forar wer wiftrEE:

Jaypee University of Infofmation Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. S0 4] 2%} Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

e

SP04

l

27

>

- FILE TRANSFER USING

SOCKET PROGRAMMING ON LINUX...
BY
ANKIT PRADHAN - 041036
SAURABH KUMAR GUPTA - 041048

MAY-2008

Submitted in partial fulfillment of the Degree Bachelors of
Technology.

DEPARTMENT OF ELECTRONICS AND
COMMUNICATION
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY, WAKNAGHAT.

CERTIFICATE

This is to certify that the work entitled, “File Transfer Using Socket programming On

-

Linux” submitted by Ankit Pradhan and Saurabh Kumar Gupta in partial fulfillment
for the award degree of Bachelor of Technology in Electronics and Communication of
Jaypee University of Information technology has been carried under my supervision.
This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma.

PROJECT SUPERVISOR

Mr. Vinay Kumar Dr. S.V.Bhooshan
Sr.Lecturer, Head.Of.Department
Department of Electronics and Communication ECE

JUIT JUIT

ii

g

ACKNOWLEDGEMENTS

The project in this report is an outcome of continual work over a period of four
months and intellectual support from various sources. Obligations thus occurred in
completing the work have been many. It is therefore almost impossible to express |
adequately the debts owed to many persons who have been instrumental in imparting
this work a successful status. It is however a matter of pleasure to express our

gratitude and appreciation to those who have been contributing to bring about this

project.

We take this opportunity to thank our esteemed mentor and supervisor Mr. Vinay
Kumar, Lecturer Department of Electronics and Communication, JUIT, for lending us
stimulating suggestions, innovative quality guidance and creative thinking. His
practicality, constructive criticism, constant encouragement and advice helped us in
all the stages of the project. His scientific views and scientific approach will always
! be the source of motivation for us. We are grateful to him for the support, he provided

us in doing things at our pace and for being patient with our mistakes.

We would like to express our gratitude to Mr. S.V.Bhooshan, Head of Department Of
Electronics and Communication Engineering, JAYPEE UNIVERSITY of
INFORMATION TECHNOLOGY for providing us the opportunit'y and facilities to
undergo this project.

We were fortunate to have very supportive friends with whom, it was pleasure to
work. This unreserved help, adjusting nature and friendly atmosphere will always be

cherished and remembered.

/

: AR -
S.AUT(‘@H KUMAR: GUPTA (ANKIT pRADHAN)
o Lo 4B (041036)
e

iii

ABSTRACT

This is the era of Hi-tech communication. We know this very well that revolutions do
not born on streets. They are born in our mind. There are lots of technologies that are
continuously emerging in the technology field to provide us much more convenience
and reliability. Networking is in one of those fields that has a huge application
everywhere, whether it is engineering field, corporate field or medical field. Now a
day we want our communication without any sort of interruption and with full
security. We designed the language for simple and intuitive description of

communication protocols. So that we can transfer our data easily without any threat of

data — stealing.

Communication performance between two processes in their own domains on the
same physical machine gets improved but it does not reach our expectation. This
paper presents the design and implementation of high-performance inter-domain
communication mechanism that maintains binary compatibility for applications
written in standard socket interface. We found that three overheads mainly contribute
to the poor performance; those are TCP/IP processing cost in each domain, and long
communication path between both sides of a socket. Our project achieves high
performance by bypassing TCP/IP stacks and providing a direct, accelerated
communication path between domains in the same machine. Moreover, we introduce
the socket architecture to support full binary compatibility with as little effort as

possible.

We implemented our design on Linux (Fedora 3.0) and evaluated basic performance,
and binary compatibility using binary image of real socket applications. In our tests,
we have proved that our project realizes the high performance that is comparable to
UNIX domain socket and ensures full binary compatibility. Those applications

worked perfectly well.

v

e -

Table of Contents:

Chapter 1 Introduction and TCP/IP
1.1. Platform and Compiler
1.2. Some Background Story and Basics of TCP/IP layer/suite
¢ 1.3. Client-Server Model
| 1.4 Connectionless (UDP) vs. Connection-Oriented (TCP) Servers

Chapter 2 Elementary Sockets and Structures
2.1. Types of Internet Sockets
2.2. Various Socket Structures
2.3. IP Addresses and Their Concept
2.4. Port Numbers
2.5. “inet” Functions

Chapter 3 Header files used in socket programming

Chapter 4 Elementary TCP Sockets and System Calls
4.1. Socket ()
4.2. Bind ()
4.3. Listen ()
4.4, Connect ()
4.5. Accept ()
4.6. Read ()
4.7. Write ()
4.8. Close ()
4.9. Getpeername ()
4.10. Gethostname ()
4.11. fopen ()
4.12. fclose ()
4.13. fread ()
4.14. fwrite ()

Chapter 5 Design and Implementation

Chapter 6 Bibliography
6.1. Books
6.2. Web References

6.3. RFCs

Chapter 1: Introduction and TCP/IP

1.1 Platform and Compiler:

The code contained in this Report was complied on a Linux P.C using a GCC

compiler. It could, however, build on any platform that uses GCC compiler. Now

LINUX/FEDORA/SUSE and also some important commands of GCC. The

E
|
|
E
|
|
|
|
|
we’ll explain you that how to compile a C code using GCC compiler in .
information starts with the command and a list of options (including the sub-

|

|

processes). The following is a list of file extensions. Typically, the executable doesn’t

have extension.

C source code which must be preprocessed.

file_name.c

file_name.i C source code which should not be preprocessed. ;
file_name.ii C++ source code which should not be preprocessed. |
file_name.h C header files (not to be compiled or linked).

file_name.cc
file_name.cp
file_name.cxx C++ source code which must be preprocessed. For file_name.cxx, the xx ||

file_name.cpp must both be literally character x and file_name.C, is capital c. |
file_name.ct++ !
file name.C

file name.s Assembler code.
file_name.S Assembler code which must be preprocessed.

Object file by default, the object file name for a source file is made by
replacing the extension .c, .i, .s etc with .0

file_name.o

1.2 Some Background Story:

This background story tries to introduce the terms used in network programming and

also to give you the big picture.

The following figure is a typical physical network devices connection.

vi

b g PR s e —pz e

Computer RouterLayer 3 switch
Camputer

Metwork A Network B
Figure 1

Using a simple network shown in the above Figure, let trace the data stream flow from

Network A to Network B, by assuming that Network A is company A’s network and Network

B is company B’s network.

Physically, the flow of the data stream is from a computer in Network A (source) will go

through the hub, switch and router.

Then the stream travel through the carrier such as Public Switch Telephone Network (PSTN)

and leased line (copper, fiber or wireless — satellite) and finally reach Network B’s router, go

through the switch, hub and finally reach at the computer in company B (destination).

The OSI (Open System Interconnection) 7 layer stack mapping is shown next.

Physical [====> | Physicd | +===== | Physical

Hetwork A Hetwork B
Figure 2

Vil

|
:
;
|
|
|

> From the Application layer of a computer at company A go downward the
layer until the Physical (medium such as Cat 5 cable) layer, then exit Network A
through the Network (router) layer in the middle of the diagram.

> After traveling through the carrier, reaches at the Network (router) layer of
company B, travels through the Physical layer, goes upward until reaching at the
Application layer of the computer at company B. Actually, at company B (the
destination), the data flows through the network devices in the reverse manner

compared to what happened at company A (the source).

> In contrast to TCP/IP, the OSI approach started from a clean slate and defined
standards, adhering tightly to their own model, using a formal committee process

without requiring implementations.

> Internet protocols use a less formal but more practical engineering approach,
where anybody can propose and comment on Request for Comment (REC)

documents, and implementations are required to verify feasibility.

> The OSI protocols developed slowly, and because running the full protocol
stack is resource intensive, they have not been widely deployed, especially in the
desktop and small computer market. In the meantime, TCP/IP and the internet were
developing rapidly, with deployment occurring at a very high rate, which is why the

TCP/IP suite becomes a de facto standard.

> The OSI layer and their brief functionalities are listed in Table 1

Application | Network application such as file transfer and terminal
emulation
Presentation | Data formatting and encryption.

Session Establishment and maintenance of sessions.
Transport Provision for end-to-end reliable and unreliable delivery.
Network Delivery of packets of information, which includes routing.

Data Link Transfer of units of information, framing and error checking.

Physical Transmission of binary data of a medium.

Table 1.

viil

> In the practical implementation, the standard used is based on TCP/IP stack.

This TCP/IP stack is a de facto standard, not a pure standard but it is widely used and
adopted.

i > The equivalent or mapping of the OSI and TCP/IP stack is shown below. It is
divided into 4 layers. The Session, Presentation and Application layers of OSI have

been combined into one layer, Application layer.

> Physical and data link layers also become one layer. Different books or

documentations might use different terms, but the 4 layers of TCP/IP are usually

referred.
OS5I Layer TCPAP stack
_Applications Application &
b TCP UDP |
(Transmission (User Datagram |
| & Control Protocol) Protocol) d,
IP |

{Internet Protocol) J

Hardware Interface

Figure 3

» Now we will concentrate more on the Transport and Network layer of the TCP/IP

stack.

» More detailed TCP/IP stack with typical applications is shown next.

ix

OSI Layer TCP/P stack

|

|)

|

1

| s |

‘a SERe e | SMNTP, FTP, Telnet, Gopher, ‘

| .Ilpplications ssh etc.

Transport TCP UpP

1

G LR e 1cnp E

Network IP ARP | RARP i

Ethernet, Token-Ring, FDDI, X.25,

Phys:lca;lpat_.n Link Wireless, Async, ATHM, SNA etc.

Figure 4

» The following figure is a TCP/IP architectural model. Frame, packet and
message are same entity but called differently at the different layer because there are

data encapsulations at every layer.

Application FTP, Telnet, SMTP, Rexec, DHS

(Message) RPC, Local Applications |

Transport TCP UDP j

{Message) %
|

Network I

cMP P ARP

(Packets) I . (R) i

Data Link Ethernet, Token Ring, X.25

(Frames) SHA, Wireless, proprietary, etc. :
E

Figure 5
1.3 Client — Server Model :
» TCP/IP enables peer-to-peer communication.
» Computers can cooperate as equals or in any desired way.
l
|
» Most distributed applications have special roles.

For example:

Server waits for a client request.

Client requests a service from server.

1.4 Connectionless (UDP) vs. Connection-Oriented (TCP) Servers :

> Programmer can choose a connection-oriented server or a connectionless

server based on their applications.

> In Internet Protocol terminology, the basic unit of data transfer is a

datagram. This is basically a header followed by some data. The datagram socket is

connectionless.

> User Datagram Protocol (UDP):

Is a connectionless.

A single socket can send and receive packets from many different
computers.

Best effort delivery.

Some packets may be lost some packets may arrive out of order.

> Transmission Control Protocol (TCP):

Is a connection-oriented.

A client must connect a socket to a server.

TCP socket provides bidirectional channel between client and server.
Lost data is re-transmitted.

Data is delivered in-order.

Data is delivered as a stream of bytes.

TCP uses flow control.

P I

Chapter 2: Elementary Sockets and Structures

2.1 Types of Internal Sockets:

First of all we’ll see what is a socket and how do they work???

" Socket - Socket is an Application Programming Interface (API) used for Interprocess

It is a well defined method of connecting two processes, locally or across a network.
It is a Protocol and Language Independent. Often referred to as Berkeley Sockets or

:
?
i
’ BSD Sockets.

|

l

|

4

\

Communications (IPC). I
Sockets are commonly used for client —server interaction. Typical system !

configuration places the server on one machine, with the clients on other machine. |

The clients connect to the server, exchange information and then disconnect.

A socket has a typical flow of events in connection- oriented client —to — server r!
{ model, the socket on the server waits for requests from a client. To do this the server |

first establishes an address that clients can use to find the server. When the address is [
established, the server waits for clients to request a service. The client —to-server data ‘
exchange takes place when a client connects to the server through a socket. The server

performs the client request and sends the reply back to the client.

One is “stream socket” and another is “datagram socket”,which may also be referred

|
There are 2 types of internal sockets:
‘- as “SOCK. STREAM” and “SOCK_DGRAM?” respectively.

Stream sockets are reliable two way connected communication stream.if you output
two items into the socket in the order “1, 2”. Then they’ll arrive in the order “1, 2” at

the opposite end.

> Socket types are listed in the following Table.

Xii

|
| oo [T o A G, | sock sronu -
!
SEQPACKET SPX. SOCK_SEQPACKET
1 DGRAM goD‘i,l 1S),NA’ Internetwork Packet eXchange (IPX- SOCK_DGRAM !
| RAW IP. SOCK_RAW i
4

Table 2: socket combinations.

2.2 various socket structures :

In this section and that follows we will discuss the socket APIs details: the structures,

functions, macros and types.

1.) Struct sockaddr ‘:4 .

end point.

{ }
u_char sa len; I |
! u_short sa_family ; "
| char sa data[14]; //14 bytes of protocol address.

}s |
i ° The short integer that defines the address family .The value that is specified
for address family on the socket () call.

{ ° Fourteen bytes that are reserved to hold the address itself.
: ° Depending on the address family, sa_data could be a file name or a socket
g

° sa_family can be a variety of things, but it,Il be AF_INET for everything we

do here.
° sa_data contains a destination address and port number for the socket.
° To deal with struct sockaddr, a parallel structure is created: struct sockaddr_in

("in" for "Internet".)

Xiii

2.) Struct sockaddr_in

{

Short int sin_family ; // Address Family

Unsigned short int sin_port; // port number

Struct in_addr sin_addr ; /{ internet address

Unsigned char sin_zero[8] ; [/l same size as struct sockaddr
}s

The sockaddr_in data structure contains an IP Address and a port number.

T

4)

The sin_family field is the address family (always AF_INET for TCP and
UDP).

The sin_port field is the port number, and the sin_addr field is the Internet
address. The sin_zero field is reserved, and you must set it to hexadecimal
ZETOEsS.

Data type struct in_addr - this data type is used in certain contexts to contain
an Internet host address. It has just one field, named s_addr, which records the
host address number as an unsigned long int.

sockaddr in is used to specify an endpoint.

sin_addr could be u_long.

sin_addr is 4 bytes and 8 bytes are unused.

The sin_port and sin_addr must be in Network Byte Order.

Struct in_addr
{

unsigned long int s_addr;
1

This structure is used in certain contexts to contain an Internet host address. It
has just one field, named s_addr, which records the host address number as

anunsigned long int.

Struct hostent

{

char *h _name ;

Xiv

R

char **h aliases ;

int

int

h_addrtype ;
h_length ;

char **h_addr list;

char *h_name

This is the "official”" name of the host.

char **h_aliases

These are alternative names for the host, represented as a null-
terminated vector of strings.

int h_addrtype

This is the host address type; in practice, its value is always AF_INET.
[n principle other kinds of addresses could be represented in the data
base as well as Internet addresses; if this were done, you might find a
value in this field other than AF_INET.

int h_length

This is the length, in bytes, of each address.

char **h_addr_list

This is the vector of addresses for the host. Recall that the host might
be connected to multiple networks and have different addresses on each
one. The vector is terminated by a null pointer.

char *h_addr

This is a synonym for h_addr_list[0]; in other words, it is the first host
address.

Table 3

2.3 IP Addresses and Their Concept :

>

»

Numeric IP Addresses :

5.) Ipv4 Internet addresses are 32 bit integers.

6.) For convenience they are displayed in "dotted decimal" format.

7.) Each byte is presented as a decimal number.

8.) Dots separate the bytes for example: 172.16.7.79

IP Addresses Classification:

e An IP address has two parts: The network portion and the host portion.

XV

Company/organization/domain/group/network, and the host portion is unique
to each system (host) in the network.

' e Where the network portion ends and the host portion begin is different for
each class of IP address.

e You can determine this by looking at the two high-order bits in the IP address.

|
1 o The network portion is unique to each
|
i
192.168.1.100 J

XXXXXXXX XXKXXKKK XKXXXXXXK XXXXXXXX
Byte 1.Byte 2.Byte 3.Byte 4

 Range (decimal). [Hos |
{2127 Bytes 2, 3, 4 :
i Class B (Medium) 128 - 191 Bytes 1, 2 Bytes 3, 4
| Class C (Small) 192223 Bytes 1,2,3 | Bytes 4

Table 4

e The first four bits (bits 0-3) of an address determine its class:

Oxxx = class A

bits 1-7 define a network.

bits 8-31 define a host on that network.
128 networks with 16 million hosts.

10xx = class B

| bits 2-15 define a network.

' bits 16-31 define a host on that network.
16384 networks with 65536 hosts.

bits 3-23 define a network.
bits 24-31 define a host on that network.
i 2 million networks with 256 hosts.

I
!
1 110x = class C
|

Table 5

e The IP network portion can represent a very large network that may spans

: multiple geographic sites.

i e To make this situation easier to manage, you can use subnetworks. Subnetworks
use the two parts of the address to define a set of IP addresses that are treated as

group. The subnetting divides the address into smaller networks. !

XVi |

e You configure a subnetwork by defining a mask, which is a series of bits. Then,

the system performs a logical AND operation on these bits and the IP address.

e The 1 bit defines the subnetwork portion of the IP address (which must include at

| least the network portion). The 0 bits define the host portion. “[
;' e Class D is a multicast addresses and class E is reserved. This you can realize ! *'

through the following figure.]

|

n

|

- i

| Class & subnet’hostid I F

24 hits [

:

[Class B subnet/hostid |]

16 bits i

f

| Class C hostid] 3

8 bits

Figure 6

e Nowadays we use classless IP address. That means we subnet the class type IP
into smaller subnet or smaller group of [P addresses creating smaller networks.

e Before the IPV4 run out of the IP addresses, now we have IPV6 with 128 bits. | |

> IPv6:

e Current IP is IPv4 (Internet Protocol version 4).

e [Pv4 has 32 bit addresses.

e Due to splitting addresses, 32 bits is not enough.

e [Pv6 will have 128 bit addresses.

e Addresses will be shown in a colon hexadecimal format with internal strings of Os
omitted. For example:
“69DC:88F4.FFFF:0:ABCD:DBAC:1234:FBCD:A12B::F6”

e New service types exist to accommodate IPv6 such as multimedia and wireless.

e

e ——— A

Xvii

2.4 Port Numbers:

o Itis 16 bit integers. So we have 2'® = 65536 ports maximum.

e It is unique within a machine/IP address..

e To make a connection we need an IP address and port number of the protocol.

e The connection defined by : “IP address & port of server + IP address & port of
client .

e Normally, server port numbers are low numbers in the range 1 — 1023 and
normally assign for root (Administrator) only.

e And normally, client port numbers are higher numbers starting at 1024. we can
choose any port which should in the range of 1024-65535.we cannot choose
below 1024 because they are standard ports.

o For example: FTP - 21, TELNET — 23.

e A server running on a well-known port lets the OS know what port it wants to
listen on.

e Whereas a client normally simply lets the operating system picks a new port that

isn’t already in use.

2.5 Inet Functions:

There are some inet functions that we,ll use in our code.these inet functions are

described below.
inet_addr , inet_aton , and inet_ntoa functions :

inet aton, inet ntoa, and inet_addr convert an IPv4 address from a
dotted-decimal string (e.g., "206.168.112.96") to its 32-bit network byte
ordered binary value. You will probably encounter these functions in lots of existing

code.

#include <arpa/inet.h>

int inet_aton(const char *strptr, struct in_addr *addrptr);

Returns: 1 if string was valid, 0 on error

Returns 32-bit bmary network byte ordered IPv4 address INADDR_ NONE 1f error

! char *inet_ntoa(struct in_addr inaddr);

Returns: pointer to dotted-decimal string

e inet aton, converts the C character string pointed to by strptr into its 32-bit
binary network byte ordered value, which is stored through the pointer addrptr. If

successful, 1 is returned; otherwise, 0 is returned. |

e inet addr does the same conversion, returning the 32-bit binary network byte

ordered value as the return value. The problem with this function is that all 952
possible binary values are valid IP addresses (0.0.0.0 through 255.255.255.255),
but the function returns the constant INADDR_NONE (typically 32 one-bits) on an
error. This means the dotted-decimal string 255.255.255.255 (the IPv4 limited '

broadcast address) cannot be handled by this function since its binary value !

appears to indicate failure of the function.

e The inet ntoa function converts a 32-bit binary network byte ordered IPv4
address into its corresponding dotted-decimal string. The string pointed to by the
return value of the function resides in static memory. This means the function is
not reentrant,finally notice that this function takes a structure as its argument, not

a pointer to a structure.

Xix

e

Chapter 3: Header files used in socket programming

Here is the list of all header files that we have used in our C code of socket
programming:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <netdb.h>
#include <fentl.h>
#include <sys/stat.h>

Now we,ll discuss each of them precisely.

#include <stdio.h>

stdio.h, which stands for "standard input/output header", is the header in the C
standard library that contains macro definitions, constants, and declarations of
functions and types used for various standard input and output operations.

Variables defined in the stdio.h header include:

e Stdin — a pointer to file which refers to the standard input stream, usually a
keyboard.

e Stdout — a pointer to file which refers to the standard output stream, usually a
display terminal.

e Stderr —a pointer to file which refers to the standard error stream, often a
display terminal.

Functions declared in stdio.h are extremely popular, since as a part of the C standard

library, they are guaranteed to work on any platform that supports C. Applications on

XX

3 a particular platform might, however, have reasons to use the platform's I/O routines, | \l
\

rather than the stdio.h routines.

#include <stdlib.h>

stdlib.h - is the header of the general purpose standard library of C programming |
language which includes functions involving memory allocation, process |

control, conversions and others. |

The stdlib.h and stddef.h header files define the macro NULL, which yields a null I
pointer constant, and represents a pointer value that is guaranteed not to point to a
valid address in memory. NULL may be defined as a constant expression equal to int
zero, long int zero, or zero cast to a void * pointer:

#define NULL 0
#define NULL OL
#define NULL ((void-*) 0)

Member data type:
A datatype called size t is defined in the stdlib.h library, which is used to represent
the size of an object. Library functions that take sizes expect them to be of type size t,

and the sizeof operator evaluates to size_t.

#include <sys/types.h>

Defines various data types. Also includes prototypes, macros, variables, and structures
that are associated with the select () function. You must include this file in all socket

applications.

#include <sys/socket.h>

This is an internet protocol family.

<sys/socket.h> makes available a type, socklen_t, which is an unsigned opaque
integral type of length of at least 32 bits. To forestall portability problems, it is
recommended that applications should not use values larger than 22 - 1.

The <sys/socket.h> header defines the unsigned integral type sa_family_t.

The <sys/socket.h> header defines the sockaddr structure that includes at least the

i
| following members:

sa_family_t sa_family address family |

char sa datall socket address (variable-length data)

XX1

Defines socket prototypes, macros, variables, and the following structures:
e sockaddr
e msghdr
e Linger

You must include this file in all socket applications.

#include <netinet/in.h>

This is also an internet protocolfamily.

When header file <netinet/in.h> is included, the following types are defined through

typedef.

in_port_t
An unsigned integral type of exactly 16 bits.

in_addr_t
An unsigned integral type of exactly 32 bits.
The <netinet/in.h> header defines the in_addr structure that includes at least the

following member:

e in addr t s addr

The <netinet/in.h> header defines the sockaddr_in structure that includes at least the
following member:

sa_family t sin_ family
in_port t sin_port
struct in_addr sin_addr
unsigned char sin_zero[8]

Defines prototypes, macros, variables and the sockaddr_in structure to use with

Internet domain sockets.

#include <arpa/inet.;h>

This header file includes definitions for internet operations.

The <arpa/inet.h> header makes available the type in_port_t and the type in_addr_t
as defined in the description of <netinet/in.h>.

The <arpa/inet.h> header makes available the in_addr structure, as defined in the

description of <netinet/in.h>.

Xxii

Defines prototypes for those network library routines that convert Internet address and

dotted-decimal notation. Example: inet_makeaddr ().

#include <unistd.h>

This header file includes standard symbolic constants and types.

The <unmistd.h> header defines miscellaneous symbolic constants and types, and

declares miscellaneous functions.

Contains macros and structures that are defined by the integrated file system. Needed

when the system uses the read () and write() system functions.

#include <string.h>

string.h is the header in the C standard library for the C programming language
which contains macro definitions, constants, and declarations of functions and types
used not only for string handling but also various memory handling functions; the

name is thus something of a misnomer.

Functions declared in string.h are extremely popular, since as a part of the C standard
library, they are guaranteed to work on any platform which supports C. However,
some security issues exist with these functions, such as buffer overflows, leading
programmers to prefer safer, possibly less portable variants. Also, the string functions
only work with ASCII or character sets that extend ASCII in a compatible manner
such as ISO-8859-1; multibyte ASCII-compatible character sets such as UTF-8 will
work with the caveat that string "length" is to be interpreted as the count of bytes in
the string rather than the count of Unicode characters. Non-ASCII compatible string
handling is generally achieved through wchar.h.

Macro expanding to the null pointer constant; that is, a constant representing
null a pointer value which is guaranteed not to be a valid address of an object in
memory.

xxiii

r———* I

#include <netdb.h>

This header file includes definitions for network database operations.

e The <netdb.h> header may make available the type in_port_t and the type

in_addr_t as defined in the description of <netinet/in.h>.

e The <netdb.h> header defines the hostent structure.

o The <netdb.h> header provides a declaration of /_errno as a modifiable 1-
value of type int.

e The <netdb.h> header defines the macro IPPORT_RESERVED with the
value of the highest reserved Internet port number.

Contains data definitions for the network library routines.

Defines the following structures:

e hostent and hostent_data |
'\F e netent and netent_data |
e servent and servent_data 1

e protoent and protoent_data.

#include <fcntl.h>

This header file includes file control options.
Defines prototypes, macros, variables, and structures for control-type functions, for |

example, fentl().
: #include <sys/stat.h> i
This header file includes data returned by the stat() function.

The <sys/stat.h> header shall define the structure of the data returned by the functions

fstat(), Istat(), and stat().

XX1V

Chapter 4: Elementary TCP sockets and system calls

e

4.1 socket
int socket (int domain , int type , int protocol) ;

o This function creates the socket and returns a unique file descriptor to
socket.the socket can either be a stream (T.C.P) or a datagram (U.D.P) socket
depending on the input arguments.

o The following figure illustrates the example of client/server relationship of the

socket APIs for connection-oriented protocol (TCP).

Server
sockel {)
bind{)
|
Gl Chent ‘
‘ socket () i
accept() |
! i Feyg {
Blocks until connection getipamyname {) il
from chent ‘ [
Connecton estadhshment
! connect [)
select ()
Dala (request)
recvi) re send ()
Process request
Data ireply)
send (} L recy ()
close () close ()
I
o Domain: set this to AF INET.

o Type : Specifies what kind of socket.set this to SOCK_STREAM for TCP
! stream (telnet , ftp , https .etc) and SOCK_DGRAM for UDP datagrams. '
o Protocol: takes one of the following values.

° 0: automatically selects correct protocol based on type. .
° TPPROTO_TCP: selects TCP protocol. E .|
o IPPROTO_ UDP: selects UDP protocol.

XXV g;

Note: B

The socket APIs are located in the communications model between the application
layer and the transport layer. The socket APIs are not a layer in the communication
model. Socket APIs allow applications to interact with the transport or networking
layers of the typical communications model. The arrows in the following figure show

the position of a socket, and the communication layer that the socket provides.

Application e

r Socket APl [t~
L
|
[ransporl Layer {
S s |
[CE, LD, RAW f
= Networking Layer

1B 116G, SNA

Fhysical Data Link Layer
[oken Ring, Elhernet, X.26, FDOI...

4.2 bind ()

int bind (int sockfd , struct sockaddr *my addr , int addrlen) ;

This function associates socket sockfd with a port on the local machine. This function
only needs to be called for incoming connections on the server. Returns -1 if there is

an error. The following are the input arguments:

o Sockfd: This is the value returned by the socket () function call. |] \

XXV1 i

e

L]

My addr: This is the sockaddr in data structure containing the IP address and ,\

port number on the local machine.

Addrlen: This is the size of the sockaddr in data structure.

3.3 Listen ()

int listen (int sockfd , int backlog) ;

This function listens for incoming connections. It only needs to be called by the server
for connection oriented (TCP) sockets. The function returns -1 on an error. The

following are the input arguments:

Sockfd: This is the value returned by the socket () function call.

Backlog: The maximum number of connections allowed to wait in the

incoming queue. Incoming connections remain in the queue until accept () is called.

4.4 Connect ()

int connect (int sockfd , struct sockaddr *serv addr , int addrlen) ; ﬂ |

This function is called by the client to initiate a connection to a server. It is used for il
connection-oriented (TCP) sockets. The function returns -1 on an error. The following

are the input arguments:

Sockfd: This is the value returned by the socket () function call.

serv addr: This is the sockaddr in data structure containing the IP address and |

port number of the server.

Addrlen: This is the size of the sockaddr in data structure.

4.5 Accept ()

int accept (int sockfd , void *addr , int *addrlen) ;

This function accepts a connection from the incoming queue associated with the
socket sockfd. The function is used by the server for connection-oriented (TCP)
sockets. The function returns a new socket descriptor which can be used to send and
receive information on the connection. The function returns -1 on an error. The

following are the input arguments:

Sockfd: This is the socket _le descriptor for the socket that is listening for
connections. : |
Addr: This is a pointer to a local sockaddr in data structure that can be used to .

hold the IP address and port number of the incoming connecting client. This

XXVil

r

data structure is di_erent from the one that contains the IP address and port

number of the server.

° Addrlen: This is the size of the above sockaddr in data structure.

4.6 Read ()

int read (int sockfd , const void *msg , int len) ;

Once a connection has been established (the client has connect () ed and the server

has accept (Jed), this function is used to read information from client to server or from

server to client. If one is using read (), the other should be using write (). This

function either returns the number of bytes sent out or returns -1 if there is an error.

° Read (): function reads a specified number of bytes from a file handle and
stores the data in a scalar variable.

. Sockfd: This is the socket _le descriptor for the socket being used to send the
data. On the client side, sockfd is the same socket used when calling connect
(). On the server side, sockfd is the sockets returned from accept ().

° Msg: This is a pointer to the data that is being sent.

. Len: This is the length of the data in bytes.

4.7 Write () Function

int write (int sockfd, void *buf , intlen) ;

This function writes data that is to be sent to a client. The function returns the number
of bytes actually written, returns -1 if there is an error, or returns 0 if the other end has

closed the connection.

. Sockfd: This is the socket _le descriptor for the socket from which the data is
being write. On the client side, sockfd is the same socket used when calling
connect (). On the server side, sockfd is the sockets returned from accept ().

. Buf: This is a pointer to the buffer into which the data will be writing.

° Len: This is the maximum length of the buffer in bytes.

4.8 Close ()

void close(sockfd) ;

This function closes a socket.

XXviil

[r—

e ————

.~

4.9 Getpeername ()

sockaddr).

more information.

4.10 Gethostname

usual.

the hostname upon the function’s return.

the information about the other side of the connection.

The function returns -1 on error and sets errno accordingly.

int gethostname (char *hostname , size_t size) ;

at the client and server for TCP and UDP sockets.

int getpeername (int sockfd , struct sockaddy #5344y , int *addrlen) ;
? ?

o Sockfd: is the descriptor of the connected stream socket.

° Addrlen: is a pointer to an int, that should be initialized to sizeof(struct

® Addr: is a pointer to a struct sockaddr (or a struct sockaddr_in) that will hold

Once you have their address, you can use inet_ntoa() or gethostbyaddr() to print or get

The arguments are simple: hostname is a pointer to an array of chars that will contain
| The function returns 0 on successful completion, and -1 on error, setting errno as

. Below is a table which summarizes the various functibns that need to be called

client server
connection-oriented || socket() socket()
TCP bind()
listen()
connect()
accept()
L send() recv()
recv() send ()
connectionless socket () socket()
L UDP bind()
| sendto() | recvfrom()
recvfrom() | sendto()

XXiX

4.11 fopen () Function

FILE *fopen (const char *filename, const char *mode) ;

° fopen opens a stream.
o fopen opens a file and associate a stream with it. The function returns a pointer

that identifies the stream in subsequent operations.

Mode:

r | Open for reading only
W | Create for writing
' 1f a file by that name already exists, it will be
| overwritten.
a | Append; open for writing at end of file, or create for
| writing if the file does not exist.
r+ | Open an existing file for update (reading and writing)
wt | Create a new file for update (reading and writing) .
! 1f a file by that name already exists, it will
| be overwritten.
a+ | Open for append; open for update at the end of the file, or

To specify that a given file is being opened or created in text mode, append "t" to the
string (tt, wt, etc.).
To specify binary mode, append "b" to the string (wb, atb, etc.).

If"t" or "b" is not given in the string, the mode is governed by _fmode.

o If fmode is set to O _BINARY, files are opened in binary mode.
° If fimode is set to O TEXT, they are opened in text mode.
° These O _... constants are defined in FCNTL.H.

4.12 felose () Function

int fclose (FILE *stream) ;

o fclose closes the named stream.

o All buffers associated with the stream are flushed before closing.
o System-allocated buffers are freed upon closing.

° Return Value :

XXX

—l

= On success, returns 0.

= On error, returns EOF.

4.13 fread () Function

size_t fread (void *ptr , size_t size , size_t n , FILE *stream) ;
° Files are often processed not by lines but they are read/written in large chunks.

o fread reads a specified number of equal-sized data items from an input stream

into a block.

Argument| What It Is/Does

________ +_......_______.......-__.____.....__...____...____..__...___....._

ptr ! Points to a block into which data is read

size | Length of each item read, in bytes |
n ! Number of items read

stream | Points to input stream

e —

o The total number of bytes read is (n * size). ;
° Return Value : 1
° On success, fread returns the number of items (not bytes) actually read.

° On end-of-file or error, fread returns a short count (possibly 0).

4.14 fwrite () Function

size_t fwrite (const void *ptr , size_t size , size_tn, FILE*stream) ;

° fwrite appends a specified number of equal-sized data items to an output file.

Argument} What It Is/Does

———————— +—_——___-_-—————-———-—-_-_-_———___.._-——_—-——_.—--———-———--—-—

ptr I Pointer to any object; the data written begins at ptr
size ! Length of each item of data

n ! Number of data items to be appended

stream ! Specifies output file

o The total number of bytes written is (n * size).

° Return Value :
% On success, returns the number of items (not bytes) actually written. ,
% On error, returns a short count.

XXX1 i :

.

Chapter 5: Design and Implementation.

SERVER SIDE CLIENT SIDE

!

& SOCKET ()

A

‘ BIND
. ‘ SOCKET () l
LISTEN ()
A
CONNECT ()
‘ ACCEPT ()
A
RECVFILE [« REQUEST
NAME FILE

h

OPEN FILE
TO READ ‘
i

b

]

-

|
|

b

e c—

A
CALC FILE
SIZE
.
3 RECV FILE

' SEND FILE | SIZE
SIZE B -

A

1 OPEN FILE
TO WRITE

READ 1 BYTE OF DATA FROM l
A
RECV THE |
DATA
lL

FILE OPENED
A

A

SEND THE |
DATA ‘ WRITE DATA TO THE FILE J It

|

\ 's
CLOSE . A— ‘,
‘ CLOSE) 1

|

The previous flowchart illustrates the client/server relationship of the sockets API for

J

2

a connection—oriented protocol.

Now we’ll discuss each and every step of flowchart one by one as given in last figure.

XXXii

Socket flow of events on SERVER side: Connection-oriented SERVER.

° The SOCKET () system call creates an end point for the communication and
& returns a socket descriptor. This system call uses INET as an address family

‘ with SOCK_STREAM as a type of data flow in TCP communication.

° After the socket is created, we have to associate that socket with a port using
BIND () system call, which allows connections to be established from any

client that specifies a port.

o The LISTEN () system call allows the server to accept incoming client
connections. In this system call argument BACKLOG is the number of
connections allowed on the incoming queue. That means incoming
connections are going to wait in this queue until you ACCEPT them and this is |

the limit on how many can queue up.

o The server uses ACCEPT () system call to accept an incoming request. The
ACCEPT () call will block indefinitely waiting for the incoming connection
to arrive. This call will return us a new socket descriptor for the single
connection. Now we have 2 socket file descriptor .where one is still listening

on yours port and newly created is finally ready to READ () and WRITE ().

o Receive file name will accept the name of the file sent by client side using
READ () system call. And then the server will check whether this file is

present or not in its side.

° Open file to read will read the contents of the file using fopen () system call,

which is requested by the client to send.

o After opening the file it’ll calculate the size of the file using FILESIZE ()

system call.

o After calculating the size of the file it’ll send the size of the file to client using

WRITE () system call.

Xxxiii

o Fread () system call is used by the server to read the cach byte of the file.

° After this the file is sent using SEND () system call and a loop is also made

on the server as well as on the client side so that we can transfer whole data of

the file without any interruption.

° After sending all the data on server side we close socket file descriptor using

CLOSE () system call.

Socket flow of events on CLIENT side: Connection-oriented CLIENT.

° The SOCKET () system call creates an end point for the communication and |
returns a socket descriptor. This system call uses INET as an address family
with SOCK_STREAM as a type of data flow in TCP communication. Rest is

same as server side. |

o After we received the socket descriptor, we use CONNECT () system call to

establish a connection to the server.

° After establishing the connection with the server we send the name of the file
with extension to the server using WRITE () system call.

° After sending the request of the file, we receive the size of the file, sent from
the server’s end using READ () system call.

o After this we use fopen () system call to open the file on the client side so that
the size of the file that we received from the server side.

o We use RECV () system call to get 1 byte of the data send by the server.

o After this we use fwrite () system call to write all the data on the file and we
also employ a loop so that we get all the data from the server side.
. After receiving all the data on client side we close socket file descriptor using

CLOSE () system call.

XXX1V

CHAPTER 6: BIBLIOGRAPHY

(1] Advanced UNIX Network Programming by W. Richard Stevens.

[2] Hitp:/www.wikipedia.com

[3] Beej’s Guide to Network Programming.

