“CONTROL OF ROBOTIC ARM AND VIRTUAL
OBJECT THROUGH HAPTIC TRANSDUCERS”

By
Kanika Rana(101049)

Under the supervision of
Prof. T.S.Lamba

Dissertation submitted in partial fulfilment
Of the requirement for the degree of

BACHELOR OF TECHNOLOGY
IN
ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN — 173234, INDIA

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
(Established under the Act 14 of Legislative Assembly of Himachal Pradesh)
Waknaghat, P.O. DomeharBani. Teh. Kandaghat, Distt. Solan- 173234(H.P)
Phone: 01792-245367, 245368,245369

Fax-01792-245362

CERTIFICATE

This is to certify that the work titled “Control of Robotic Arm and Virtual
Object using Haptic Transducer” submitted by “Ms. Kanika Rana” in the
partial fulfillment for the award of degree of Bachelor of Technology (ECE) of
Jaypee University of Information Technology, Waknaghat has been carried out
under my supervision. This work has not been submitted partially or wholly to any

other university or institution for the award of this or any other degree or diploma.

ba
= akPeiu
Prof. T.S.Lamba
Dean(Academic and Research)
Department of Electronics and Communication Engineering
Jaypee University of Information Technology (JUIT)
Waknaghat, Solan — 173234, India

(Supervisor)

I

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
(Established under the Act 14 of Legislative Assembly of Himachal Pradesh)
Waknaghat, P.O. DomeharBani. Teh. Kandaghat, Distt. Solan- 173234(H.P)
Phone: 01792-245367, 245368,245369

Fax-01792-245362

DECLARATION

I hereby declare that the work reported in the B. Tech report entitled “Control of
Robotic Arm and Virtual Object using Haptic Transducers” submitted by “Ms.
Kanika Rana” at Jaypee University Of Information Technology, Waknaghat is an
authentic record of my work carried out under the supervision of “Prof.
T.S.Lamba”. This work has not been submitted partially or wholly to any other

university or institution for the award of this or any other degree or diploma.

Ms. Kanika Rana

101049

Department of Electronics and Communication Engineering
Jaypee University of Information Technology (JUIT)
Waknaghat, Solan — 173234, India

I

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards to my
guide (Mentor) Prof T.S.Lamba for his exemplary guidance, mentoring and
constant encouragement throughout the course of this project. The blessing, help
and guidance given by him time to time shall always be with me and take me a long
way in the journey of life. I would want to thank Mr. Punit Gupta, CSE Department
for all the support and help. I would also thank Mrs Meenakshi Sood for always
being there and never saying no to any of the last minute requests for help. I thank
every individual who helped me in every way possible to make this project work.
Lastly, I thank almighty, my family and friends for their constant encouragement
without which this project would not be possible.

Kanika Rana

v

ABSTRACT

The objective of this project is to make a ‘Haptic Transducer’ for controlling real

(the robotic arm) and virtual objects (objects created in MATLAB).

Haptic transducer converts hand movement into a varying voltage level using either
sensors or potentiometers. User has the option of wearing either a GLOVE or an
EXOSKELETON. The glove is attached with two flex sensors and a Hall Effect
sensor which generate two degrees of freedom for virtual environment while the
exoskeleton is attached with three potentiometers to generate three degrees of
freedom for real environment. The output of the two flex sensors and Hall Effect
sensors when fed to a 3 D virtual hand of MATLAB through a micro-controller can
control two parameters (hold and lift) of the virtual hand. Alternatively, the output
of the three potentiometers when fed to a Robotic arm through a micro controller
can control three parameters (claw, wrist and base) of the Real Robotic arm. So this
haptic transducer is capable of controlling a virtual object (MATLAB environment)

and a real object (Robotic arm) by sensing the actual hand movements.

Research indicates that a considerable population is kinesthetic or tactile learners.
Haptics opens the door to an entirely different learning method and style, one that
for many students provides the best opportunity to learn. Haptics technology has
found its way into a range of commercial video game controllers (Nintendo)
including joysticks and steering wheels. This technology has a long way to go and

many fields to explore.

TABLE OF CONTENTS

S.No Topic Page No.
Certificate 11
Declaration 111
Acknowledgement v
Abstract \
List of Figures VIII
List of Tables X
1. Chapter-1 : Introduction to Haptics
1.1 What is Haptics? 1
1.2 How does it work? 1
1.3 Who is using it? 2
1.4 How is it significant as a technology? 2
1.5 What are the down sides? 2
1.6 What are its future prospects? 3
1.7 Implications of Haptics on teaching and learning 3
1.8 Work done by other people 3
2. Chapter-2 : Software
2.1 MATLAB 7
2.2 Hyper Terminal 7
2.3 WinAVR 8
2.4 HID BootFlash 8
2.5 COM Port toolkit 8
2.6 Arduino Module 9
2.6.1 | Arduino Uno 10
2.6.2 | Features Of Arduino Uno 11
3. Chapter- 3 :Hardware
3.1 ATmega 16 Development Board 12
3.1.1 | ATmega 16 13
3.2 Potentiometers 14
33 Flex Sensors 15
3.4 DB 9 Connector 16
3.5 Hall Effect sensors 17
3.6 Haptic Robotic Arm 21

VI

Chapter-4 : Work done

4.1 Making 3-D objects using MATLAB 22

4.2 Basic ATmega programs 22

4.3 Making Flex Sensors 23

4.4 Interfacing Microcontroller with computer 27

4.4.1 | Understanding the register structure of USART of AVR 27

4.4.2 | Serial Interfacing using Hyper Terminal 31

4.4.3 | Serial Interfacing using MATLAB 34

4.5 Getting the value from sensors 38

4.5.1 | Understanding the register structure of ADC of AVR 38

4.5.2 | Interface Analog device to AVR Atmegal6 41

4.5.3 | Techniques of ADC of Microcontroller 41

4.5.4 | Sensor Calibration 42

4.6 3-D Objects using Constructive Solid Geometry 43

5. Chapter-5 : Result and Conclusion 44

6. Chapter-6: Challenges Faced 45

7. Chapter-7: Future Prospects 46
8. Appendices

Al MATLAB Codes for creating 3-D objects 47

A2 Basic ATmega code 50

A3 Final MATLAB code for virtual object control 51

9. References 55

Vil

List of Figures

S.No Title Page No.
1. Chapter-1 : Introduction
1.1 Basic Working 1
1.2 Testing of Stroke Sleeve 4
1.3 Virtual Model describing the movement of hand 5
1.4 Haptograph 6
2. Chapter-2 : Software
2.1 HID Boot Flash 8
2.2 COM Port toolkit 9
3. Chapter- 3 :Hardware
3.1 Atmega-16 Development Board 12
3.2 Atmega-16 Pin Diagram 14
33 Potentiometer 15
34 DB-9 Pin Description 16
3.5 DB-9 Female Connector 17
3.6 Hall Effect Sensor 18
3.7 Testing of Hall Effect Sensor 20
3.8 Exoskeleton-Robotic arm controller 21
3.9 Robotic Arm 21
4. Chapter-4 : Work Done
4.1 Preparation for making Flex sensors 24
4.2 Procedure of making Flex sensors 25
4.3 Flex sensors using Method 1 25
4.4 Flex sensors and readings using Method 2 27
4.5 On-board rs232 for serial communication (soldered through | 31
wires as 3-pin to 9-pin converter was not available)
4.6 Hyper Terminal Setup 32
4.7 COM1 Properties 33
4.8 Data Transmitted From Microcontroller to Hyper Terminal | 33
4.9 Data Read in MATLAB 34

VI

4.10 Process Of Data Reading 35
4.11 Data Read 1 36
4.12 Data Read 2 37
4.13 Structure of the imported data using the the “uiimport” | 38

command from .mat file

IX

List of Tables

S.No Title Page No.
1. Chapter-2 : Software
Table 2.1- Features Of Arduino Uno 11
2. Chapter-3 : Hardware
13

Table 3.1- Port Description

CHAPTER-1
INTRODUCTION TO HAPTICS

1.1 What is Haptics?

Haptics technologies provide force feedback to users about the physical properties and movements
of virtual objects, represented by a computer. Historically, human-computer interaction has been
visual- words, data or images on a screen. Haptics is the new technology that incorporates both
touch (tactile) and motion (Kinesthetic) elements. With the help of haptic interfaces, the user can
‘feel” what is happening on the screen. To simulate real physical properties such as friction, weight,
momentum, texture, resistance, temperature etc., applications incorporating haptics communicate

these properties and let the user ‘feel’ them as well through the interface.

1.2 How does it work?

Haptics applications use specialized hardware to provide sensory feedback that simulates physical
properties and forces. Haptic interfaces can take many forms, the most common configuration uses
separate mechanical linkages to connect a person’s fingers, sensors then translate these motions into

actions on screen and motors transmit feedback through the linkages to the user’s fingers.

A 4
A 4

COMPUTER

HUMAN < MECHANICAL
HAND LINKAGE

Fig. 1.1 Basic Working

Advantage

Because the object and its environment are purely virtual, the properties can be changed easily and
its impact/effect can be seen and felt. In the project, though we plan on implementing the entire

cycle, even implementing one side chain would be an achievement.

1.3 Who is using it?

Haptics tools are used in a variety of educational settings, both to teach concepts and to train
students in a specific technique.
(a) To teach physics: allow students to interact with experiments that demonstrate gravity,
friction, momentum and other fundamental forces.
(b) To teach biology: create virtual models of molecules, and feel their weight, size, shape and
understand how they bond
(c) Aviation: Flight simulators combine visual and auditory elements with haptic technology,
including resistance and vibrations in controls allowing student pilots to experience the

kinds of sensations they will feel when they fly a real plane.

1.4 How is it Significant as a technology?

The interface between humans and computers has been described as information bottleneck.
Computers store and process vast amounts of data, whereas humans experience through the 5
senses.

But, computers typically only take advantage of one or two sensory channels (sight and sound) to
transmit information to people. Haptics promises to open this bottleneck by adding a new channel
of communication, using the sense of touch, further expanding the notions of bi-directional
communication between humans and computers to include sensory feedback.

It is a known fact that active learning strategies result in stronger comprehension of subjects and
Haptics provides that mechanism, putting control and learning literally into the hands of users.

It also plays a vital role in assistive technology for the aid of visually impaired.

1.5 What are the downsides?

Designing and implementing haptic devices can be extremely complex, requiring highly specialized
hardware and considerable processing power. Also the costs involved can be considerably high.
Since the object is virtual, a compelling interaction with the device requires that, all of the physical
properties and forces involved be programmed into the application.

Generally the devices have fixed installations, not easily portable. Haptics is relatively young and

offer somewhat crude experience to users as of now. Gathering raw materials for the device is

difficult.

1.6 What are its future prospects?

Development and refining of various kinds of haptic interfaces will continue, providing more
lifelike interactions with virtual objects and environment. Researchers will continue to investigate
possible avenues for haptics to complement real experiences.

Advantages in hardware will provide opportunities to produce haptic haptic devices in smaller
packages and haptic technology will find its way into increasingly common place tools.
Additionally, consumer- grade haptic devices are starting to appear on the market. As access to
haptics increases, usage patterns and preferences will inform best best practices and applications —
ultimately users will decide which activities are appropriately represented through haptics and

which are better left to the real world.

1.7 Implications of Haptics on teaching and learning

Research indicates that a considerable portion of people are kinesthetic or tactile learners. Haptics
opens the door to an entirely different learning method and style, one that for many students
provides the best opportunity to learn.Haptics technology has found its way into a range of

commercial video game controllers (Nintendo) including joysticks and steering wheels.

1.8 Work done by other people

There are a plethora of research projects that have been implemented in the field of Haptics, stating

a few of them:

1.8.1 Surround Haptics: Immersive Tactile Experiences

This technology is integrated with a wide variety of entertainment and media contents, such that the
contents are not only seen and heard but also felt, simultaneously. The tactile contents are carefully
created and synchronized with visual and auditory cues to create effective and immersive
experiences and increase the interest of users while playing video games, watching movies, etc. The
technology is integrated into theater seats, gaming chairs and vests, rides, gloves, shoes, hand-held
devices and controllers, clothes, to create another dimension of sensory feedback. For example,
while playing an intense driving simulation game, users feel road conditions, gravel, traction,

acceleration, brake, explosions, collisions, etc.

1.8.2 Stroke Sleeve: Spatially Distributed Tactile Feedback for Stroke
Rehabilitation

Current therapy methods typically utilize virtual environments, providing patients with visual
feedback as they perform repetitive arm movements to improve motor functionality, but patients
often struggle to process such information. A therapist also provides hand-over-hand skilled
guidance (“shaping”) to assist the affected arm in performing functional tasks. These training
methods are work-intensive for the therapist and can become boring and laborious for the patient,
thus presenting the need to develop alternative therapy methods. Newer rehabilitation therapy
benefits from the use of virtual reality and assistive robotic arms. These newer technologies permit
the delivery of enhanced feedback and guided practices as well as the option to record user

performance for evaluation.

Fig. 1.2 Testing of Stroke Sleeve

A computer monitor displays a graphical representation of the user's arm motions and provides a

wireframe overlay of a desired motion for an individual to learn. This helps the user see what the

4

desired path is and make adjustments accordingly. The haptic (vibrotactile) feedback is provided in
the form of cuffs that are placed around the bicep and forearm of the user. Stretchable, compression
arm sleeves are used to create a tight fit and accomodate a wide variety of individuals. Four,
shaftless, eccentric mass motors are evenly distributed around the cuff and attached to the material

using rubber coated plastic caps. This ensures that the actuators are close to the skin for good tactile

sensation and localization of the vibration actuators

Fig. 1.3 Virtual Model describing the movement of hand

1.8.3 Haptography: Capturing and recreating the rich feel of real surfaces

Haptography, like photography in the visual domain, enables an individual to quickly record the
haptic feel of a real object and reproduce it later for others to interact with in a variety of contexts.
Particular positive ramifications of establishing the approach of haptography are to let doctors and
dentists create haptic records of medical afflictions such as a decayed tooth surface to assist in
diagnosis and patient health tracking; to improve the realism and consequent training efficacy of
haptic surgical simulators and other computer-based education tools; to allow a wide range of
people, such as museum goers and online shoppers, to touch realistic virtual copies of valuable
items; to facilitate a haptographic approach to low-bandwidth and time-delayed teleoperation, as

found in space exploration; and to enable new insights on human and robot touch

capabilities.

M =)

P =

 JHEG
oak block g
Capturing the Feel Recreating the Feel
of a Real Surface with Haptograph of the Real Surface with
a Sensorized Tool an Active Stylus

Fig. 1.4 Haptograph

CHAPTER-2
SOFTWARE

2.1 MATLAB

We used MATLAB (Matrix Laboratory) for our virtual object simulations and interfacing with the
microcontroller. It integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical notation.

MATLAB is a numerical computing environment and fourth-generation programming language.
Developed by Math Works, MATLAB allows matrix manipulations, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with programs written in

other languages, including C, C++, Java, and Fortran.

We worked on MATLAB mainly for two purposes, firstly for creation of 3-D objects like cylinder,
cube and sphere. These 3-D figures are the basic building blocks of final graphical interface that
would be visible to the user. Adding to it, these are the virtual objects that we’ll be working with.

Secondly, we used the Instrument Control Toolbox for the serial interfacing of the
microprocessor to MATLAB and transmission of data from the microcontroller to MATLAB. It
basically used the COM port 1 of the computer and read the data that was being transmitted by our
Microcontroller. Adding to it, there are various other additional features that can be useful for us,
like the data read from the Microcontroller can be exported to the workspace of MATLAB, can

automatically make a .mat file and structures of which the read data is an object.

2.2 Hyper Terminal

It is basically a terminal emulator capable of connecting to systems through TCP/IP Networks,
Dial-Up Modems, and COM ports. It is one of the communication utilities provided by Microsoft in
their operating systems. We used it for testing serial communication process between our
Microcontroller and the computer. This is a default terminal program shipped with Windows xp

OS, it not available for other versions of Windows, so we can use other terminal programs like

‘PUTTY’.

23 WinAVR

WinAVR is a suite of executable, open source software development tools for the Atmel AVR
series of RISC microprocessors hosted on the Windows platform. It includes the GNU GCC
compiler for C and C++.We used Programmers Notepad which is a programming environment
which allows you to create and edit programs in various languages, and then compile the program

into an executable format that the microcontroller will understand.

2.4 HID Bootflash

HID BootFlash is a GUI and command line tool used for transferring the .hex file to the
microcontroller. It is an AVR USB Boot equivalent boot loader. In enables connecting to devices

and flashing the firmware in a step-by-step approach.

—1. Find device on bus— 2. Specify .hex file — 3. Flash device

VendorlD Ox |18C0
ProductlD Ox IUSDF

Find Device |

Enter VID & PID CMD Usage |

Welcome to the AYR-USB Bootloader Flash Tooll

This tool is designed to load firmware to AVR-USE with HID bootloader.
1. Enter ¥ID & PID to connect to.

2. Specify the .hex file to download.

3. Flash and enjoy.

fwauschiamall.com

Fig.2.1 HID Bootflash main window
2.5 COM Port Toolkit

COM Port toolkit is a serial port monitor with data transmission, data logging, and real- time data
capture. It is a protocol, data and timing analyzer designed specifically to isolate problems with
serial (RS-232,422,485) data communication control networks. This software can be used for
implementing or debugging serial protocol. It can send and capture ASCII and HEX data. Other

features of the software include time snipping, multiple devices oriented environment and data

export to clipboard or file. The major advantage of this software is that it is in direct
synchronization with the serial port and real time data acquisition becomes easy. But my project
required real time data acquisition in MATLAB, and the testing times when the code for ADC data
acquisition in MATLAB gave no results, and there was doubts about the correctness of code,

testing it with COM Port gave results and inspired to go ahead with the code.

%, COM Port Toolkit 2.6 - Skyguide TD N s |D|l<_|
Message Miew Options Device Info

v’_ ‘ M@ \W.l iﬂ] 13:18:54 |

Time | Sent | Time | Received | A5CH l
000001 1318:05.753 223344 ouuom 1317:58.769 00 00 00 00
000002 1318:06.560 0000000000000000(| 000002 131758769 00 00 00 OO
000003 13:18:06.961 0000000000000000(| 000003 13:17:58.779 00 00 00 OO

000004 13:18:08.163 FFAA00 000004 13:17:58.773 00 00 0O OO0 —
000005 13:18:08.934 FFAAQOD 000005 1317:59.751 22 33 44 22 "3D"
000006 13:18:09.985 FFAAOD 000006 13:17:59.971 33 44 22 33 3p"3
000007 13:18:11.628 0000000000000000C| 0DOOO7 13:18:00151 44 D
000008 1318122239 0000000000000000C| 0OOOOE 13:18:00992 FF A& 00 Ak .

000009 13:18:12.433 0000000000 000000 (
000010 13:18:13.300 2233 44

l | i
% % & ﬁ @ Clear l @ @ Clear |

| | port: COM1 | baud: 9600 |bits:3| parity: None | stop bits: 1

Fig.2.2 Screenshot of COMPORT when in use

2.6 Arduino Module

Arduino is an open-source electronics prototyping platform which is flexible and has easy-to-use
hardware and software. It takes input from variety of switches and sensors, and controls a variety of
motors, lights and other physical outputs. Projects based on Arduino can be stand-alone; they can
communicate with software running on the computer. The Arduino board can be manually
assembled or purchased preassembled; the open source IDE can be downloaded for free. The
Arduino programming language is nothing but the implementation of wiring. It is similar to the
physical computing platform, which is based on the programming needed in multimedia

environment.

2.6.1 ARDUINO Uno

The Arduino Uno is a microcontroller board which uses ATmega328. It consists of 14 digital i/o
pins. In those 14 pins, 6 pins are used for PMW outputs, another 6 pins are analog inputs. It has 16
MHz ceramic resonator, a USB connection that is use to connect the Arduino to system, a power
jack for power supply. It also has an ICSP header, and a reset button which is used to reset the
codes stored in the Arduino microcontroller. The board has everything which is needed to support a
microcontroller to function. Arduino can be powered up either by connecting it to the computer

through USB cable or by using AC-to-DC adapter or battery which is connected to power jack.

10

2.6.2 FEATURES OF ARDUINO Uno

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital 1/0O Pins 14 (of which 6 provide PWM output)
/Analog Input Pins 6

DC Current per /O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by boot loader
SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Table 2.1 Features Of Arduino Uno

11

CHAPTER-3
HARDWARE

3.1 ATmega 16 Development Board

We have used an ATmega 16 development board in our project as shown in Fig 3.1 .This
development board can be used for interfacing of sensors, motors and LCD. It has switches for boot
loading, reset, motors and power. It also has RS232 interface header. The board is compatible with
16x2 and 16x1 alphanumeric LCD. This board contains two L293d IC’s which can control 8
unidirectional & 4 bidirectional motors. Four switches are provided. The board also has 4 LED’s

and a Buzzer for status or debugging purpose.

A EEELTT “
re PPy
PP EP ey

Fig.3.1 Atmega 16 Development Board

The respective ports responsible for controlling of motors, LED’s, LCD, sensors and UART

communication process are shown below in Table 3.1

12

Table 3.1 Port Description

ADC LED interface (Active high) Motor Driver
PAO to PA7 LEDI- Port C4 MO- Port BO
LED2- Port C5 MI1- Port Bl
Switch (Active low) LED3- Port C6 M2- Port B2
S1- PortA4 LEDA4- Port C7 M3- Port B3
S2- PortAS M4- Port D4
S3- PortA6 LCD interface (16x2 / 16x1) M5- Port D5
S4- PortA7 RS - Port CO M6- Port D6
RW- Port C1 M7- Port D7
Buzzer (Active High) E -Port C2
Port- C3 D5 - Port C4 RS232/UART
D6 - Port C5 R-Receiver —PDO
Sensors D7 - Port C6 T-Transmitter - PD1
PAO to PA7 D8 - Port C7 G-Ground
PBO to PB7

3.1.1 ATmegal6

ATmegal6 is an 8-bit high performance microcontroller of Atmel’s Mega AVR family with low
power consumption. Atmegal6 is based on enhanced RISC (Reduced Instruction Set Computing)
architecture with 131 powerful instructions. Most of the instructions execute in one machine cycle.
Atmegal 6 can work on a maximum frequency of 16MHz.

It has 16 KB programmable flash memory, static RAM of 1 KB and EEPROM of 512 Bytes. The

endurance cycle of flash memory and EEPROM is 10,000 and 100,000, respectively.

It is a 40 pin microcontroller. There are 32 1/O (input/output) lines which are divided into four 8-bit
ports designated as PORTA, PORTB, PORTC and PORTD.

Moreover, it also has various in-built peripherals like USART, ADC, Analog
Comparator, SPL, JTAG etc. Each I/O pin has an alternative task related to in-built peripherals. The
following figure Fig 3.2 shows the pin description of ATmegalo6.

13

S/
(XCK/TO) PBO [1 40 [PAO (ADCO)
(T1) PB1] 2 39 [PA1 (ADC1)
(INT2/AINO) PB2] 3 38 [PA2 (ADC2)
(OCO/AIN1T) PB3 [] 4 37 [PA3 (ADC3)
(SS) PB4 [5 36 [J PA4 (ADC4)
(MOSI) PB5 [] 6 35 [PA5 (ADC5)
(MISO) PB6 [7 34 [0 PA6 (ADCS6)
(SCK) PB7] 8 33 [0 PA7 (ADCT7)
RESET (] 9 32 |1 AREF
VCC] 10 31 [GND
GND] 11 30 O AVCC
XTAL2] 12 29 FI PC7 (TOSC2)
XTAL1] 13 28 [0 PC6 (TOSC1)
(RXD) PDO 1 14 27 |11 PC5 (TDI)
(TXD) PD1] 15 26 O PC4 (TDO)
(INTO) PD2 [16 25 [PC3 (TMS)
(INT1) PD3] 17 24 O PC2 (TCK)
(OC1B) PD4] 18 23 O PC1 (SDA)
(OC1A) PD5] 19 22 |1 PCO (SCL)
(ICP1) PD6] 20 21 @3 PD7 (OC2)
Fig.3.2 ATmega 16 Pin Diagram
3.2 Potentiometers

Potentiometers are transducers, it converts rotary or liner motion from the operator into a change of
resistance, and this change is used to control the hand movement of the robotic arm. The
potentiometer used is a three legged element, of which two outside terminals act as fixed resistor. A
movable contact called wiper (the middle terminal) moves across the resistor, producing a variable

resistance between the center terminals and the two sides.

14

Three potentiometers are used to control the claw, wrist and base movements of the robotic arm.

Terminals

/ 1\

Rotary potentiometer
construction

Wiper
Resistive strip

Fig. 3.3 Potentiometer

3.3 Flex Sensors

3.3.1 What are Flex Sensors?

Flex sensors also known as bend sensors are specially made sensors which change their resistance
depending on amount they are bent. They convert change in bend into electrical energy. They are
available in market in form of thin strips of varying lengths and can be unidirectional or bi-
directional, that is whether they sense the bend in one direction or both. They are used not only to

detect a bend, but also figure out how much something is bent.

3.3.2 Working

Flex sensors are basically devices that convert physical parameter’s to analog electrical signal.
Inside the flex sensor is a bunch of conducting particles, which are closest to each other when the
sensor is straight or flat. But when it is bent, they spread further away from each other making it
less conductive and thus increasing the resistance. To use it we attach Flex sensors to a voltage
divider circuit. As we bend these sensors, change in resistance can be measured by checking the
changing voltage. It also depends where we bend the sensors from, hence kept the sensor on the
finger and marked the three points, where the finger can be bent from(degree of freedom) and

measure the possible angles of bent at all the three points(0 to 90 degree with a gap of 10 degree).

3.3.3 Applications of Flex Sensors
Today, there are various applications of Flex sensors some of which are mentioned below.

15

1. In Robotics, Flex Sensors are used to determine joint movement and placement in various
robotics components.

2. They are used in bumper switches and pressure switches which are used for various
purposes.

3. These sensors can be used in gaming gloves to make virtual reality possible in gaming.

4. For bio-metrics, the sensor can be placed on a moving joint of athletic equipment to provide

an electrical indication of movement or placement.

Flex sensors are also used in auto controls, fitness products, measuring devices, assistive

technology, musical instruments, joysticks and many more.

3.4 DB-9 Connector

The term "DB9" refers to a common connector type, one of the D-Subminiature or D-Sub types of
connectors. DB9 has the smallest "footprint" of the D-Subminiature connectors, and houses 9 pins
(for the male connector) or 9 holes (for the female connector). They are designed to work with the
RS 232 serial interface standard, which determined the function of all nine pins as a standard.The

functions of each pin are shown in figure Fig 3.3.

Pin3
Transmit
Bin 2 Data (TD)
Receive Data Pin 4
FPin 1 (R Data Terminal
Cata Carrier Ready (DTHRH)
Detect (DCD)

Pins
Ground

Pin B
Data Set

Ready (D3R) Pin 9
Ringing Indicatar (RI)

Pin ¥

Pin &8
Request to
Clear to Send
Send (RTS
end |{) (CTS)

Fig 3.4 DB9 Pin Description

16

Fig 3.5 DB9 Female Connector

We used 3 pins (Rx, Tx, GND) for serial communication.

3.5 Hall effect sensors

Hall Effect sensors are essentially elements that vary output voltage depending on the changes in

the magnetic field. There are essentially four types of Hall Effect sensors:

1.

Typical hall effect sensors:

They basically act as a reed switch and are always in one constant mode and whenever they
sense a magnetic field switch, they switch to the other mode. The moment magnetic field is
removed; they are back to the original constant mode.

Latch type:

This type of sensor, initially is in a neutral mode, but when senses the activating pole of the
magnet (south or north, depending on sensor to sensor), it is switched ON, and it remains in
this state now even when the magnetic field is removed. For the output voltage to now
switch to low, i.e. sensor to be turned OFF, it needs to be approached by the other pole of
the magnet (opposite of the activating pole).

Switch type:

They are initially at the mid-point value of V.. and when approached by the activating pole
of the magnet, the output voltage increases to V. and when approached by the opposite
pole, the voltage drops to zero.

Linear:

They produce a hall voltage proportional to the strength of the magnetic field around it.

17

The Hall Effect sensor used is- WSH134 which is a unipolar Hall Effect switch IC and its

features are as follows:

(1) Operates from 2.4V to 26V supply voltage with reverse voltage protection

(11) Operates with magnetic fields from DC to 15kHz

(111) On-chip Hall sensor

(iv) On-chip temperature compensation circuitry minimizes shifts in ON and OFF points
and hysteresis over temperature and supply voltage.

(v) Ideal sensor for speed measurement, revolution counting, positioning and DC
brushless motors.

(vi) ON (low voltage) with south magnetic pole and OFF (high voltage) without
magnetic field or with magnetic North Pole.

(vii) Operation over temperature range from -40°C to 125°C

1

‘w134

YDD
<— Yout

R
Fig 3.6 Hall Effect Sensor

B- Magnetic flux density, the property of a magnetic field used to determine hall device switch
points, unit being Gauss (G) or Tesla (T).

Since B can have a north or south polarity, going by the convention, B is negative for north polarity
magnetic fields and positive for south polarity magnetic field. Relative strength of the field is

indicated by the absolute value of B and sign just indicates the polarity of the field.

Bop Magnetic operating point; the level of a strengthening magnetic field at which a Hall device

switches ON.

18

Brp Magnetic release point, the level of a weakening magnetic field at which a hall device
switches OFF (or for some types of hall devices, the level of a strengthening negative field gives a
positive Bop). The resulting state of the device output depends on the individual device electronic
design.

Buys Magnetic switch point hysteresis. The transfer function of a hall device is designed with this
offset between the switch points to filter out small fluctuations in the magnetic field that can result

from mechanical vibration or electromagnetic noise in the application. Byys =[Bop-Brp|

PULL UP RESISTOR:

A pull up resistor must be connected between the device supply and the output pin. The minimum
pull up resistance is a function of the Hall IC maximum current and the supply voltage (V¢¢/Imax)

In applications, where current consumption is a concern, the pull-up resistance could be as large as
50 to100k€Q. Caution however is required because large pull up values make it possible to induce
external leakage currents to ground. It is not a device problem, rather the leakage occurs in the
conductors between pull up resistor and the device output pin. These currents could be high enough
to reduce the output voltage, regardless of the state of the magnetic field and device switching state.
Taken to the extreme, this can reduce the output voltage, enough to inhibit proper external logic

functions. Thus in the project, I have used 2202 as the pull up resistance.

BYPASS CAPACITORS:

For designs without chopper stabilization-it is recommended that a 0.01uF capacitor be placed
between output and ground and between supply and ground pins.

For designs with chopper stabilization- a 0.1uF capacitor be placed between supply and ground pins
and a 0.01uF between output and ground pins.

Since my project did not work at conditions that require bypass capacitors and having tested it
experimentally, the bypass capacitors made no difference to the output, thus bypass capacitors were

not included in the final circuit.

POWER DISSIPATION

Total power dissipation is a sum of two factors:

19

(a) Power consumed by the Hall device, excluding the power dissipated in the output. This
value is V. times the supply current

(b) Power consumed in the output transistor, this value is V) times the output current (set by
pull up resistor).

The Hall sensor was tested for various conditions:

Fig 3.7 Testing of Hall Effect Sensor

The conclusion reached was to use a 2202 resistor as it gives a desired range of operation.

20

3.6 Haptic robotic arm

The haptic robotic arm is constructed using simple plastic materials, screws, gears, worms and
motors. There are DC motors connected, one each for controlling the claw, base and the base. When
the motor rotates it makes the other parts rotate and as a result perform the desired action. This
motion of the robot is controlled through the potentiometers which are fixed into the exoskeleton at
the crucial points which detect the movement of the hand and indeed translate it into signals
indicating the movement of the arm. The three potentiometers are connected as shown in the
picture, where the motion of the fingers translates the movement of the claw (opening and closing).
The motion of the wrist translates into the movement of the wrist of the robot (bending up and
down) and the motion of arm sideways translates into the rotation of the base of the robot left and

right.

Fig 3.9 Robotic Arm Fig 3.8 Exoskeleton-Robotic arm controller

21

CHAPTER-4
WORK DONE

The making of 3-D objects in MATLAB with proper lights and material, rotating them, and

interfacing of the microcontroller have been accomplished.

4.1 Making 3-D objects using MATLAB

We wrote MATLAB codes for creating 3-D objects like cylinder, cube and sphere. These 3-D
figures are the basic building blocks of final graphical interface that would be visible to the user.
We also performed different operations on the objects like rotation, highlighting it, adjusting
camera angle etc. Adding to it, these are the virtual objects that we’ll be working with.

The MATLAB codes can be found in APPENDIX A.1.

4.2 Basic ATmega Programs

We wrote a few basic programs like blinking of LED’s and working of motors using ‘Embedded
C’ programming language, just to get familiar with the development board and its working. The

codes that we wrote are present in APPENDIX A.2.
The steps for writing codes to Microcontroller are :

1. Write the ‘C program’ in Programmers Notepad [WinAVR], and save it with the name
‘main.c’.
2. Now edit the Makefile (used by the compiler to understand instructions to compile the C
programs).
a. Write the same name as your C file in the main file option of Makefile.
b. Set the F_CPU to 16000000.
¢. Choose your Microcontroller in the options. In our case it was ATmega 16a.
d. Now save the Makefile in the same folder as your Main file.
3. Now go back to Programmers Notepad and select the option ‘MakeAll’.
4. If your codes compiles successfully then you will see a ‘.hex’ file (it contains the code in a

language that machine understands) created in the same folder as your main file.

22

5. Now once you have the hex file, you can burn this on your Microcontroller using HID Boot
Flash.

6. Now switch your development board in ‘Programming Mode’ and open HID Boot Flash.

7. In HID Boot Flash click on ‘Find Device’ option, and if the device is not detected then click
on ‘Reset’ button on your device.

8. Select the hex file that is to be burnt on the microcontroller.

9. Then Click on Flash Device. Now your microcontroller has been programmed.

4.3 Making Flex Sensors

We made flex sensors in the laboratory by using two different methods, described below.

Method — 1

Given below is the description of materials used and the procedure that we followed for making

Flex Sensors.

Materials used
1. Anti Static Bags 10x15cm

2. Masking Tape (2.4 cm and 1.1cm).
3. Jumper Wires
Tools used
1. Pencil
2. Wire Stripper
3. Pen Knife
Preparation
1. Cut 2 pieces of 0.8cm by 15¢m, and 1 piece of 1.7cm by 15¢m from Anti Static Bag.
2. Take jumper wires and measure Scm of wire than strip it.
3. Make a loop back down to the base where the insulation starts, and twist the wires
together a little so that it stays there.
4. Do this for two jumper wires.
5. Take the thin masking tape (1.1cm in width), measure 17cm and cut it.

6. Cut another strip like this

23

7.

Take the thicker masking tape (2.4cm in width), measure 19cm and cut it.

Scm
Exposed
{Stripped)
AWG
Wires

5cm -
Insulated | * Z
AWG

Wires I

Fig. 4.1 Prepration for Making Flex Sensor

15cm

2 pcs 1pc

Procedure

1.

(98]

NS vk

8.
9.

Using the thinner masking tape (1.lcm) with the sticky side facing up, Place the
conductive bag piece (.8cm by 15 cm) that we just cut, right in the middle of it.

Make sure there's a border of sticky tape all around. Smooth it out.

Take one of the jumper wire connectors and place it slightly off-centre onto the edge as
shown.

Check that the exposed loop wire should be kept within the black conductive piece.
Allow a 0.5cm of insulated wire part to be within the black piece as well.

Do the same with another piece.

Take the large conductive bag piece that we cut just now (1.7cm by 15 cm), and fold it
in half, lengthwise.

Lengthwise, align the 2 thin pieces and match the sticky border together

Place the large piece that we just folded into half into the sandwich.

10. Wrap this whole thing up.

11. Take the thicker masking tape piece and with the sticky side up, place two unstripped

jumper wires right in the middle of it.

12. Place the sensor on top of the wires, right smack in the middle.

13. Fold the sticky edges up of the thicker masking tape onto the sensor.

24

17em |

1.1cm

TMasking Tape (Thin)

Fold in Half

Fig. 4.2 Procedure for Making Flex Sensor

Shown below (Fig 4.3) are the flex sensor and intermediate steps in making of flex sensors by us

using Method 1.

Fig. 43 Flex Sensor Using Method 1

25

Method-2

Given below is the description of materials used and the procedure that we followed for making

Flex Sensors using second method.

Materials Required
1. Aluminum foil

2. Resistive Foam
3. Adhesive Tape
4. Connecting wires
Preparation
1. Take Adhesive Tape and cut two strips of 1cm by 8cm each.
2. Cut 2 pieces of 0.8cm by 8cm from Aluminium foil.
3. Take the foam and cut a strip of .8 by 8cm.
4. Take jumper wires and measure Scm of wire than strip it.
5. Make a loop back down to the base where the insulation starts, and twist the wires
together a little so that it stays there.
6. Do this for two jumper wires.
Procedure
1. Using the Adhesive tape with the sticky side facing up, Place the Aluminium foil
(.8cmby 8 cm) that we just cut, right in the middle of it.
2. Make sure there's a border of Adhesive tape all around. Smooth it out.
3. Take one of the jumper wire connectors and place it slightly off-centre onto the edge.
4. Check that the exposed loop wire should be kept within the black conductive piece. (No
peeking out on the sides!!!).
Allow a 0.5cm of insulated wire part to be within the black piece as well.
Do the same with another piece.
Lengthwise, align the 2 pieces and match the sticky border together

Place the conductive foam piece that we just folded into half into the sandwich.

© © N W

Wrap this whole thing up and we are done.

The final results of this method and a glimpse of readings is shown below in Fig 4.

26

Fig. 4.4 Flex Sensors Using Method 2

4.4 Interfacing Microcontroller board with Computer

4.4.1 Understanding the register structure of USART of AVR

First we need to understand the USART of AVR microcontroller and write the code to initialize

the USART and use it to send and receive data.

Like many microcontrollers, AVR also has a dedicated hardware for serial communication this
part is called the USART - Universal Synchronous Asynchronous Receiver Transmitter. This

special hardware makes life as a programmer easier.

USART automatically senses the start of transmission of RX line and then inputs the whole byte
and when it has the byte it informs you (CPU) to read that data from one of its registers. The

27

USART of AVR is very versatile and can be setup for various different modes as required by our

application.
The USART of the AVR is connected to the CPU by the following six registers.

UDR - USART Data Register: Actually this is not one but two register but when you read it you
will get the data stored in receive buffer and when you write data to it goes into the transmitter’s

buffer. This important to remember it.

UCSR - USART Control and status Register: As the name suggests it is used to configure the
USART and it also stores some status about the USART. There are three kind of this register:
the UCSRA, UCSRB and UCSRC.

UBRRH and UBRRL: This is the USART Baud rate register, it is 16BIT wide so UBRRH is the
High Byte and UBRRL is Low byte. But as we are using C language it is directly available as
UBRR and compiler manages the 16BIT access.

Explaining the registers:

UCSRA: USART Control and Status Register A

FE DOR PE U2X MPCM

RXC this bit is set when the USART has completed receiving a byte from the host (may be your
PC) and the program should read it fromUDR

TXC This bit is set (1) when the USART has completed transmitting a byte to the host and your
program can write new data to USART via UDR

UCSRB: USART Control and Status Register B

28

RXCIE: Receive Complete Interrupt Enable - When this bit is written one the the associated
interrupt is enabled.
TXCIE: Transmit Complete Interrupt Enable - When this bit is written one the the associated

interrupt is enabled.

RXEN: Receiver Enable - When you write this bit to 1 the USART receiver is enabled. The
normal port functionality of RX pin will be overridden. So you see that the associated 1/O pin
now switch to its secondary function, i.e. RX for USART.

TXEN: Transmitter Enable - As the name says!

UCSZ2: USART Character Size

UCSRC: USART Control and Status Register C

UPM1 UPMO

IMPORTANT : The UCSRC and the UBRRH (discussed below) register shares same address so to
determine which register user want to write is decided with the 7th(last) bit of data if its 1 then the

data 1s written to UCSRC else it goes to UBRRH. This seventh bit is called the

URSEL: USART register select.
UMSEL: USART Mode Select - This bit selects between asynchronous and synchronous mode.

As asynchronous mode is more popular with USART we will be using that.

Asynchronous
Synchronous

- O

USBS: USART Stop Bit Select - This bit selects the number of stop bits in the data transfer.

1 BIT
2 BIT

- O

UCSZ: USART Character size - These three bits (one in the UCSRB) selects the number of bits
of data that is transmitted in each frame. Normally the unit of data in MCU is 8BIT (C type "char")

and this is most widely used so we will go for this. Otherwise you can select 5,6,7,8 or 9 bit frames!

0 0 0 5Bit

0 0 1 6Bit

0 1 0 7Bit

o 1 1 st
1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9Bit

UBRR: USART Baud Rate Register:

This is the USART Baud rate register, it is 16BIT wide so UBRRHis the High Byte
and UBRRL is Low byte. But as we are using C language it is directly available as UBRR and
compiler manages the 16BIT access. This register is used by the USART to generate the data
transmission at specified speed (say 9600Bps.)UBRR value is calculated according to following

formula.

UBRR= fos 1

16 x Baud Rate

Where fosc i1s your CPU frequency say 16MHz

Before we start interfacing our device, we need to find out the COM port number of the Serial port
to which our avr is connected, since a PC can have several COM ports, each may have some
peripheral connected to it like a Modem. Serial Ports on PC are numbered like COM1, COM2 ...
COMn etc.

Thus the port number can be found as follows:

1. Right Click on "My Computer" icon in Windows Desktop.
2. Select "Properties"

3. The System Properties will open up. Go to the "Hardware" Tab.
30

4. In Hardware tab select ""Device Manager' button. It will open up device manager.

5. In Device Manager Find the Node "Ports (COM & LPT)"

6. Expand the port node in device manager and depending on the type of connection we can
see the available ports.

In our case, the port is COM1.

4.4.2 Serial interfacing using Hyper Terminal

We basically used Hyper Terminal to see whether our connections are fine and serial

communication is possible.

oA Ted

-

F ig. 4.5 The serial connection setup

31

Two different terminal programs exchange data with embedded application as follows:

1. Open HyperTerminal from

Start Menu->All Programs->Accessories->Communication>HyperTerminal

2. On startup it will ask for a connection name. Here we will enter AVR

Connection Description

Erter a name and choose an icon for the connection:
Mame:

= |

lzaon:

F ig. 4.6 Hyper Terminal Setup

3. Create new connection by clicking ok. After that select the COM1 as the port we want to

use.

4. Now set up the COM port parameters as follows:
Baud rate: 9600
Data bits: 8
Parity: none
Stop bits: 1

Flow control: none

32

5.

211

Port Seting: l

Bits per second: | Ss00

Kl

Data bits: |38

L«

Eaiity: | MNone

L4

Step kits: -

Flow conbol: |Nonc :J

Restore Defaults

oK ' Cancel l Spply l

Fig. 4.7 COM1 Properties

Hyper terminal is now ready for communication and if everything is right, the devices

communicate.

« dfsf - HyperTerminal
Fle E View Cal Transfer Hebp

Do &3 OB &

“{aesttall the best!all the best'all the besttall the besttall the bestlall the
besttall the best'all the best'all the best'all the besttall the besttall the be
sttall the besttall the best!all the best!all the best'all the besttall the best
tall the besttall the besttall the bestt!all the best!all the besttall the best'ta
11 the bestt!all the besttall the besttall the best!all the best!all the besttall

the best!all the best'all the besttall the besttall the best!all the best!all t
he best'all the best!all the besttall the best!

MMO:ZS.‘G Auko Setect PE00 SN-1 N

Fig. 4.8

33

« op HyperTerminal
Fle ER Vew Cal Transfer Meb

D@ &3 0B &

Nishit Sadhwani 101045
Kanika Rana 101049
Rahul Garg 101064 _

Cornected 0:0002 Adodmted 9600BN1

Fi g. 4.9 Data transferred from Microcontroller to Hyperterminal

4.4.3 Serial interfacing using MATLAB

With the new control and instrument toolbox/app of MATLAB, now there is more value attached to
interfacing. As a lot of operations can be performed with the data read from the controller, obtained

via interfacing.

Steps for interfacing with MATLAB:
1. Open the instrument and control toolbox of MATLAB.

2. Then from the “Test and measurement tool” window, click on the “Serial” tab.

3. Then click on COM1

4. Click on the “Connect” tab

5. The click on the configure tab, and set the properties as desired. (as in the hyper terminal)

6. If all the connections and properties are set right, the device will be connected.

7. Go to communicate tab, and depending on whether we are receiving data from
microcontroller or sending data to microcontroller, change the reading or writing

environment.

34

8. Now click on read to get data from microcontroller and we can see the data read in the

below tab.

.. MATLAB R2013a

HOME J Test & Measurement Tool

File Wiew Tools Desktop Window Help
2 "
e a:" '
GetMore Install] Test & Measurement [COM1 Help x|
-‘ Instrument Cantral Toolbox R ﬂ
il -fmm] Hardware _ .
&P H E E}(,—y Serial Connection status ko COM1: Connected Cancel 2
G Eae) Last identification request on 29-Moy-2013 16:22:00: Mo instrument was identified ®
L] Mame ~ Communicate | Configure | Session Log|
Sending data Receiving data
[ata type: | ASCIT w [rata bype: ASCIT v
=83 VISA
h S Data format: |%esin R Data format: | % v
(GPIE-YI Data to wrike: Size: (optional):
B TCPIP (WxI-11) | B[
; %b LSE [] Evaluate in workspace befare virite | Rahul Garg 101064 ‘
% Mare
_j___i‘i Instrument Ohjects [Query] [Write] [Read J L Expart J [Flush]
E}--‘g‘ Interface Objects
ﬁ Serial-COML Action Data Size For... _i
5___“‘ Device Objects Read data.? { Rahul Garg 101064 M...) 1x43 ol A ®
]@ T A - Read Kanika Rana 101049 1x21 ot —
Read datas { Rahul Garg 101064 1...) x93 |%c 8 H
Read kanika Rana 101049 1x21 [%c
Read datall { Rahul Garg 101064 N...) 1x43 St
Read Kanika Rana 101049 1x21 ol b Lo+
Read Rahul Garg 101064 1x19 o
Read {warning) A timeout occurred before the Terminator wasr... A B
Read Mishit: Sadhwani 101045 1x24 [%C 3 23
Read Kanika Rana 101049 1x21 o
Read Rahul Garg 101064 1x19 |%c |
Read {warning) 4 timeaut occurred before the Terminator wasr... v i =
Details L < i} | ¥
Ready : I

Fig. 4.10 Data Read in MATLAB

Now, the advantage provided by MATLAB is that, the data read from the microcontroller can now

be exported and used by MATLAB

for other purposes.

Now click on the export button and a window pops up where you can select what all data needs to

be transported.

35

Documentl - Microsoft Word

| Feplace
‘ = 7 |l Data destination S i
e IT. Select the data to export: Help « |fiting _.!
Action Yalue ‘Yariable Name ! -
[¥] |read Mishit Sadhwani 101045 datal fiz)
[¥] |Read Kanika Rana 101049 dataz :
= jonnected Cancel —-
[+] [Read dataS { Rahul Garg 101064 M...) |datas
[[Read Kanika Rana 101049 datad 9-Mov-2013 16:22:00: Mo instrument was identified
[v] |Read data? { Rahul Garg 101064 M...) |dataS [—
[¥] [read Kanika Rana 101049 datan sion Log|
[¥] |read data® { Rahul Garg 101064 M...) |data? Receiving data
[#] |Read Kanika Rana 101049 datad
[[read datall { Rahul Garg 101064 N...1/datad V| Datatype: |ASCI b
[v] |Read kanika Rana 101049 dataln v Data format: | %c b
z Read Rahul Garg 101064 datail Sioe (optional:
[v] [Read Mishit Sadhwani 101045 datal?
[#] |Read Kanika Rana 101049 datald s Response:
[v] [Read Rahul Garg 101064 datal4 ote write | Rahul Garg 101064 |
[#] |Read Mishit Sadhwani 101045 datals
[&] |read Karika Rana 101049 datals [Write] [Read] [Export | [Flush]
[v] |Read Rahul Garg 101064 datal?
Size: For...
R.ana 101049 1x21 Vot -~
harg 101064 1x19 Yol
[et J [gloss] [elo] bt occurred before the Terminator wasr,.,.
T e adhwani 101045 1x24 |%ar
Read Kanika Rana 101049 1:21 Yol
Read Rahul Garg 101064 1x19 %al
Read (warning) A timeaut occurred before the Terminator wasr...
Flush
Read Nishit Sadhwani 101045 1x24 |%aC =
Read Kanika Rana 101049 1:21 Yot
Read Rahul Garg 101064 1x19 %l |
Read (warning) 4 timeaut occurred before the Terminator was ... v

i start « ea-FiyperTaminal

Page:20f2 | Words:0 | d |

‘s Start & gd - HyperTerminal '_Q Dacument1 - Micr

Fig. 4.11

From the drop down menu we can select the data destination as one of the following
1. MATLAB workspace
. MATLAB variables

2

3. .mat file
4. Function
5

. Structure

36

! MATLAB R2013a

WARIABLE

>
Open T Rows Colurnns

Eprirﬂ - l|1—||1—|l Ir\sert

Mewy from

Search Documentation

oo
wTranspose
Delete | Sort «
Slete

WARIABLE | SELECTION | EDIT

—

<= 5 0 E [C3 » < » Documents and Settings » admin » My Documents » MATLAE

il
Current Folder ® Workspace ®
Narne - “[datalz x| datal3s x| datal4 x| datals x| datals x| dataz x| Mame value

ebal? 1423 thare be| datalz “Mishit Sadhwani 101045 *

aoc| dakal3 ' kanika Rana 101049 °
L ve| dara14 'Rahul Garg 101064 *

1 lnc] datals "Mishit Sadhwwani 101045 '
ave| datald ' kanika Rana 101049 "
sbe| datal? 'Rahul Garg 101064 '
< i’ >
Command History ®
E-%—— 11/25/2013 3:28 PM ——53

help GUILE
GUIDE
- real time data plot
Command Window @ = = =
11429/2013 4:19 PH ——%
i ? i s q : x
ONew to MATLAB? Watch this video, see Examples, or read Getting Started 11430/2013 12:23 B ——%
Exporter Exception: Invalid first data argument
o=
Details el
Ready

MATLAB R2013a

HOME PLL “ARIAELE

E\llj [open ~ Rows

Colurnns

Search Documentation

. g Trenspose

'
Mewy from Print ~ |1 1 Insert Delete || Sort -
ST jpnsegbos ol

AR LABLE | SELECTION | EDIT

—

= = 5 320 C3) » C: » Documents and Settings b admin b My Documents b MATLAE

Current Folder

Mame -«

EH dat_vart.mat

Details e

bl .=
® |] Variables - data13 = x Workspace (5]
datalz x| datal® x| datal4 x| datals x| datals x| dataly x| Mame value
datald <1x20 chars 2| datalz ‘Mishit Sadhwani 101045
ane] datals ' Kanika Rana 101049
1 anc| datal4 'Rahul Garg 101064
1 | Kanika Rana 101043 2o datals ‘Mishit Sadhwani 101045 °
o datatls *Kanika Rana 101043 °
Formmand Window datal? ' Rahul Garg 101064 °
@) Mew ko MATLAB? Watch this Yideo, see Examples, or read Getting Started. x
Exporter Exception: Invalid first data argument
»»> datalz
dacalz =
< i >
Mishit Sadhwani 101045
Command History ®
T E-%—— 11/25/2013 3:28 PM —-%
! . lihelp GUIDE
datal3d = GUIDE
tereal time_dats plot
i g b MR R 4 s—— 11/25/2013 4:19 FM —-%
E-%—— 11/30/2013 12:23 PM —-%
e s>
< datalz
“odatals

37

J MATLAB R2013a

HOME P WARIABLE

Ll m
qu ﬂOpen = | pows Calumns o </ Transpose

Mewy from éPrirrt Sl | 1 Insert Delete bSor‘t -
- -

Selection
\ARIABLE | SELECTION | EDIT |
= o 5] 52 3 » o v Documents and Settings b admin b My Documents b MATLAB - 2
Current Folder @ | Variables - data13 ™ x Workspace ®
Marme -« ©odatalz = |[datald x| datald x| datals x| datale x| datal? = Hame Yalue
[dat_uart.mat datal3 <1x20 char> g ans, ‘Mishit Sadhwani 101045 °
) mpartfile.m oe] datat2 "Mishit Sadhwani 101045 '
| E | o datal3 " Kanika Rana 101049
- |- datale * Rahul Garg 101064
®
(il il el || datals "Mishit Sadhwani 101045 '
@NEW to MATLAE? Watch this Video, see Examples, or read Getting Started, x Eldatalﬁ ' kanika Rana 101049
»» durerStruct = uiimport|'dat_uart.mat') # | [datat? 'Rahul Garg 101064
1E| durerstruct <1xl strucks
durerStruct =
datalZ: 'Nishit Sadhwani 101045 '
datald: ' Kanika Rana 101045 '
datald4: ' Rahul Garg 101064 ! 4 >
datalS: 'Nishit ZSadh i 101045 ! s
ara 1Shit machwant Command History ®
datalé: ' Kanika Rana 101049 ' | GULDE —
datal?: ' Rahul Garg 101064 ' real time data plot |
5-- 11/29/2013 4:19 PM --%
»r dureritruct
%—- 11/30/2013 12:23 PM --3%
durerStruet = T datall
""" datalid
datalZ: 'Nishit 3adhwani 101045 ' 7 ML
datald: ' Kanika Rana 101045 ' war
datald4: ' Rahul Garg 101064 ' e newlatal
datalS: 'Nishit Sadhwani 101045 ' 2|) - durerStruct = uiimport('d:
datal6: ' Kanika Rana 10104% ' |l durerStruct
ol . L
datal?: Rahul Garg 101064 * i T 3
Details ~ || fx b BES | >

- @ Document! - Micrasaf, .. & MATLAB

Fig. 4.13 Structure of the imported data using the the “uiimport” command from .mat file

4.5 Getting value from the sensors

Now that the serial communication is setup and tested, data needs to be sent to MATLAB from the
sensors, and not just fixed information sent from the microcontroller as just tested above. Since the
sensors used are of analog output types, it must be converted to the digital type. For this the sensors,
both flex and hall are connected to the inbuilt ADC of Atmegal6 (Port A). Thus understanding of

the register structure of the ADC is of prime importance.

4.5.1 Understanding the register structure of the ADC of AVR

Atmegal6 has an inbuilt 10-bit, 8 channel ADC system. These ADC channels are multiplexed with
Port A and use the pins 33 to 40. Pin 32 is AREF, the voltage at this pin acts as the reference voltage

for ADC conversion.

38

ADMUX
ADC Multiplexer and Selection Register

Bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0
REFS1 REFSO ADLAR | MUX4 MUX3 MUX2 MUX1 MUXO0
Initial value 0 0 0 0 0 0 0 0

Bit number 7 and 6, that is REFS1 and REFSO0 are reference select bits, they select the reference

voltage for ADC conversion. Bit number 4 to bit number 0 select the ADC channel.

00 AREF 0000 ADCO
01 Voo 0001 ADCI1
10 reserved 0010 ADC2
B 256V 0011 ADC3
(internal
reference 0100 ADC4
voltage)
0101 ADC5
0110 ADC6
0111 ADC7
The use of ADLAR will be discussed in the next
register.
ADCSRA
ADC Control and Status Register
Bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0
ADEN ADSC ADATE ADIF ADIE ADSP2 ADSP1 ADSPO
Initial value 0 0 0 0 0 0 0 0

ADEN- ADC Enable Bit
set to 1 for turning on ADC

ADSC- ADC start conversion bit

39

Set to 1 to start ADC conversion, and as soon as conversion is completed, it is

automatically set back to 0 by hardware.

ADATE — ADC Auto Trigger Enable

Set to 1 to enable auto triggering

ADIF — ADC Interrupt flag

This bit is set to 1, when ADC conversion gets complete.

ADIE — ADC Interrupt Enable

Set to 1, if we want to activate the ADC conversion complete interrupt.

ADPS[2:0]- these bits are used to set the ADC clock frequency, i.e- these bits determine the

division factor by which the microcontroller clock frequency is divided to get the ADC clock

frequency.

ADC clock frequency = crystal frequency/ prescaler

ADCH and ADCL
ADC data registers

When the ADC conversion is complete, the data is stored in these registers. Since 10-bit can be

obtained, but only 8-bit registers available, two registers called ADC high and ADC low. The

configuration of these registers depend on ADLAR value.

When ADLAR= 0 (data is right adjusted)

ADCH |- - - - - - ADC9 ADCS8

ADCL ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO
When ADLAR=0 (data is left adjusted)

ADCH | ADC9 ADCS8 ADC7 ADC6 ADCS5 ADC4 ADC3 ADC2

ADCL | ADCI ADCO - - - - - -

40

If both registers are to be read, that is precision is 10-bit then ALWAYS read ADCL before ADCH.
Else if 8 bit precision is sufficient then read ADCH after setting ADLAR=1

4.5.2 Interface analog device with AVR Atmegal6:

1. To initialize ADC
(1) Set value in ADMUX register to select the desired channel (where the sensors are
connected) and set the reference voltage.
(11) Set the prescaler bits in ADCSRA register such that we now have an ADC clock
frequency
(ii1)) Set the ADEN bit to enable the ADC.

Now ADC is initialized and ready to start converting

2. To read analog value
(1) Put the channel value in ADMUX
(11) Start the conversation by setting the ADSC bit
(111) Monitor the ADIF bit for conversion complete.
(iv) Clear the conversion bit ADIF

(v) Digital converted result is now available in ADCH and ADCL registers.

The ADC conversion for the project was achieved without interrupt and was found to give

satisfactory results.

4.5.3 Techniques of ADC of microcontrollers
There are mainly four different types of techniques for performing Analog to Digital Conversion

(ADC) for a microcontroller, which are:

(i) Successive Approximation
This techniques using a DAC, a controller and a comparator to perform the ADC process. Starting
from the MSB, down to the LSB, the controller turns on each bit at a time and generates an analog
signal, with the help of the DAC, to be compared with the original analog input signal. Based on
the result comparison, the controller changes or leaves the current bit and turns on the next MSB.
The process continues until decision are made for all available bits. Thus the strategy is to narrow

down to the answer by partitioning the available range into two equal parts in every turn.

41

(ii) Integration

This technique uses an integrator, a comparator and a controller to convert the analog signals to
digital signals. The sampled analog signal and a fixed reference signal are integrated over a fixed
period of time and then compared. When the two integrated values equal, the measured time is
converted into a digital encoded value.

(iii) Counter- based conversion

Requires a counter, a DAC and a comparator. The counter starts at 0 and counts up. As the counter
counts up, the corresponding value is converted to an analog value and compared with the analog
input. As long as the analog input is greater than the signal generated by DAC, the counter keeps
counting up. When the DAC generated analog signal is greater than the analog input, the counter

value is converted a digital value representing the sampled analog input signal.

(iv) Parallel Conversion

The parallel converter uses a large number of comparators and circuitry to simultaneously measure
the input signal and convert it to a digital value. This techniques allows the quickest conversion,
but then is very costly as well.

Atmegal6 employs successive approximation technique for the Analog to Digital Conversion and

thus the little lag observed in the conversion is justified by the use of this technique.

4.5.4 Sensor calibration
Calibration means linking your real world data with the virtual data. When threshold are to be

created, such that below a particular value route A is to be followed and above that particular
value route B is to be followed, then to define that ‘particular value’ needs to be physically set
and that is achieved by calibration.

The sensor is tested for all the conditions and the corresponding ADC values received are
recorded, to obtain a function defining the relation between ADC value and the position of the
sensor. Comparing these values and analyzing them, we can easily set the threshold.

The result obtained is the equation for obtaining the degree of bent from the voltage received, for

3 different pivots of bend for the finger.

42

4.6 3-D objects using Constructive Solid Geometry (CSG)

The scheme is to represent each elementary solid with a 3-D field of values; negative on inside
and positive on outside. The CSG operations of union, intersection and subtraction then become
simple minimum/maximum operations, on the 3D field. All volume-shapes are generated as 3D
scalar fields. Since fields are really arrays, all fields which are to be combined must have the same
number of elements. The resolution parameter associated with CSG objects sets the number of
elements and thus may be the same for all CSG objects that will be combined using operations.
After all the operations are performed, the volume object is then converted to surface for

rendering. Objects may be scaled after they are converted to surfaces.

43

CHAPTER-5
RESULTS AND CONCLUSION

First of all, serial communication between microcontroller and computer was established. Then
ADC of microcontroller was studied and checked. Then the major part was to figure out the
connecting link between ADC and UART communication of the microcontroller; that is, sensors or
potentiometers are connected to the ADC port of the microcontroller, and then change in the value
of sensors results in change in the analog voltage input, which in turn results in change in the digital
value generated by the ADC for the corresponding input voltage. This digital value is stored in the
data registers of ADC, and the link for UART communication is established separately. The task
now 1is to take the value from the sensor and transmit it via UART, thus to establish a link between
the data registers of UART and ADC, by simply equating the data register of UART (to be sent) to
the data register of ADC. This results in successfully getting the sensor value to the computer.
Written a code in MATLAB to obtain these values and plot them in real time, or store them as
variables or import them as .mat files.

The calibrated value of sensors is analyzed and the values indicating the required position is fed to
the microcontroller, such that now when that value of sensor is obtained, the already fed array in
microcontroller with a few additional parameters is directly sent to MATLAB and the object is
plotted.

The final result is that with the movement of the user’s hand wearing a haptic glove, the movement
of holding, holding and lifting, and not holding the object are depicted in MATLAB in real time
with a little lag, where the object is virtual 3D object.

On the other hand, since reality is very important, the movement of a Real Robotic arm is
controlled by the user wearing an exoskeleton. Which basically translates the values of
potentiometers into the driving force for controlling the motor. As the hand moves, the value of
potentiometer changes, thus the digital value given by the ADC is used by the microcontroller to
drive the motors.

Hence both real (robotic arm) and virtual (MATLAB objects) objects have successfully been

controlled by haptic transducer which are worn on the hand of the operator.

44

CHAPTER-6
CHALLENGES FACED

It is almost impossible that something is put to task and there are no challenges faced or problems

encountered. Here are the problems we faced, some we overcame, but some couldn’t and hence

looked for alternate methods.

1.

We found that flex sensors are expensive and would take up the entire cost of the project,
and thus thought of making them ourselves. We found a lot of sites showing how to make
flex sensors on the cheap, and a common element in them was ESD bags. It was difficult to
understand what exactly is an ESD bag, are they truly what we think they are, and then
make others, especially vendors understand what it is we are really looking for. Then find
where we can find them. When we finally asked for our ESD bags to be couriered, it was
found that the presence of bubble wrap over it made its working inappropriate. We did not
give up and found another way, this time they worked, but were not accurate and their
working wasn’t were clear to us. So finally we dropped the idea of making them on our own
but purchase them instead, and this time not online.

We were almost lost when we were working on the interfacing, as nobody we knew had
done it, or the ones that had done it, did it for PIC. We asked almost all teachers of all
departments, but did not know what was wrong. We had done everything step-by-step,
learned about the AVR registers, learned about db9, cross connection, checked the cable,
changed computers, tried new soft wares, everything we thought could possibly be faulty,
but we could not find anything and there was still no communication. Finally as of some
magic happened, we trial all permutations and combination by hit and trial, and by slight
modifications in the code and pressing the reset button, we had our output and that moment
joy knew no boundaries. Then we rechecked it to make sure it was not a fluke, and
understood the working even more carefully and came out successfully.

The combination of flex sensors and Atmegal6 was a deadly combination as there were
very less references available for the above, but it was a blessing in disguise as the majority

of the learning has been because of this only.

45

CHAPTER-7
FUTURE PROSPECTS

As of now, the haptic glove just controls the motion of the virtual objects with two degree of
freedom. This can be extended to give an impression of holding a virtual object, by adding motors
or force sensors which execute the feedback path to stop the movement of the hand, such that the
user cannot close the hand any further giving the feeling that an object is being held. This gives the
dimensionality of ‘feeling’ a virtual object.

The robotic arm is a basic model to see the implementation, a smaller and sophisticated version of
this robotic arm can be made to perform accurate movements.

Using a wireless module instead of the wired model, it can be used for remote operation increasing

the usability of the arm and importance.

46

APPENDICES

Appendix Al: MATLAB Codes for creating 3-D objects

Cylinder

clear all

clc

[X,Y,Z] = cylinder(2);
%cylinder(2);
Y%plot3(X,Y,Z);
surf(X,Y,2);

Multi-Colored Cylinder

clear all

cle

cylinder

axis square

h = findobj('Type','surface');
set(h,'CData’,rand(size(get(h,'CData'))))

Hour Glass Shape

clear all

47

cle

t=0:p1/10:2%*pi;

[X,Y,Z] = cylinder(sin(t))
surf(X,Y,Z2)

axis square

Cube

cle;

formatcompact

set(gef,'Menubar','none','Name','Cube’, ...

"NumberTitle','off",'Position',[10,350,300,200], ...

'Color',[0.3 0.1 0.3]);

h(1) = axes('Position',[0.2 0.2 0.6 0.6]);

vert=[111;121;221;211;..
112;122;222;212];

fac=[1234;..

2673; ...

4378; ...

1584;..

1265; ..

5678];
patch('Faces',fac,'Vertices',vert,'FaceColor','r"); % patch function
light('Position',[1 3 2]);
light("Position',[-3 -1 3]);

48

materialshiny;
alpha('color');
alphamap('rampdown');
camlight(45,45);
lightingphong
view(30,30);

Sphere
h(3)= axes('Position',[0.17 0.17 0.4 0.4]);

[XsYsZs]=sphere(30);
hs3 = surf(Xs, Ys, Zs);
set(hs3,'EdgeColor','none’, ...
'FaceColor','g', ...
'FaceLighting',')phong/, ...
'AmbientStrength',0.3, ...
'DiffuseStrength',0.8, ...
'SpecularStrength',0.9, ...
'SpecularExponent',25, ...
'BackFaceLighting','lit");
camlightright;

hiddenoft;

axisequal;
set(h,'Visible','oft")

49

Appendix A2 : Basic ATmega code
#include<avr/io.h> //This is the header for AVR Microcontroller.
#include <util/delay.h> //header file to generate time delay.

int main(void)

{

PORTC=0X00; // PortC initialization as all bits low.
DDRC=0x{8; /I PortC data direction declaration as output.
while(1)

{

PORTC=0x10; //LED 1 is on

_delay_ms(5); /I waits for 5 ms

PORTC=0x00; //LED 1 is off

_delay _ms(5); /Iwait 5 ms
PORTC=0x20; //LED 2 is on
_delay _ms(5); //wait for 5 ms
PORTC=0x00; //LED 2 is off
_delay _ms(5); /Iwait for 5 ms
PORTC=0x40; //LED 3 is on
_delay _ms(5); //wait for 5 ms
PORTC=0x00; //LED 3 is off
_delay _ms(5); //wait for 5 ms
PORTC=0x88; //LED 4 and buzzer is on
_delay _ms(5); /Iwait 5 ms
PORTC=0x00; /leverything is off
_delay _ms(5);

b

b

50

Appendix A3 : Final MATLAB code for Virtual Object Control
Tthresh = 30;

% Setup the background
% 1. Make Table

% 2. Make Hands

% 3. Plot Table and Hands
figure(1)

close

clf

%make a table

table=UnitCube;

table.facecolor=[222/255, 191/255, 150/255]; % A light brown wood-ish color
table.facelighting="flat';

table.edgecolor=[175/255, 124/255, 54/255]; % A darker color for outline
table=scale(table,2,2,.2);

table=translate(table,0,0,-1.2);

%make hand (namely little sticks)
cylHand = UnitCylinder(10);

L1=1;
L2=1;
radius = 0.03;

arm1 = translate(scale(cylHand,radius,radius,L.1/2),-.57,0,L1/2);
arm] = rotateX(arm1, 90);

arm] = translate(arml, -.25, 0, -.4);

arm].facecolor = 'blue’;

arm?2 = translate(scale(cylHand,radius,radius,.2/2),.55,0,1.2/2);
arm?2 = rotateX(arm2, 90);

arm2 = translate(arm2, .25, 0, -.4);

arm?2.facecolor = 'green’;

hand = combine(arm1, arm2);

%plot table and hands
background = combine(table, hand);
renderpatch(background);

axis off;

axis([-2, 2, -2, 2, -4, 4]);

grid on

daspect([1 1 1])
light("position’,[10,-10,10])
%Do a persptective transform
set(gca,'projection','perspective')
set(gca,'CameraViewAngle',6)
%The frame background color

51

set(gct,'color', [183/255, 248/255, 1])
xlabel('x");ylabel('y');zlabel('z");
view(7,20)

drawnow;

disp('Initializing serial...")
initialized=0;
mcu=serial'COM4',...
'Baudrate',9600,...
'Stopbits', 1,...
'Parity','none’,...
'FlowControl',none');
fopen(mcu)
1=0;
try
while (true)
disp('Getting serial input...")

tline = fgetl(mcu);
result = sscanf{(tline, '%f');
disp(result);

if numel(result)==8
objectSelected = result(1);
dIn = result(2);
dOut = result(3);
1sSolid = result(4);
isFull = result(5);
objectGripped = result(6);
objectLifted = result(7);
height = result(8);

% scale dimensions to fit on the Matlab Screen
dIn = dIn/20;
dOut = dOut/20;

% Foreground with the object and stuff
% 1. Get input from the MCU
% 2. Draw object if necessary
% 3. Move object if necessary
% 4. Update
% Parameters inputted: inner diameter, outer diameter, temperature, object
% selected? object gripped? displacement from table, hasHandle, isSolid,
% isFull, object lifted?
if (objectSelected)
res=20;

52

% make a closed end cylinder

cyl1=CSGcylinder(0,0,0,dOut,'z',res);

cube1=CSGcube(0,0,-dOut+0.05,dOut+0.05,res);

body=CSGintersection(cyll,cubel);

if (~1sSolid)
% subtract by a smaller cylinder
cyl2=CSGcylinder(0,0,0,dIn,'z',res);
cube2=CSGcube(0,0,-dIn+0.05,dIn+0.05,res);
hole=CSGintersection(cyl2,cube2);
body=CSGsubtract(body,hole);

end

object = body;

objectSurface = CSGtoSurface(object, res);

if(isFull)
cylFull = UnitCylinder(2);
lengthFull = dOut*0.4;
radiusFull = dIn - 0.02;
inContent = translate(scale(cylFull,radiusFull,radiusFull,lengthFull-.02),.01,0,-
lengthFull/1.8);
inContent.facecolor = [6/255, 249/255, 0];
objectSurface = combine(objectSurface, inContent);
end

if(objectGripped)
arml = translate(arm1, (-dOut - max(arml.vertices(:,1))), 0, 0);
arm?2 = translate(arm2, (dOut - min(arm2.vertices(:,1))),0, 0);
objectSurface = combine(objectSurface, arm1, arm2);

if(objectLifted)
movingObject = translate(objectSurface, 0, 0, height);
scene = combine(table, movingObject);
else
scene = combine(table, objectSurface);
end
else
scene = combine(table, objectSurface);
end

figure(1);

clf

renderpatch(scene);
axis off;

axis([-2, 2, -2, 2, -4, 4]);
grid on

daspect([1 1 1])

53

light("position’,[10,-10,10])

%Do a persptective transform
set(gca,'projection','perspective')
set(gca,'CameraViewAngle',6)

%The frame background color
set(gcf,'color', [183/255, 248/255, 1])
xlabel('x");ylabel('y');zlabel('z'");
view(7,20)

drawnow;

else
figure(1)
clf
%plot table and hands
background = combine(table, hand);
renderpatch(background);
axis off;
axis([-2, 2, -2, 2, -4, 4]);
grid on
daspect([1 1 1])
light("position’,[10,-10,10])
%Do a persptective transform
set(gca,'projection’,'perspective')
set(gca,'CameraViewAngle',6)
%The frame background color
set(gcf,'color', [183/255, 248/255, 1])
xlabel('x");ylabel('y");zlabel('z");
view(7,20)
drawnow;
end % if(objectSelected)
end % if nuel(result) == 6;
end % while(true)

catch
fclose(mcu)
disp('Serial closed")
disp(lasterror.message)
end

54

References

[1] Haptic- basic knowledge:
http://net.educause.edu/ir/library/pdf/eli7029.pdf

[2] Work Done By Other People:
http://www.disneyresearch.com/project/surround-haptics-immersive-tactile-experiences
strokeSleeve ,Karlin Bark, Frank Tan.
http://haptics.seas.upenn.edu/index.php/Research/TactileFeedbackForRehabilitation
Haptography: Heather Culbertson, Juan Jose Lopez Delgado
http://haptics.seas.upenn.edu/index.php/Research/Haptography

[3] Arduino Module:
http://arduino.cc/en/Main/arduinoBoardUno

[4] 3-D objects and modeling:
http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Hierarchy/

[5] ATmega 16:
http://www.atmel.in/Images/doc8154.pdf

[6] Flex Sensors:
http://mech207.engr.scu.edu/SensorPresentations/Jan%20%20F1ex%20Sensor%20Combine
d.pdf
http://www.youtube.com/watch?v=yOV17hplUlw
http://hackaday.com/2012/02/28/building-a-flex-sensor-from-component-packing-materials/
http://www.instructables.com/id/DIY -Bend-Sensor-Using-only-Velostat-and-Masking-T/

[7] RS 232:
http://www.engineersgarage.com/articles/what-is-rs232

[8] USART:
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/serial-
communication-atmegal 6-usart

[9] ADC:
Atmel: AVR Microcontroller Primer: programming and interfacing — google books

[10] Computer Graphics:

Introducing Fundamentals of Computer Graphics Using MATLAB

55

