) throws Exception

 {

Scanner s = newScanner(System.in);

KDC kdc = newKDC();

DESDecrypt d = newDESDecrypt();

Key key = kdc.getKey();

Cipher cipher = kdc.getCipher();

byte[] encryptionBytes = null;

System.out.println("Enter the Data:");

 String input = s.next();

System.out.println("Entered Data: " + input);

encryptionBytes = encrypt(input, key, cipher);

System.out.println(encryptionBytes);

System.out.println("Recovered Data: " + d.decrypt(encryptionBytes, key, cipher));

 }

staticbyte[] encrypt(String input, Key key, Cipher cipher) throws

InvalidKeyException,BadPaddingException,IllegalBlockSizeException

 {

cipher.init(Cipher.ENCRYPT_MODE, key);

Page 83 of 104

byte[] inputBytes = input.getBytes();

returncipher.doFinal(inputBytes);

 }

 }

Page 84 of 104

DES Decryption:

importjava.security.InvalidKeyException;

importjava.security.Key;

importjavax.crypto.BadPaddingException;

importjavax.crypto.Cipher;

importjavax.crypto.IllegalBlockSizeException;

publicclassDESDecrypt {

String decrypt(byte[] encryptionBytes, Key key, Cipher cipher)throws

InvalidKeyException,BadPaddingException,IllegalBlockSizeException

 {

cipher.init(Cipher.DECRYPT_MODE, key);

byte[] recoveredBytes = cipher.doFinal(encryptionBytes);

 String recovered = newString(recoveredBytes);

return recovered;

 }

}

Page 85 of 104

RSA Encryption:

importjava.security.*;

import java.io.*;

importjavax.crypto.Cipher;

publicclassRSAEncrypt

{

publicbyte[] encryption(PublicKeypubli)

{

String srci="";

byte[] cipherData = null;

try

{

BufferedReaderbr =

newBufferedReader(newInputStreamReader(System.in));

System.out.println("Please enter any string you

want to encrypt");

srci = br.readLine();

}

catch(IOExceptionioe)

{

System.out.println(ioe.getMessage());

}

try

{

System.out.println("Public Key = " + publi);

Cipher cipher = Cipher.getInstance("RSA");

cipher.init(Cipher.ENCRYPT_MODE, publi);

byte[]src = srci.getBytes();

Page 86 of 104

cipherData = cipher.doFinal(src);

String srco = newString(cipherData);

System.out.println("Encrypted data is: " + srco);

}

catch(Exception e)

{

System.out.println(e.getMessage());

}

returncipherData;

}

}

Page 87 of 104

RSA Decryption:

importjava.security.*;

importjavax.crypto.Cipher;

publicclassRSADecrypt

{

publicvoid decryption(PrivateKeyprivatei, byte[] cipherData)

{

try

{

Cipher cipheri = Cipher.getInstance("RSA");

cipheri.init(Cipher.DECRYPT_MODE, privatei);

byte[] cipherDat = cipheri.doFinal(cipherData);

String decryptdata = newString(cipherDat);

System.out.println("Decrypted data: "+

decryptdata);

}

catch(Exception e)

{

System.out.println(e.getMessage());

}

}

}

Page 88 of 104

OUTPUTS

Basic interaction between client and server:

Page 89 of 104

Echo Client Server:

Page 90 of 104

Page 91 of 104

User interface for creating new user or signing up for

existing user:

Page 92 of 104

Encryption / Decryption:

Page 93 of 104

3DES:

Page 94 of 104

RSA:

Page 95 of 104

SQL Connectivity:

Page 96 of 104

Page 97 of 104

Page 98 of 104

Page 99 of 104

Repetition of Username Not Allowed:

Page 100 of 104

Page 101 of 104

REFERENCES

 Online Detection and Prevention of Phishing Attacks (Invited Paper) by Juan

Chen, Institute of Communications Engineering Nanjing 210007, P.R. China

 DETECTION AND PREVENTION OF PHISHING ATTACKS Under the

guidance of C.M.T. KARTHIGEYAN, B.E, M.S

 Best Practices for Institutions and Consumers by Gregg Tally, Roshan Thomas

and Tom Van Vleck

 http://www.windowsreference.com/dns/step-by-step-guide-for-windows-

server-2003-domain-controller-and-dns-server-setup/

 http://support.microsoft.com/kb/814591

 http://www.visualwin.com/New-User/

 http://www.microsoft.com/middleeast/windows/windowsserver2003/evaluatio

n/whyupgrade/top10best.mspx

 http://support.microsoft.com/kb/278007

 http://www.wikipedia.org/

 http://nmap.org/book/idlescan.html

 http://its.sdsu.edu/blackboard/student/resources/phishing.html

 http://searchsecurity.techtarget.com/definition/brute-force-cracking

 http://en.wikipedia.org/wiki/Brute-force_attack

 http://en.wikipedia.org/wiki/RSA

 http://en.wikipedia.org/wiki/Triple_DES

Page 102 of 104

http://en.wikipedia.org/wiki/Triple_DES
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Brute-force_attack
http://searchsecurity.techtarget.com/definition/brute-force-cracking
http://its.sdsu.edu/blackboard/student/resources/phishing.html
http://nmap.org/book/idlescan.html
http://www.wikipedia.org/
http://support.microsoft.com/kb/278007
http://www.microsoft.com/middleeast/windows/windowsserver2003/evaluation/whyupgrade/top10best.mspx
http://www.microsoft.com/middleeast/windows/windowsserver2003/evaluation/whyupgrade/top10best.mspx
http://www.visualwin.com/New-User/
http://support.microsoft.com/kb/814591
http://www.windowsreference.com/dns/step-by-step-guide-for-windows-server-2003-domain-controller-and-dns-server-setup/
http://www.windowsreference.com/dns/step-by-step-guide-for-windows-server-2003-domain-controller-and-dns-server-setup/

 http://en.wikipedia.org/wiki/Data_Encryption_Standard

 http://en.wikipedia.org/wiki/Public-key_cryptography

 http://docs.oracle.com/javase/6/docs/api/java/security/PublicKey.html

 https://www.cpug.org/forums/ipsec-vpn-blade-virtual-private-networks/49-

difference-between-3des-aes.html

 http://security.stackexchange.com/questions/26179/security-comparsion-of-

3des-and-aes

 http://www.asecuritysite.com/security/encryption/threedes

Page 103 of 104

http://www.asecuritysite.com/security/encryption/threedes
http://security.stackexchange.com/questions/26179/security-comparsion-of-3des-and-aes
http://security.stackexchange.com/questions/26179/security-comparsion-of-3des-and-aes
https://www.cpug.org/forums/ipsec-vpn-blade-virtual-private-networks/49-difference-between-3des-aes.html
https://www.cpug.org/forums/ipsec-vpn-blade-virtual-private-networks/49-difference-between-3des-aes.html
http://docs.oracle.com/javase/6/docs/api/java/security/PublicKey.html
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Data_Encryption_Standard

THANK

YOU

Page 104 of 104

	Computer Science Engineering
	Brig. (Retd.) S.P. Ghrera
	Shivi Gandhi (091204)
	CERTIFICATE
	ACKNOWLEDGEMENT
	CONTENTS
	ABSTRACT
	USE CASE DIAGRAM
	LITERATURE SURVEY
	Phishing:
	List of phishing techniques:

	LinkGuard Algorithm (Anti-phishing technique):
	Brute force attacks:
	Few Main Ways to Stop a Brute Force Attack:
	Brute Force by limiting the number of attempts:
	Brute Force by imposing a time limit:
	Resource metering:
	Port Scanning:
	Idle scan of an open port:
	Idle scan of a closed port:
	Idle scan of a filtered port:

	Consumer Best Practices:

	TRIPLE-DES:
	DES Design Controversy:
	Strength of DES – Key Size:
	Possible analytic attacks:
	Diagrammatic Overview:
	Triple DES overview:

	RSA
	RSA Security:

	Public-Key Cryptography:
	RSA Key Setup:

	KEY DISTRIBUTION CENTRE
	CLIENT SIDE FLOW CHART
	SERVER SIDE FLOW CHART
	WINDOWS SERVER 2003
	Creating the first windows server 2003 domain controller in a domain
	Creating a New User on Windows Server 2003

	CODES
	Server side:
	Client side:
	User authentication:
	Brute Force by limiting the number of attempts:
	Brute Force Method by imposing a time limit:
	SQL connectivity:
	Triple- DES:
	RSA:
	Echo Client – Server:
	KDC:
	Holder:
	DES working with KDC:
	DES Decryption:
	RSA Encryption:
	RSA Decryption:

	OUTPUTS
	Basic interaction between client and server:
	Echo Client Server:
	User interface for creating new user or signing up for existing user:
	3DES:
	RSA:
	SQL Connectivity:

	REFERENCES

