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SUMMARY 

 

Objective 

DSP kit implementation of encoder and decoder circuit of Reed Solomon code. 

 

Description 

Reed Solomon codes are a class of linear non binary cyclic block codes. Reed-Solomon codes 

are block-based error correcting codes with a wide range of applications in digital 

communications and storage. Reed-Solomon codes are used to correct errors in many systems 

including: 

 Storage devices (including tape, Compact Disk, DVD, barcodes, etc) 

 Wireless or mobile communications (including cellular telephones, microwave links, etc) 

 Satellite communications 

 Digital television / DVB 

 High-speed modems such as ADSL, xDSL, etc. 

The Reed-Solomon encoder takes a block of digital data and adds extra "redundant" bits. Errors 

occur during transmission or storage for a number of reasons (for example noise or interference, 

scratches on a CD, etc). The Reed-Solomon decoder processes each block and attempts to correct 

errors and recover the original data. The number and type of errors that can be corrected depends 

on the characteristics of the Reed-Solomon code. 

 

Why I chose this topic? 

Communications is my favourite topic and I always had curiosity as to how communications 

systems work in our world. While studying communications I came across this topic and decided 

to take it  up as a project 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1      OVERVIEW OF THE PROJECT 

 

 DSP kit implementation of encoder and decoder circuit of Reed Solomon code. DSP kit used 

(TMS32C677XX) .Encoding and Decoding Algorithm used Berlekamp Massey Algorithm. 

 

 

1.2 PROBLEM STATEMENT 

 

RS codes are seen as a special case of the larger class of BCH codes but it was not until almost a 

decade later, by regarding them as cyclic BCH codes, that an efficient decoding algorithm gave 

them the potential to their widespread application. 
 

1.3      PROJECT DESCRIPTION 

1.3.1 Purpose: 

  

RS codes, which are BCH codes, are used in applications such as spacecraft communications, 

compact disc players, disk drives, and two-dimensional bar codes. According to Bossert (1999) 

the relationship between BCH and RS codes is such that RS codes comprise a subset of BCH 

codes and occasionally BCH codes comprise a subset of RS codes. Van Lint (1999) defines an 

RS code as a primitive BCH code of length n=q−1 over GF(q ) .So we will use this concept to 

encode n decode RS codes using Berlekamp Massey Algorithm 

 

1.3.2 Scope: 

 

This project gives a simple way of encoding and decoding RS codes using Berlekamp Massey 

Algorithm on DSP KIT. 
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CHAPTER 2 

                                                    LITERATURE REVIEW 

 

 

2.1  CODING THEORY 

   

 A sender transmits a message through a channel to a receiver. The channel could be air when 

using a wireless network or the channel could be a data cable. Noise may appear on these types 

of channels, so in order to receive the message with as few errors as possible, ideally the sender 

should use high power signal amplification and the channel should be as short as possible. 

However, in normal situations these are not viable solutions. GSM telephones have, in fact, very 

small batteries and are rather energy efficient and an Ethernet cable in a building can be up to 

100 meters before an active repeater or switch has to amplify the signal. In order to use as little 

energy as possible and transmit over a long distance, codewords have to be encoded.   The 

message is then transmitted over a channel where errors may be introduced.  The received 

codeword needs to be decoded into the received message. 

 

 

2.1.1 LINEAR  ALGEBRA 

Mathematicians developed their coding theory using linear algebra, which works with sets of 

numbers or fields. These numbers can be added, subtracted, multiplied or divided. Fields like 

integers, the set of natural numbers ℕ={0,1, 2,…} , are infinite fields; we could always imagine 

its largest element and add 1 to it. Information and code can be seen as elements in a finite field 

which comes with some advantages when using the binary number system. 

 

2.1.2 GALOIS FIELDS 

A finite field Fq is a field F which has a finite number of elements and q is the order of the field. 

This finite field is often called a Galois field, after the French mathematician Evariste Galois 

(1811 – 1832) and is denoted GF(q ) . For the purpose of this thesis we consider only binary field 

GF(2) and its extension fields GF(2m) where m∈ {2,3,4,…} . 

The following is always valid for all numbers in a binary Galois field (Blahut,1983): 

• fields contain 0 or 1. 

• adding two numbers gives one number in the set. 

• subtracting two numbers gives one number in the set. 

• multiplying one number gives one number in the set. 

• dividing one number by 1, as division by 0 is not allowed, gives one number in the set. 

• The distributive law, (a+b)c=ac+bc , holds for all elements in the field 
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2.2 EXTENSION  FIELDS 

 

Finite fields exist for all prime numbers q and for all pm where p is prime and m is a positive 

integer. GF(q ) is a sub-field of GF( pm) and as such the elements of GF(q ) are a sub-set of the 

elements of GF( pm) , therefore GF( pm) is an extension field of GF(q ) . 

 

Consider GF (4)={0,1 ,2,3 }, which is not a Galois field because it is of order 4, which is not a 

prime. The element 2 has no multiplicative inverse and therefore we cannot divide by 2. Instead, 

we could define GF (4)={0,1 , a , b } with addition and multiplication . Now all elements do 

have additive and multiplicative inverses 

 

These extension fields are used to handle non-binary codes where code symbols are expressed as 

m -bit binary code symbols, For example, GF(4) consists of four different two-bit symbols and 

GF(16) of 16 hexadecimal symbols. To obtain multiplication for binary, numbers are expressed 

as polynomials, they are multiplied and divided by the prime polynomial while the remainder is 

taken as result. 

 

 

2.3 POLYNOMIALS 

 

 

Let us we write GF(4) as GF(22) and take prime polynomial p(x)=x2+x+1 which is an irreducible 

polynomial of degree 2, which can be checked by multiplying p(x ) with polynomials of a lesser 

degree, like 1 , x and x+1 

 

In order to describe an extension field GF( pm) it is useful to  know its primitive polynomial p(x) 

, where the degree of p(x) is equal to m . For example,  GF(16)= GF(24)={0000,  

0001,0010,…,1111 } is a finite field that contains 16 4-bit code symbols. Addition is analogue 

to the example above. Multiplication can be obtained firstly by writing the symbols as 

polynomials to express which positions in these 4-bit codes are non-zero and, secondly, by using 

modulo 2 addition of coefficients in addition and multiplication. Let α be defined as a root of 

polynomial p(x ) , such that we can write:p(α)=0 

Thus for GF (16) with its irreducible polynomial p(x)=x4+x+1 we can write: 

α4+α+1=0 

α4=0−α−1 

We have already noted that subtraction is the same as addition in a binary finite 

field, so: 

α4=α+1 

Therefore the polynomial of exponential α4 is α+1 . From there we can calculate 

the polynomial for α5 by: 

α5=α⋅ α4 

=α⋅ (α+1) 

=α2+α 
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2.4 VECTOR SPACE 

 

 

Linear codes can be represented as sets of vectors. Let us define a vector 

space GF(qm) . This is a vector space of a finite dimension m . The codewords 

are q -ary sets of m -elements or m -tuples which form the coordinates of the 

endpoints of the vectors. Figure 2.1 presents two of such m -dimensional vector 

spaces. In such a vector space, every codeword can be presented as a the 

sum of two vectors give another vector in the same vector space (Bose, 

2008). For example, GF(22) is a two-dimensional vector space. It has four 

binary vectors. 

Take vectors v1=[0,1] , v2=[1,0] and v3=[1,1] , then v1+v2=[0,1]+[1,0]=[1,1] , 

which is a vector in the same space. Vectors v1, v2,... , v k are linear independent 

if there is not a single set of scalars ai ≠ 0 , such that a1 v1+a2 v2+...+ak vk=0 . For example, vectors 

[0,1] and [1,0 ] are linearly independent, but [0,1] and [1,1] are linear dependent vectors 

 

 

 

 

 

                                 CHAPTER 3   : LINEAR BLOCK CODES 

 

 

     

3.1  HAMMING  WEIGHT , MINIMUM  DISTANCE  and  CODE  RATE 

 

The Hamming weight wH (x ) of a codeword or vector x is defined as the 

amount of non-zero elements or vector coordinates, which ranges from zero 

to length n of said codeword. wH (x )=Σ j=0 n−1 wH (x j) , where wH (x j)={0, x j=0 

1, x j≠0 The Hamming distance d H( x , y) between two codewords or vectors x and y 

is defined as amount of elements or coordinates where x and y differ.  

dH (x , y )=Σ j =0 n−1 wH( x j+y j), where wH (x j+y j)={0, x j=y j 1, x j≠y j 

dH (x , y )=wH (x , y) 

The minimum distance dmin of code C is the minimum distance between two different codewords. 

The minimum distance for linear codes is equal to the minimum weight (Bossert, 1999). 

However, a codeword containing only zeros and, therefore, having a distance of zero is 

disregarded as the minimum distance cannot be zero. Let x , y be codewords in code C . A 

received vector, which is the sent vector x in C , plus error vector e can only be corrected if the 

distance between any other codeword y in C fulfil dmin(x , x+e)<dmin( y ,x+e) or wmin (e)<wmin( 

x+y+e) . Therefore wmin (e)≤d−1  , where d is the distance.This is written as t≤d−1 2 or d≥2t+1 , 

where t is the amount of errors that can be corrected. In general, a code C of length n , with M 

codewords, and a minimum distance d=d (C) , is called an (n ,M , d ) code. Then M≤qn−d +1 and 

the code rate of a q -ary (n ,M ,d) code is at most 1−d−1 n . A linear q -ary code of length n , with 

k codewords or message symbols, and distance d , is called a (n , k , d) code or (n, k) code. The 

code rate is defined as  
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R=logq k/n 

If, according to Shannon's channel coding theorem, rate R is less than capacity 

C , then the code exists but if rate R is larger than capacity C , the error 

probability is 1 and the length of the codeword becomes infinite. 

 

 

 

   3.1  SINGLETON  BOUND 

 

 

It is preferable to have a large minimum distance d so that many errors can be corrected. Also, a 

large amount of codewords M would allow for efficient use of bandwidth when transmitting over 

a noisy channel. Unfortunately, increasing d tends to increase n or decrease  M .    The Singleton 

bound is an upper bound for M in terms of n and d . A code that satisfies the Singleton bound is 

called a MDS code (maximum distance separable). The  Singleton  bound can  be written  as 

qd≤qn+1/M 

for the MDS code to obtain the largest possible value of d for a given n and m 

 
 

3.2  MAXIMUM-LIKELIHOOD  DECODING 

 

 

There are two principles of decoding. In hard-decision decoding the received bits are believed to 

be either 1 or 0 in binary transmission. The decoding is done bit by bit In soft-decisiondecoding, 

the received codewords may contain samples of bits with many values, not just 1 or 0. 

Calculating the closest error-free codeword is more complicated but soft-decision decoding has 

better performance than the hard-decision decoding. Assuming hard-decision decoding is used, 

the received codeword is decoded into its closest codeword measured by its smallest Hamming 

distance. This minimum probability of error principle is called Maximum-Likelihood or 

Minimum Distance Decoding (Geisel, 1990). 

 

 

 

3.3 CYCLIC  CODES 

 

 

Cyclic codes are widely used in data communication because their structure makes encoder and 

decoder circuitry simple. Hill (1986) defines code C as cyclic (n, k ) code if C is a linear code of 

length n over a finite field and if any cyclic shift of a codeword is also a codeword. Thus,(c0 , c1, 

c2 ,... , cn−1) ∈ C and (cn−1 , c0 , c1 ,... , cn−2) ∈ C . Let g(x ) be the polynomial with the smallest 

degree. By dividing its highest coefficient, we may assume that the highest non-zero coefficient 

of g(x ) is 1. The polynomial g(x ) is called the generator polynomial for C , which must be a 

divisor of xn−1 (in a binary field this is equal to xn+1 ) with a degree of n−k . Subsequently, every 

cyclic code is a polynomial The encoder for cyclic codes is then c (x)=i(x)⋅ g(x ) where c(x) is 

the polynomial with degree n−1 of codeword (c0 , c1, c2 ,... , cn−1) which is calculated as 

c (x) = Σi=0 n−1ci⋅ xi = c0+c1 x+c2 x2+...+cn−1 xn−1and i(x) is the information polynomial of degree 

k−1 . Generator polynomial g(x ) must be of degree n−k . 
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                                       CHAPTER 4  : BCH  CODES 

 

 

A BCH code is a cyclic polynomial code over a finite field with a particularly chosen generator 

polynomial. Hamming codes are the subset of BCH codes with k=2m−1−m and have an error 

correction of 1. Generally, a family of t - error correcting codes defined over finite fields GF(q ) 

, where 2t+1<q , are BCH codes or RS codes (Hill, 1986). The main advantage of BCH codes is 

the ease with which they can be decoded using syndrome and many good decoding algorithms 

exist. A well-known decoding algorithm is the Berlekamp-Massey algorithm. This allows very 

simple electronic hardware to perform the task, making the need for a computer unnecessary. 

This implies that a decoding device may be small and consume little power. 

 

 

 4.1 GENERATING  BCH  CODE 

 

It is easy to generalise the construction of a t -error-correcting code of length n=2m−1 over 

GF(q)={0, 1, ..., q−1 } provided 2 t+1≤n≤q−1 . According to Hill (1986) it is not difficult to 

construct a binary BCH code over an extension field GF(qm) . In order to obtain a cyclic code 

only the generator polynomial g(x ) is needed. For any integer m≥3 and t<2m−1 , there exists a 

primitive BCH code with parameters: 

n = 2m−1 

n−k ≤ m⋅ t 

dmin ≤ 2 t+1 

Let α be a primitive n -th root of unity of GF(2m) . For 1≤i≤t , let m2i−1(x ) be the minimum 

polynomial of α2i−1 . The degree of m2i−1(x ) is m or a factor of m . The generator polynomial g(x ) of 

a t -error-correcting primitive BCH codes of length 2m−1 is given by g(x )=LeastCommon Multiple 

{m1(x ),m2(x) ,m3(x) ,... ,m2 t−1(x ),m2 t(x )} and because every even power of a primitive element 

has the same minimal polynomial as some odd power of the element, then g(x ) can be reduced 

to g(x )=LCM{m1(x) ,m3(x) , ...,m2 t−1( x) } The degree of g(x ) is m⋅ t or less and so is the number 

of parity check bits, therefore n−k≤m⋅ t 

 

 

 

   4.2  DECODING  a  BCH  CODE 

 

BCH codes can be decoded in many way and it is most common that 
 

• Syndromes values for are calculated for the received codeword; 

• Error polynomials are calculated; 

• Roots of these polynomials are calculated to obtain the location of errors; 

• Error values are calculated at these locations. 
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                                 Chapter 5:Reed-Solomon codes 
 

 

 

RS codes, which are BCH codes, are used in applications such as spacecraft communications, 

compact disc players, disk drives, and two-dimensional bar codes. According to Bossert (1999) 

the relationship between BCH and RS codes is such that RS codes comprise a subset of BCH 

codes and occasionally BCH codes comprise a subset of RS codes. Van Lint (1999) defines an 

RS code as a primitive BCH code of length n=q−1 over GF(q ) .  

 
 

 

   5.1  GENERATING  A  REED-SOLOMON  CODE 

 

 

Let GF(q) be a finite field with q elements and it generate a rather specific BCH code C over 

GF(q) of length n , called a Reed-Solomon code. Let α be a primitive n -th root of unity of GF(q) 

and let code C have a length of n=q−1 . Now take d so that 1≤d≤n and the generator polynomial 

g(x ) is given by 

g( x)=Π i=1 d−1 (x−αi)  =(x−α)(x−α2)…(x−ad−1) 
. 

Trappe and Washington (2006) state that the minimum distance for C is at least d . Since g(x ) is 

a polynomial of degree d−1 , it has at most d nonzero   coefficients. Therefore, the codeword 

corresponding to the coefficients of   g(x ) has a weight of at most d . It follows that C has a 

weight of exactly d and the dimension of C is n minus the degree of g(x ) n−deg(g) = n−(d−1) = 

n+1−d . 

 

Therefore, a Reed-Solomon code is a cyclic (n ,n+1−d , d) code with codewords corresponding 

to polynomials, where each f (x) is a polynomial with coefficients in GF(q) that cannot be 

factored into lower degree polynomials while assuming that the highest non-zero coefficient is 1: 

g(x)f (x ) with deg(f )≤n−d . It follows that there are q choices for each n−d+1 coefficients of f (x) 

, and thus there are qn−d+1 codewords in code C . Therefore, an RS code is a MDS  code since it 

makes the Singleton bound an equality 

 

 

    5.2   PROPERTIES  of  REED-SOLOMON  CODES 

 

Reed Solomon codes are a subset of BCH codes and are linear block codes. A Reed-Solomon 

code is specified as RS (n,k) with s-bit symbols. 

This means that the encoder takes k data symbols of s bits each and adds parity symbols to make 

an n symbol codeword. There are n-k parity symbols of s bits each. A Reed-Solomon decoder 

can correct up to t symbols that contain errors in a codeword, where 2t = n-k. 
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The following diagram shows a typical Reed-Solomon codeword (this is known as a Systematic 

code because the data is left unchanged and the parity symbols are appended). 

 

 

Example:  

A popular Reed-Solomon code is RS (255,223) with 8-bit symbols. Each codeword contains 255 

code word bytes, of which 223 bytes are data and 32 bytes are parity. For this code: 

n = 255, k = 223, s = 8 

2t = 32, t = 16 

The decoder can correct any 16 symbol errors in the code word: i.e. errors in up to 16 bytes 

anywhere in the codeword can be automatically corrected. Given a symbol size s, the maximum 

codeword length (n) for a Reed-Solomon code is n = 2s – 1. For example, the maximum length of 

a code with 8-bit symbols (s=8) is 255 bytes. Reed-Solomon codes may be shortened by 

(conceptually) making a number of data symbols zero at the encoder, not transmitting them, and 

then re-inserting them at the decoder. 

Example: The (255,223) code described above can be shortened to (200,168). The encoder takes 

a block of 168 data bytes, (conceptually) adds 55 zero bytes, creates a (255,223) codeword and 

transmits only the 168 data bytes and 32 parity bytes. 

The amount of processing "power" required to encode and decode Reed-Solomon codes is 

related to the number of parity symbols per codeword. A large value of t means that a large 

number of errors can be corrected but requires more computational power than a small value of t. 

 

Symbol Errors 

One symbol error occurs when 1 bit in a symbol is wrong or when all the bits in a symbol are 

wrong. 

Example: RS (255,223) can correct 16 symbol errors. In the worst case, 16 bit errors may occur, 

each in a separate symbol (byte) so that the decoder corrects 16 bit errors. In the best case, 16 

complete byte errors occur so that the decoder corrects 16 x 8 bit errors. Reed-Solomon codes 

are particularly well suited to correcting burst errors (where a series of bits in the codeword are 

received in error). 
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  5.3  DECODING 

Reed-Solomon algebraic decoding procedures can correct errors and erasures. An erasure occurs 

when the position of an erred symbol is known. A decoder can correct up to t errors or up 

to 2t erasures. Erasure information can often be supplied by the demodulator in a digital 

communication system, i.e. the demodulator "flags" received symbols that are likely to contain 

errors. 

When a codeword is decoded, there are three possible outcomes: 

1. If 2s + r < 2t (s errors, r erasures) then the original transmitted code word will always be 

recovered, 

OTHERWISE 

2. The decoder will detect that it cannot recover the original code word and indicate this fact. 

OR 

3. The decoder will mis-decode and recover an incorrect code word without any indication. 

The probability of each of the three possibilities depends on the particular Reed-Solomon code 

and on the number and distribution of errors. 

 

Coding Gain 

The advantage of using Reed-Solomon codes is that the probability of an error remaining in the 

decoded data is (usually) much lower than the probability of an error if Reed-Solomon is not 

used. This is often described as coding gain. 

 

Example: A digital communication system is designed to operate at a Bit Error Ratio (BER) of 

10-9, i.e. no more than 1 in 109 bits are received in error. This can be achieved by boosting the 

power of the transmitter or by adding Reed-Solomon (or another type of Forward Error 

Correction). Reed-Solomon allows the system to achieve this target BER with a lower 

transmitter output power. The power "saving" given by Reed-Solomon (in decibels) is the coding 

gain. 
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 5.3.1  REED SOLOMON DECODER: 

 

The received codeword is entered to RS decoder to be decoded, the decoder first tries to check if 

this codeword is a valid codeword or not. If it does not, errors occurred during transmission. This 

part of the decoder processing is called error detection. If errors are detected, the decoder tries to 

correct this error using error correction part. 

 

Figure shows the main block diagram of Reed Solomon decoder which consists of two main 

parts: 

1. Error detection part, in this part we use “Syndrome computation” block. 

2. Error correction part, this part consists of three blocks: 

 

 Decoding algorithm which used to find the coefficients of error-location 

polynomial σ(x) and error-evaluator polynomial W(x) it sometimes called “Key 

equation solver”. 

 Chien search block which used to find the roots of σ(x) which present the inverse 

of the error locations. 

 Forney algorithm block which used to find the values of the errors. 

After getting the values and locations of the error, we can correct the received codeword by 

xoring the received vector with the error vector. 

 

Error Detection “Syndrome Calculation”: 

The first step in RS decoder is to check if there is any error in the received codeword or not. This 

done using Syndrome computation block. 

 Let the transmitted codeword polynomial c(X) formed as follow: 
1

0 1 1( ) ....... ,     (2 )n m

n ic x c c X c X where c GF

      

 Let the received codeword polynomial r(X) formed as follow: 
1

0 1 1( ) ....... ,     r (2 )n m

n ir x r r X r X where GF

      

 Let the error polynomial e(X) which added by the channel formed as: 
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1

0 1 1( ) ....... ,     e (2 )n m

n ie x e e X e X where GF

      

Which is related to the received polynomial r(X) and the transmitted polynomial c(X) as follows: 

r(X) = c(X) + e(X) 

The transmitted polynomial c(x) must be multiple of the generator polynomial g(X), and the 

received polynomial r(X) is evaluated form the addition between c(X) and e(X). So the roots of 

g(X) should give zero in the received polynomial if the error polynomial is zero. i.e., no errors 

occurred. 

 Let the syndrome polynomial S(x) formed as: 
2

1

1

( )
t

i

i

i

S x S x 



  

 Where, 1, 2,................, 2i t . 

Each coefficient can be described as follows: 

  ( ), 1, 2,........., 2i

iS r i t   

If there is no error, all syndrome coefficients must give zero. If there is any non-zero coefficient, 

it means that there is an occurrence for error. 

 

5.3.2 THE  DECODING ALGORITHM: 

After calculation of the syndrome coefficients we can detect if there exist errors in the received 

codeword or not by checking these values, if all these coefficients are zeros there will be no 

errors if not there will be error in an unknown location in the codeword with an unknown value. 

The main function of the decoding algorithm is to get the error location polynomial σ(x), and the 

error evaluator polynomial W(x), which represents the locations and the values of the errors 

respectively. 

The first error correction procedure for Reed Solomon codes was found by Gornstien and 

Zierler, and improved by Chien and Forney. This procedure is known as the key equation solver, 

as it will be discussed later. 

 

Decoding algorithms can be categorized into two types: 

 

 

 

 Serial algorithms in which the error locator polynomial σ(x) is calculated first then we 

substituted in the key equation to calculate the error evaluator polynomial W(x), e.g. 

(Berlekamp–Massey algorithm). 

 Parallel algorithms in which the error locator polynomial σ(x) and the error evaluator 

polynomial W(x) are calculated are in parallel, e.g. (Euclidean algorithm). 
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 5.3.3 DECODING  of  RS  CODES  USING  BERLEKAMP-MASSEY  ALGORITHM: 

 

The Berlekamp–Massey (B-M) algorithm is a method used as decoding algorithm used for RS 

and BCH codes. This method used in RS codes to calculate the coefficients of the error locator 

polynomial for the error locations, and the coefficients of the error evaluator polynomial for the 

error values. In BCH the values of the errors are binary so we only calculate the coefficients of 

the error locator polynomial. 

Let the error polynomial e(X) contains τ errors placed at positions 1 2, ,...........,j j jX X X 
 with 

error values 1 2, ,............,j j je e e   then: 

 
1 2

1 2( ) .......j j j

j j je X e X e X e X 

     

Now we have to calculate the values of jie  and the powers of
jiX . 

We have 2t syndrome coefficients. Each syndrome coefficient 
iS  can be expressed as: 

( ) ( ) ( ) ( )i i i i

is r c e e        

From both above equations, we can obtain set of equation that relates the error locations and values to the 

syndrome coefficient in the form of: 

  

1 2

1 1 2

2 2 2 1 2 2 2

2 1 2

2 2 2 1 2 2 2

2 1 2

( ) ( ) .......

( ) ( ) .......

.

.

.

( ) ( ) .......

j j j

j j j

j j j

j j j

t t tj tj tj

t j j j

s r e e e e

s r e e e e

s r e e e e













    

    

    

     

     

     

 

This set of equation can be simplified in the form: 

  

1 1 1 2 2

2 2 2 2 2

2 1 1 2 2

2 2 2 2 2

2 1 1 2 2

( ) ( ) .......

( ) ( ) .......

.

.

.

( ) ( ) .......

j j j

j j j

t t t t t

t j j j

s r e e e e

s r e e e e

s r e e e e

 

 

 

    

    

    

     

     

     

 

,      1, 2,3,.....,ji

iwhere and i     

 

 

 

From above equation, we have 2t equations in 2t unknowns as worst case, but these equations are 

not linear equations so we define the two polynomials: 
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 The error locator polynomial σ(x) which present the locations of the error. 

 The error evaluator polynomial W(x) which presents the values of the errors. 

As mentioned before that Berlekamp-Massey algorithm is a serial algorithm so the error location 

polynomial σ(x) is calculated first then the error evaluator polynomial W(x). 
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                             CHAPTER 6:  DSP KITARCHITECTURE: 

 

 The 6713 DSK is a low-cost standalone development platform that enables customers to 

evaluate and develop applications for the TI C67XX DSP family. The DSK also serves as a 

hardware reference design for the TMS320C6713 DSP. Schematics, logic equations and 

application notes are available to ease hardware development and reduce time to market. The 

DSK uses the 32-bit EMIF for the SDRAM (CE0) and daughter card expansion interface (CE2 

and CE3). The Flash is attached to CE1 of the EMIF in 8-bit mode. An on-board AIC23 codec 

allows the DSP to transmit and receive analog signals. McBSP0 is used for the codec control 

interface and McBSP1 is used for data. Analog audio I/O is done through four 3.5mm audio 

jacks that correspond to microphone input, line input, line output and headphone output. The 

codec can select the microphone or the line input as the active input. The analog output is driven 

to both the line out (fixed gain) and headphone (adjustable gain) connectors. McBSP1 can be re-

routed to the expansion connectors in software. A programmable logic device called a CPLD is 

used to implement glue logic that ties the board components together. The CPLD has a register 

based user interface that lets the user configure the board by reading and writing to the CPLD 

registers. The registers reside at the midpoint of CE1. 

 

 

 

 
 

 

The DSK includes 4 LEDs and 4 DIP switches as a simple way to provide the user 

withinteractive feedback. Both are accessed by reading and writing to the CPLD registers. An 

included 5V external power supply is used to power the board. On-board voltage regulators 

provide the 1.26V DSP core voltage, 3.3V digital and 3.3V analog voltages. A voltage 
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supervisor monitors the internally generated voltage, and will hold the board in reset until the 

 

 

supplies is within operating specifications and the reset button is released. If desired, JP1 and JP2 

can be used as power test points for the core and I/O power supplies. Code Composer 

communicates with the DSK through an embedded JTAG emulator with a USB host interface. 

The DSK can also be used with an external emulator through the   external JTAG connector. 

 

  6.1 DSP KIT KEY FEATURES: 

 

The C6713 DSK is a low-cost standalone development platform that enables users to evaluate 

and develop applications for the TI C67xx DSP family. The DSK also serves as a hardware 

reference design for the TMS320C6713 DSP. Schematics, logic equations and application notes 

are available to ease hardware development and reduce time to market. 

 

The DSK comes with a full complement of on-board devices that suit a wide variety of 

application environments. Key features include: 

• A Texas Instruments TMS320C6713 DSP operating at 225 MHz. 

• An AIC23 stereo codec 

• 16 Mbytes of synchronous DRAM 

• 512 Kbytes of non-volatile Flash memory (256 Kbytes usable in default configuration) 

• 4 user accessible LEDs and DIP switches 

• Software board configuration through registers implemented in CPLD 

• Configurable boot options 

• Standard expansion connectors for daughter card use 

• JTAG emulation through on-board JTAG emulator with USB host interface or external 

emulator 

• Single voltage power supply (+5V) 

 

 

 

 

 

 

 



23  

 

                                     

                               CHAPTER 7: IMPLEMENTATION PROCEDURES 

1. To create a New Project 

Project – New (rscode.pjt) 

2. To Create a Source file 

File- New 

Type the code (Save as & give a name to file, Eg: rscode.asm). 

3. To Add Source files to Project 

Project- Add files to Project- rscode.asm 

4. To Add rts6700.lib file & hello.cmd: 

Project -Add files to Project - rts6700.lib 

Path: c:\CCStudio\c6000\cgtools\lib\rts6700.lib 

Note: Select Object & Library in (*.o,*.l) in Type of file 

Project - Add files to Project - hello.cmd 

Path: c:\CCstudio\tutorial\dsk6713\hello1\hello.cmd 

Note: Select Linker Command file (*.cmd) in Type of files 

5. To Compile: 

Project - Compile File 

6. To build or Link: 

Project – Rebuild all, 

Which will create the final executable (.out) file (Eg. rscode.out). 

7. Procedure to Load and Run program: 

Load program to DSK: 

File - Load program -rscode.out 

8. To execute project: 

Debug - Run. 

 

 

7.1 CODE  IMPLEMENTATION: 

#include <math.h> 

#include <stdio.h> 

#define mm 4           /* RS code over GF(2**4) - change to suit */ 

#define nn 15          /* nn=2**mm -1   length of codeword */ 

#define tt 3           /* number of errors that can be corrected */ 

#define kk 9           /* kk = nn-2*tt*/ 

int pp [mm+1] = { 1, 1, 0, 0, 1} ; /* specify irreducible polynomial coeffts */ 

int alpha_to [nn+1], index_of [nn+1], gg [nn-kk+1]; 

int recd [nn], data [kk], bb [nn-kk] ; 

void generate_gf() 
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/* generate GF (2**mm) from the irreducible polynomial p(X) in pp[0]..pp[mm]; lookup tables:  

index->polynomial form   alpha_to[] contains j=alpha**i; polynomial form -> index form  

index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**mm)*/ 

 { 

register int i, mask ; 

mask = 1 ; 

alpha_to[mm] = 0 ; 

for (i=0; i<mm; i++) 

{  

alpha_to[i] = mask ; 

index_of[alpha_to[i]] = i ; 

if (pp[i]!=0) 

alpha_to[mm] ^= mask ; 

mask<<= 1 ; 

} 

index_of[alpha_to[mm]] = mm ; 

mask>>= 1 ; 

for (i=mm+1; i<nn; i++) 

{  

if (alpha_to[i-1] >= mask) 

alpha_to[i] = alpha_to[mm] ^ ((alpha_to[i-1]^mask)<<1) ; 

else alpha_to[i] = alpha_to[i-1]<<1 ; 

index_of[alpha_to[i]] = i ; 

   } 

index_of[0] = -1 ; 

 } 

void gen_poly() 

/* Obtain the generator polynomial of the tt-error correcting, lengthnn=(2**mm -1) Reed 

Solomon code  from the product of (X+alpha**i), i=1..2*tt*/ 

 { 

register int i, j ; 

gg[0] = 2 ;    /* primitive element alpha = 2  for GF(2**mm)  */ 

gg[1] = 1 ;    /* g(x) = (X+alpha) initially */ 

for (i=2; i<=nn-kk; i++) 

{  
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gg[i] = 1 ; 

for (j=i-1; j>0; j--) 

        if (gg[j] != 0)  gg[j] = gg[j-1]^ alpha_to[(index_of[gg[j]]+i)%nn] ; 

else gg[j] = gg[j-1] ; 

gg[0] = alpha_to[(index_of[gg[0]]+i)%nn] ;     /* gg[0] can never be zero */ 

    } 

   /* convert gg[] to index form for quicker encoding */ 

for (i=0; i<=nn-kk; i++)  gg[i] = index_of[gg[i]] ; 

 } 

void encode_rs() 

/* take the string of symbols in data[i], i=0..(k-1) and encode systematically to produce 2*tt 

parity symbols in bb[0]..bb[2*tt-1], data[] is input and bb[] is output in polynomial form. 

Encoding is done by using a feedback shift register with appropriate connections specified by the 

elements of gg[], which was generated above. Codeword is   c(X) = data(X)*X**(nn-kk)+ b(X)          

*/ 

 { 

register int i, j ; 

int feedback ; 

for (i=0; i<nn-kk; i++)   bb[i] = 0 ; 

for (i=kk-1; i>=0; i--) 

{   

feedback = index_of[data[i]^bb[nn-kk-1]] ; 

if (feedback != -1) 

{  

for (j=nn-kk-1; j>0; j--) 

if (gg[j] != -1) 

bb[j] = bb[j-1]^alpha_to[(gg[j]+feedback)%nn] ; 

else 

bb[j] = bb[j-1] ; 

bb[0] = alpha_to[(gg[0]+feedback)%nn] ; 

        } 

else 

{  

for (j=nn-kk-1; j>0; j--) 

bb[j] = bb[j-1] ; 

bb[0] = 0 ; 
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        } ; 

    } ; 

 } ; 

void decode_rs() 

{ 

register int i, j, u, q ; 

int elp[nn-kk+2][nn-kk], d[nn-kk+2], l[nn-kk+2], u_lu[nn-kk+2], s[nn-kk+1] ; 

int count=0, syn_error=0, root[tt], loc[tt], z[tt+1], err[nn], reg[tt+1] ; 

/* first form the syndromes */ 

for (i=1; i<=nn-kk; i++) 

{  

s[i] = 0 ; 

for (j=0; j<nn; j++) 

if (recd[j]!=-1) 

s[i] ^= alpha_to[(recd[j]+i*j)%nn] ;      /* recd[j] in index form */ 

/* convert syndrome from polynomial form to index form */ 

if (s[i]!=0)  syn_error=1 ;        /* set flag if non-zero syndrome => error */ 

s[i] = index_of[s[i]] ; 

    } ; 

if (syn_error)       /* if errors, try and correct */ 

    { 

/* initialize table entries */ 

d[0] = 0 ;           /* index form */ 

d[1] = s[1] ;        /* index form */ 

elp[0][0] = 0 ;      /* index form */ 

elp[1][0] = 1 ;      /* polynomial form */ 

for (i=1; i<nn-kk; i++) 

{ 

elp[0][i] = -1 ;   /* index form */ 

elp[1][i] = 0 ;   /* polynomial form */ 

        } 

l[0] = 0 ; 

l[1] = 0 ; 

u_lu[0] = -1 ; 
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u_lu[1] = 0 ; 

      u = 0 ; 

do 

      { 

        u++; 

if (d[u]==-1) 

{ 

l[u+1] = l[u] ; 

for (i=0; i<=l[u]; i++) 

{ 

elp[u+1][i] = elp[u][i] ; 

elp[u][i] = index_of[elp[u][i]] ; 

             } 

          } 

else 

/* search for words with greatest u_lu[q] for which d[q]!=0 */ 

{ 

q = u-1 ; 

while ((d[q]==-1) && (q>0)) q-- ; 

/* have found first non-zero d[q] */ 

if (q>0) 

{ 

j=q; 

do 

{ 

j--; 

if ((d[j]!=-1) && (u_lu[q]<u_lu[j])) 

                   q = j; 

} 

while (j>0) ; 

             } ; 

/* have now found q such that d[u]!=0 and u_lu[q] is maximum */ 

/* store degree of new elp polynomial */ 

if (l[u]>l[q]+u-q)  l[u+1] = l[u] ; 
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else  l[u+1] = l[q]+u-q ; 

/* form new elp(x) */ 

for (i=0; i<nn-kk; i++)    elp[u+1][i] = 0 ; 

for (i=0; i<=l[q]; i++) 

if (elp[q][i]!=-1) 

elp[u+1][i+u-q] = alpha_to[(d[u]+nn-d[q]+elp[q][i])%nn] ; 

for (i=0; i<=l[u]; i++) 

{ 

elp[u+1][i] ^= elp[u][i] ; 

elp[u][i] = index_of[elp[u][i]] ;  /*convert old elp value to index*/ 

              } 

          } 

u_lu[u+1] = u-l[u+1] ; 

 

/* form (u+1)th discrepancy */ 

if (u<nn-kk)    /* no discrepancy computed on last iteration */ 

          { 

if (s[u+1]!=-1) 

d[u+1] = alpha_to[s[u+1]] ; 

else 

d[u+1] = 0 ; 

for (i=1; i<=l[u+1]; i++) 

if ((s[u+1-i]!=-1) && (elp[u+1][i]!=0)) 

                d[u+1] ^= alpha_to[(s[u+1-i]+index_of[elp[u+1][i]])%nn] ; 

d[u+1] = index_of[d[u+1]] ;    /* put d[u+1] into index form */ 

          } 

      } while ((u<nn-kk) && (l[u+1]<=tt)) ; 

      u++ ; 

if (l[u]<=tt)         /* can correct error */ 

       { 

/* put elp into index form */ 

for (i=0; i<=l[u]; i++)   

elp[u][i] = index_of[elp[u][i]] ; 

/* find roots of the error location polynomial */ 
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for (i=1; i<=l[u]; i++) 

reg[i] = elp[u][i] ; 

count = 0 ; 

for (i=1; i<=nn; i++) 

{ 

q = 1 ; 

for (j=1; j<=l[u]; j++) 

if (reg[j]!=-1) 

{ 

reg[j] = (reg[j]+j)%nn ; 

                  q ^= alpha_to[reg[j]] ; 

                } ; 

if (!q)        /* store root and error location number indices */ 

{ 

root[count] = i; 

loc[count] = nn-i ; 

                count++ ; 

              }; 

          } ; 

if (count==l[u])    /* no. roots = degree of elp hence <= tt errors */ 

          { 

/* form polynomial z(x) */ 

for (i=1; i<=l[u]; i++)        /* Z[0] = 1 always - do not need */ 

{ 

if ((s[i]!=-1) && (elp[u][i]!=-1)) 

z[i] = alpha_to[s[i]] ^ alpha_to[elp[u][i]] ; 

else if ((s[i]!=-1) && (elp[u][i]==-1)) 

z[i] = alpha_to[s[i]] ; 

else if ((s[i]==-1) && (elp[u][i]!=-1)) 

z[i] = alpha_to[elp[u][i]] ; 

else 

z[i] = 0 ; 

for (j=1; j<i; j++) 

if ((s[j]!=-1) && (elp[u][i-j]!=-1)) 
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z[i] ^= alpha_to[(elp[u][i-j] + s[j])%nn] ; 

z[i] = index_of[z[i]] ;         /* put into index form */ 

            } ; 

  /* evaluate errors at locations given by error location numbers loc[i] */ 

for (i=0; i<nn; i++) 

{ 

err[i] = 0 ; 

if (recd[i]!=-1)        /* convert recd[] to polynomial form */ 

recd[i] = alpha_to[recd[i]] ; 

else recd[i] = 0 ; 

             } 

for (i=0; i<l[u]; i++)    /* compute numerator of error term first */ 

{ 

err[loc[i]] = 1;       /* accounts for z[0] */ 

for (j=1; j<=l[u]; j++) 

if (z[j]!=-1) 

err[loc[i]] ^= alpha_to[(z[j]+j*root[i])%nn] ; 

if (err[loc[i]]!=0) 

{ 

err[loc[i]] = index_of[err[loc[i]]] ; 

                 q = 0 ;     /* form denominator of error term */ 

for (j=0; j<l[u]; j++) 

if (j!=i) 

                     q += index_of[1^alpha_to[(loc[j]+root[i])%nn]] ; 

                 q = q % nn ; 

err[loc[i]] = alpha_to[(err[loc[i]]-q+nn)%nn] ; 

recd[loc[i]] ^= err[loc[i]] ;  /*recd[i] must be in polynomial form */ 

               } 

            } 

          } 

else    /* no. roots != degree of elp =>>tt errors and cannot solve */ 

for (i=0; i<nn; i++)        /* could return error flag if desired */ 

if (recd[i]!=-1)        /* convert recd[] to polynomial form */ 

recd[i] = alpha_to[recd[i]] ; 
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else  recd[i] = 0 ;     /* just output received codeword as is */ 

       } 

else         /* elp has degree has degree >tt hence cannot solve */ 

for (i=0; i<nn; i++)       /* could return error flag if desired */ 

if (recd[i]!=-1)        /* convert recd[] to polynomial form */ 

recd[i] = alpha_to[recd[i]] ; 

else  recd[i] = 0 ;     /* just output received codeword as is */ 

    } 

else       /* no non-zero syndromes => no errors: output received codeword */ 

for (i=0; i<nn; i++) 

if (recd[i]!=-1)        /* convert recd[] to polynomial form */ 

recd[i] = alpha_to[recd[i]] ; 

else  recd[i] = 0 ; 

 } 

main() 

{ 

register int i; 

/* generate the Galois Field GF(2**mm) */ 

generate_gf() ; 

printf("Look-up tables for GF(2**%2d)\n",mm) ; 

printf("  i   alpha_to[i]  index_of[i]\n") ; 

for (i=0; i<=nn; i++) 

printf("%3d      %3d          %3d\n",i,alpha_to[i],index_of[i]) ; 

printf("\n\n") ; 

/* compute the generator polynomial for this RS code */ 

gen_poly() ; 

/* for known data, stick a few numbers into a zero codeword. Data is in 

polynomial form. 

*/ 

for  (i=0; i<kk; i++)   data[i] = 0 ; 

/* for example, say we transmit the following message (nothing special!) */ 

data[0] = 8 ; 

data[1] = 6 ; 

data[2] = 8 ; 



32  

 

data[3] = 1 ; 

data[4] = 2 ; 

data[5] = 4 ; 

data[6] = 15 ; 

data[7] = 9 ; 

data[8] = 9 ; 

/* encode data[] to produce parity in bb[].  Data input and parity output 

is in polynomial form 

*/ 

encode_rs() ; 

/* put the transmitted codeword, made up of data plus parity, in recd[] */ 

for (i=0; i<nn-kk; i++)  recd[i] = bb[i] ; 

for (i=0; i<kk; i++) recd[i+nn-kk] = data[i] ; 

/* if you want to test the program, corrupt some of the elements of recd[] here. This can also be 

done easily in a debugger. */ 

/* again, lets say that a middle element is changed */ 

data[nn-nn/2] = 3 ; 

for (i=0; i<nn; i++) 

recd[i] = index_of[recd[i]] ;          /* put recd[i] into index form */ 

/* decode recv[] */ 

decode_rs() ;         /* recd[] is returned in polynomial form */ 

/* print out the relevant stuff - initial and decoded {parity and message} */ 

printf("Results for Reed-Solomon code (n=%3d, k=%3d, t= %3d)\n\n",nn,kk,tt) ; 

printf("  i  data[i]   recd[i](decoded)   (data, recd in polynomial form)\n"); 

for (i=0; i<nn-kk; i++) 

printf("%3d    %3d      %3d\n",i, bb[i], recd[i]) ; 

for (i=nn-kk; i<nn; i++) 

printf("%3d    %3d      %3d\n",i, data[i-nn+kk], recd[i]) ; 

} 
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                                 CHAPTER 8:RESULT 

 

The encoder and decoder circuit of Reed Solomon code (15, 9) is successfully implemented on 

DSP kit. The result has been obtained after running the program on DSP kit is given below: 

Look-up tables for GF (2** 4) 

  i  alpha_to[i]  index_of[i] 

  0        1           -1 

  1        2            0 

  2        4            1 

  3        8            4 

  4        3            2 

  5        6            8 

  6       12            5 

  7       11           10 

  8        5            3 

  9       10           14 

 10        7            9 

 11       14            7 

 12       15            6 

 13       13           13 

 14        9           11 

 15      10616849           12 
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Results for Reed-Solomon code (n= 15, k= 9, t= 3) 

  i   data[i]   recd[i](decoded) 

  0     15       15 

  1     13       13 

  2     10       10 

  3      0        0 

  4      6        6 

  5     13       13 

  6      8        8 

  7      6        6 

  8      8        8 

  9      1        1 

 10      2        2 

 11      4        4 

 12     15       15 

 13      9        9 

 14      3        9 
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                                               CHAPTER 9:CONCLUSION 

 

In this project we have implemented the encoding and decoding circuit of Reed Solomon code 

successfully on DSP kit TMS32C677XX. The RS (15, 9) is developed in this. Systematic 

encoder is used for encoding and the Berlekamp-Massey Algorithm for decoding. The advantage 

of this algorithm is that there is no need to calculate the error values, as it is enough to determine 

the position of the errors to perform the error correction. This algorithm is works in iterative 

manner, so it is quite complex. We can work on Euclidean Decoder in future to remove the 

iterative complexity and can compare their performance. 
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