oF NFORy,,,

o e weifiram.

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. S P62\1\ Call Num:
General Guidelines:

¢ Library books should be used with great care.
¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted ah.d,:shallitead

to disciplinary action.
¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.
¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

I

INTERACTIVE VOICE RESPONSE SYSTEM

BY:

ARVIND SINGH DOTIYAL - 031404
RAJAT GULATI - 031277
SAURABH PAL -031232

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY 2007

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

DEPARTMENT
OF
COMPUTER SCIENCE

JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “Interactive Voice Response System” submitted
by Arvind Singh Dotiyal(031404), Rajat Gulati(031277) and Saurabh Pal(031232) in
partial fulfillment for the award of degree of Bachelor of Technology in Computer
Science of Jaypee University of Information Technology has been carried out under my
supervision. This work has not been submitted partially or wholly to any other University

or Institute for the award of this or any other degree or diploma.

e

9. %:05-07]
Mr. Ajay Kumar Singh

(Senior Lecturer)

Jaypee University Of Information Technology-Waknaghat

TABLE OF CONTENTS

Page no.

CERTIFICATE

ACKNOWLGEMENT

1. PROJECT DEFINITION
- ABSTRACT
- DEFINITION
- TYPICAL IVR SYSTEM DESIGN
- PUBLIC SWITCHED TELEPHONE NETWORK (PSTN)
- PRIVATE BRANCH EXCHANGE (PBX)

2. AIM AND SCOPE

- FEASABILITY SCOPE

3. PROJECT DESIGN

- FRONT END

WHY .NET

ISSUES WITH TODAYS SOFTWARE DEVELOPMENT
WINDOWS INCONSISTENCIES

COM SHORTCOMINGS

OBJECT ORIENTED ISSUES

CROSS-LANGUAGE INTEROPERABILITY

THE PROBLEMS WITH ACTIVE SERVER PAGES
THE CHALLENGES OF THE INTERNET

- THE SOLUTIONS ACCORDING TO .NET

LEVELING WINDOWS PLATFORMS

NET AS A BETTER COM

THE .NET FRAMEWORK CLASS HIERARCHY
ALL .NET LANGUAGES ARE BORN EQUAL

11

N R o W

S &N

4

T

- WEB FORMS, THE SUCCESSOR TO ACTIVE

SERVER PAGES 14

- XML WEB SERVICES, THE INTERNET OF THE FUTURE 15

- .NET ARCHITECTURE 16
- INTERFACE FOR UPDATING RESULT DATABASE 17
- VB.NET CODE FOR UPDATING RESULT DATABASE 17
- INTERFACE FOR VIEWING RESULT DATABASE 28
- VB.NET CODE FOR VIEWING RESULT DATABASE 28
- INTERFACE FOR EDITING SRTUDENT DATABASE 36

- VB.NET CODE FOR EDITING SRTUDENT DATABASE 36

- THE DATABASE 46
- ABOUT MS ACCESS 46
- COMMA SEPERATED VALUES 48
- THE PLUGIN S0
- FINDDATA PLUGIN 50
- PLUGIN CODE 51
- RUNNING THE PLUGIN 51
- THE MODEM 56
- A QUICK REVIEW OF HOW MODEM WORKS 38
- THE UNIVERSAL MODEM DRIVERS AND TAPI
SERVICE PROVIDERS 59
- BASIC DATA MODEMS 60
- DATA MODEMS WITH VOICE 60
- TELEPHONE CARD . 62
- TELEPHONY APPLICATION PROGRAMMING
INTERFACE (TAPI) 63
- TAPI 2.x vs TAPI 3.x 66

I AT .S T o 301 e

4. DATA FLOW DIAGRAMS

- LEVEL ONE DATA FLOW DIAGRAM
-~ LEVEL TWO DATA FLOW DIAGRAM

- FLOWCHART

5. CHALLENGES AND DRAWBACKS

6. ENHANCEMENTS

7. GANTT CHART

8. CONCLUSION

9. BIBLIOGRAPHY

70

70
71

72

74

75

76

77

78

LIST OF FIGURES PAGE NO.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Fig. 10

Fig. 11
Fig. 12
Fig, 13
Fig. 14
Fig. 15

IVR SYSTEM DESIGN ~ ceeeeceececaee e 5
NET ARCHITECTURE <o 16
FRONT END FOR ENTERING STUDENT RESULT --x-eeeem- 17
FRONT END FOR VIEWING RESULT DATABASE --<eeeve- 28
FRONT END FOR EDITTING STUDENT DATABASE, =-------- 36
WINDOW FOR RUNNING THE PLUGIN «enmemmeemeememmes 56

WINDOW FOR SUPPLYING PARAMETERS TO THE PLUGIN 57
BASIC MODEM SUPPORT FOR TAPI SERVICES -m-reeeeeev 61
VOICE-DATA MODEM SUPPORT FOR TAPI SERVICES --- 63

TELEPHONE CARDS CAN SUPPORT ALL LEVELS

OF TAPI SERVICES e 65
TAPI ARCHITECTURE e eccmemmooe e 67
LEVEL ONE DATA FLOW DIAGRAM -----eemmeeee e 70

LEVEL TWO DATA FLOW DIAGRAM =-e-mcesccmmeeeaeecneas 1

FLOWCHART e N 7
GANTT CHART = = seccmmmmmmeeeeeee m e m—————— 76

LIST OF ABBREVIATIONS

IVR - Interactive voice response system

TAPI - Telephone application program interface

PABX — Private branch exchange

CSV - Comma separated value

EPABX - Electronic Private Automatic Branch Exchange
PSTN -Public switched telephone network

DAO - Data Access Objects

RDO - Remote Data Objects

ADO - ActiveX Data Objects

COM - Component Object Model

SOAP - Object Access Protocol

ASP - Active server pages

HTML - Hypertext markup language N
XML - Extensible markup language

SOAP - Simple object access protocol

API - Application program interface

CLS - Common Language Specification
TSPI - Telephony Service Provider Interface
POTS — Plain old telephone service

ISDN - Integrated Services Digital Network
TSP - TAPI Service Provider

VB — Visual basic

WOSA - Windows Open Services Architecture
DFD - Data flow diagram

PROJECT DEFINITION

ABSTRACT

IVR - Interactive Voice Response is a blanket term for automated call
handling systems where the user interacts with a computer controller voice signal (either

recorder real speech or computer generated). The interaction can be through the use of a

touch tone telephone or through speech recognition,

Interactive voice response: the link between people using the phone and
computer databases. This technology (along with automatic speech recognition, ASR)

allows callers to speak in their natural voice to complete transactions or queries over the

phone.

The system can be helpful in providing an automated twenty four hours services that do
not require an operator to deal with the queries. Only a certain number of queries can be

answered over the phone as it is an automated system.

DEFINITION

IVRS answers enquiries by prompting callers to input data onto the touch-tone keypad,
looking up the record in a database and speaking back information. A typical IVRS
“application initiates a predefined sequence of verbal prompts, providing options and
instructions to a caller. It allows a caller to respond to verbal prompts and instructions
through telephone touch-tone keys. Thus, users can interact with the IVRS by pressing

buttons on their telephone or by Voice Recognition- simply speaking commands,

The user calls on a telephone number, the Voice System answers the call, greets the
customer and prompts for instructions via spoken menu. In response to the caller's
commands, database information may be retrieved or service requests executed.

Responses to the caller are pre-recorded via a digitized voice.

The system here greets the caller appropriately and asks the caller to enter a valid roll
number corresponding to which he or she wishes to retrieve their percentage achieved in
the current semester. If the user enters an invalid roi] number then his/her percentage will

not be spoken out and a blank outgoing message is spoken out.

The retrieval of information is done through a database which can be easily updated by
the administration using a friendly easy to use front end. The database can be viewed by

the administration at any point of time and new entries can be made into it

I

TYPICAL IVR SYSTEM DESIGN

|
|
Application
Seryer

Customized Database i
Report

Fig 1: IVR SYSTEM DESIGN

The IVR system is setup on a computer system that may be or may not be connected to a
LAN. The IVR system may gather the database information over the LAN, customized
reports can also be generated.

The database at any time can be updated for new records. At any point of time the IVR
System can transfer the call to the help desk where additional unanswered queries can be
answered.

On the other hand the system may be connected to a PABX that helps the system handle
more than one call using a single telephone line. The PABX is further connected fo a {

telephone line over which the caller calls.

PUBLIC SWITCHED TELEPHONE NETWORK (PSTN)

The public switched telephone network (PSTN) is the network of the world's public
circuit-switched telephone networks, in much the same way that the Internet is the
network of the world's public IP-based packet-switched networks. Originally a network
of fixed-line analog telephone systems, the PSTN is now almost entirely digital, and now

includes mobile as well as fixed telephones.
PRIVATE BRANCH EXCHANGE (PBX)

A Private Branch eXchange (PBX) is a telephone exchange that serves a particular
business or office, as opposed to one that a common carrier or telephone company

operates for many businesses or for the general public. PBXs are also referred to as:
PABX - Private Automatic Branch eXchange

EPABX - Electronic Private Automatic Branch Exchange

AIM AND SCOPE

The aim of the project is to provide as many Interactive Voice functionalisms as possible.
The project aim at proViding €asy 1o use service that just requires a caller to enter his/her
roll number through there phones keypad and the system will retrieve the percentage

corresponding to that particular roll number.

The project is also aimed to provide convenience (o the administration, who at any time
can update the database containing the result. The result can also be viewed by the

administration at any time and updates can be made.

The scope of the project is limited up to providing service to a single user at a time as

hardware requirement grows and becomes a lot more expensive in providing services to

more than one user at a time.

The project aims at providing:
- Automatically handles every call from customers and agents.
- Answers calls on the first ring, 7 days a week, 24 hours a day.
- Quick response to customer requests.
- Speaks to callers in a human tone of voice,
- Provides accurate and reliable information, up-to-date,

- Resources the organization’s present personnel for more productive work

JThe TVRS system can be expanded to include al] types of complaints to eliminate the

Ruse of online operators. It can also be expanded to include help and information
fregarding the company

FEASIBILITY SCOPE

ECONOMICAL FEASIBILITY

The proposed system will be a lot faster, easier to handle and error free. The system cost
will be far less distinct from the benefits it will bring. Thus the system is economically

feasible,
TECHNICAL FEASIBILITY

The software and hardware required for the implementation of the system are available.

; Thus the system is technically feasible.
OPERATIONAL FEASIBILITY

The proposed system will reduce the workload on operators and will make the work a lot f

easier. As there is no large number of operators working, there will less operational cost

during the whole process.

PROJECT DESIGN

The project design constitutes of a front end that allows administration of an institution to
update the result database, this database cohtains the result information of all the

students. This result can also be viewed at any point of time and updated.

FRONT END

WHY .NET?

NET initiatives can be thought as convergence of several distinct but loosely tied goals,

the most important of which are overcoming the limitations of the COM(Component

Object Model) programming model and finding a common programming paradigm for

Internet-related applications.

ISSUES WITH TODAY’S SOFTWARE DEVELOPMENT

WINDOWS INCONSISTENCIES

The windows platform has evolved chaotically in recent years. We have at least three

different programming models for producing graphic-intensive applications (GDI,

DirectX, and OpenGL). Microsoft has also produced several programming models for
accessing databases — Data Access Objects (DAQ), Remote Data Objects (RDO), and

ActiveX Data Objects (ADO),

Windows itself comes in 50 many versions — Windows 95, 98, Me, NT, 2000, CE, XP
and not all versions support all features.

Security is another arca of concern that’s heavily affected by the Windows platform
developers. To make things worst, a developer must often account for the difference
between Windows security and the “classic® COM security model, which in turns is
different from the COM+ security model. With all these different models to consider, it’s

NO surprise that security is often an afterthought in most enterprise applications, which

makes them vulnerable to attacks.

COM SHORTCOMINGS

The Component Object Model (COM) has proven to be versatile enough to work as the
infrastrucfure for many enterprises and distributed applications, but at the same time it
has shown itself to be just too complex for developers who want to focus on the business
problem. COM applications are inherently fragile because they depend heavily on the

information stored in the system Registry, which become corrupter easily.

COM applications suffer from another serious problem: Versioning. As we know, each
newer version of a CO component overwrites older version. In theory, this overwriting
should encompass all the functionality of previous versions. In practice, however, this
means that an application that uses older version can suddenly stop working if the user

installs later versions because of minor incompatibility among these versions.

A third defect of COM is in deployment. Installing a COM-based application isn’t a
simple task because you have to install all the necessary components in system
directories, register them in the Registry, and configure them, and so on. Writing

installation programs has become an art of its own, with tricks and secrets.

OBJECT-ORIENTED ISSUES

Programming would be much easier if developers have a simple and secure way 1o reuse
and extended code that they wrote, but the COM programming model offers very little in
this respect. Inheriting and extending Windows functions is even more difficult because
the Windows AP] doesn’t expose classes,

As all experienced developers know, two COM objects that establish a circular reference
to each other aren’t automatically released when they go out of scope, such as when you
have two objects in parent-child relationship or two Person objects that reference each
other through their Spouse property. The COM memory manager relies on the concept of

areference counter and has no way to detect when the main program has no reference to

@ given object if the object is also pointed to by another object. As a result, the two

objects continue (o remain in the main memory until the application ends.

s T «

CROSS-LANGUAGE INTEROPERABILITY

The Windows platform makes it extremely difficult to integrate pieces of code written in
different languages because each language has its own call conversions, limitations, and
idiosyncrasies.

Because integrating different languages is so difficult, many software shops prefer to
standardize on a single language, thus missing the particular advantages that each
language can offer. If cross-language interoperability were easier, each portion of a large
application might be developed with the language that fit better, and software

development would be less expensive in terms of both time and money.,

THE PROBLEMS OF ACTIVE SERVER PAGES

The most important goal for pushing Microsoft towards a new programming model was
to provide a consistent platform for delivering robust Internet application,
After many attempts to provide credible Internet programming tools — a list that includes
ActiveX controls, ActiveX documents, and Web Classes — Microsoft discovered that its
most widely accepted platform for the ASP has one great advantage: it delivers dynamic
page content that works well with any browser. This technology is fueling many Internet
applications of all sizes. The many shortcomings of ASP are following:
® You can use only script languages, so you're subject to many limitations.
Programs are interpreted and not compiled, so they execute slower; code uses late
binding, and any misspelled method name raises an error at run time instead of
compile time; script languages can’t access advanced features in the Windows
API,
ASP code is intermixed with user-interface (Ul) code — that is, the HTML sent to
the browser. This makes it exceedingly difficult to separate the business logic
from the UI code and makes it nearly impossible to let a graphic designer update
the UI. In addition, debugging an ASP application is a nightmare,
*—Although you can fix script-code shortcomings by using compiled COM
components (COM components can access virtually any API, including Windows
functions), COM components are all problematic. First of all, you can’t replace a

COM component with a new version without stopping and restarting the Web site. On

-12-

top of that, COM components make the deployment of the Web application more

difficult because they must be registered in the system Registry,

o Large-scale code reuse is virtually impossible under ASP. In practice, the only
way you can reuse code in ASP is either by using include files or by using
compiled COM components.

* Most ASP Web sites store information about individual connected clients in
Session variables because ASP programming is stateless, which means that values
aren’t prevented between consecutive requests to the server. Session variables
offer storage for that client’s state, but they have a couple of remarkable
limitations: they don’t work on Web farms (that is, when the site runes on
multiple computers), and they don’t work if users disabled cookie support in their

browsers,

THE CHALLENGES OF THE INTERNET

Even if we don’t worry about the problems of programming of ASP we probably agree
that Internet programming is still in its infancy and therefore overly difficult. One of the
crucial problems is the lack of standardization in how information can be shared over the
Internet.

HTML dictates only how information is displayed in browsers but makes it difficult to
extract that information for use by a program.

Microsoﬁ and other large software companies — including Sun and IBM — have joined
with the W3C committee to produce the Simple Object Access Protocol (SOAP)
standard, which is based on XML. Using SOAP, you can query a site and get a return
“value through TCP/IP and XML. XML has a well-defined syntax and can be parsed
unambiguously, unlike HTML. You can use SOAP even without switching to NET but

Microsoft has taken an additional step by formulating the concept of XML Web services.

THE SOLUTIONS ACCORDING TO MICROSOFT .NET

LEVELING WINDOWS PLATFORMS

Microsoft .NET offers an object-oriented view of the Windows operating system and |
includes hundreds of classes that encapsulate all the most important Windows kernel .
objects. |
. NET security model is independent of the specific version of Windows the application |
is running on. *
. NET components and applications are inherently safer than COM components and “old- |

style” Windows applications.

NET AS A BETTER COM

A NET application can consist of one or more assemblies. Assemblies are the unit of .‘

versioning and logical deployment. All the files in an assembly have the same version

number,
All the information related to an application and the components is stored in \
configuration files held in the application’s main directory and not in the Registry. There ;
are two kinds of NET components: private and shared. Private components are stored in !
the application’s main directory and aren’t visible to other applications. Shared i
components are visible to all the NET applications and are typically stored in a central |
repository named global assembly cache (GAC) located under the C:\winNT\Assembly
directory. ‘
A new version of the .NET Framework can be installed simultaneously along with the l
previous version. .NET versioning is more flexible than COM’s,
NET also solves the problem of deployment. Because .NET applications can use private |
= assemblies; you can install more .NET applications by using the so-called XCOPY

deployment, that is, simply by copying all the files to a directory on the target system. |

THE .NET FRAMEWORK CLASS HIERARCHY

The NET Framework uses the concept of inheritance. All the objects form a hierarchy
with a single root, Object Class, from which all the other classes derive. These classes
provide functionality in area, including the user interface, data access, Internet,
programming, XML processing, security, and cross-machine communication. This
approach encourages code reuse.

The .NET Framework takes a novel approach to mutual object references, which gets rid
of the circular reference problem. .NET classes aren’t reference counter and that they
aren’t responsible for their lifetime. All NET objects inherit from System.Object the
ability to be released when the main application doesn’t hold a reference to them. This
technique works both with direct reference (the application has a variable pointing to the
object) and with indirect references (when there are intermediate objects between the

application and the object in question).
ALL .NET LANGUAGES ARE BORN EQUAL

NET moves most of the functionality from the language to the NET Framework itself. A
portion of the NET Framework named Windows Forms offers classes that can create
windows and controls. All V languages can use these classes. Microsoft provides several

languages with .NET, including Visual Basic NET, C#, Managed C++, and Jscript.

Because all the objects belong to the .NET object hierarchy or extend objects in that

hierarchy, you can easily manipulate them with any NET language, which offers a

degree of cross-language interoperability.

WEB FORMS, THE SUCCESSOR TO ACTIVE SERVER PAGES

ASP.NET comprises two distinct but tightly related technologies: Web Forms and XML

Web services, Web Forms are used for Internet applications with a user interface and are

s et st e e

meant to replace ASP applications. Web Services are for Internet applications without a
yser interface.

ASP.NET applications are written in full-featured, compiled languages so ASP.NET code
run faster. You can use early binding and strongly typed variables and have full access to
components and functions in the windows APLASP.NET offers the gamut of debugging
features, including break points sat inside the [DE and the ability to print tracking and
profiling information about the pages being browsed ASP.NET permits and promotes
separation between the user interface and the code that makes the application work.
According to the concept of code behind modules, we can split an ASP.NET page into
two distinct files, one containing the HTML cede and controls and the other containing
the source code. ASP.NET is based on the familiar event-driven programming model.
ASP.NET uses compiled code, so we don’t need to write components frequently. We can
overwrite a component even while an application is using it. This feature is known as
shadow copying. Under ASP.NET, Session variables can be held on the machine that
hosts 11S, on other machines in the same network, or inside a SQL Server database. We

can decide to create Session objects that don’t rely on client side cookie support.

XML WEB SERVICES, THE INTERNET OF THE FUTURE

Microsoft and other software companies are trying to remedy the situation of no standard
way to query millions of sites around the world to get information by introducing XML
web services. An XML Web service is an application that listens to requests coming to a
TCP socket and reacts to the commands each request contains. Both the requests and the
result are sent and received using SOAP.

XML Web services aren’t based on any proprietary technology. Protocols and
technologies used by XML Web services are SOAP, XML, HTTP and TCP/IP,

NET ARCHITECTURE

Visual Basic CH++ C# JSsript

Common Language Specification (CLS)

ASP NET Windows Forms

Data and XML 1!

Base Class Library (BCL)

Comnmon Language Runtime

Windows API COM 1 Services

Fig 2 : NET ARCHITECTURE

i

INTERFACE FOR UPDATING RESULT DATABASE

Foriml

Fig.3 FRONT END FOR UPDATING RESULT DATABASE

VB. NET CODE FOR UPDATING RESULT DATABASE

Imports System.Data.OleDb

Public Class Form1
Inherits System. Windows.Forms.Form

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase New()

'Tl_li's call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call

End Sub

J—

[
'" 18 -
'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)
End Sub
'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer
'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
Friend WithEvents PictureBox| As System. Windows.Forms.PictureBox
Friend WithEvents PictureBox2 As System. Windows.Forms. PictureBox
Friend WithEvents PictureBox3 As System. Windows.Forms.PictureBox
Friend WithEvents GroupBox1 As System. Windows.Forms.GroupBox
Friend WithEvents PictureBox4 As System.Windows.Forms.PictureBox
Friend WithEvents Label2 As System. Windows. Forms.Label
Friend WithEvents GroupBox2 As System. Windows.Forms.GroupBox
Friend WithEvents PictureBoxS As System. Windows.Forms.PictureBox 4.
Friend WithEvents GroupBox3 As System. Windows.IForms. GroupBBox
Friend WithEvents Labell As System. Windows. Forms. Label {

Friend WithEvents TextBox| As System. Windows.IForms. TextBox

Friend WithEvents Label3 As System.Windows.Forms.Label

Friend WithEvents TextBox2 As System.Windows.Forms. TextBox

Friend WithEvents Label4 As System.Windows.Forms.Label

Friend WithEvents TextBox3 As System.Windows.Forms. TextBox

Friend WithEvents Label5 As System.Windows.Forms.Label

Friend WithEvents TextBox4 As System.Windows.Forms. TextBox

Friend WithEvents GroupBox4 As System.Windows.Forms.GroupBox

Friend WithEvents Button! As System.Windows.Forms.Button

Friend WithEvents Button2 As System.Windows.Forms.Button

Friend WithEvents Button3 As System. Windows.Forms.Button

Friend WithEvents Buttond As System. Windows.Forms.Button

Fl‘fend WithEvents GroupBox5 As System.Windows.Forms.GroupBox

Fr!end WithEvents OleDbConnection] As System.Data.OleDb.OleDbConnection
Friend WithEvents Button5 As System. Windows.Forms.Button
<$y5tem.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
Dim resources As System.Resources.RcsourceMnnagcr = New
S)’Ste!n.Resources.Resou rceManager(GetType(Form 1))

Me.P}ctureBoxI = New System. Windows.Forms.PictureBox

Me.PictureBox2 = New System.Windows.Forms.PictureBox

]
- Sy
1]
¢

Me.PictureBox3 = New System. Windows.Forms.PictureBox
Me.GroupBox| = New System. Windows.Forms.GroupBox
Me.PictureBox4 = New System. Windows.Forms.PictureBox
Me.Label2 = New System. Windows.Forms.Label
Me.PictureBox5 = New System. Windows.Forms.PictureBox
Me.GroupBox2 = New System. Windows, Forms.GroupBox
Me.GroupBox3 = New System. Windows.Forms.GroupBox
Me.TextBox4 = New System.Windows.Forms. TextBox
Me.Label5 = New System. Windows.Forms.Label
Me.TextBox3 = New System. Windows.Forms. TextBox
Me.Labeld = New System. Windows.Forms.Label
Me.TextBox2 = New System, Windows.Forms.TextBox
Me.Label3 = New System. Windows.Forms.Label
Me.TextBox 1 = New System. Windows, Forms.TextBox
Me.Labell = New System.Windows.Forms.Label
Me.GroupBox4 = New System. Windows.Forms.GroupBox
Me.Button3 = New System. Windows.Forms.Button
Me.Button2 = New System. Windows.Forms.Button
Me.Button] = New System, Windows.Forms.Button
Me.Button4 = New System. Windows.Forms.Button
Me.GroupBox5 = New System. Windows.Forms.GroupBox
Me.OleDbConnection] = New System.Data.OleDb.OleDbConnection
Me.Button5 = New System. Windows.Forms.Button
Me.GroupBox1.SuspendLayout()
Me.GroupBox2.SuspendLayout()
Me.GroupBox3.SuspendLayout()
Me.GroupBox4.SuspendLayout()
Me.GroupBox5.SuspendLayout()

Me.SuspendLayout()

PictureBox 1

Me.PictureBoxl Image = CType(resources.GetObject("PictureBox | Image"),
System.Drawing.Image)

Me.PictureBox 1.Location = New System.Drawing.Point(0, 0)

Me.PictureBox | Name = "PictureBox | "

Me.P?CtureBoxi .Size = New System.Drawing.Size(100, 104)
Me.PictureBox | . Tablndex = 2

!\de.PictureBoxl.TabStop = False

~ 'PictureBox?2

Me PictureBox2.Image = CType(resources.GetObject("PictureBox2.Image"),
System.Drawing.lmage)

Me.P?ctureBonLocation = New System.Drawing.Point(96, 0)
Me.PlctureBox2.Name ="PictureBox2"

-20 -

Me.PictureBox2.Size = New System.Drawing. Size(336, 120)
Me.PictureBox2. Tablndex = 3
Me.PictureBox2.TabStop = [False

¥

'PictureBox3

Me.PictureBox3.Image = CType(resoul'ces.GetObject("PictureBox3.lmage"),
System.Drawing.Image)

Me.PictureBox3.Location = New System.Drawing.Point(432,)]
Me.PictureBox3.Name = "PictureBox3"

Me.PictureBox3.Size = New System.Drawing.Size(304, 104)
Me.PictureBox3.Tabindex = 4

Me.PictureBox3.TabStop = False

'GroupBox|1

Me.GroupBox[.Controls. Add(Me,PictureBox4)
Me.GroupBox 1.Controls. Add(Me. Labe!2)
Me.GroupBox1.Controls. Add(Me.PictureBox5)

Me.GroupBox I.Location = New System.Drawing.Point(8, 96)
Me.GroupBox |.Name = "GroupBox 1"

Me.GroupBox1.Size = New System.Drawing.Size(688, 56)
Me.GroupBox1.Tablndex = 5

Me.GroupBox 1. TabStop = False

'‘PictureBox4

Me.PictureBox4.Image = C'l‘ype(resources.(]et()hject("PiciureBox4.Image").
System.DrawIng.lmage)

Me.PictureBox4.Location = New System.Drawing.Point(8, 16)
Me.PictureBox4.Name = "PictureBox4"

Me.PictureBox4.Size = New System.Drawing.Size(72, 32)
Me.PictureBox4.SizeMode =
System.Windows.Forms.PicluruBoxSiszndc.Strclch!mugc

Me.PictureBox4. TabIndex = 56

IMe.PictureBox4.TabSt0p = False

'‘Label2

Me.Label2.Font = New System.Drawing.Font("Monotype Corsiva”, 24.0!,

System.Drawing. FontStyle.ltalic, System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Labe]2.Location = New System.Drawing.Point(168, 8)
Me.Label2.Name = "Label2"

Me.Label2 Size = New System.Drawing.Size(384, 40)
Me.LabeI2.Tablndex = ()

Me Label2. Text = "STUDENT INFORMATION

B e e R

i s RS B R

vt s i fE e

s J-mw

'PictureBox5

Me.PictureBox5.Image = CType(resources.GetObject("PictureBoxS.Image"),
System.Drawing.Image)

Me.PictureBox5.Location = New System.Drawing.Point(576, 16)
Me.PictureBox5.Name = "PictureBox5"

Me.PictureBox5.Size = New System.Drawing.Size(88, 32)
Me.PictureBox5.SizeMode =
System.Windows.Forms.PictureBoxSiszode.Stretch[mage
Me.PictureBox5.TabIndex = 57

Me.PictureBox5.TabStop = FFalse

'GroupBox2

Me.GroupBox2.Controls. Add(Me.PictureBox 1)
Me.GroupBox2.Controls.Add(Me.PictureBox2)
Me.GroupBox2.Controls.Add(Me.PictureBox3) Vor
Me.GroupBox2.Location = New System.Drawing.Point(0, 0) ™=
Me.GroupBox2 .Name = "GroupBox2"

Me.GroupBox2.Size = New System.Drawing. Size(736, 96)
Me.GroupBox2.Tablndex = 6

Me.GroupBox2.TabStop = False

'GroupBox3

Me.GroupBox3.Controls./—\dd(Mc.'l‘cxll}oxcl)
Me.GroupBox3.Controls.Add(Me.LabcIS)
Me.GroupBox3.Controls.Add(Me.TextBox3)
Me.GroupBox3.Controis.Add(Me.LabeI4)
Me.GroupBox3.ControIs.Add(Me.TextBox2)
Me.GroupBox3.Contro!s.Add(Me.Labe]B)
Me.GroupBox3.Controls.Add(Me.TextBox 1)
Me.GroupBox3.Controls.Add(Me.Label 1)
Me.GroupBox3.Location = New System.Drawing.Point(8, 160)
Me.GroupBox3.Name = "GroupBox3"

Me.GroupBox3.Size = New System.Drawing.Size(448, 200)
Me.GroupBoxB.Tablndex =7

Me.GroupBoxB.TabStop = False

'Me.GroupBox3.Text ="Datatls"

‘TextBox4

Me.TextBoxél.BackCoIor = System.Drawing.SystemColors.Info

Me.TextBox4.Locati0n = New System.Drawing.Point(152, 144)
Me.TextBox4.Name ="TextBox4"

S21 -

s e e T

e

At

-« 27 -

Me. TextBox4.Size = New System.Drawing.Size(232, 20)
Me.TextBox4.TabIndex = 7
Me.TextBox4. Text = ""

'Label5

Me.Label5.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.Italic),
System.Drawing.FontStyle). System.Drawing.Graphichnit.Point. CType(0, Byte))
Me.LabelS.Location = New System.Drawing.Point(16. 144)

Me.Label5.Name = "Label5"

Me.Label5.Size = New System.Drawing.Size(96, 16)

Me.Label5. Tablndex = 6

Me.Label5.Text = "PERCENTAGE"

"TextBox3

Me.TextBox3.BackColor = System.Drawing.SystemColors.Info
Me.TextBox3.Location = New System.Drawing.Point(152, 104)
Me. TextBox3.Name = "TextBox3"

Me.TextBox3.Size = New System.Drawing.Size(232, 20)
Me.TextBox3.Tablndex = 5
Me.TextBox3.Text =""

'Label4

Me.Label4.Font = New System.Drawing.Font("Microsoft Sans Serif", 975!,
CType((System.Drawing.FontSler.Bo]d Or System.Drawing.FontSty]e.Italic),
System.Drawing.FontStyle), System.Drawing.Graphichnit.Point, CType(0, Byte))
Me.Label4.Location = New System.Drawing.Point(16, 104)

Me.Labeld.Name = "Label4"

Me.Label4.Size = New System.Drawing.Size(96, 23)
Me.Label4. TabIndex = 4

Me.Label4.Text = "SEMESTER"

‘TextBox?2

Me.TextBoxz.BackColor = System.Drawing.SystemColors.Info
Me.TextBox2.Location = New System.Drawing.Point(152, 64)
Me.TextBon.Name = "TextBox2" '
Me.TextBox2.Size = New System.Drawing.Size(232, 20)
Me.TextBox2.TabIndex =3

'Me.TextBonText =

'Label3

M p— p—

e

e

T

I ——

"“_‘: ST e TR TS

s

Me.Label3.Font = New System.Drawing. Font("Microsoft Sans Serif", 11.25!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing. FontStyle.ltalic),
System.Drawing.FontSlyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label3.Location = New System.Drawing.Point(16, 24)

Me.Label3.Name = "Label3"

Me.Label3.Size = New System.Drawing.Size(96, 24)
Me.Label3.Tablndex = 2

Me.Label3.Text = "ROLL NO"

"TextBox |

Me.TextBox I.BackColor = System.Drawing.SystemColors.Info
Me.TextBox |.ForeColor = System.Drawing.SystemColors. Window Text
Me.TextBox 1.Location = New System.Drawing.Point(152, 24)
Me.TextBox1.Name = "TextBox1"

Me.TextBox1.Size = New System.Drawing.Size(232, 20)
Me.TextBox1.Tablndex = 1

Me.TextBox1.Text=""

'Labell

Me.Labell.Font = New System.Drawing.Font("Microsoft Sans Serif", 11.25!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.Italic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Labell.Location = New System.Drawing.Point(16, 64)

Me.Labell Name = "Labell"

Me.Labell.Size = New System.Drawing.Size(96, 23)

Me.Label |.TabIndex = 0

Me.Labell.Text = "NAME"

'GroupBox4

Me.GroupBox4.Controls.Add(Me.Button$)
Mc.GrmlpBox4.Contmls./\dd(Mc.Butlon})
Me.GroupBox4.Controls.Add(Me.ButtonZ)
Me.GroupBoxél.Controls./\dd(Mc.Button 1)
Me.GroupBox4.Location = New System.Drawing.Point(464, 160)
Me.GroupBox4,Name = "GroupBox4"

Me.GroupBox4.Size = New System.Drawing.Size(232, 200)
Me.GroupBox4.TabIndex =8

'I\/le.GroupBoxél.TabStop = False

'‘Button3

MeBUttoanlatStyle = System.Windows.Forms.FlatStyle. Popup

=%

—

——

:
| —
!
|
i
|

e

e T e

R

T T

Me.Button3.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button3.Location = New System.Drawing.Point(40, 144)

Me.Button3.Name = "Button3"

Me.Button3.Size = New System.Drawing.Size(176, 24)

Me.Button3.TabIndex = 2

Me.Button3.Text = "EXIT"

'Button2

Me.Button2.FlatStyle = System. Windows.Forms.FlatStyle.Popup

Me.Button2.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.Italic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button2.Location = New System.Drawing.Point(40, 64)

Me.Button2 Name = "Button2"

Me.Button2.Size = New System.Drawing.Size(176, 24)

Me.Button2.Tablndex = |

Me.Button2.Text = "CLEAR FORM"

'‘Button|

Me.Button|.FlatStyle = System. Windows.Forms.IlatStyle. Popup

Me.Button1.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button|.Location = New System.Drawing.Point(40, 24)

Me.Button1.Name = "Button1"

Me.Button|.Size = New System.Drawing.Size(176, 24)

Me.Button|.TabIndex = 0

Me.Buttonl.Text = "SUBMIT"

'‘Buttond

Me.Button4.FlatSLer = System.Windows.Forms.FlatStyle. Popup

Me.Button4.Font = New System.Drawing.Font("Microsoft Sans Serif", 18.0!,
CT}’PG((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me Button4. Location = New System.Drawing.Point(16, 24)

Me.Button4 Name = "Buttond"

Me.Button4.Size = New System.Drawing.Size(640, 40)

Me.Button4. TabIndex = 9

'Me.Button4.Text ="VIEW THE DATABASE"

'GroupBox5

: 9dn

Me.GroupBox5.Controls.Add(Me.Button4)
Me.GroupBox35.Location = New System.Drawing.Point(8, 368)
Me.GroupBox5.Name = "GroupBox5"

.~ Me.GroupBox5.Size = New System.Drawing.Size(688, 80)
Me.GroupBox5.TabIndex = 10

Me.GroupBox5.TabStop = False

. 'OleDbConnection|

Me.OleDbConnection.ConnectionString = "let OLEDB:Global Partial Bulk Ops=2;Jet
OLEDB:Registry Path=;Jet OLEDB:Database L" & "ocking Mode=1;Jet
OLEDB:Database Password=;Data Source=""C:\Documents and Setting" & "s\Rajat
GulatisMy Documents\Visual Studio Projects\STUDENT DATA BASE\student.mdb" &
""" Password=;Jet OLEDB:Engine Type=5;lJet OLEDB:Global Bulk
Transactions=1;Provide" & "r=""Microsoft.Jet. OLEDB.4.0"";Jet OLEDB:System
database=;Jet OLEDB:SFP=False;Exten" & "ded Properties=;Mode=Share Deny
None;Jet OLEDB:New Database Password=:;Jet OLEDB:" & "Create System
Database=False;Jet OLEDB:Don't Copy Locale on Compact=False;Jet OL" &
"EDB:Compact Without Replica Repair=False;User ID=Admin:Jet OLEDB:Encrypt
Databas" & "e=False"

'Button5

Me.Button5.IlatStyle = System.Windows.FForms.FlatStyle. Popup

Me.ButtonS.Font = New System.Drawing. Font("Microsoft Sans Scrif*. 9.75!.
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic).
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0. Byte))
- Me.Button5.Location = New System.Drawing.Point(40, 104)

~ Me.Button5.Name = "Button5"

Me.Button5.Size = New System.Drawing.Size(176, 24)

Me.ButtonS.Tablndex = 3

Me.Button5.Text = "EDIT ENTRY"

'Form|

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

Me.BackColor = System.Drawing.Color.LightSteelBlue

Me ClientSize = New System.Drawing.Size(704, 461)

_ Me.ControIs.Add(Me.GroupBoXS)

| Me.Controls.Add(Me.GrOUpBOX4)

Me.Controls.Add(Me.GrouPBOX3)

Me.Controls.Add(Me.GroupBOX1)

Me.Controls.Add(Me.Grour)Box2)

Me Name = "Form "

Me.StartPosition = System. Windows.Forms.FormStartPosition.CenterScreen

LS e

P

B

oo

Me.Text = "Form1"

Me.GroupBox [.ResumeLayout(False)
Me.GroupBox2.ResumeLayout(FFalse)
Me.GroupBox3.ResumeLayout(False)
Me.GroupBox4.ResumeLayout(False)
Me.GroupBox35.ResumeLayout(False)
Me.ResumeLayout(False)

End Sub

#End Region
Dim fm As New Form?2

Private Sub Button3_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click
End

~ End Sub

Private Sub Button2_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

TextBox1.Text=""
TextBox2.Text = ""
TextBox3.Text = ""
TextBox4.Text = ""

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles Button!|.Click

Try

OleDbConnection | .Open()

Dim comm As New OleDb.OleDbCommand

comm = OleDbConnection | .CreateCommand

comm.CommandText = "insert into stu values(" & TextBox 1. Text & "™ &
TextBox2.Text & ™" & TextBox3. Text & """ & TextBox4.Text & ")"

comm.Connection = OleDbConnection |
MessageBox.Show(comm.CommandText)

comm.ExecuteNonQuery()

MsgBox(”SAVED SUCCESSFULLY...!", MsgBoxStyle.Information)
OIeDbConnection 1.Close()

Catch ex Ag Exception

e55ageBox.Show(ex. Message)

<26 -

End Try
Button2.PerformClick()

End Sub

Private Sub Button4_Click(ByVal sender As Syste al o
System EventArgs) Handles Buttond Click ystem.Objeet, ByVal ¢ As
Me.Hide()

fm.Show()

End Sub

Private Sub Button5_Click(ByVal '
System.EventArgs) Handle(s lgtlttoj?gﬁ;lﬁs System-Object, ByVale As
Dim fm3 As New Form3

Me.Hide()

fm3.Show()

End Sub

End Class

-27-

—

-28 -

INTERFACE FOR VIEWING RESULT DATABASE i

f B Form

(Approvedby UGC Under Section 2f of UGC Act)

Jaypee University of Information rechnology ‘
| |
|

T N o P) A AR

Fig. 4: FRONT END FOR VIEWING THE STUDENT DATABASE
VB.NET CODE FOR VIEWING RESULT DATABASE

Imports System.Data.OleDb

Public Class Form?2 !
Inherits System. Windows.Forms.Form ‘ |

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase.New()

‘This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call

End Sub |

'Form overrides dispose to clean up the component list. u
Pro;ected Overloads Overrides Sub Dispose(By Val disposing As Boolean)
If disposing Then

If Not (components Is Nothing) Then

components. Dispose()
End If

;_ End If
‘ MyBase.Dispose(disposing) |

-29. i

End Sub

'Required by the Windows Form Designer .i
Private components As System.ComponentModel.[Container ,

'NOTE: The following procedure is required by the Windows Form Designer '
't can be modified using the Windows Form Designer. I
'Do not modify it using the code editor. |
Friend WithEvents PictureBox [As System. Windows.Forms.PictureBox ;
Friend WithEvents PictureBox3 As System. Windows.Forms.PictureBox
: Friend WithEvents PictureBox2 As System. Windows.Forms.PictureBox

b Friend WithEvents OleDbConnection] As System.Data.OleDb.OleDbConnection
Friend WithEvents OleDbDataAdapter! As System.Data.OleDb.OleDbDataAdapter
Friend WithEvents OleDbSelectCommand| As System.Data.OleDb.OleDbCommand
Friend WithEvents OleDblnsertCommand| As System.Data.OleDb.OleDbCommand
Friend WithEvents OleDbUpdateCommand| As System.Data.OleDb.OleDbCommand
Friend WithEvents OleDbDeleteCommand| As System.Data.OleDb.OleDbCommand
Friend WithEvents DataSet]] As STUDENT_DATA BASE.DataSet| ;
Friend WithEvents DataGrid1 As System. Windows.Forms.DataGrid i
Friend WithEvents GroupBox| As System.Windows.Forms.GroupBox !
Friend WithEvents Button] As System. Windows.Forms. Button
Friend WithEvents Button2 As System. Windows.Forms.Button
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(FormZ))
Me.PictureBox1 = New System. Windows.Forms.PictureBox
Me.PictureBox3 = New System. Windows.Forms.PictureBox
Me.PictureBox2 = New System. Windows.Forms.PictureBox
Me.OleDbConnection] = New System.Data.OleDb.OleDbConnection
Me.OleDbDataAdapter] = New System.Data.OleDb.OleDbDataAdapter
Me.OleDbDeleteCommand{ = New System.Data.OleDb.OleDbCommand
Me.OleDblnsertCommand1 = New System.Data.OleDb.OleDbCommand
Me.OleDbSelectCommand| = New System.Data.OleDb.OleDbCommand
Me.OleDbUpdateCommand| = New System.Data.OleDb.OleDbCommand
Me.DataSet! | = New STUDENT_DATA_BASE.DataSet|
Me.DataGrid] = New System. Windows.Forms.DataGrid
Me.GroupBox| = New System. Windows.Forms.GroupBox
Me.Button2 = New System. Windows.Forms.Button
Me.Button] = New System. Windows.Forms.Button
CType(Me.DataSet | 1, System.ComponentModel.ISupportlnitia]ize).BeginInit()
CType(Me.DataGrid1, System.ComponentModeI.[Support!nitia]ize).BeginInit()
Me.GroupBox | .SuspendLayout()
IMe.SuspendLaymlt()

'PictureBox.l

-

r m

—

230 -

Me.PictureBox I.Image = CType(resources.GetObject("PictureBox I.Image"),
System.Drawing.Image)

Me.PictureBox1.Location = New System.Drawing.Point(0, 0)
Me.PictureBox1.Name = "PictureBox "

Me.PictureBox1.Size = New System.Drawing.Size(100, 104)
Me.PictureBox1.Tablndex = 5

Me.PictureBox 1.TabStop = False

'PictureBox3

Me.PictureBox3.Image = CType(resources.GetObject("PictureBox3.Image"),
System.Drawing.Image)

Me.PictureBox3.Location = New System.Drawing.Point(400, 0)
Me.PictureBox3.Name = "PictureBox3"

Me.PictureBox3.Size = New System.Drawing.Size(304, 104)
Me.PictureBox3.Tablndex = 7

Me.PictureBox3.TabStop = False

"PictureBox2

Me.PictureBox2.Image = CType(resources.GetObject("PictureBox2.Image"),
System.Drawing.Image)

Me.PictureBox2.Location = New System.Drawing.Point(64, 0)
Me.PictureBox2.Name = "PictureBox2"

Me.PictureBox2.Size = New System.Drawing.Size(330,]04)
Me.PictureBox2.TabIndex = 6

Me.PictureBox2.TabStop = False

'OleDbConnection|

Me.OleDbConnection1.ConnectionString = "Jet OLEDB:Global Partial Bulk Ops=2;lJet
OLEDB:Registry Path=;Jet OLEDB:Database L" &

"ocking Mode=1;Jet OLEDB:Database Password= ‘Data Source=""G:\documents\Visual
Stud" &

"io Projects\STUDENT DATA BASE\student.mdb"";Password=;Jet OLEDB:Engine
Type=5;Jet" & _

"OLEDB:Global Bulk Transactions=1;Provider=""Microsoft.Jet. OLEDB.4.0"";Jet
OLEDB:S" & _

"ystem database=;Jet OLEDB:SFP=False;Extended Properties=;Mode=Share Deny
None;Je" & _

"t OLEDB:New Database Password=;Jet OLEDB:Create System Database=False;Jet
OLEDB:" & _

"Don't Copy Locale on Compact=False;Jet OLEDB:Compact Without Replica
Repair=Fals" & _

"e;User ID=Admin;Jet OLEDB:Encrypt Database=False"

23] -

'‘OleDbDataAdapter

Me.OleDbDataAdapter|.DeleteCommand = Me.OleDbDeleteCommand |
Me.OleDbDataAdapter|.InsertCommand = Me.OleDblnsertCommand |
Me.OleDbDataAdapter|.SelectCommand = Me.OleDbSelectCommand |
Me.OleDbDataAdapter|. TableMappings.AddRange(New
System.Data.Common.DataTableMapping() {New
System.Data.Common.DataTableMapping("Table", "stu", New
System.Data.Common.DataColumnMapping() {New
System.Data.Common.DataColumnMapping("name", "name"). New
System.Data.Common.DataColumnMapping("rollno", "rollno"), New
System.Data.Common.DataColumnMapping("semester", “semester"), New
System.Data.Common.DataColumnMapping("cgpa", "cgpa”)})})

Hl

Me.OleDbDataAdapter!.UpdateCommand = Me.OleDbUpdateCommand |

'OleDbDeleteCommand|

Me.OleDbDeleteCommandl.CommandText = "DELETE FROM stu WHERE (name = ?)
AND (rollno = ?) AND (semester = ?) AND (cgpa="& _

"? OR ? IS NULL AND cgpa IS NULL)"

Me.OleDbDeleteCommand1.Connection = Me.OleDbConnection |
Me.OleDbDeleteCommand 1.Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original_name",
System.Data.OleDb.OleDbType.VarWChar, 50, System.Data.ParameterDirection.Input,

False, CType(0, Byte), CType(0, Byte), "name", System.Data.DataRowVersion.Original,
Nothing))

Me.OleDbDeleteCommand | .Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original rollno",
System.Data.OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,

CType(0, Byte), CType(0, Byte), "rollno", System.Data.DataRowVersion.Original,
Nothing))

Me.OleDbDeleteCommand | .Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original semester",
System.Data,OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,
CType(0, Byte), CType(0, Byte), "semester", System.Data.DataRowVersion.Original,
Nothing))

Me.OleDbDeleteCommand | .Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original _cgpa",
System.Data.OleDb.OleDbType.Double, 0, System.Data.ParameterDirection. Input,
False, CType(0, Byte), CType(0, Byte), "cgpa", System.Data.DataRow Version.Original,
Nothing))

Me.OleDbDeleteCommand | .Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original cgpal",
System.Data.OleDb.OleDbType.Double, 0, System.Data. ParameterDirection.Input,
False, CType(0, Byte), CType(0, Byte), "cgpa", System.Data.DataRow Version.Original,
Nothing))

.

e

'OleDbInsertCommand |

Me.OleDblInsertCommand1.CommandText = "INSERT INTO stu(name, rollno,
semester, cgpa) VALUES (7,7, 7,)"

Me.OleDblnsertCommand1.Connection = Me.OleDbConnection |
Me.OleDblnsertCommand | .Parameters. Add(New
System.Data.OleDb.OleDbParameter("name",
System.Data.OleDb.OleDbType.VarWChar, 50, "name"))
Me.OleDblnsertCommand1.Parameters. Add(New
System.Data.OleDb.OleDbParameter("rollno", System.Data.OleDb.OleDbType.Integer,
0, "rollno™)) *
Me.OleDblnsertCommand |.Parameters. Add(New ‘
System.Data.OleDb.OleDbParameter("semester", |
System.Data.OleDb.OleDbType.Integer, 0, "semester"))
Me.OleDblnsertCommand1.Parameters. Add(New . f
System.Data.OleDb.OleDbParameter("cgpa", System.Data.OleDb.OleDbType.Double, 0, |
”cgpa“))

'OleDbSelectCommand |

Me.OleDbSelectCommand!.CommandText = "SELECT name, rollno, semester, cgpa
FROM stu"”

Me.OleDbSelectCommand|.Connection = Me.OleDbConnection |

'OleDbUpdateCommand |

Me.OleDbUpdateCommand!.CommandText = "UPDATE stu SET name = 2, rollno = ?,
semester = ?, cgpa = ? WHERE (name =?7) AND" & _

"(rollno = 7) AND (semester = ?) AND (cgpa=? OR ? IS NULL AND cgpa IS NULL)"
Me.OleDbUpdateCommand | .Connection = Me.OleDbConnection |
Me.OleDbUpdateCommand | .Parameters. Add(New
System.Data.OleDb.OleDbParameter("'name",
System.Data.OleDb.OleDbType.VarWChar, 50, "name"))
Me.OleDbUpdateCommand.Parameters. Add(New
System.Data.OleDb.OleDbParameter("rollno", System.Data.OleDb.OleDbType.Integer,
0, "rollno"))

Me.OleDbUpdateCommand1.Parameters.Add(New
System.Data.OleDb.OleDbParameter("semester". \
System.Data.OleDb.OleDbType.Integer, 0, "semester")) ,
Me.OleDbUpdateCommand1.Parameters. Add(New ‘
System.Data.OleDb.OleDbParameter("cgpa”. System.Data.OleDb.OleDbType.Double, 0,
"cgpa'))

Me.OleDbUpdateCommand1.Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original_name",
System.Data.OleDb.OleDbType. VarWChar, 50, System.Data.ParameterDirection.Input,

o1
Ty

False, CType(0, Byte), CType(0, Byte), "name", System.Data.DataRowVersion,Original,
Nothing))

Me.OleDbUpdateCommand1.Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original rollno",
System.Data.OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,
CType(0, Byte), CType(0, Byte), "rollno", System.Data.DataRow Version.Original,
Nothing))

Me.OleDbUpdateCommand1.Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original semester",
System.Data.OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,

CType(0, Byte), CType(0, Byte), "semester", System.Data.DataRowVersion.Original,
Nothing))

Me.OleDbUpdateCommand1.Parameters. Add(New
System.Data.OleDb.OleDbParameter("Original_cgpa",
System.Data.OleDb.OleDbType.Double, 0, System.Data.ParameterDirection.Input,

False, CType(0, Byte), CType(0, Byte), "cgpa", System.Data.DataRowVersion.Original,
Nothing))

Me.OleDbUpdateCommand|.Parameters.Add(New
System.Data.OIeDb.OIeDbParameter("Or;iginal_cgpaI I
System.Data.OleDb:OleDbType.Double, 0, System.Data.ParameterDirection.Input,

False, CType(0, Byte), CType(0, Byte), "cgpa", System.Data.DataRochrsion.Original,
Nothing)) ;

'DataSet! |
Me.DataSet! | .DataSetName = "DataSet | "
Me.DataSetl 1.Locale = New System.Globalization.Culturelnfo("en-US")

'DataGrid|

Me.DataGrid[.DataMember = "stu"

Me.DataGrid1.DataSource = M¢.DataSet | |

Me.DataGridl.HeaderForeColor = System.Drawing.SystemColors.Control Text
Me.DataGridl.Location = New System.Drawing.Point(8, 104)

Me.DataGrid 1 .Name = "DataGrid 1"

Me.DataGridl.ReadOnly = True

Me.DataGrid1.Size = New System.Drawing.Size(376,232)
Me.DataGrid1.TabIndex = 8

'GroupBox |

Me.GroupBox 1.Controls.Add(Me.Button2)
Me.GroupBox1.Controls. Add(Me.Button1)
Me.GroupBox1.Location = New System.Drawing.Point(392, 104)
Me.GroupBox1.Name = "GroupBox 1"

Me.GroupBox1.Size = New System.Drawing.Size(256, 232)

f/ 448 -

E—

Me.GroupBox|.Tablndex =9
Me.GroupBox 1. TabStop = I‘alse

'Button?2

Me.Button2.FlatStyle = System. Windows.Forms.FlatStyle.Popup

Me.Button2.Font = New System.Drawing.Font("Microsoft Sans Serif", 18.0!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.Italic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button2.Location = New System.Drawing.Point(64, 160)

Me.Button2.Name = "Button2"

Me.Button2.Size = New System.Drawing.Size(120), 48)

Me.Button2.TabIndex = |

Me.Button2. Text = "EXIT"

'‘Button|

Me.Button1.FlatStyle = System. Windows.Forms.FlatStyle.Popup

Me.Button1.Font = New System.Drawing.Font("Microsoft Sans Serif", 18.0!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button|.Location = New System.Drawing.Point(64, 40)

Me.Button|.Name = "Button|"

Me.Button1.Size = New System.Drawing.Size(120, 48)

Me.Button1.TabIndex = 0

Me.Buttonl.Text = "BACK"

'Form?2

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

Me.BackColor = System.Drawing.Color.LightSteelBlue

Me.ClientSize = New System.Drawing.Size(656, 341)
Me.Controls.Add(Me.GroupBox 1)

Me.Controls.Add(Me.DataGrid 1)

Me.Controls.Add(Me.PictureBox1)

Me.Controls.Add(Me.PictureBox2)

Me.Controls.Add(Me.PictureBox3)

Me.Name = "Form2"

Me.Text = "Form2"

CType(Me.DataSet11, System.ComponentModel.ISupportlnitialize). EndInit()
CType(Me.DataGrid1, System.ComponentModel.ISupportInitialize). EndInit()
Me.GroupBox1.ResumeLayout(False)

Me.ResumeLayout(False)

End Sub

=34 =

r

E

#End Region

private Sub Form2_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.L.oad

OleDbDataAdapter 1. Fill(DataSet1 1)
End Sub

private Sub Buttonl_Click(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles Button1.Click

Dim fm As New Form|

Me.Hide()

fm.Show()

End Sub

Private Sub Button2 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

End

End Sub

End Class

e

-136 -

i Jaypee University of Information Technology
il {Approvedby UGC Under Section 20 of UGC h.c‘l}

Fig. 5: FRONT END FOR EDITING THE STUDENT DATABASE

VB.NET CODE FOR VIEWING RESULT DATABASE

Imports System.Data.OleDb
Public Class Form3
Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase. New()

"This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call
End Sub

'Form overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

T

.

737

End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.

'Do not modify it using the code editor,

Friend WithEvents PictureBox1 As System.Windows.Forms.PictureBox
Friend WithEvents PictureBox2 As System.Windows.Forms.PictureBox
Friend WithEvents PictureBox3 As System.Windows.Forms.PictureBox
Friend WithEvents GroupBox3 As System.Windows.Forms.GroupBox
Friend WithEvents TextBox4 As System.Windows.Forms.TextBox
Friend WithEvents Label5 As System.Windows.Forms.Label

Friend WithEvents TextBox3 As System.Windows.Forms.TextBox
Friend WithEvents Label4 As System.Windows.Forms.Label

Friend WithEvents TextBox2 As System.Windows.Forms.TextBox
Friend WithEvents Label3 As System.Windows.Forms,Label

Friend WithEvents TextBox! As System.Windows.Forms.TextBox
Friend WithEvents Labell As System.Windows.Forms.Label

Friend WithEvents Button] As System.Windows.Forms.Button

Friend WithEvents Button2 As System.Windows.Forms.Button

Friend WithEvents Button3 As System.Windows.Forms.Button

Friend WithEvents GroupBox1 As System.Windows.Forms.GroupBox
Friend WithEvents Button4 As System.Windows.Forms.Button

Friend WithEvents Label2 As System.Windows.Forms.Label

Friend WithEvents Label6 As System.Windows.Forms.Label

Friend WithEvents Button5 As System.Windows.Forms,Button

Friend WithEvents OleDbConnectionl As System.Data.OleDb.OleDbConnection
Friend WithEvents OleDbCommand! As System.Data.OleDb.OleDbCommand
Friend WithEvents Button6 As System.Windows.Forms.Button
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(Form3))
Me.PictureBox| = New System. Windows.Forms.PictureBox
Me.PictureBox2 = New System. Windows.Forms.PictureBox
Me.PictureBox3 = New System. Windows.Forms.PictureBox
Me.GroupBox3 = New System.Windows.Forms.GroupBox
Me.TextBox4 = New System. Windows.Forms. TextBox

Me.Label5 = New System. Windows.Forms.Label

Me.TextBox3 = New System.Windows.Forms.TextBox

Me.Label4 = New System. Windows.Forms.Label

Me.TextBox2 = New System.Windows.Forms.TextBox

Me.Label3 = New System. Windows.Forms.Label

Me.TextBox1 = New System. Windows.Forms.TextBox

Me.Labell = New System. Windows.Forms.Label

s |

-38 - ‘

Me.Button| = New System.Windows.Forms.Button ‘
Me.Button2 = New System. Windows.Forms.Button i
Me.Button3 = New System.Windows.Forms.Button \
Me.GroupBox1 = New System.Windows.Forms.GroupBox
Me.Button4 = New System.Windows.Forms.Button '
Me.Label2 = New System. Windows.Forms.Label

Me.Label6 = New System.Windows.Forms.Label

Me.Button5 = New System. Windows.Forms.Button
Me.OleDbConnection] = New System.Data.OleDb.OleDbConnection
Me.OleDbCommand | = New System.Data.OleDb.()leDbCommand
Me.Button6 = New System.Windows.Forms.Button
Me.GroupBox3.SuspendLayout() '
Me.GroupBox 1.SuspendLayout() '\
Me.SuspendLayout()

"PictureBox |
Me.PictureBox1.Image = C'pre(resources.GetObject("PictureBoxl Image"), [
System.Drawing.Image)
Me.PictureBox1.Location = New System.Drawing.Point(-8, 0)
Me.PictureBox |.Name = "PictureBox 1"

Me.PictureBox1.Size = New System.Drawing.Size(100, 104)
Me.PictureBox 1. TabIndex = 8

Me.PictureBox1.TabStop = False

'"PictureBox2

Me.PictureBox2.Image = CType(1'csources.GetObject(“PictureBon.lmage“),
System.Drawing.Image)

Me.PictureBox2.Location = New System.Drawing.Point(56, 0)
Me.PictureBox2.Name = "PictureBox2"

Me.PictureBox2.Size = New System.Drawing.Size(336, 104)
Me.PictureBox2.Tablndex = 9

Me.PictureBox2.TabStop = False

'PictureBox3

Me.PictureBox3.Image = CType(resourccs.GctObjcct("PictureBoxB.lmage“),
System.Drawing.Image)

Me.PictureBox3.Location = New System.DraWing.Point(392, 0)
Me.PictureBox3.Name = "PictureBox3"

Me.PictureBox3.Size = New System.Drawing.Size(304, 104)
Me.PictureBox3.Tabindex = 10

Me.PictureBox3.TabStop = False

'GroupBox3

e

o

Me.GroupBox3.Controls.Add(Me.Label6)
Me.GroupBox3.Controls.Add(Me.Label2)
Me.GroupBox3.Controls.Add(Me.TextBox4)
Me.GroupBox3.Controls.Add(Me.Label5)
Me.GroupBox3.Controls.Add(Me.TextBox3)
Me.GroupBox3.Controls.Add(Me.Label4)
Me.GroupBox3.Controls.Add(Me.TextBox2)
Me.GroupBox3.Controls.Add(Me.Label3)
Me.GroupBox3.Controls.Add(Me.TextBox1)
Me.GroupBox3.Controls.Add(Me.Label1)
Me.GroupBox3.Location = New System.Drawing.Point(8, 112)
Me.GroupBox3.Name = "GroupBox3"

Me.GroupBox3.Size = New System.Drawing.Size(408, 176)
Me.GroupBox3.Tablndex = 11

Me.GroupBox3.TabStop = False

Me.GroupBox3.Text =" EDIT DETAILS"

'"TextBox4

Me.TextBox4.BackColor = System.Drawing.SystemColors.Info
Me.TextBox4.Location = New System.Drawing.Point(152, 144)
Me. TextBox4 . Name = "TextBox4"

Me.TextBox4.Size = New System.Drawing.Size(232, 20)
Me.TextBox4.Tablndex = 7

Me.TextBox4. Text =""

'Label5

Me.Label5.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!, !
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic), '
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label5.Location = New System.Drawing.Point(16, 144)

Me.Label5.Name = "Label5"

Me.Label5.Size = New System.Drawing.Size(104, 16)

Me.Label5. TabIndex = 6

Me.Label5.Text = "PERCENTAGE" |

"TextBox3

Me.TextBox3.BackColor = System.Drawing.SystemColors.Info
Me.TextBox3.Location = New System.Drawing.Point(152, 64)
Me.TextBox3.Name = "TextBox3"

Me.TextBox3.Size = New System.Drawing.Size(232, 20)
Me.TextBox3.Tablndex = 5

Me.TextBox3.Text =""

("ﬁr S40 -

'"Label4

Me.Label4.Font = New System.Drawing.Font("Microsoft Sans Serif", 9.75!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.Italic), '
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte)) '
Me.Label4.Location = New System.Drawing.Point(16, 56)

Me.Label4.Name = "Label4" ‘
Me.Label4.Size = New System.Drawing.Size(96, 23)
Me.Label4.Tablndex = 4

Me.Label4.Text = "SEMESTER"

"TextBox2
Me.TextBox2.BackColor = System.Drawing,SystemColors.Info
Me.TextBox2.Location = New System.Drawing.Point(152, 104)
Me.TextBox2.Name = "TextBox2"

Me.TextBox2.Size = New System.Drawing.Size(232, 20)
Me.TextBox2.Tablndex = 3

Me. TextBox2. Text =""

'Label3

Me.Label3.Font = New System.Drawing.Font("Microsoft Sans Serif", 11.25!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.ltalic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label3.Location = New System.Drawing.Point(16, 24)

Me.Label3.Name = "Label3"

Me.Label3.Size = New System.Drawing.Size(96, 24)

Me.Label3.Tablndex = 2

Me.Label3.Text = "ROLL NO"

"TextBox |

Me.TextBox 1.BackColor = System.Drawing.SystemColors.Info
Me.TextBox1.ForeColor = System.Drawing.SystemColors. WindowText
Me.TextBox1.Location = New System.Drawing.Point(152, 24)
Me.TextBox 1. Name = "TextBox1"

Me.TextBox1.Size = New System.Drawing.Size(232, 20)
Me.TextBox1.Tablndex = |

Me.TextBox1.Text=""

'Labell

Me.Labell.Font = New System.Drawing.Font("Microsoft Sans Serif", 11.25!,
CType((System.Drawing.FontStyle.Bold Or System.Drawing.FontStyle.Italic),
System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label!.Location = New System.Drawing.Point(16, 104)

Me.l.abel I .Name = "Label "

Me.Labell.Size = New System.Drawing.Size(96, 23)

Me.Labell.Tablndex =0

Me.Labell Text = "NAME"

'Button!

Me.Button!.Location = New System.Drawing. Point(431, 160)
Me.Buttonl .Name = "Button|"

Me.Button|.Size = New System.Drawing.Size(128, 23)
Me.Buttonl.Tablndex = 12

Me.Button].Text = "UPDATE"

'‘Button2

Me.Button2.Location = New System.Drawing.Point(431, 192)
Me.Button2 . Name = "Button2"

Me.Button2.Size = New System.Drawing.Size(128, 23)
Me.Button2. Tablndex = 13

Me.Button2.Text = "CLEAR FORM"

‘Button3

Me.Button3.Location = New System.Drawing.Point(431, 256)
Me.Button3.Name = "Button3"

Me.Button3.Size = New System.Drawing.Size(128, 23)
Me.Button3.Tabindex = 14

Me.Button3. Text = "EXIT"

'‘GroupBox!1

Me.GroupBox1,Controls.Add(Me.Button6)
Me.GroupBox!.Controls.Add(Me.Button5)

Me.GroupBox | .Controls.Add(Me.Button4)
Me.GroupBox1.Location = New System.Drawing.Point(424, 112)
Me.GroupBox1.Name = "GroupBox1"

Me.GroupBox!.Size = New System.Drawing.Size(232, 176}
Me.GroupBox1.TabIndex = 15

Me.GroupBox1.TabStop = False

Me.GroupBox1.Text = "OPTIONS"

'Button4

_4] -

.

-42.

[

Me.Button4.Location = New System.Drawing.Point(8, 112)
Me.Buttond Name = "Buttond"

Me.Button4.Size = New System.Drawing.Size(128, 23)
Me.Buttond4.Tablndex = 0

Me.Button4. Text = "BACK"

Label2

Me.Label2.Location = New System.Drawing.Point(152, 8)
Me.Label2.Name = "Label2"

Me.Label2.Size = New System.Drawing.Size(176, 16)
Me.Label2. Tablndex = 8

Me.Label2.Text = "PLEASE ENTER THE ROLL NO."

"Label6

Me.Label6.Location = New System.Drawing.Point(152, 48)
Me.Label6.Name = "Label6"

Me.Label6.Size = New System.Drawing.Size(184, 16)
Me.Label6.Tablndex = 9

Me.Label6.Text = "PLEASE ENTER THE SEMESTER"

'‘Button$

Me.Button5.Location = New System.Drawing.Point(8, 16)
Me.Button5.Name = "Button5"

Me.Button5.Size = New System.Drawing.Size(128, 23)
Me.Button5.Tablndex = 1

Me.Button5.Text = "GET INFORMATION"

'OleDbConnection|

Me.OleDbConnectionl.ConnectionString = "Jet OLEDB:Global Partial Bulk Ops=2;Jet
OLEDB:Registry Path=;Jet OLEDB:Database L" &

"ocking Mode=1;Jet OLEDB:Database Password=;Data Source=""G:\documents\Visual
Stud" &

"io Projects\STUDENT DATA BASE\student.mdb"";Password=;Jet OLEDB:Engine
Type=5;Jet" & _
" OLEDB:Global Bulk Transactions=1;Provider=""Microsoft.Jet. OLEDB.4.0""; Jet

QLEDB;S" & _

"ystem database=;Jet OLEDB:SFP=False;Extended Properties=;Mode=Share Deny
None;le" & _

"t OLEDB:New Database Password=;Jet OLEDB:Create System Database=False;Jet
OLEDB:" & _

Y »'

"

-43 -

"Don't Copy Locale on Compact=False;Jet OLLEDB:Compact Without Replica
Repair=Fals" &
"e;User ID=Admin;Jet OLEDB:Encrypt Database=False"

1

'OleDbCommand |

Me.OleDbCommand[.CommandText = "SELECT name, cgpa FROM stu WHERE
(rollno = "Textbox1.text’y AND (semester = 'text" & _

"box3.text")"

Me.OleDbCommand I.Conncection = Me.OleDbConnection |

'‘Button6

Me.Button6.Location = New System.Drawing.Point(144, 16)
Me.Button6.Name = "Button6"

Me.Button6.Size = New System.Drawing.Size(80, 152)
Me.Button6.Tablndex = 2

Me.Button6.Text = "VIEW DATABASE "

'Form3

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
Me.BackColor = System.Drawing.Color.LightSteelBlue
Me.ClientSize = New System.Drawing.Size(664, 301)
Me.Controls.Add(Me.Button3)
Me.Controls.Add(Me.Button2)
Me.Controls.Add(Me.Button|) w
Me.Controls.Add(Me.GroupBox3) ‘
Me.Controls.Add(Me.PictureBox) |
Me.Controls.Add(Me.PictureBox2)
Me.Controls.Add(Me.PictureBox3) -
Me.Controls.Add(Me.GroupBox1)
Me.Name = "Form3"

Me. Text = "Form3" ‘
Me.GroupBox3.ResumeLayout(False) |
Me.GroupBox 1.ResumeLayout(False) ‘
Me.ResumeLayout(FFalsc)

End Sub
—- #End Region

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click

End

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

TextBox1.Text =""
TextBox2.Text =""
TextBox3.Text=""
TextBox4.Text =""

End Sub

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button4.Click

Dim fm As New Form|
Me.Hide()
fm.Show()

End Sub

Private Sub Form3_Load(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles MyBase.l.oad

TextBox2.Enabled = False
TextBox4.Enabled = False
Button1.Enabled = False

End Sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button5.Click

Dim myCommand As OleDbCommand

Dim dr As OleDbDataReader

Dim nm As String

Dim cgp As Double

Try

OleDbConnection1.0pen()

Dim comm As New OleDb.OleDbCommand
comm = OleDbConnection1.CreateCommand

comm.CommandText = "SELECT name, cgpa FROM(stu) WHERE rollno =" &
TextBox1.Text & " AND semester = " & TextBox3.Text & ""

- 44 -

F—

A5

comm.Connection = OleDbConnection|
MessageBox.Show(comm.Commanchxt)

dr = comm.ExecuteReader
dr.Read()

nm = dr("name")

cgp = dr("cgpa")
TextBox2.Text = nm
TextBox4.Text = cgp
OleDbConnectionl.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)
End Try

TextBox2.Enabled = True
TextBox4.Enabled = True
Button1.Enabled = True

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

OleDbConnection1.Open()
Dim comm1 As New OleDbCommand
comm1 = OleDbConnectionl.CreateCommand

comm1.CommandText = "update stu set cgpa =" & TextBox4.Text & ", name="' &
TextBox2.Text & " Where rollno=" & TextBox1.Text & " and semester = "&
TextBox3.Text & ""

comm 1.Connection = OleDbConnection]|
MessageBox.Show(comm|.CommandText)

comm |.ExecuteNonQuery()

MsgBox("SAVED SUCCESSFULLY...!", MsgBoxStyle.Information)
OleDbConnection|.Close()

End Sub

Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button6.Click

Dim fm2 As New Form?2

Me.Hide()

fm2.Show()

End Sub

End Class

- 46 -

THE DATABASE

The database is meant to store the result information of all the students, his information
can be retrieved using the roll number, corresponding to which the percentage achieved

could be retrieved. The database creation is done using Microsoft access.

ABOUT MS ACCESS

Microsoft Access is a relational database management system from Microsoft which
combines the relational Microsoft Jet Database Engine with a graphical user interface. It
is a member of the 2007 Microsoft Office system.

Access can use data stored in Access/Jet, Microsoft SQL Server, Oracle, or any ODBC-
compliant data container. Skilled software developers and data architects use it to
develop application software. Relatively unskilled programmers and non-programmer
"power users" can use it to build simple applications. It supports some object-oriented
(OO) techniques but falls short of being a fully OO development tool.

Access was also the name of a communications program from Microsoft, meant to
compete with ProComm and other programs. This Access proved a failure and was

dropped. Years later Microsoft reused the name for its database software,

One of the benefits of Access from a programmer's perspective is its relative
compatibility with SQL (structured query language) —queries may be viewed and edited
as SQL statements, and SQL statements can be used directly in Macros and VBA
Modules to manipulate Access tables. In this case, "relatively compatible" means that
SQL for Access contains many quirks, and as a result, it has been dubbed "Bill's SQL" by
industry insiders. Users may mix and use both VBA and "Macros" for programming

forms and logic and offers object-oriented possibilities.

MSDE (Microsoft SQL Server Desktop Engine) 2000, a mini-version of MS SQL Server
2000, is included with the developer edition of Office XP and may be used with Access

as an alternative to the Jet Database Engine.

\
- AT '
Unlike a complete RDBMS, the Jet Engine lacks database triggers and stored procedures. |
Starting in MS Access 2000 (Jet 4.0), there is a syntax that allows creating queries with
parameters, in a way that looks like creating stored procedures, but these procedures are W1 |
limited to one statement per procedure.Microsoft Access does allow forms to contain
code that is triggered as changes are made to the underlying table (as long as the
modifications are done only with that form), and it is common to use pass-through
queries and other techniques in Access to run stored procedures in RDBMSs that support

these.

In ADP files (supported in MS Access 2000 and later), the database-related features are
entirely different, because this type of file connects to a MSDE or Microsoft SQL Server,
instead of using the Jet Engine. Thus, it supports the creation of nearly all objects in the
underlying server (tables with constraints and triggers, views, stored procedures and
UDF-s). However, only forms, reports, macros and modules are stored in the ADP file

(the other objects are stored in the back-end database).

e TABLES: A Table is a collection of data about a specific topic, such as products or

suppliers. Using a separate Table for each topic means that you store that data only once,

which makes your Database more efficient, and reduces data-entry errors.

¢ QUERIES: You use Queries to view, change, and analyze data in different ways. You can
also use them as the source of records for forms, reports, and Data Access Pages. The most
common type of Query is a Select Query. A Select Query retrieves data from one or more

Tables by using criteria you specify and then displays it in the order you want.

e REPORTS: A Report is an effective way to present your data in a printed format. Because
you have control over the size and appearance of everything on a Report, you can display
the information the way you want to see it. Most of the information in a Report comes from
an underlying Table, Query, or SQL statement, which is the source of the Report's data.

Other information in the Report is stored in the Report's design.

Y s

L —

.48 -

e DATA ACCESS PAGES : A Data Access Page is a special type of Web page designed
for viewing and working with data from an Internet or intranet — data that is stored in a
Microsoft Access Database or a Microsoft SQL Server database. The Data Access Page
may also include data from other sources, such as Microsoft Excel. Data Access Pages can

supplement the forms and reports that you use in your Database application.

e MODULES: A Module is a collection of Visual Basic for Applications declarations and

procedures that are stored together as a unit.

THE COMMA SEPERATED VALUE FILE

The comma-separated values (or CSV; also known as a comma-separated list or
Comma-Separated Variable) file format is a file type that stores tabular data. The

format dates back to the days of mainframe computing. For this reason, CSV files are

common on all computer platforms.

CSV is one implementation of a delimited text file, which uses a comma to separate

values. However CSV differs from other delimiter separated file formats in using a " '
(double quote) character around fields that contain reserved characters (such as commas
or newlines). Most other delimiter formats either use an escape character such as a

backslash, or have no support for reserved characters.

In computer science terms, this type of format is called a "flat file" because only one table
can be stored in a CSV file. Most systems use a series of tables to store their information,
which must be "flattened" into a single table, often with information repeated over

several rows, to create a delimited text file.

E
- 49.

Many informal documents exist that describe the CSV format. How To: The Comma
Separated Value (CSV) File Format provides an overview of the CSV format in the most

widely used applications and explains how it can best be used and supported.

The basic rules are as follows:

CSV is a delimited data format that has fields/columns separated by the comma character
and records/rows separated by newlines. Fields that contain a special character (comma,
newline, or double quote), must be enclosed in double quotes. However, if a line
contains a single entry which is the empty string, it may be enclosed in double quotes. If
a field's value contains a double quote character it is escaped by placing another double
quote character next to it. The CSV file format does not require a specific character

encoding, byte order, or line terminator format

31224,6,"vishal",6
31232,75,"saurabh",8
31233,82,"abhishek",4
31234, 78, "gopal",7
31235,87,"rajesh",4
312404,88,"arvind",8

31277,90,"RAJAT",8

- 50 -

The Plugin

A plugin (or plug-in) is a computer program that interacts with a main application to
provide a certain, usually very specific, function.

The main application provides services which the plugins can use, including a way for
plugins to register themselves with the main application and a protocol by which data is
exchanged with plugins. Plugins are dependent on these services provided by the main
application and do not usually work by themselves. Conversely, the main application is
independent of the plugins, making it possible for plugins to be added and updated

dynamically without changes to the main application.

An IVM Plugin is a small external program that [VM can run to process or obtain data
during a call. For example, if you are making a interactive voice response system to tell
the caller the current temperature, a plugin can be used to read from the hardware and
return the temperature to IVM. A plugin could also be used to restart the computer,

access a database, process credit card orders and much more.

The plugin our case is written to accept values that are entered through the telephone

keypad and corresponding to that value the percentage is retrieved.

The find data plugin Returns information from a simple database stored as a comma

delimited list. Can be used to return information to a caller based on what they dial in.

FINDDATA PLUGIN :

Finddatax searches and gets data from a comma7 delimited text file (or csv file).It can be
useful in many circumstances where you need to get data into an telephone IVR system.

Getdatax searches for the item "SearchltemColumnl" in column 1 of the comma

delimited list.

=51 %

[f it finds the item it returns with "[FoundReturnVariableName] = [FoundVariableValue]
& [ReturnVariableNameColumn2] = DatalnColumn2&[ReturnVariableNameColumn3]
= DatalnColumn3..".If it does not find the item it returns with
"[FoundReturnVariableName] = [NotFoundVariableValue]".Usually you can use
%[FoundReturnVariableName]% to determine the next OGM (depending on whether

matching data was found).

Usage:

finddatax.exe "DataFileFullPath.csv" SearchltemColumn!| [FoundReturnVariableName]
[FoundVariableValue] [NotFoundVariableValue] [ReturnVariableNameColumn2]
[ReturnVariableNameColumn3] [ReturnVariableNameColumn4]
where:

DataFileFullPath.csv is the full pathname of the file to be read, including the extension.
SearchltemColumn1 s the value to search for in column 1.

FoundReturnVariableName s the name of the variable to be returned, default is data.
FoundVariableValue is the value to be assigned to the FoundReturnVariableName if a
match is made, default is found. NotFoundVariableValue is the value to be assigned to
the FoundReturnVariableName if no match is made, default is not found.
ReturnVariableColumn2.... is the name of the variable to be returned with the relevant

column data,

PLUGIN CODE :

f#linclude <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <time.h>

i Format finddatax.exe DataFilePath.csv SearchltemColumn1

[FoundReturnVariableName]

S

-52.

//[FoundVariableValue] [NotFoundVariableValue] [ReturnVariableNameColumn2]
//[ReturnVariableNameColumn3) [ReturnVariableNameColumn4]
/I1** GetCommaDelString

void GetCommaDelString(const char* szInString, size_t& iidx, char* szOutString,

size_t maxstr)

|
{ |
size_t oidx = 0;
maxstr--;
while (1)
{
char ¢ = szInString[iidx];
if ((c==0)[| (c=="") | (c=="\n") || (¢ == "\r"))
{
if (c=="") iidx++;
szQutString|oidx] = 0; -
return; ;
} |
iidx++;
if (0idx < maxstr) szOutString[oidx++] = ¢;
}
}

/1 ** TrimString

void TrimString(char* szString)

{
size_t ist = 0;
while (szString[ist] =='"' || szString[ist] == 34) ist++;
if (ist)
{

55
int ost = ()
char c;
do {
¢ = szString[ist++];
szString|ost++] = ¢;
} while (¢);
}
size_t ien = strlen(szString);
while ((ien > 0) && (szString]ien - 1] ==""]| szString[ien - 1] == 34)) ien--;
szString[ien] = 0;
}

int main(int arge, char *argy(], char *||)

{

setvbuf(stdout, NULL, IONBF, 0);
const char* szDataVariable = ((arge > 3) ? argv[3] : "data");
const char* szFoundVariable = ((arge > 4) ? argv[4] : "found");

const char* szNotFoundVariable = ((arge > 5) ? argv|5] : "not found");

char szStatusValue[256];
strepy(szStatusValue,szNotFoundVariable);

if (arge > 2)
{
char szValue[256];
strepy(szValue, argv|2]);
TrimString(szValue);
FILE* fh;
int cntr=0;
time_t szSTime,szCTime;
while(!(fh = fopen(argv[1], "r'")) && entr<s)
{

if (fh)

.84 -

time(&szSTime);
time(&szCTime);
while(difftime(szCTime, szSTime)<1)
time(&szCTime);

cnir++;

while (Hfeof(th))
{
size_t idx =0;
char szLine[512];
if (fgets(szLine, 512, fh) == NULL) break;
char szCurrentValue{256];
GetCommaDelString(szLine, idx, szCurrentValue,
sizeof szCurrentValue);
TrimString(szCurrentValue);
if (stricmp(szCurrentValue, szValue) == 0)
{
strepy(szStatusValue,szFoundVariable);
fclose(fh);
printf("' %s=%s", szDataVariable,
szSt atusValue);
for(int i=6;i<arge;i++){
char szData|256];
GetCommaDelString(szLine, idx, szData,
sizeof szData);
TrimString(szData);
printf(" & %es=%s", argv[i], szData);
i

return (;

}
felose(fh);

else
printf("Error - File open failed\n");
h
printf(" %s="%s", szDataVariable, szStatusValue);

return I;

e

SBE -

RUNNING THE PLUGIN

A plugin is usually obtained as an exe file, the file path is then given by clicking the add

new exe tab

| s IV Plugin Process
| [] Skip to end of OGM immediately when finished running

Fig. 6: WINDOW FOR RUNNING THE PLUGIN

o The first argument to the plugin is the Path of the CSV file that is exported from
the MS ACCESS database.

e The second argument to the plugin is the variable into which the roll number

entered by the caller is cached.

e The third argument to the plugin is the variable into which the percentage

achieved by the student is retrieved.

o

| Run Exe File '

walMinddata exe

[——

| With Arguments
C“-pal‘sstudentm i . | 2 =

@ W o~ N o ke W N -
8

s
[
-

S ‘H' B} ip]

Fig. 7: WINDOW FOR SUPPLYING THE PARAMETERS

—

-58 - |

THE MODEM

In general we detected three primary types of telephone hardware for pes :

« Basic data modems
s Voice-data modems

» Telephony cards

These three types of interface cards provide a wide range of telephony service for

desktop workstations.

Basic data modems can support Assisted Telephony services (outbound dialing) and

usually are able to support only limited inbound catl handling,

Voice-data modems are a new breed of low-cost modems that provide additional
features that come close to that of the higher-priced telephony cards. These modems
usually are capable of supporting the Basic Telephony services and many of the '
Supplemental services. The key to success with voice-data modems is getting a pood \

service provider interface for your card. /

Finally, telephony cards offer the greatest level of service compatibility. Telephony i
cards usually support alt of the Basic Telephony and all of the Supplemental Telephony |
services, including phone device control. Most telephony cards also offer multiple lines
on a single card. This makes them ideal for supporting commercial-grade telephony

applications,

We also look at how modems work and how Win95 and WinNT use modem drivers to

communicate with hardware devices,

All TAPI services are routed through some type of modem. These modems also depend
on the Windows operating system to supply device drivers to communicate between
programs and the device itself. While a detailed discussion of device drivers is beyond
the scope of this book, it is a good idea to have a general understanding of how Windows

uses device drivers and how modems work. In this section you'll get a quick review of

i

-59.

modem theory and a short discussion of the Universal Modem Driver that ships with
Win95 and WinNT,
In This Project the modem we have vsed is Dlink- Model DEM-360 IS +++ which is

an internal PCI modem consisting of the CONEXANT CHIPSET “ HSFi CX 11252-
11", works well with IVM.

A QUICK REVIEW OF HOW MODEMS WORK

Before getting into the details of how the three types of telephony hardware differ, it is
important to do a quick review of how modems work. If you've seen all this before, you

can skip to the next section.

Sending computer data over voice-grade phone lines is a bit of a trick. All data stored
on a pe (documents, programs, graphics, sound and video files, and so on) is stored as
I's and Os-binary data. However, standard telephone lines are not capable of sending
binary data-onty sounds. That means that any information sent over the telephone line
has to be in the form of sound waves. In order to accomplish this feat, hardware was
invented to convert digital information into sound (that is, to modulate it), then back
again from sound into digital information (demodulate it). This process of modulating

and demodulating is how the device got its name: mo-dem (modulate-demodulate).

Sending data over phones lines involves three main steps. First, a connection must be
established between two modem devices over a telephone line. This is typically done by
having one modem place a telephone call to the other modem. If the second modem
answers the telephone call, the two modems go through a process of determining if they
understand each other called handshaking. If that is successful. then information can be
passed. In the second step, the digital information is modulated into sound and then sent
over the voice-grade telephone line 10 the second modem, In the last step, the modem at
the other end of the call converts (demodulates) the sound back into digital information

and presents it to the computer for processing (view the graphic, save the file, play the

video or audio, and so on).

- 60 -

THE UNIVERSAL MODEM DRIVERS AND TAPI SERVICE PROVIDERS

TAPI requires each workstation to have not just a TAPI-compliant application, but also a

Telephony Service Provider Interface (TSPI). This interface talks directly to the hardware
to convert your TAPI service requests into commands understood by the hardware. The
TSPI is usually supplied by the hardware vendor, but Microsoft Win95s ships with a ,
simple TSPI called the UniModem Driver (Universal Modem Driver). The UniModem ‘
driver is designed to support Assisted Telephony and some Basic Telephony. You can
build simple applications that allow users to place and recejve voice and data calls using

basic data modems and the UniModem driver that ships with Win95 and WinNT.

Microsoft has released a modem driver that supports additional voice features including
playing and recording audio files. This driver is called the UniModemV Driver
(Universal Modem for Voice). This driver supports the use of voice commands along
with recording and playing back voice files. It can also handle caller ID and some other

added service features. Exactly what the UniModemV driver can do is also dependent on

the hardware. The telephony hardware must recognize any advanced features and be able

e

to communicate them to the driver. |
Basic Data Modems

The most basic type of hardware that supports TAPI is the basic data modem. This type
of modem is designed to use analog phone lines to send digital data. Any computer that
can access online services (BBS, Internet, commercial information services, and so on)

has at least this level of modem hardware. You can get basic data modems with speeds of

14,400 to 56,000bps (bits per second). '

Almost all basic data modems recognize a common set of control codes. This set of
control codes is called the Hayes or AT command set. This set of controls was developed
by the makers of the Hayes modem, The first command in the set (AT) is the "attention"

command. This tells the device you are about to send control codes directly to the

-6 -

hardware. The command set is known by the original author's name ("Hayes") or by the

first command in the set ("A'T),

Basic data modems support Assisted Telephony services without any problem (that is,

placing outbound calls). Most basic modems are capable of supporting some of the Basic

Telephony services, including accepting inbound calls. However, if you want to perform

any of the more advanced TAPI services, such as playing or recording audio files, you'll

need more advanced hardware. Also, if you want to access advanced features available

for voice telephones such as caller ID, call hold, park, forward, and so on, you'll need

more than a basic data modem. Figure below shows the TAPI serviee levels and

telephony hardware classes. The highlighted arcas give you an idea of how basic data

modems do in supporting TAPI services.

If you are designing applications that allow users to select names or phone numbers and

then place outbound voice or data calls. basic modems will work just fine. In fact. unless

you are planning to add voice recording, playback, or other advanced tefephony [eatures

to your application, the basic modem will provide all your TAPI needs,

TR Sarace Lowsls Ve pdiony Har chaare Lavyeis

Yolicws
Dioyviny
Mrxiorm

Sugiplearental Teleghony

[S0:Tu] w1
Yedopheirvy

Eatereied] Tatapton i iarcg

Fig. 8: BASIC MODEM SUPPORT FOR TAPI SERVICES

.62 .
Data Modems with Voice

There is a new type of modem available that offers all the services of a data modem. but
also has added support for voice services. These modems are ofien called voice-data
modems (or data-voice modems). This hardware has additional programming built into
the chips that will support advanced telephone features such as caller 1D, call hold,
park, forward. and so on. Just as basic data modems use the Al command sel. the
voice-data modems use an extension ol'that set called the 47 1" command set (AT pluy

Voice).

AT+V modems cost a bit more than basic data modems, You can find them in the .S,

packaged with sound cards and other multimedia hardware.

Voice-data modems also require a TAPl-compliant modem driver in order to work with
TAPI services. This driver is usually supplied by the hardware vendor. Microsoft also
supplies a modem driver that supports voice services-the UniModemV driver. If your
modem does not ship with 2 TAPl-compliant driver, you might be able to install the

UniModemV driver to enable your voice features.

A word of caution is in order when purchasing a voice-data modem. There are several
modems on the market that offer voice, voice-mail, telephone answering, and other
TAPI-like services for pcs. The thing o keep in mind is that many of them are not
TAPl-compliant. While you may get a modem that can do all the things you want, it

may not do it using the TAPI calls and you many not be able to program it using TAP]

services.

As of the writing of this book, there are a handful of voice-data modem vendors that
have announced the release of TAPI-compliant hardware. Here is a list of some vendors

currently offering TA Pl-compliant voice-data modems:

» Compaq Presario Systems
* Creative Labs Phone Blaster

 Logicode 14.4 pcMCIA

_..;{‘..... -

- 63 -

+ Diamond Telecommander 2500
» Cirrus Logic

» Aztech Systems f

Voice-data modems with supporting TAPI drivers offer a wide range of access to TAPI |
E services. You can use voice-data modems to perform both outbound and inbound call
handling, play and record voice files. and (il the feature is available on the telephone
line) support caller 1D and other advanced services for single-line phones. Figure

belowshows how voice-data modems shape up in their support of TAPI services.

TAPI Sarwce Lavwls | edaptry Harowan: Lavels

Dachicai

Tetephory :
! Extanded! Tedaptyany ara g

Fig. 9: VOICE-DATA MODEM SUPPORT FOR TAPI SERVICES

Telephony Cards

|

‘i
The most advanced level of hardware you can get for TAPI services on a desktop peis a I
dedicated telephony card. This is a piece of hardware dedicated 1o handling telephone

services. Most telephony cards are designed to handle more than one line at a time, (0o,

- G4 -

if you are planning an application that must answer several phone lines or perform any

line transfers, and so on, you'll need a telephony card.

Most telephony cards are sold as part of a kit. You can get software development tools,
cards for the pe, cables, and documentation al! for one price. This price usually starts at
around $1000 U.S. and can easily ¢limb depending on the number of lines you wish to
support. Even though the price is a bit high, if you are doing any serious TAPI work,

you'll need this kind of equipment.

As with other telephony hardware, telephony cards need an accompanying TAPI driver
in order to recognize TAPI calls from your program. While most telephony card
vendors are working on TAPI drivers, not all of them supply one as of this writing. It is
important to check the specifications of the hardware and supporting materials before

you buy.

It is also important to point out that there are lots of very sophisticated hardware and
software tools for handling telephony scrvices that are not TAPI-based. [t is possible
that you will be able to find the right hardware and software to meet your needs without
using TAPI services at all. The only drawback is that you'll be using a proprictary
system that may (or may not) become obsolete in the future. If it is possible, it is a good
idea to use TAPl-compliant products since the power of Microsoft and the Windows

operating system is likely to support interfaces like TAPI for quite some time.

Telephony cards {along with TAPI drivers to match) offer the greatest access to TAPI
services. You can support all the Assisted TAPI and Basic TAPI functions along with
access to Supplemental TAPI services. Also, if the driver supports it, you will be able to
use Extended TAPI services to gain access to vendar-specific functions unique to the
installed hardware. Figure below shows how telephony cards support all levels of TAPL

services.

Fg——

B i

- 65 -

T AP Sarsce Lavale Tadaphcay Hardwarne Lavelg

Fig.10: TELEPHONE CARDS CAN SUPPORT ALL LEVELS OF TAPI SERVICES

To sum up we can say that

» Basic data modems support Assisted Telephony services (outbound dialing)
and can support only limited inbound call handling. Use this type of hardware if
you are building simple outbound dialing applications.

+ Voice-data modems are capable of supporting the Assisted Telephony and Basic
Telephony services and many of the Supplemental services. Use this type of
hardware if you want to provide both inbound and outbound services on a
single-line phone.

» Telephony cards support all of the Basic Telephony and all of the Supplemental
Telephony services, including phone device control. Most telephony cards also
offer multiple lines on a single card. This make them ideal for supporting

commercial-grade telephony applications.

y e—_

- 66 -
TELEPHONY APPLICATION PROGRAMMING INTERFACE (TAPI)

The Telephony Application Programming Interface (TAPI) is a Microsoft Windows
API, which provides computer telephony integration and enables PC's running Microsoft
Windows to use telephone services. Different versions of TAPI are available on different
versions of Windows. TAPI was introduced in 1993 as the result of joint development by
Microsoft and Intel. The first publicly available version of TAPI was version 1.3, which
was released as a patch on top of Microsolt Windows 3.1 Version 1.3 is no longer

supported, although some MSDN development library CDs still contain the files and

patches.

With Microsoft Windows 95, TAPI was integrated into the operating system. The first
version on Windows 95 was TAP! 1.4. TAPI 1.4 had support for 32-bit applications.

The TAPI standard supports both connections from individual computers and LAN

connections serving any number of computers.

TAPI 2.0 was introduced with Windows NT 4.0. Version 2.0 was the first version on the

Windows NT platform. [t made a significant step forward by supporting ACD and PRX-

specific functionality.

In 1997, Microsoft released TAP] version 2.1. This version of TAPI was available as a

downloadable update and was the first version to be supported on both the Microsoft
Windows 95 and Windows NT/2000 platforms.

TAPI 3.0 was released in 1999 together with Windows 2000. This version enables 1P
telephony (VoIP) by providing simple and generic methods for making connections
between two (using H.323) or more (using [P Multicast) computers and now also offers

the ébility to access any media streams involved in the connection.

Windows XP included both TAPI 3.1 and TAPI 2.2. TAPI 3.1 supports the Microsoft
Component Object Model and provides a set of COM objects to application

programmers. This version uses File Terminals which allow applications to record

-67-

streaming data to a file and play this recorded data back to a stream. A USB Phone TSP -

(Telephony Service Provider) was also included which allows an application to control a : ;

USB phone and use it as a streaming endpoint.

The T'elephony Server Application Programming Interface (['SAPI) is a similar standard

developed by Novell for NetWare servers. 1

TAPI is based on the principles of the Windows Open Services Architecture (WOSA).
TAPI provides some central services and holds some global state. Its main purpose,
however, is to provide connections between TAPI Service Providers (TSPs) and TAP!
applications. Applications are programmed using TAPL TSPs implement the Telephony
Service Provider Interface (TSPI) functions that are used by the TAPI implementation.
Each TSP then uses whatever interface is appropriate to control its telephony hardware,

Together, it looks like this:

Telephony Telephaony Telephony
Application Application Application
{PIM) (Fax) (Dialen)

TAPI /
TARI Implementation (TAPI32.DLL)
TSPI
Telephany Telephony Tetephony
Service service Service
Provider Provider Provider
(POTH) {ISDN) (Unirnadem)
——Proprieiary — WinlSHH——mH — AT Commands—
POTS ISDN Fax/Modem
Hardware Hardware Hardware

Fig.11 TAP1 ARCHITECTURE

-68-

This layered approach makes it possible for an application to be developed without
wortying about the specific hardware provided on a particular machine. Any telephony
hardware vendor can then implement the appropriate parts of the TSP1 without worrying
about what telephony applications have been installed. This separation gives both
applications and hardware independence from each other. Applications and hardware can

come and go without directly affecting one another.
The WOSA model is used to achieve the goals of the TAPI, which are:

1. Call control focused.
Access to data via existing standard APls.
. Network independence.

2

3

4, Connection model independence.

5. Platform independence where possible.
6

. Sharing of lines between multiple applications.

TAPI 2.x vs TAPI 3.x

It is a common misconception that TAPT 3.0 (or TAPI 3.1) replaces TAPI 2.x. TAPI 2.x
(and all earlier versions) is written in C/C++ and requires applications to make heavy usc
of C style pointer arithmetic. This makes TAPI fast and easy to access from C/CH
applications, but it also makes it difficult to use from many other programming

languages.

On the other hand, TAPI 3.x was designed with a COM (Component Object Model)
interface. This was done with the intent of making it accessible from managed languages
like Visual Basic, VB Scriptcode, Java or other environments that provide easy access 10

COM but don't deal with C-style pointers.

TAPI 3.x has a slightly different set of functionality than TAPI 2.x. The addition of
integrated media control was the most significant addition. But TAP! 3.x doesn't include

all functionality that TAPI 2.x does, like support for the Phone class.

- 69 - ‘

One very notable issue with TAPI 3.x is the lack of support for managed code (NET
environment). As documented in Microsoft KB Article 841712, Microsoft currently has

na plans to support TAPI 3.x directly from .Net programming languages.

One often overlooked reason an application developer might choose between TAPI 2.x |
and TAPI 3.x should be the hardware vendors recommendation. Even though TAPI '
provides an abstract model of phone lines, telephony applications are still heavily
impacted by the specific behavior of the underlying hardware. Troubleshooting behavior
issues usually requires both software and hardware vendors to collaborate. Because there

18 almost a 1:1 relationship between the TAPI Service Provider (TSP) interface and the

TAPI 2.x interface, collaboration is often easier if the application is designed using TAPI

2.x. Experience with TAPI 3.x varies significantly between hardware vendors

TAPI COMPLIANT HARDWARE

Telephony hardware that supports TAPL includes most voice modems and some

telephony cards such as Dialogic boards.

n a1 e o MR - R L

DATA FLOW DIAGRAMS

FIRST LEVEL DATA FLOW DIAGRAM

’ RESULE DA TA STORLE

IVRS

CALLER

Fig. 12: FIRST LEVEL DFD

-70 -

71 -

SECOND LEVEL DATA FLOW DIAGRAM

——

ANISTRATOR

;

MINISTRATOR

g VIR
DATABASL e

RESUE T DATA STORY

e F ¥

FEDA T TATIASL

PLUGIN

COLLECT
» IYIMIEROLL,

NUMDBER

4

CALLER

Fig.13 : LEVEL SECOND DATA FLOW DIAGRAM

START

(

270

CALL NUMBER

LINE
AVAILABILITY

NOT CONFIRMED

GREET CALLLER

y

PROMPT TO ENTER
ROLL NUMBER
AND WARN NOT
TO ENTER WRONG
ROLL NUMBER

v

ENTER
ROLL NUMBER

Y

REPEAT ENTERED
ROLL NUMBER
AND ASK TO
CONFIRM

|

CONFIRM

CALL AGAIN

BUSY

> AVAILABLE

CONFIRMED

@

=73 -

T

ASK THE CALLER TO
WAIT WHILE THE
RESULT RETRIEVAL
IS CONFIRMED

—

RUN PLUG!IN

NOT FOUND

READ QuUT READ OUT ZERO
CORRESPONDING PERCENTAGE’
PERCENTAGE
y
MAKE THE CALLER

AWARE IF ZERQ
PERCENTAGE IS
READ QUT

GREET CALLER

EXIT

N

Fig. 14: FLOWCHART

-4 .

CHALLENGES AND DRAWBACKS

The biggest challenge has been gathering the desired hardware ie the appropriate

Voice modem that is TAPI compliant. The issues related to finding such a
modem are that IVM uses the TAPI (Telephony Application Interface) standard
to connect to a wide range of telephony hardware devices (including voice
modems or professional telephony voice cards). Often when 1VM does not work,
it is because the hardware is not TAPI compliant or because there is some

problem with the drivers or driver installation

The sécond biggest challenge for us has been directly coding with the modem to
detect the DTMF tone manually. The problem with this approach is that we need
to write a separate TAPI driver that uses MS ActiveX controls and for this we will
have to develop a separate library in VB.net. As this at present level is out of our

scope so it was a challenge for us and a future enhancement.

The drawback that we have faced is that every time we need to convert the

database into CSV file as it cannot be done automatically, the plugin only works
with the CSV file.

- 75 -

ENHANCEMENTS
1. Using voice recognition replacing the use of touch tone keypad to enter the
commands to IVRS system.

2. The use of multiple languages make the [VR System a truly information system for
one and all.

3. Using Dialogic cards for high quality audio and good DTMF tone detection,

4. Create an inbuilt module to detect the DTMF tones

-76 -

INLLSAL ANV AITATY

HOM INAWND0A TYNIA

ITNA0N WA DNINNIY

NIITd INIINAWA TN

NIITd INILTM

e ——

INTWAdOTIAIQ ANAINON ANV

ONITHOM NIDOTd AGNLS

ONIIHIVS INIWTHINO T

M .

SISATYNY INAWTHINOTH

AJ3H) S§T0Ud

e

SISATVNY INAINOD

INRIIHIV) TIVAMIVH

vmmﬁwMNﬂQMﬂﬁﬁmwﬂ_ﬂMNHzo:ﬁEm
AVH W WH @ | N qVL

GANTT CHART

Fig. 15:

-77-
CONCLUSION

In the end we can conclude that the project has been successfully executed
and most of the targets that were set in the beginning of the project were
accomplished on time. The Gantt Chart shows the progress of the project

and tasks accomplished from the beginning till the end.

BIBLIOGRAPHY

1. www.voiceguide.com
2. www.nch.com

3. www.google.com
4, Books:

- Object Oriented Programming in C++ by Robert Lafore.

- Letus C by Yashwant Kanitkar.

- Introduction to C programming by Dietal and Dietal,

- Black book for VB.NET.

- Mastering VB.NET

Professional VB.NET, 2nd Edition by Fred Barwell

Database Programming With VB.NET

Visual Basic Design Patterns VB 6.0 and VB.NET by James W. Cooper.

1

Visual Basic NET Programming by Harold Davis

-8 .

