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ABSTRACT

This project takes an analytical and practical approach towards constructing
and implementing Finite Impulse Response (FIR) filters designs on a ADSP-
2181 system. We have found that EZ-KIT LITE that interfaces with
‘-COmputer and EZ-ICE emulator are useful for DSP applications Such as

' Speech, data, image and signals.

This project also deals with some of the techniques used to design FIR
filters. Different optimization techniques involved in FIR filter design are
also covered for FIR filter design. These optimization techniques reduce the

error caused by frequency sampling technique at the non-sampled frequency

points




| Introduction;

A filter is a linear frequency selective circuit, which attenuates certain frequencies and
amplifies certain others. An ideal (low pass) filter with so- called “brick wail”
characteristic has frequency domain characteristics. The primary performance crlterxon of
a filter is its frequency domain magnitude response (henceforth called, magmtude

response). A second set of performance criteria are expressed in time domain

characteristics.

Digital Signal Processmg (DSP) functionality is difficult to implement in an all-analog
system. Furthermore it provides a medium of design that 1s highly modifiable and
customizable. Adding a DSP component to an ali analog system allows the designer to
rapidly prototype, test and implement many new and powerful algorithms. Also, once the
DSP infrastructure has beenr installed further revisions can be implemented at a pace

much quicker than in all- analog And ADSP-2181 is one of the mosi powerful DSP

processors which we here are going to use.




CHAPTER-1

F iiters |

1.1 What do we mean by filters:-

Filters are implemented by combining signals with their delayed copies, in different ways.
Two basic families of filters exist: |

( l)rFilters that use delayed copiés of their input, called feed forward or finite impulse
response (FIR). |

(2) Filters that use delayed outputs, called feedback or infinite impulse response (IIR).

. They can also include feed forward elements. Resonators and Butterworth filters are IIRs.

' In some digital filters, delays will be as small as 1 sample. The order of the filter is
determined by the order of the delay used. If a filter uses a max of 2-sample delays, it is
classed as 2nd order. .

Filters are defined by their equations. These will show:
(a) The delays used 1n the filter.
(b) The coefficients (gain multipliers) associated with cach délay.
- Example: | '
y(n) = ax(n) + alx(n-2) - bly(n-1) - b2y(n-2)
n is the current sample of a signal; y(n) is the output and x(n) the input. al is the

" coefficient associated with a 2-sample, delay of .the input and bl / b2 are the coefficients
associated with 1- and 2-sample delays of the filter output.

The frequency response'is how a filter alters an input signal, in terms of its amplitude and
phase at different frequencies. ‘The amplitude response is the part of the frequency
response that has to do with boosting or attenuating the different input fréquengies.

The phase response determines the timing delays imposed on different frequenciés. It can
be linear (the same phase change at all frequencies) _of non-linear. From the filter ecjuation
(and coefficients) we can determine the frequency response, and vice-versa.

One of the simplest filters we can describe is the 1st order feed forward (FIR) averaging

filter:

10




y(x) = (x(n) + x(n-1))*0.5
As we can see from the filtér equation, all it does is to take the average between the
current sample and the previous sample and output it. This filter will exhibit a low-pass

amplitude response and have a linear phase delay of ¥4 samples. Its amplitude and phase

response are characterized as:

Atfieq) = cost T fireqisiy
G fireq) = -z » fieg /s _
| FIR filters can be designed to have linear phase

response (as in the case above), whereas IIR filters will always exhibit non-linear phase
responses. In summary:
IIR filters are generally simple to implement, but complex to design. One way round this
is that they are generally offered in “pre-packed” formats, ic. Resonators, Butterworth,
elliptical, etc. Their cﬁtoff frequencies and bandwidths can be made time-varying, which

is an important characteristic for musical applications.

- FIR filters are simpler to design and can offer linear-phase characteristics, so they are
often preferred by engineers. Implementing them is also easy, but depending on the order

of the filter, they can be computationally intensive and are not time-varying.

1.2 Why filters? . |
* The amplitude response (pldtted in terms of amplitude vs. frequency)
* The phase response (plotted in terms of phase vs. frequency)
What does phase response mean? _
» Linear phase (i.e. constant time delay)
*  Minimum phase (all pole filter)
+ Non-minimum-phase (poles and zeros) Linear phase is an
important subset of this class that has all zeros, _
We are talking about single filters here, not filter banks. That,is another subject, and one

that places more constraints on individual filters
There are other tradeoffs possible:

TIR filters can have;
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Pass band ripple only

Stop band ripple only

Neither pass band nor stop band ripple (monotonic response)
Both pass band and stop band ripple

FIR filters as usually dcsigned can have:

Ratio of pass band ripple to stop band ripple controlled via. design parameters.
The filter response is not defined in a “transition” band.

There are other FIR types possible; they are not that common in most present-
day uses.

The Cutoff Frequency:

The boundary line in question is somewhat arbitrary, because there is no clear frequency

such that all signals above it are passed intact, while ail signals below that frequency are

entirely blocked. Rather, there will be a "transition zone," or range of frequencies, over

which the inputs signal, will be partially transmitted to the output.

Nevertheless, we must select some specific frequency such that we can say (for the high-
Pass filter) that all signals above this frequency will be passed without appreciable loss,
.whilc all signals below this- frequency will be blocked to a significant extent. This

- frequency will be designated as the cutoff frequency (often designated fco) for our ﬁlter.

We have already noted that for very high frequencies there will be no appreciable voltage
drop across the capacitor, while for very low frequencies there will ‘be no appreciable
voltage drop across the resistor. The transition zone, then, must be in between these
extremes, where some‘ of the signal voltage will be dropped across cach of the
components. And the loglcal place to start is to set the cutoff frequency at the point where
the voltage drops across the two components are the same. The cutoff frequency is also
the frequency at which half of the power in the input signal ig absorbed by the filter, and
only the other half makes it to the output. Therefore, it is sometimes known as the half
.po'wer frequency, although that designation is no loflger used as much as it was in the

past.
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1.2 Filter Classification:
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Filter classification. Filters can be divided by their use, and how they are implemented

Above table summarizes how digital filters are classified by their use and by their
implementation. The use of a digital filter can be broken into three categories: time
domain, frequency domain and custom. As previously described, time domain filters are

used when the information is encoded in the shape of the signal's waveform.

Time domain filtering is used for such actions as: smoqthing, DC removal, waveform
shaping, etc. In contrast, frequency domain filters are used when the information is
contained in the amplitude, frequency, and phase of the component sinusoids. The goal of
these filters is to separate one band of frequencies from another. Custom filters are used
when a special action is required by‘ the filter, something more elaborate than the four

basic responses (high-pass, low-pass, band-pass and band-reject).

*
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* Designing a band-reject filter . As shown in (a), a band-reject filter is formed by the parallel
combination of a low-pass filter and a high-pass filter with their outputs added. Figure (b)
shows this reduced to a single stage, with the filter kernel found by adding the low-pass and
high-pass filter kernels.

Digital filters can be implemented in two ways, by convolution (also called finite
impulse response or FIR) and by recursion (also called infinite impulse response or IIR).
Filters carried out by convolufion can have far better performance than filters using

recursion, but execute much more slowly.

1.4 Analog vs. DiQital Filters:

Most digital signals originate in analog electronics. If the signal needs to be filtered, is it
better to use an analog filter before digitization, or a digital filter after? We will answer

this question by letting two of the best contenders deliver their blows.

-
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Comparison of analog and digital filters . Digital filters have better performance in many
areas, such as: pass band ripple, (a) vs. (b), roll-off and stop band attenuation, (c) vs. (d),
and step response symmetry, (e) vs. (f). The digital filter in this example has a cutoff
frequency of 0.1 of the 10 kHz sampling rate. This provides a fair comparison to the 1 kHz
cutoff frequency of the analog filter. ' '

4

~The goal will be to provide a low-pass filter at 1 kHz. F ighting for the analog side is a six

pole Chebyshev filter with 0.5 dB (6%) ripple.. This can be constructed with 3 op amps,
12 resistors, and 6 capacitors. In the digital corner, the windowed-sinc is warming up and
ready to fight. The analog signal is digitized at a 10 kfIz sampling rate, making the cutoff
frequency 0.1 on the digital frequency scale. The length of the windowed-sinc will be
chosen to be 129 points, providing the same 90% to 10% roll-off as the analog ﬁltel_r. Fair

is fair. Let's compare the two filters blow-by-blow. As shown in ﬁgure (a) and (b), the
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analég filter has a 6% ripple in the pass band, while the digital filter is perfectly flat
(within 0.02%). The analog designer might argue that the ripple can be selected in the
design; however, this misses the point. The flatness achievable with analog filters is
limited by the accuracy of their resistors and Most digital signals originate in analog
electronics. The goal will be to provide a low-pass filter at 1 kHz. Fighting for the analog
side is a six pole Chebyshev filter with 0.5 dB (6%) ripple. In the digital corner, the
windowed-sinc is warming up and ready to fight. The analog signal is digitized at a 10
kHz sampling rate, making the cutoff frequency 0.1 on the digital frequency scale. The
length of the windowed-sinc will be chosen to be 129 points, providing the same 90% to
' 10% roll-off as the analog filter.

Let's -compare the two filters blow-by-blow. As shown in (a) and (b), the analog filter has
a 6% ripple in the pass band, while the digital filter is perfectly flat (within 0.02%). The
analog designer might argue that the ripple can be selected in the design; however, this
misses the point. The flatness achievable with analog filters is limited by the accuracy of -
their resistors and Even if a Butterworth response is designed (i.e., 0% ripple), filters of
this complexity will have a residue ripple of, perhaps, 1%. On the other hand, the flatness
of digital filters is primarily limited by round-off error, making them hundreds of times
} flatter than their analog countérparts. Score on.e point for the digital filter.

Next, now take a look at the frequency response on a log scale, as shown in (¢) and (d).
~Again, the digital filter is clearly the victor in both roll-off and stop band attenuation.
Even if the analog performance is improved by adding additional stages, it still can't
compare to the digital filter. For instance, imagine that you need to improve these two
parameters by a factor of 100. This can be done with simple modifications to the
windowed-sinc, but is virtually impossible for the analog circuit. Score two more for the
digital filter. The step response of the two filters is shown in (e) and (f). The digital filter's
step response is syrrimetrical between the lower and upper portions of the step, i.e., it has
a linear phase. The analog filter's step response is not symmetfical, i.e., it has a nonlinear
phase. One more point for the digital filter. Lastly, the analog filter overshoots about 20%

on one side of the step. The digital filter overshoots about 10%, but on both sides of the

step. Since both are bad, no points are awarded.

In spite of this beating, there are still many applications where analog filters should, or

must, be used. This is not related to the actual performance of the filter (i.e., what goes in

and 'what comes out), but to the general advantages that analog circuits have over digital
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techniques. The first advantage 1s speed: digital is slow; analog is fast. Even simple op

- amps can operate at 100 kHz to 1 MHz, 10 to 100 times as fast as the digital system! .

The second inherent advantage olf analog over digital is dynamic range. This comes in

two flavors. Amplitude dynamic range Is the ratio between the largest signal that can be |
passed through a system, and the inherent ncuse of the system For instance, a 12 bit ADC
has a saturation level of 4095, and an rms quantization noise of 0.29 digital numbers for
a dynamic range of about 14000. In comparison, a standard op amp has a saturation
voltage of about 20 volts and an internal noise of about 2 microvolts, for a dynamic range

of about ten million. Just as before, a simple op amp devastates the digital System.

The other flavor is frequency dynamic range. For example, it is easy to design an op amp
‘ cxrcu1t to simultancously handle frequencies between 0.0] Hz and 100 kHz (seven
decades). When this is tried with-a digital system, the computer becomes swamped with
data. For 1nstance sampling at 200 kHz it takes 20 million points to capture one.
complete cycle at 0.01 Hz. we may have noticed that the frequency response of digital
filters is almost always plotted on a linear frequency scale, while analog filters are usually
displayed with a logarithmic frequency. This is because digital filters need a llneal scale

to show their ‘exceptional filter performance, while analog filters need the logarithmic

scale to show their huge dynatnic range.




CHAPTER-2

DIGITAL FILTERS

2.1 Introduction to Digital filters:

Digital filters are used for two general purposes: (1) separation of signals that have been
combined, and (2) restoration of signals that have been distorted in some way. Analog
(electronic) filters can be used for these same tasks; however, digital filters can achieve

far superior results.

Digital filters are a very important part of DSP. In fact, their extraordinary performance is
one of the key reasons that DSP has become so popular. As mentioned in the
1ntroduct10n filters have two uses: signal separation and signal restoration. Slgnal
separation is needed when a signal has been contaminated with interference, noise, or
other signals. For example, imagine a device for measuring the electrical activity of a
baby's heart while still in the womb. The raw signal will likely be corrupted by the
breathing and heartbeat of the mother. A filter might be used to separate these signal.s S0
that they can be individually analyzed Signal restoration is used when a signal has been
distorted in some way. For example an audio recording made with poor equipment may
be filtered to better represent the sound as it actually occurred, Another example is the

deblurring of an image acquired with an improperly focused lens, or a shaky camera.

These problems can be attacked with either analog or digital filters. Analog filters are
'cheap, fast, and have ;21‘ large dyna.mic range in both amplitude and frequency. Digital
filters, in compérison are vastly -superior in the level of performance that can be
achieved. The entire transition occurs within only 1 hertz. It can’t be expected from an op
amp circuit. Digital filters can achieve thousands of times better performance than analog
filters. This makes a dramatic difference in how ﬁ]termg problems are approached. With
analog filters, the eémphasis is on handling limitations of the electronics, such as the

accuracy and stability of the resistors and capacitors. In comparison, digital filters are so




good that the performance of the filter is frequently ignored. The emphasis shifts to the
limitations of the signals, and the theoretical issues regarding their processing, _ '

[t is common in DSP to say that a filter's input and output signals are in the time domain.
This is because signals are usually created by sampling at regular intervals of time. But
this is not the only way sampling can take place. The second most common way of
sampling is at equal intervals in space. Many other domains are possible; however, time

and space are by far the most common. When we see the term time domain in DSP, we

‘remember that it may actually refer to samples taken over time, or it may be a general

reference to any domain that the samples are taken in.

Every linear filter has an impulse response, a step response and a frequency response.
Each of these responses contains complete information about the filter, but in a different
form. If one of the three is specified, the other two are fixed and can be directly
calculated. All three of these representations are important, because they describe how the
filter will react under different circumstances. The most straightforward way to
implement a digital filter is by convolving the 1nput 51gnal with the digital filter's impulse
response. All possible linear filters can be made in this manner. When the impulse

response is used in this way, filter designers give it a special name: the filter kernel.

There is also another way to make digital filters, called recursion. When a filter is

implemented by convolution, each sample in the output is calculated by weighting the
samples in the input, and adding them together. Recursive filters are an extension of this,
using prev10usly calculated values-from the output, besides points from the input. Instead
of using a filter kernel, recursive filters are defined by a set of recursion coefficients. For
now, the important point is that all linear filters have an impulse response, even if we
don't use it to imﬁlement the filter. The impulse responses of recursive filters are
composed of sinusoids that exponentially decay in amplitude. In principle, this makes
their impulse responses: mﬁmtely long. However, the amphtude eventually drops below
the round-off noise of the system, and the remaining samples can be ignored. Because of

this characteristic, recursive filters are also called Infinite Impulse Response or IR filters.

“In comparison, filters carried out by convolution are called Finite Impulse Response or

FIR filters. _ .
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response is the integral of the impulse response. This provides two ways to find the step
response: (1) feed a step waveform into the filter and see what comes out, or (2) i;ltegrafc
the impulse response. (To be mathematically correct: integration is used with continuous
signals, while discrete integration, i.e., a running sum, is used with discrete signals). The
frequency response can be found by taking the DFT (using the FFT algorithm) of the
impulse response. The frequency response can be plotted on a linear vertical axis, such as
in (c), or on a logarithmic scale (decibels), as shown in (d). The linear scale is best at

showing the pass band ripple and roll-off, while the decibel scale is needed to show the

stop band attenuation. eSO
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- The most important part of any DSP task understands how information is contained in the

signals we are working with. There are many ways that information can be contained in a
signal. This is especially true if the signal is manmade. For instance, consider all of the
modulation schemes that have been devised: AM, FM, single-sideband, pulse-code
modulation, pulse-width modulation, etc. The list goes on and on, Fortunately, there are
only two ways that are common for information to be represented in naturally occurring
signals. We will call these: information represented in the time domain, and information
represented in the frequency domain. Information represented in the time domain
describes when something occurs and what the amplitude of the occurrence is. Each

sample contains information that is interpretable without reference to any other sample.

Even if we have only one sample from this signal, we still know something about what

we are measuring. This is the simplest way for information to be contained in a signal.

In contrast, information represerited in the frequency domain is more indirect. Many
things in our universe show periodic motion. For example, a wine glass struck with a
fingernail will vibrate, producing a ringing sound; the pendulum of a grandfather clock
swings back and forth; stars and planets rotate on their axis and revolve around each
other, and so forth‘ By measuring the frequency, phjlse, and amplitude of this periodic
motion, information can often be obtained about the system producing the motion.
Suppose we sample the sound produced by the ringing wine glass. The fundamental

frequency and harmonics of the periodic vibration relate to the mass and elasticity of the

material. A single sample, in itself, contains no information about the periodic motion,
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and therefore no information about the wine glass. The information is contained in the

relationship between many po'ints in the signal.

This brings us to the importance of the step and frequency responses. The step response
describes how information represented in the time domain is being modified by the
“system. In contrast, the frequency response shows how information represented in the
frequency domain is being changed. This distinction is absolutely critical in filter design
because it is not possible to optimize a filter for both applications. Good perfoi‘m&nce in

the time domain results in poor performance in the frequency domain, and vice versa.

2.3 Domain parameters
2.3.1 Time Domain Parameters:
It may not be obvious why the step response is of such concern in time domain filters. We

may be wondering why the impulse response isn't the important parameter. The answer

lies in the way that the human mind understands and processes information. Remember

-that the step, impulse and frequency responses all contain identical information, just in

different arrangements. The step response is useful in time domain analysis because it
matches ﬂle way humans view the information contained in the signals. Some of the
regions may be smooth; others may have large amplitude peaks; others may be noisy.
This segmentation is accom};lishéd by identifying the points that separate the regions.
This is where the step function comes in. The step function is the purest way of
representing a division between two dissimilar regions. It can mark when an event starts,
or when an event ends. It tells that whatever is on the left is somehow different from
whatever is on the right. This is how the human mind views time domain information: a
group of step functions dividing the information into regions of similar characteristics.

The step response, in tfn‘n, is important because it describes how the dividing lines are
'being modified by the filter. The step response parameters thatl are important in filter
design are shown in Fig.. To distinguish events in a sign.’ill, the duration of the step
response must be shorter than the.spacing of the events. This dictates that the step
response should be as fast (the DSP jargon) as possible. This is shown in Figs. (a) & (b).
The most common way to specify the rise time is to quote the number of samples between

the 10% and 90% amplitude levels. There are many reasons, noise reduction, inherent

limitations of the data acquisition system, avoiding aliasing, etc.
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Parameters for evaluating time domain performance. The step response is used to measure
how well a filter performs in the time domain. Three parameters are important: (1)
transition speed (rise time), shown in (a) and (b), (2) overshoot, shown in (c) and (d), and (3)
phase linearity (symmetry between the top and bottom halves of the step), shown in (e) and

(.
. Figures (c) and (d) sths the next parameter that is important: overshoot in the step -
response. Overshoot must generally be eliminated because it changes the amplitude of

samples in the signal; this is a basic distortion of the information contained in the time

domain. This can be summed up in one question:
Finally, it is often desired that the upper half of the step response be symmetrical with the
lower half, as illustrated in (e) and (f). This symmetry is needed to make the rising edges

? look the same as the falling edges. This symmetry is called linear phase, because the

frequency response has a phase that is a straight line.




'2.3.2 Frequency Domain Parameters:

Figure below shows the four basic frequency responses. The purpose of these filters is tvo
allow some frequencies to pass unaltered, while completely blocking other frequencies.
The pass band refers to those frequencies that are passed, while the stop band contains
those frequencies that are blocked. The transition band is betwéen. A fast roll-off means
that the transition band is very narrow. The division between the péss band and transition
band is called the cutoff frequency. In analog filter design, the cutoff frequency is usually

defined to be where the amplitude is reduced to 0.707 (i.e., -3dB).

a. Low: puss . Band puiss

1 y
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The four common frequency responses. Frequency domain filters are generally used to pass
certain frequencies (the pass band), while blocking others (the stop band). Four responses
are the most common: low-pass, high-pass, band-pass, and band-reject.

‘Digital filters are less étandardized, and it is common to see 99%, 90%, 70.7%, and 50%
amplitude levels defined to be the cutoff frequency. Figure shows three parameters that
measure how well a filter performs in the frequency domain. To separate closely spaced
freqﬁencies, thé filter must have a fast roll-off, as illustrated in (a) and (b). For the pass
band frequencies to move through the filter unaltered, there must be no pass band ripple,

“as shown in (c) and (d). Lastly, to adequately block the stop band frequencies, it is

necessary to have good stop band attenuation, displayed in (e) and (f).

2.4 High-Pass, Band-Pass and Band-Reject Filters

High-pass, band-pass and band-reject filters are designed by starting with a low-pass

filter, and then converting it into the desired response. For this reason, most discussions
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on filter design only give examples of low-pass filters. There are two methods for the

low-pass to high-pass conversion: spectral inversion and spectral reversal.

oo bli2di-pnes s e Live piass

addiing pasid i slives j

hin]
x| —— -+ y[n]
! In] '

AL jriss

P liph-piess High pass

in i single siagd

x[n) ——s 0 - hin]  f—— v[n]

- Block diagram of spectral inversion. In (a), the input signal, , is applied to two x[n] systems in
. parailel, having impulse responses of and . As shown in h|n} *[n] (b), the combined system has an
impulse response of . This means that *[n]& h[n] the frequency response of the combined system is
the inversion of the frequency response of . h|n]

Figure (aj shows a low pass filter kernel called a windowed-sinc. This filter kernel is 51
points in length, althdugh many of samples have a value so small that they appear to be
zero in this graph. The corr;asponding frequency response is shown in (b), found by
adding 13 zeros to the filter kernel and taking a 64 point FFT. Two things must be done to

change the low-pass filter kernel into a high-pass filter kernel. First, change the sign of

each sample in the filter kernel. Second, add one to the sample at the center of symmetry.
This results in the high-pass filter kernel shown in (é), with the frequency response shown
in (d). Spectral inversion flips the frequency response top-for-bottom, changing the pass
bands into stop bands,'énd the stop bands into pass bands. In other words, it chaﬁges a

filter from low-pass to high—pe;ss, high-pass to low-pass, band-pass to band-reject, or

band-reject to band-pass.
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Example of spectral reversal . The low-pass filter kernel in (a) has the frequency response shown in

- (b). A high-pass filter kernel, (c), is formed by changing the sign of every other sample in (a). This
action in the time domain results in the frequency domain being flipped left-for-right, resultmg in the
high-pass frequency response shown in (d)

Figure shows yvhy this two step modiﬁdation to the time domain results in an inverted
{requency spéctmm. In (a), tﬂe input signal, , is applied to x[n] two systems in parallel.
One of these systems is a low-pass filter, with an impulse response given by . The other
system does nothing to the signal, h[n] and therefore has an impulse response that is a
delta function, . The *[n] overall output, is equal to the output of the all-pass system
minus the y[n] output of the low-pass system. Since the low frequency components are
subtracted from the ofiginal Signal, only the high frequency components appear in the
output. Thus, a high-pass filter is formed. This could be performed as a two step operation
_in a computer program: run the signal through a low-pass ﬁltér and then subtract the
filtered signal from the original. However, the entire operatlon can be performed in a
signal stage by combining the two filter kernels. As descrlbed parallel systems with added
outputs can be combined into a single stage by adding their impulse responses. As shown

in (b), the filter kernel for the high pass filter is given by: That is, change the sign of all

the samples, *[n] & h[n] and then add one to_the sample at the center of symmetry.
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The second method for low-pass to high-f)ass conversion, spectral reversal, is illustrated
in Fig. Just as before, the low-pass filter kernel in (a) corresponds to the frequency A
response in (b). The high-pass filter kernel, (c), is formed by changing the sign of every
other sample in (a). As shown in (d), this flips the frequency domain left-for-right: 0
becomes 0.5 and 0.5 becomes 0. The cutoff frequency of the example low-pass filter is

0.15, resulting in the cutoff frequency of the high-pass filter being 0.35

. Dnteirt v s Loy piss Fhoh pass

L‘il\a.’....hl]g_' AU 1

X[n] ——)- hyn] hy[n} p—= vy[n]

Ll prass

L PR TR
i siiele stage

X[n] ————f hyin] % hyin] F——= y|n]

" Designing a band-pass filter. As shown in {a), a band-pass filter can be formed by cascading a low-

pass filter and a high-pass filter. This can be reduced to a single stage, shown in (b). The filter kernel
of the single stage is equal te the convolution of the low-pass and high pass filter kernels.

Changing the s‘ign of every other sample is equivalent to multiplying the filter kernel by a
sinusoid with a frequency of 05 As discussed in Chapter 10, this has the effect of
shifting the frequency ‘domain by 0.5. Look at (b) and imagine the negative frequeﬁcies
between -0.5 and 0 thaf- are of mirror image of the frequencies between 0 and 0;5. The
frequencies-thét appear in (d) are the negative frequencies from (b) shifted by 0.5. Lastly,
above figure show how low-pas_s and high-pass filter kernels can be combined to form

band-pass and band-reject filters. In short, adding the filter ketnels produces a band-reject

filter, while convolving the filter kernels produces a band-pass filter. These are based on

the way cascaded and parallel systems are be combined. Multiple combinations of these

' ,fechniques can also be used. For'inst'anc.e, a band-pass filter can be designed by adding

the two filter kernels to form a stop-pass filter, and then use spectral inversion or spectral

revetsal as previously described. All these techniques work Véry well with few surprises.
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CHAPTER-3

DESIGNING FILTER

3.1 How to design filters
3.1.1 Different classes and equations:
Two important classes of filters based on impulse response type:

Finite Impulse Response (FIR)
Infinite Impulse Response (IIR)

Expressing filter functions:

M
- System function representation, . Z bz

Difference Equation representation:-
N M
D ayn=k)=3 bx(n-k) (2
k=0 k=0

»  Each of this form allows various methods of implementations.
* The eq (2) can be viewed as a computational procedure (an algorithm) for
determining the output sequence y(n) of the system from the input sequence x(n)

* Different realizations possible with different arrangements of eq (2)

3.1.2 Filter Design Issues:
+  Realizable
« Stable .
»  Sharp Cutoff Characteristics
¢  Minimum order

¢ Generalized procedure

* Linear phase characteristics




Issues considered for filter implementation:
Simple design "
; Structured ness — modularity
Generalization of design — any filter type
| Cost of implementation
Software/hardware realization
11 R |
* Out put is a function of past o/p, present and past i/p’s
* Recursive nature
* Poles and zeros
*  Sharp cutoff achievable with min order
*  Difficult to have linear phase over full range of freq.

*  Design procedure; analog design — conversion from analog to digital

* Inherently Stable

* Linear phase characteristics possible
? *  Simple implementation - both recursive and non recursive structures possible
*  Free of limit cycle oscillations when implemented on a finite-word length digital
system
Disadvantages: | | i
*  Sharp cutoff at the cost of higher order ' il
* Higher order leading to more delay, more memdry and higher cost of

implementation

| Importance of Linear Phase:

The group delay is defined as dé (@)
: £ do
' * Nonlinear phase results in different frequencies experiencing different delay and ;‘.
' it |
? arriving at different time at the receiver

* This creates problems with speech processing and data communication Hif

applications
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3.1.3 Understanding simple filtering operation:
{ 1. Unity Gain Filter
y(n)=x(n)
2. Constant gain filter
y(n)=Kx(n)
3. Unit delay filter
y(n)=x(n-1)
4. Two - term Difference filter
y(n) = x(n)-x(n-1)
5. Two-term average filter
y(n) = 0.5(x(n)+x(n-1))
6. Three-term average filter (3-point moving average filter)
y(n) = 1/3[x(n)+x(n-1)+x(n-2)]
7. Central Difference filter
y(n)= 1/2[ x(n) - x(n-2)]

. Order of the filter is the number of previous inputs used to compute the current
r\ ' output
*  Filter coefficients are the numbers associated with each of the terms x(n), x(n-1),.. fill |
Ex, order a0 al a2
P T | |
> K B : l
: 1 i : g “‘
I 1 i g | i
5Py i Nz 72 |
6LP) 173 3 |13
> 7(HP) |2 172 0 -1/2 | |

0 u




3.14 Deéign of FIR filters:

Symmetric and Antisymmetric FIR filters:
*  Symmetry in filter impulse response will ensure Linear phase
Comments on filter coefficients: ‘
¢ The number of filter coefficients that specify the frequency response in (M+1)/2
when is M odd and M/2 when M is even in case of symmetric conditioné
¢ Incase of impulse response antisymmetric h(M-1/2)=0 so that there are (M- 1/2)

filter coefficients when M is odd and M/2 coefficients when M is even

Choice of Symmetric and antisylmmetri_c unit sample response:-
¢ Ifh(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(r)=0,
consequently not suited for low pass and high pass filter.

* Similarly if M is even Hr(0)=0 hence not used for low pass filter 'ﬂ

 Hence antisymetric condition is not generally used : &Eﬂ j
* Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero hilH

response at w=0 if desired.

—

Zeros of Linear Phase FIR Filters:

- Consider the filter system function

H(z)= Afh(n)z""

n=o e

Expanding this equation:

H(z) =h(0)+h(D)z" +H(2)z 7 +..... + (M —=2)z" M2 4 j(M = 1)z M
since for Linear— phasewe need

h(n)=h(M-1-n) ie,

(0) = h(M —1);A(1) = h(M - 2);.....h(M —1) = h(0);

then




3.2 Different methods
3.2.1 Methods of designing FIR filters:

1. Fourier series based method
2. Window based method

3. Frequency sampling method

3.2.2 FIR Filter Design by the Window Method:

The applet uses the window method, a widely-used approach to FIR filter design. The
theoretical basis of the method is simple and elegant. If the discrete Fourier transform
(DFT) is applied to a function representing the required filter frequency response, we
_obtain the impulse response of the required filter. Since the sampled impulse response
values for an FIR filter correspond to the sequence of filter coefficients, we therefore

obtain the required filter coefficients directly.
Unfortunately, the filter obtained by this technique suffers from two main drawbacks:

1. The filter is non-causal.

2. The order of the filter is infinitely large.

A "non-causal" filter is one which requires not only the current and previous input values
(Xn> Xn-1, Xn-2, Xn-3, -..) but also future input values (Xp+1, Xn+2, Xn43, ...). Non-causal filters
can be used where a complete record of the sampled input signal is available, but if the

filter is operating in real time, future input values are unknown.

To make the filter causal, so that it uses only the current and previous input values, the
filter coefficients must be "time-shifted". This effectively means delaying the input
samples by a sufficient number of sampling intervals; as a result, the filter output is

delayed by the same length of time. In most cases, this is not a serious problem.

The fact that the order of the filter is infinite is, however, rather more of a difficulty. An
infinite order means that an infinite number of terms must be calculated to obtain the

filter output; clearly this is not practical. If the filter is to operate in real time, the

maximum order is usually limited by the need for the processor to perform the filtering

L A M A I e




calculations within a specified time to allow it to keep up with the signal data coming in

To restrict the order of the filter to a finite value, we must again make some adjustments

every sampling interval. , ' i ‘
E
|
|
to the filter coefficients. The technique used is to multiply the sequence of filter ‘ ‘i

|

-coefficients by a tapered window function of a finite width. The simplest window

function is the rectangular window. Multiplying the sequence of filter coefficients by a

|

. o L i
rectangular window corresponds to truncating (chopping off) the sequence after a certain !{
number of terms. ;
i

\

The drawback of truncating the filter coefficients to produce a "cut-down" finite-order i
version of the filter is that it no longer has the ideal frequency response originally used as

the basis for designing the filter. Instead of a perfectly' flat pass band in the gain

frequency response curve, ripples tend to appear; instead of an infinitely sharp cutoff at i
the design cutoff frequency, there is a more gradual transition between the pass band and
stop band. In the stop band itself, the filter gain is no longer exactly zero, but has small
"nonzero values followihg an oscillating curve, with peaks in the gain at certain points in
.the sfop band. To make the filter frequency response approximate more clésely' to the
ideal, the width of the window must be increased to include more coefficients, i.e. the

order of the filter has to be increased.

Various window functions can be used in the design of FIR filters. Each window function

has its good and bad points. As indicated earlier, the choice of window function

determines the minimum amount of attenuation provided in the stop band; the rectangular

window, for example, has rather poor stop band performance, while the Blackman

window gives much better stop band attenuation. The other side of .the coin is that the : 1

Blackman filter has rdther poor transition band performance, while the rectangular

“window gives a sharp cutoff (natrow transition band). To achieve a given transition band

performance With a Blackman window, for example, a much higher filter order is needed f l

»

than would be the case with the rectangulér window.
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3.3 Chebyshev Filters

The Chebyshev response is a mathematical strategy for achieving a faster roil-off by
allowing ripple in the frequency response. Analog and digital filters that use this approach
are called Chebyshev filters. For instance, analog Chebyshev filters were used for analog-
to-digital and digital-to-analog conversion. These filters are named from their use of the
Chebyshev polynomials, deve]oped by the Russian mathematician Pafnuti Chebyshev
(1821-1894). This name has been translated from Russian and appe.ars in the l.iterature
-with  different spellings, such as: Chebychev, Tschebyscheff, Tchebysheff and
Tchebichef.

Figure shows the frequency response of low-pass Chebyshev filters with passband ripples
of: 0%, 0.5% and 20%. As the ripple increases (bad), the roll-off becomes sharper (good).
The Chebyshev response is an optimal trade-off between these two parameters. When the
ripple is set to 0%, the filter is called a maximally flat or Butterworth filter (after S.
Butterworth, a British engineer who described this response in 1930). A ripple of 0.5% is
a often good choice for digital filters. This matches the typical precision and accuracy of
the analog electronics that‘ the signal has passed through. The Chebyshev filters discussed

are called' type 1 filters, meaning that the ripple is only allowed in the pass band.

1.5
P 'k f. ,
A 7 |r i Ripple
1.0 e naauy s ‘:.."E
e :
g 0.3%
05 —— 3
¢
. ' ".“\
0.0 : : ‘:\J}.-_ .
o 0.1 02 0.3 0.4 0.5

Erequency

The Chebyshev response . Chebyshev filters achieve a faster roll-off by allowing ripple in the Pass
band. When the ripple is set to 0%, it is called a maximally flat or Butterworth filter. Consider using
a ripple of 0.5% in your designs; this pass band unflatness is so small that it Can not be seen in thls
graph, but the roll-off is much faster than the Butterworth,
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“In comparison, type 2 Chebyshev filters have ripple only in the stop band. Type 2 hlteis
are seldom used, and we won't discuss them. There is, however, an important .

Design called the elliptic filter, which has ripple in both the pass band and the stop band.
Elliptic filters prdvide the fastest roll-off for a given number of poles, but are much harder
to design. We won't discuss the elliptic filter here, but be aware that it is frequently the
first choice of professional filter designers, both in analog electronics and DSP. If you

need this level of performance, buy a software package for designing digital ﬁlters.'
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Digital Signal Processing
4.1 Why DSP: -

The issues introduced in this article include:

+ DSP overview

» Real-time DSP operation

CHAPTER-4 -
|
1

 Real-world signals il |
» Sampling rates and anti-alias filtering i
«  DSP algorithm | - | y

o Modeling filter transform functions iF _ i 4
~» Relating the models to DSP architecture _ 1"e;
« Experimenting with digital filters “ ;ﬁd
lig

Having heard a lot about digital signal processing (DSP) technology, we may have ﬂ
wanted to find out what can be done with DSP. This series is an introduction to DSP j
topics from the point of view of analog system designers seeking additional tools for

handling analog signals. Designers reading this series can learn about the possibilities of

assistance,

DSP to deal with analog signals and where to find additional sources of information and _ ig

4.1.1 What is DSP?

In brief, DSPs are processors or microcomputers whose hardware, software, and

instruction sets are optimized fot high-speed numeric processing applications an essential
for processing -digital data representing analog signals in real time. What a DSP does is
straighfforward. When acting as a digital filter, for example, the DSP receives digital
values based on samples of a signal, calculates the results of a filter function operating on
> these values, and provides digital values that represent the filter output; it can also
provide system control signals based on prop(;rties of these values. The DSP’s high-speed

arithmetic and logical hardware is programmed to rapidly execute algorithms modeling

the filter transformation. ' A
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The combination of design clements arithmetic operators, memory handling, instruction
set, parallelism, data addressing that provide this ability forms the key difference between
DSPs and other kinds of prdcessors. Understanding the relationship between real-time
signals and DSP calculation speed provides some background on just how special this
combination is. The real-time signal comes to the DSP as a train of individual samples
from an analog-to-digital converter (ADC). To do filtering in real-time, the DSP must
' complete all the calculations and operations required for processing each sample (usually
updating a proces;s involving many previous samples) before the next sample arrives. To
perform high-order filtering of real-worid signals having significant frequency content

calls for really fast processors.

4.1.2 WHY USE A DSP?

To get an idea of the tybe of calculations a DSP does and get an idea of how ah
analog circuit compares with a DSP system, one could compare the two systems in terms
of a ﬁiter function. The familiar analog filter uses resistors, capacitors, inductors,
amplifiers. It can be cheap and easy to assemble, but difficult to calibrate, modify, and

'maintain a difficulty that increases exponentially with filter order. For many purposes,
one can more easily design, modify, and depend on filters using a DSP because the filter
function on the DSP is software-based, ﬂéxible, and repeatable_. Further, to create flexibly
adjustable filters with higher-order response requires only software modifications, with
no additional hardware unlike purely analog circuits. An ideal band pass filter, with the

frequency response shown in Figure 1 below, would have the followirig characteristics:

'« aresponse within the pass band that is completely flat with zero phase shift
« Infinite attenuation in the stop band. o

Useful additions ‘would include:
« Pass band tuning and width control

~ »_ Stop band roll off control.

As Figure shows, an analog approach using sé_cond-or;ier filters would require quite a few

staggered high-Q sections; the difficulty of tuning and adjusting it can be imagined.
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STOPRAND : A STOPRAMD ¢
An ideal bandpass filter and second-order approximations

With DSP software, there are two basic approaches to filter design: finite impulse
response (FIR) and infinite impulse response (IIR). The FIR filter’s time response to an
impulse is the straightforward weighted sum of the present and a finite number of
previous input samples. Having no feedback, its response to a given sample ends ‘when
the sample reaches the “end of the line” below. An FIR filter’s frequency response has no
poles, only zeros, The IIR filter, by comparison, is called infinite because it is a recursive
function: its output is a weighted sum of inputs and outputs. Since it is recursive, its

response can continue indefinitely. An IR filter frequency response has both poles and

1 wmm N+ .
INPUT —.Y—r il 1] X(-N-2 KN+ 1)
a(o) @; rg)am_z} | @am_ﬂ

FIR
STRUCTURE T outeut

yin) = > afoain-k)
k=0 '

0 .
x(n) C — ?” (1)

 ZEros.

¥(m

IR
FILTER

N-1 M
¥ = Y algx(n-k) + H-bEfy(n-K)
k-0 - k=1

Filter equations and delay-line representation.
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The xs are the input samples, ys are the output samples, as are input sample weightings,
“and bs are output sample weightings. n is the present sample time, and M and N are the
number of samples programmed (the filter’s order). Note that the arithmetic operations
indicated for both types are simply sums and products in potentially great number. In fact,

multiply-and-add‘ is the case for many DSP algorithms that represent mathematical

operations of great sophistication and complexity.

Approximating an ideal filter consists of apblying a transfer function with .appropriate
coefficients and a high enough order, or number of taps (considering the train of input
samples as a tapped delay li_ne). Below shows the response of a 90-tap FIR ﬁlter
compared with sharp-cutoff Chebyshev filters of various orders, The 90-tap example
suggests how close the filter can come to approximating an ideal filter. By comparison, it
| would not be cost-effective to attempt this level of approximation with a purely analog
ctreuit. Another crucial point in favor of using a DSP to apprdximate the ideal ﬁlter is
long-term stability. With an FIR (or an IIR having sufficient resolution to avoid
truncation-error buildup), the programmable DSP achieves the same response, time after

time. Purely analog filter responses of high order are less stable with time.

0 -—90.TAP FIR
A\ PASSBAND CUTOFF
\ FREQUENCY 0.5[,
@ "2 Z
p=}
I
=
g -50 1 4
=
w.
E: 6 :
[¥¥ ] _75 -
E H 1Ty T
£ il I,
3 .
[¥7)
=3
—100 A
-125 T . T T T T T T T T T Tf
0 0.1 02 0.3 0.4 05 s

NORMALIZED FREQUENCY =
(ACTUAL FREQ) / (SAMPLING FRE()}

90-tap FIR filter response compared with those of sharp cutoff Chebyshev filters.
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Mathematical transform theory and practice are the core requirement for creating DSP
applications and understanding their limits. This article series walks through a few signal-

-analysis and -processing examples to introduce DSP concepts. The series also provides




R

references to texts for further study and identifies software tools that ease the

development of signal-processing software.

4.2  Real-time DSP operation

4.2.1 SAMPLING REAL WORLD PROBLEMS:

Real-world phenomena are analog the continuously changing energy levels of physical
processes like sound, light, heat, electricity, magnetism. A transducer converts these
levels into manageable electrical voltage and current signals, and an ADC samples and
converts these signals to digital for processing. The conversion rate, or sampling

frequency, of the ADC is critically important in digital processing of real-world signals.

This sampling rate is determined by the amount of signal information that is needed for

-processing the signals adequately for a given application. In order for an ADC to provide

enough samples to accurately describe the real-world signal, the sampling rate must be at
least twice the highest-frequency component of the analog signal. For example, to
accurately describe an audio signal containing frequencies up to 20 kHz, the ADC must
sample the signal at a minimum of 40 kHz. Since arriving signals can easily contain
component frequencies above 20 kHz (including noise), they must be removed before
sampling by feeding the signal through a low-pass filter ahead of the ADC. This filter,

known as an anti-aliasing filter, is intended to remove the frequencies above 20 kHz that

could corrupt the converted signal.

However, the anti-aliasing filter has a finite frequency roll off, so additional bandwidth

‘must be provided for the filter’s transition band. For example, with an input signal

bandwidth of 20 kHz, one might-allow 2 to 4 kHz of extra bandwidth.
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Above depicts the filter needed to reject any signals with frequencies above half of a 48-

kHz sampling rate. Rejection means attenuation to less than 1/2 least-significant bit M -

(LSB) of the ADC’s resolution. One way to achiéve this level of rejection without a ﬂ'
highly sophisticated analog filter is to use an over sampling converter, such as a sigma- '
delta ADC. It typically obtains low-resolution (e.g., 1-bit) samples at megahertz rates
much faster than twice the highest frequency component greatly casing the requirement
| for the analog filter ahead of the converter. An internal digital filter restores the required |

resolution and frequency response. _ il

4.2.2 PROCESSING REAL-WORLD SIGNALS:

The ADC sampling rate depends on the bandwidth of the analog signal‘ being sampled.

This sampling rate sets the pace at which samples are available for processing. Once the
system bandwidth requirements have established the A/D converter sampling rate, the
designer can begin to explore the speed'requirements of the DSP processor. Processing

speed at a required sample rate is influenced by algorithm complexity. As a rule, the DSP i

-needs to finish all operations relating to the first sample before receiving the second

sample. The time between samples is the time budget for the DSP to perform all

processing tasks. For the audio example, a 48-kHz sampling rate corresponds to a 20.833- A Bh

ps sampling interval. Figure 5 relates the analog signal and digital sampling rate. B |
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Next consider the relation between the speed of the DSP and complexity of the algofithm
(the software containing the transform or other set of numeric operations). Complex
algorithms require more processing tasks. Because the time between samples is fixed, the
higher complexity calls for faster processing. For example, suppose that the algorithm
requires 50 processing operations to be performed between samples. Using.the previous
example’s 48-kHz sampling rate (20.833-ps sampling interval), one can calculate the
minimum required DSP processor speed, in millions of operations per second (MOPS) as

follows

. vt — .
DA S = oy MOPS

Thus if all of the time between samples is available for operations to implement the
algorithm, a processor with a performance level of 2.4 MOPS is required. Note that the
-two common ratings for DSPs, based on operations per second (MOPS) and instructions
per second (MIPS), are not the same. A processor with a 10-MIPS rating that can perform
8 operations per instruction has basically‘the same performance as a faster processor with

a 40MIPS rating that can only perform 2 operations per instruction.
4.3 DSP algorithm .

4.3.1 DEVELOPING A DSP SYSTEM:

Having discussed the role of the processor, the ADC, the anti-aliasing filter, and the
timing relationships between these components, it is time to look at a complete DSP

_system. Diagram below shows the building blocks of a typical DSP system that could be

used for.data acquisition and conirol




ANALOG INPUT
ANTLALIASING
FILTER

%
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HOST . l ANTERMAGING
FILTER

INTERFACE

DIGITALYO ANALOGOUTPUT

Putting together elements of a DSP system,

Few components make up the DSP system, because so much of the system’s functionality
~comes from the programmable DSP. Converters funnel data into and out of the DSP; the
ADC timing is controlled by a precise sampling clock. To simplify system design, many
converter devices available today combine some or all of the following: an A/D
converter, a D/A converter, a sampling clock, and filters for anti-aliasing and anti-
imaging. The clock oscillator in these types of /O components is separately controlled by

an external crystal. Here are some important points about the data flow in this sort of DSP

system:

Analog Input: The analog signal is appropriately band-limited by the anti-aliasing filter
and applied to the input of .the ADC. At the selected sampling time, the converter
interrupts the DSP processor and makes the digital sample available. The choice between
“serial and parallel interfacing between the ADC and DSP depends on the amount of data,
désign complexity trade-offs, space, pOwer, and price.

[

Digital Signal Processing: The inconiing data is handled by the DSP’s algorithm
software. When the processor compietes the required calculations, it sends the result to
the DAC. Because the signal processing is programmable, considerable flexibility is
available in handling the data and improving sysEem performance with incremental

programming adjustments.




Analog Output: The DAC converts the DSP’s output into the desired analog output at
the next sample clock. The converter’s output is smoothed by a low-pass, anti-i_magiﬁg

filter (also called a reconstruction filter), to produce the reconstructed analog signal.

Host Interface: An optional host interface lets the DSP communicate with external

“systems, sending and receiving data and control information.
4.4 Modeling Filter Transform Functions: -

The three principal reasons for using digital filtering are (1) closer approach to ideal filter
approximations, (2) ability to. adjust filter characteristics in software rather than by
physical tuning, and (3) compatibility of filter response with sampled data. The two best-
known filters are the finite impulse-response (FIR) and infinite impulse-response (IIR)
types. The FIR filter response is called finite becauée its output is based solely on a finite
set of input samples; it is non-recursive and has no poles, only zeroes in its s-plane. The
IIR filter, on the other hand, has a response that can go on indefinitely (and can be
unstable) because it is recursive, i.e., its output values are affected by both input and
| output. It has both poles and zeroes in its s-plane. Diagram below shows the typical filter

architectures and summation formulas that appeared previously.

*n=N+2) xn=-N+1)
NPUT
A(N-1)
STRUCTURE 20 QUTPUT
' N=1
¥(n) = )" a(kx(n-k)
k=0

i) & , L] i e “.-—@ a - ¥

IR
FILTER

" N-1 i}
¥in) = Z a(k)x(n=k) +2 b{kyy{n-k)
k=0 k=1

Filter equations and their delay-line models.
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To model these filters digitally, one might take two steps. First, view these formulas as
* programs running on a computer. This step consists of breaking down the formula into
the mathematical steps (e.g., multiply and add) and identifying all of the. additional
operations that would be necessary for a computer to perform (handling instructions and

data, testing status, etc.) to implement the formula in software.

Second, take those operations and write them as a program. This can be a fairly arduous
task. Fortunately, there is much "canned" “software avaiiable, often in a high-level
-language (HLL) such as C, somewhat simplifying (but by no means eliminating!) the job
of programming. From the point of view of learning, though, it may be more instructive
to start with assembly languagé; élso assembly language algorithms are often more useful
than HLL where system performance must be optimized. At the level of abstraction of
some high-level languages, the program may not look niuch like the equations. For

example, below shows an example of an FIR algorithm implemented‘as a C program.

float ﬁrﬁﬁlter(ﬂ(.)at input, float *coef, int n, float *history)
{
int i; ‘
float *hist_ptr, *hist] ptr, *coef ptr;
- float output; ‘
hist_ptr = history;
histl_ptr = hist_ptr; /* use for history update */
coef ptr = coef +'n -1; /* point to last coef */
/*form output accumulation */
output = *hist_ptr++ * (*coef ptr-); -
for(i = 2; 1 <n; i++)
¢ |
*hist]_ptr++ = *hist_ptr; /* update history array */
output += (*hist_ptr++) * (*coef ptr-);
3 -
| output += input * (*coef ptr); /* input tap */
*histl_ptr = input; /* last history */
return(output);

;o ‘ FIR Filter as C program:
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_ There are many analysis packages available that support algorithm modeling; see the

references at the end of this article for several popular packages. Now, continuing the

discussion of the process, after these filter algorithms have been modeled, they are ready

for implementation in DSP architecture.
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CHAPTER-5

Implementing Filters on ADSP 2181

5.1 Why ADSP 2181

The ADSP-2100 Family Development Software, a complete set of tools for software and
hardware system development, supports the ADSP-2181. The System Builder provides a
high level method for defining the architecture of systems under development. The
Assembler has an algebraic syntax that is easy to program and debug. The Linker
combines object files into an executable file. The Simulator provides an interactive

instruction-level simulation with a reconfigurable user interface to display different

'portions of the hardware environment. The C Compiler, based on the Free Software

Foundation’s C Compiler, generates ADSP-2181 assembly source code. The source code
debugger allows programs to be corrected in the C environment, The Runtime Library
includes 6ver IOO ANS]-standard mathematical and DSP-specific functions. The EZ-KIT
Lite is a hardware/software kit offering a complete development environment for the
entire ADSP-21xx family:an ADSP-2181 evaluation board with PC monitor software plus
Assembler, Linker, Simulator, and PROM Splitter software. The ADSP-218x EZ-KIT
Lite is a low-cost, easy to use hardware platform on which you can quickly get started

with your DSP software désigh. The EZ-KIT Lite includes the folloWing‘features

'+33 MHz ADSP-2181 |
+ Full 16-bit Stereo Audio I/O with AD1847 Sound Port Codec
+ RS-232 Interface to PC with Windows 3.1 Control Software
 Stand-Alone Operation with Socket EPROM :
« EZ-ICE Connector for Emulator.Control,

»

The ADSP-218x EZ-ICE Emulator aids in the hardware debugging of ADSP-218x
systems. The emulator consists of hardware, host computer resident software and the

target board connector. The ADSP-218x integrates on-chip emulation support with a 14-
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E
pin ICE-Port interface. This interface provides a simpler target board connection ! L ‘
requiring fewer mechanical clearance considerations than other ADSP-2100 Family EZ- F

b ICEs. The ADSP-218x device need not be removed from the target system when using 3 I
the EZ-ICE, nor are any adapters needed. Due to the small footprint of the EZ-ICE "1(%%
connector, emulation can be supported in final board designs. | : “
Apart from this we have blackfin processors with ADBF 535 which is also more ever like i
2181 but for our use it is more compatible and handy at different scenes in our project.

5.1.1 ADSP 2181 with Visual DSP++:
The ADSP 2181 is compatible with visual dsp++3.5 software. In this software we can
write programs in C,C++ and in assembly language. We have generally used assembly
language because it gives less errors . '
Visual DSP++ provides the following features.
» Extensive editing capabilities.
+ Flexible project management.
~ »  Easy access to code development tools.
+ Flexible project build options. H 3
« Visual DSP++ Kernel (VDK)
+ Flexible workspace management.. !
« Easy movement between debug and build activities.
Visual DSP++ reduces your debugging time by providing these key features. f—
« FEasy-to-use debugging activities.
» Multiple languag:e Support
« Effective debug control. ‘ |
+ Tools for improving performance. .
‘ ’ l
5.1.2 Code Development Tools: . - K
| I
1 Code development tools for 16-bit processors include: |‘
e C/Ct++ compiler ‘
' i
» Runtime library with over 100 math, DSP, and C runtime library routines .
. 1
-
IJ I
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e Assembler

« Linker
I
) « Splitter o
¢ Loader

¢ Simulator

» Emulator (must be purchased separately from Visual DSP++)

These tools enable you to devélop applicationé that take full édvantage of our processor’s
architecture. The Visual DSP++ linker supports multiprocessing, shared memory, and

memory overlays. The code development tools provide the following key features.

. Easy-to-p'rogram C, C++, and assembly languages. Program in C/C++,

assembly, or mix C/C++ and assembly in one source. The assembly language is

based on an algebraic syntax that is easy to learn, program, and debug.

» Flexible system definition. Define multiple types of executables .for a single type
of processor in one Linker Description File (LDF). Specify input files, including
objects, libraries, shared memory files, overlay files, and executables. |

. Suppoft for overlays, multiprocessonjs, and shared memory executables. The
linker places code and fesoives symbols in multiprocessor memory space for use
by multiprocessor systems. The loader enables you to configure multiprocessors
with less code and faster boot time. Créate host, link port, and PROM boot

- images.

5.2 Installing thesoftware and interfacing it with ADSP 2181

First of all we get the software from website; i.e., analog.com'. The software is valid for
90 days only, it’s a trial version. Now point is how to install it and interface it with the ' ot
. ADSP2181 kit. ' ‘ |-
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5.2.1 Installing the software:

Comgany: Analog Devices :
File Yersion: 2.1,13.0 B
Date Created: 4/24/2007 11:29 PM :

Size: 64,3 MB

. (software)

As we have earlier stated that we have got the software from analog.com which is of 64

mb in size. Now following are the software installation steps.

Flzase enler the lolder wherg the [iles should be unpacked
. IMthe loldei doas not exist, pou will be prompted Lo creals i,

 ViuaSPes 35 for 16t B
Reading package. .

§F  simnuennn

License Agreement

Please read the following icense agreament carefuly,

AHALOS DEVICES SOFTWARE LICENSE AGREEMENT N

This 13 a legal document between you [@ither an
individual or entity) and Analog Devices, Inc. (ADI),
Read the following terms and conditions carefully hefoxre
ueing the accompanying software. They define your
rights and obligations with respect to the enclosed ADI
aoftvare and documentation {SOFTVARE). If you do not
agree to the terms of this agreement, promptly return =
the software and aceompanying documentation to the place

vxmis AlneAdmAR mhiee v b Bme b e Pared e Tem TE et

v

(1 accept the terms in the license agreement
1731 do not accept the terms in tha license agreement

.

(C<bak ][ Hest> [ cancel | “

Step-2(Agreement acceptance) ' I F
, R
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| 1@ Analog Devices YisualDSP+ + 3.5 for 16:Bit Processors - InstallS,

1 Custom Setup

Select the program features you want installed.

Click on an icon in the list below to change how a feature is installad.

o \—"i Blackiin Tools Feature Desmp\‘l:ion

1

»| A05P-6ES 3 EZ-A1T Lite e o Icludes o the
Blackfin Emulators EZ-KIT Lita,

= L-i"l 21xx Tools
= ~ | ADSP-219x EZ-KIT Lite
! ADSP-2189 £Z-KIT Lite ' This feature requires 679K6 on

ADSP:2181 EZ-KITHie: your hard drive.

53 v | Z1xx Emulators

|
|

Enstall to:

C:\Program FileslAnalog Devices\VisualDSP 3.5 16-Bit} [ Change. ., '

L Help [ I Space ] [ < Back ][ Hext > ] I Cancel ]

Step-3(Choosing proper kit name)

Installing Analog Devices ¥isualDSP-+ + 3.5 for 16-Bit Processors
The program features you selacted are being nstalled,

o

_ACd]  Pieass wak whie the Installshield Wizard installs Analog Devices
T YisualDSP++ 3.5 for 16-Bit Processors. This may take several minutes,

Status:

Caniel

Step-3(Further process is going on)

alPSP+ + 1.5 for 16:Bit Processors - Instalishicld w:.. MR

TR

InstallShield Wizard Completed

The InstaliShieid Wizard has successfully lnstalled Analog
Davices VisualDSP++ 3.5 For 16-Bit Processars. Far your
converjence, the environment wariables needed ta run the
VisualDSP++ tools From a command prompt are saved in
VYDSP3_5.bat in the root of your installation directory. Click
Finish to exit the wizard, :

I Finish

Step-4(Installation completes)
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Step-6(Putting the serial key no. for trial version)

Vis.ua_l[)SP'H .

.3 The serial number has baen successfully entered and the
folowing license was installed; Test Drive (Expiring in £9 days).

Step-7(Now we can start)

Platform Templates . Platfcims

5 ADEP-2 181 EZHKIT. L0 fici liad New...
MR ADSP-2189 EZXKIT Lite via COM parl
BYADSP-2191 EZKIT Lite viaApex e
EfRADSP-2191 EZ.KIT Lite via HPPCI ’
HAADSP-2191 EZ-KIT Lite via HPUSE B T
Y ADSP-2191 EZKIT Lite via Surimit R
B¥ADSP-2191 EZKIT Lite via USB ‘
B ADSP:219212 EZ-KIT Lite via Apex
ADSP-Z'IS?-& EZ-KIT Lite via HPPC
BPADSP- 219212 EZKIT Lite via HPUS
HRADSP-2192-12 EZ-KIT Lite via Sumnm
HAADSP-219212 EZKIT Lite via USB

MUADSP21990EZKIT Lie viaApex ¥
< >

w5

Plattorm Templales . Platforms

Copy | [H¥ADSP 2181 £ZKIT Lite via COM porl »
o | S ADSP-2189 EZKIT Litg via COM pon
HY ADSP-2191 EZXIT Lite via Apex

ADSP-2191 NP
gADSP-ZHI B Visuall§P-+ foeTest

B ADSP-21330 EZKT Lite via Apex Y, '
{ . >

& e | b

Step-8(Now we will choose the first one in configurator)




Platlorm: = Devices:
Mame  Platforrn 0 Devices listed in sequential order from TDO to TDI

700 | Nan;-c Type Mews...

Modify... |

Type: [EzKT 2181
Delete...

Emulator Sellings: Delete Al

Device ID: :FF FF

Platform: . Devices: -
Name: [[;_m:—;-—}]- e s Devices listed in sequential order from TDO to TDI
o ) ) 0O | Name Type o
Type: [EZKIT Z181 o < Device 0 ADSP-2181
Emulator Setlings: 7 Deleée;!lm E
. Baud Rate: 1—9_500 _3
COM Por: |1 ~] ,
e
ol Jobe” |

0K Cancel l

Step-10(In emulator settingé type 9600 in baud rate and 1 in com port)

5.2.2 Interfacing to the éomputer:

The development cycle walks fhrough the process, using the ADSP42181_ EZ-Kit Lite
(development package ADSP-21xx- EZLITE) as the target hardware for the filter
“algorithm. The EZ-Kit Lite, a low-cost demonstrati.on and development platform, consists
of a 33-MHz ADSP-218'|1 processor, an AD1 847 stereo audio codec,. and a socket
EPROM, which contains monitor code for downloading new algorithms to the DSP

through an RS-232 connection

Now we will connect the ADSP-2181 kit with computer. Serial cable i.e.Rs~23.2 (9 pin
cable wire) will be connected to PC, There will be power requirement of 9 to 12 volts

lamp with power port. The inputs and output will be given as shown in the diagram.
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cmulalor

e CODEC connactor
: (0 01 ) ot

Nag LEDs v A - Fapansion
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o
serial _x 1
T ApsPaml Sy b
1 L]
resal ik ! &
l]ag.lt *T -'I ’ I [‘Iu:lv]rl;w :' - :E E
IRQ e
i i
1 n |
G E NG |
processor bus => oo \
v k8 ‘
l 7 2 L
]

rial cable P
\L{rlln:l}:(tb y UART/ |
— RS-232 PROM |

Driver POWER |

—

912 vde, 1 amp ___..-‘

Block diagram of the EZ-KIT Lite board. Only four external connections are needed: audio in, audio out, a Ba |

serial (RS-232) cable to your personal computer, and power. The serial cable and power supply are provided , U |

with the EZ-KIT Lite. |“ 1
‘E:\‘.;‘.

(SETUP)
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If software already went into simulator mode then we have to do the following
things, which we have shown as follows:-

(1) Open the Visual DSP++ environment 3.5
(2) Go to the session and click on the new session

@ “h el
0w k-]
u ]
LI s dox *
Piciact goup: Dpeiect]s) ’
LA E S I P
{10caan)
e |
Lawiiys)
[ELIES]
{oEeadsy - -
(300035
966027
_19eI3)
racranag
f30¢004]
T0gi]
R Ly b
Sarrion’ ) X | USNIEET
1AD36.2181 Shaisies i
| -

LW amdnle st ]

- Now in new session change the option in the debug target to ADSP-218X and then press the
reset button on the kit.

B New Session

‘Debug tanget; - Processor:
Platfoun: -
Platform0 PR
Session name:
ADSF' 21 2 Pialform l] , ;
' [ ok, ][ canca ]

To complete the architecture description phase, one needs to know the memmy and

memory- mapped peripherals that the DSP has available to it. Programmers store this
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information in a system-description file so that the development tools software can
produce appropriate code for tﬁe target system. The EZ-Kit Lite needs no memofy
external to the DSP, because available memory on-chip consists of the 16,384 locations
of the ADSP-2181’s Program Memory ‘(PM) SRAM, and 16,352 locations of Data
Memory (DM) SRAM. (32 DM locations used for system control registers are not
available for working code).- More information on the ADSP-2181, the EZ-Kit Lite’s

architecture, and related topics, can be found in texts mentioned at the end of this article.

Available system resources information is recorded in a system description file for use by -

- the ADSP-2100 Family development tools.

The listing declares 16,384 locations of PM as RAM, starting at address 0, to let both
code segrﬂents and data values be placed there. Also declared are 16,352 available
locations of data memory as RAM, starting at address 0. Because these. processors use a
Harvard architecture with two distinct memory spaces, PM address 0 is distinct from DM
address 0. The ADSP-2181 EZ-Kit Lite’s codec is connected to the DSP using a serial
port, which is not declared in the system description file. To make the system description
file available to other software tools, the System Builder utility,_ BLD21, converts the
SYS file into an architecfure, or .ACH, file. The output of the System Builder is a file
named EZKIT LT.ACH,

1

After writing the code, the next step is to generate an executable file, i.e., turn the code

into instructions that the DSP can execute. First one assembles the DSP code. This

converts the program file into a format that the other development tools can process.
Assembling also checks the code for syntax errors. Next, one links the code to generate
the DSP executable, using the available rﬁemory that is declared in the architecture file.
The Linker fits all of the code and ‘data from the source code into the memory space; the

output is a DSP exccutable file, which can be downloaded to-the EZ-Kit Lite board.
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3.2.3 How to run the project file on the system:

The following diagrams show how to run project on the system.

Set Active Project

Aadd to Project

Source Centrol

Step-1(Open néw in project option)

Savein:| L',JJ Deskiop v IR A
I My Documents £ IFAREWELL
 rf My Computer E2IFinancial Managament on Harsh {cc
i My Network Places 27 game d setup
| jind anurag Lrems

1 1 desktop ‘oytlew Folder
iEdvya ' =) New Folder (2)
< e >
File name: |code1 1‘ Save

\ Save aslype:  Projec i Cancel

Step-2(Now type a name for the project )
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O
= Qpen...

:ﬁ Load Program. ..
Load Symbols. ..
Load Sgript...

E{ Reload Program

Workspace

Recent Projects
Recent Source Files
Recent Programs

Recent Scripts

Recent ﬂorkspaces‘

Cerl+H

Ctrl-+R

Step-3(Now click ok in project option)

x
» i
’
3
Ny
,
r
J:
b

'Pr:ioject ,Upu;ons :

Taiget

Piacessol: 'M‘_;" &
i . Type: j-DSP execuiable lile
. Name: cud-g] ’

Tual Chan

Compler _ C Compilet fof 218

[ Asentir [ADSP2InELF Assentlr (DSP 2180 v
Y Liker  ADIFomdyLikerDiver -
Loader,

SoRler  ADSP-218x Famy PROM LosderrSpitler

Setlings for conliguration: | bebug

Progel Gereral: VIDL  Compde Assemble Link :Lload < ¥

~

Tk | came

g T

- ﬂ Project I

- - .r.,,,,.,.,,
_ ¥iDsbug

I?_E:A_nallag Devices Ulf_r-_ualDS_W+ - [i’afg_s_:i: ADSPZ1 1 Srmulatlun ]-f['f_'?r'cnrjgictr_:jqptlz‘a_u;_. g _
O Edt Session View Project Register Memory. Debug Settings Tools Window Help -

S 'ﬁ

Step-4(Click on file option and open a new file)
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| Sty Efnjecl‘
Session Vism  Project  Register Menidry Debug Seltings Tools Window Help

Rl B =« B At uF A a7
v Debug ~ EO0®dO [ﬂ
.6 b B 83

3 File Ect

=g

¥include <def?l181.h> //gection A St
. #define taps 15 i "[
@ Prolact gioup: 1 project(s) #define taps_less_ons 14 [
- 1% codel .sectionsdm dm_data; #/section B [
) Source Fies .varscirc data_buffer[taps]; /% dm data buffer =/ ;
) .section pmn pm_data:
E_J Linker Files var/circ/init24 coefficient[taps) = 'coetf .dat’:
_1 Header Files - .section/pm interrupts: ~“s=ction C

start:

junp main: rti; rti;rti./*0x0000:~reset vectorw’
rti; rei; rti: rti; <m Ox0004:~IRQ2 =~

rti; rti; rti: rti ## 0x0008:~IRQL1 =~

réi; rti: rti; rti; . <% 0x000c:~IRQLOD =~

rbi; rti: rti; rti; ## 0z0G10:~SPORTO transmit =/

junp fir_start: rti; rti; rti. ~» 0x0014: SPORTO receive =~
rti; rti; rti; rti: %2 0x0018:~IRQLE %~

rti; wti; rti; rti; 7= 0x001c:~BDHA »~

rti: rti: rti; rti: /% 0x0020:~“SPORT1 transmit or IRQL =~
rti; rti; rti; rti; #= 0x0024 . ~SPORTO transmit or IRQD #*~
rti; rti; rvti: rti; +% 0xG028; finexr =/

rti; rti; rti; rti: <% 0x002c: pover down(non maskable) *=/
.section/pm pm_code; ~/section D .

nain:

1D0=length (auta_buffar);
/% setup circular buffer length #*~
li=length{coefficient).; /#s=tup circular buffexrx,

n0=1; % modify=1 for increment #/

nd=1: /% through buffers =/

iD= data_buffer; #% point to staxrt of buffar »~/
id4=coefficient: ## point to start of buffer *~
axl=0;

L cntr = lenath(data buffer):;
. $jProject < .

Step-5(Now paste the written code in new file)

P
- BON2ol
x include «def218l.hs  /rsaction & -
- #dsfine taps 15
Projec! ey 1 proisetls) #dofine taps_less_onn 34
= il codal .section dn da_data, #/section B
{3 Sowca Fiss i bui fmrftape]; /= dw data buffar #s
L1 Linkm Fles * ;

L Heades Fies

o ns
it Folder (2)
ideskicp ke Fukdee (3} oy =
viadvrs Ltmopet . [0« !
< re] TUIFAREWELL IR ajasthan songs S
Tt 1 iRnancial Mansgamant on Harsh (codez) WEL L la) = Co
L& ) L
na . L
w ook -
p2 A it
T4 Fisrome REL
a0 - A vl
nif Saveasyps AlFies[ 9 i
10 ———— i
i4+COSIT 1018 FOLD! i

- GRtr = lenath(data bufter); ’ :
Rproject [ - . ¢ .

Step-6(Save the code as .asm, ¢, ¢c++ as per requirement)

@ Project group: 1 project|s}
=y codel

m. ¥ New Falder... .
17 Lipk .
Y Hoad  AddFile(s) to Folder...
- Delete Faolder

« Allow Docking
Hide

Float In Main Window

e et e

Froperties. ..

“HKEFPOHRAHEHOKG-. -
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S

wete Epat - i1l i o
# & whk? 2
| Debug - hd BOD®s g
"} 60 bl R &3
L3 & - #include <def2181 h> Seecticn & T T i :
; {  #define taps 15 I
,'_‘]'.I Prqecl gioup: 1 pioject(s) | #defins taps_less one 14
p

- iy codel sectionsdn dm_data: cticn B

1 Source Filss .vars/circ data_buffer( taps] % dm datz bufrer =

2 Linker Files =% 4 i

i_] Header Files : sdil \

S8 o0 @

Juf Lockin |
Tt ) i = !
rt 1My Documents i game d setup
]’E: J My Computer ~ s
T \_JMy Network Places ~'iNew Folder _—
rty ‘Lujanurag Hew Folder (2)

“desktop @ iNew Folder (3) _ .

‘divya 1. project E'i.l‘ :
AREWELL " Rajasthani songs o
~)Financial Management on Harsh (codez) 1 shikha Lzy =
=4

na.
10 £ g 2
J.: Filz name: :M . i Add
w0 S er
lp; Files of type: | All Source Files [ ".c. ".cpp, ".cxx. "asm, "5, v Cancel !
i [y e :
id4=Coelficient: % point [0 SEarl O Dulrer 50
ax0=0;

- . cntr = length(data buffer);
-} Project < »

Step-7(Now add above file to the source folder)

File Echt Session View Project Reglster Memury Dabug Settings Tools Wlndow Help Al
t
2 i) 3 L % | ]
D&l XY : o Trace | nahk?

Linear Profiling ¥ 1

x Blath &
LS m

] codel ~ vilB Bliphee Create LDF... |
™ A} 6 52 @ @ Elash Programmer,.. - |

i p [
X ¥include <def21t =

; #define taps 15 VCSE 4

E’ F’lmeclgloup 1 project(s) #define taps_less—owes 1g—

& _Eu codel” .sectionsdn dm_data; s/section B

.var/circ data_buffer[taps]: % dm dats buffer =~
.section/pm pm_data;

5 : | .var/circ/init24 coefficient[taps] = 'coeff.dat’

i | Headel Fules section/pm interrupts; -“section C

start:

jump main; rti; rti;rti; *Ix0000:"reset vectonss
rti; rti; rti; rti; S% 00004 -~IRQ2 =/
rti; rti; rti; rti; % 0=0008:IRQL1 =~
rti; rti; rti; rti; <% (x000c:~IRQLD #*~
rti; rti; rti; rti; % 0=001D:“SPORTU tra
junp fir_start; rti; rti; rti; % 0x0014: S

+ L_] Sotnce Flles

it =/
0 receive */

rti; rti; rti; rti; * 00018 “LROLE =~
rti; rti; rti; rti; % 0=z001c:“EDHMA
rti; rti; rti; rti; <= 0=0020:~SPORT1 transmit or IRQL =~
rti; rti; rti; rti; % 0g0024:“SPORTD tyanamit or IRQD =~
rti; rti; rti; rti: s 0x0028: timer */

; rti; rti; rti; rti; 7% 0z002c: power down{non maskable) %7

i .section/pn mecnde, svzection D

nain:

l0=1length (data_buffer):;
% gatup circular buffer length %/

l4=length{coefficient);

10= data_buffer;
ax0=0;

s#setup circular buf ferxs

m0=1; 7% modify=1 for incremesnt *~
nd=1; /% through buflers »°

% point to start of buffer %~

id=coefficient; #% point bto start of buffsr =
L]

= ) o cntr = length(data buffer);
Project <

Step-8(Now for creating linker file go to tools and

click on expert linker and create LDF file)
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_ réalejl'_,D-F

Wizard

file.

To continue, click Next.

Welcome to the Create LDF

This wizard WI" guide you through the creation of a new LDF

I_N.ext ¥

l [ lEanceI I | Help ]
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™
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T2) Header Fies

B ‘ﬂ Project

[Targei: ADSP-2199 Simubation .. [Project; coded] - [linasm}. - |,
Ragklor_Marery Dot Satnas Tools Wi e

2 o H RT
V;Dehu -
i er AR &
finciude <def2181 hy reseation b ~
#define taps 15
fdefine taps_ .l.ass cme 14
.smotion/dn dm_da Sezecricn B :
(varscirc datal] bu[f:r[taps] H Omodats balbes w0 Wbdma R
.section-pn pm_data; Mgl
.varscircs/init2d cosfficient[taps] - 'cosfi day'; Mgl
‘smction pm interrupts; <rvection C
start L Mieq2
jump main; rti; rti;rti; - M0xH00L “reset wectords + J Nige
rii: rti: ti <w DRONGq - UTRCD e + 2] Nagd
Bei: Ttii THil % dx00US CIRALL 5 v 1 Wi
rti: rei; rei: rti; %, QuD00o ;- TRGLE = i J Bprdor,
Corei; rti; rei; Tt o Dxnnla <EPIRTN tranznit = ; e
junp fir_start: rti; TRi: wti: /» DxCO14: SED remivs 0 + ] Wreset
.orki; rEi: rei; rti: - fJxJDls ‘IRUGLE ®- + 21 MspoiQiecy
rei; rti; yti; rei: e axbile "ﬁlw.\ * . TsporiDxmi
TEi: xti: wei) wei v 022020 - IRaL . j ryiponGuend
rti; ati; rti; rti: B R E LT R IR
Tbi: rbti: rti; xti; o iR + ] dalal
rei; rii: rki: wbi: power dowen(am =hte, + 1] dataz
sacnnn/pn pr_code; + 1] pragram
I.D-.I.amgt'h (data_buffer):
SN osetap oresular bufisr
.l(-langth(mcffi:ienb), ghap sirsulaxy bl (o
a= s2 modifyrl for sherenent
nd=1; ## through buifers n”
i0= data _buffer; ‘4 point Lo stavs of hlfr.s" -
id=coafficient: ’n ;D\r.t ta star: of baliep o
_ax0=0; " .
catr lenqlh(dala b\aifer]_ A <
. » h

Step-9(After t‘h'a't, above screen will appear just go on clicking as per code and then above

screen will appeﬁr with assembly linker for ASM files)

£dd File(s) to Projact...

Chose
Project Options...

w Adow Docking
ide

Float In Main Window

Properties...

G "
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vl 1) 00 g e
7 S x Finclude <def2181.hy  “Fra |iid
ol — ddefine taps }5 .
leectnlow 1p|uea{s] fdefine taps_less_one 14 :
- [y codet _section/dm dn_data; o/ Input Sections
‘var/circ data bul[:r[tap&] + ] Wbdma
+ ] Souce Fles
= .section/pn pn_data; + ) vig0
| + J Unke: Fies ‘varseircs/init2d coefficier + 3 g
Y | Headei Files section/pm interrupts; -z A
start: + ) Wig2
/1 jurp main: rti: rti:rti:. =l +. ) Mige
rti; rti: rti: rti; ol + ] Nigh
rti; rti; rei; rti; *
rti: rti; rea; rti; ” i J g
rti: rti; rki; rti; * + 3 Mpandvn
Jump hr start; rti; rti; + ] Meset
rti; rti; rti: rti; * + -] Mipoitliecy
rti; 1|.1 rti; rti; » E
rti; rti; rti; rti; I : j mpmtﬂwri
rti; rti; rti; rti; " o net
rti; rti; rti; rti: . + ] datal
rti; rti; rti; rti: s + ] data2
sectien/pa pm_code: S + ] dm_dela
nain: g
10=length (data_buffer): + ) intemupls
4 setup circular bufiel ]— + -] pin_code
14= 1ength(ooe[hclent) + 2] pm_data
n0=1 redi i) L .
adel’ th: 3h
i0= data_buffer:
id=coefficient: s opear
ax0=0: v 7
= cnty = length(data buffer);Y ¥
.M Project < IS ¢
' ' ! el
d Sattanes v ecktoplchy Ld
PR E)
T T T Mook 5307 - lic

Step-10(Now right click to build project and then it will show that load is complete or not or

it may have errors or not)

Al : ak? ® [!‘
: codel Vo oEnRg it
| B # ) Run To Cursor . CuhFi10
Iy "¢ !
| | j x { #inc [ Step Into Fi1 [iRanerEnih f %
| ; caci | #det y bz s e
S/ 5 P:Dlec!qaqx1plu:erl[=] | tdef | v Input Sections:
{ - in codel S25C 4 st = o
| + () Souce Files ::;%‘ ® v M D,,
+ (J Linker Files il et (000002 , :]] s
() Header Files .sec [N0a60%]
Multiprocessor »
star (000604 e T
Jumg (000605 ] + =] Mige
rti; : 0000023 + ] M
rti; rEi; riit Tl T [ ! ¥ 3 WMigh
rti; rti; rii; rta; P [oong S iy
Tti: rti; xii; xti; /n [naogns + 1) Mpwdwen
Jump t:r start; rti; rti; r [ODuuUe + =] Meset
rti: rei; rti; rei; 4 [00000AT + 1 Mspoitiecy
rEil Ttil Tti: Tti: S GO0GIE] 1 MspoitOxmit
rti; rti; rti: rti: o EU‘E;H[;& 5 : j Nl‘i::( "
rti; rti; rti: rti: S - 2
rti; rti; rti: rti: ox [oooooeny + 11 datal
rti; rti; rti; rti; P [0aanoE? + ] dala2
.section/pm pm_code: Sk [ljlﬂﬂl’lﬂﬁ'_ + 7 dm_data
main: [O0A510] BN
10=length (data_buffer); [o0O011) 12l gt
s# getnp clrcular buffsr le (oonns 2} + 2 pm_code
l4=length{coefficient); /%= 4 + ] pm_data
| m0=1: sx modify=1 + ] plogiam
[oomd=1; /% through b
i0= data_buffer: " [DUu[Ill_‘
id=coefficient: A% poir [ooania]
ax0=0; [000017]
= cntr = length(data buffer); ™ »
.p\rProjEl:t X < > <

Step-11(Finally we can run the project from Debug option)

5.3 Implementing Algorithms on a Hardware Platform:

j So far, we have described the physical architecture of the DSP processor, explained how
DSP can provide some advantages over traditionally analog circuitry, and examined
digital filtering, showing how the programmable nature of DSP lends itself to such

algorithms. Now we look at the process of implementing a finite-impulse- 1;esponse (FIR)
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filter algorithm on a hardware platform, the ADSP- 2181 EZ-Kit Lite&tm;. The

implementation is expanded to handle data I/O issues.
USING DIGITAL FILTERS:

Many of the architectural features of the DSP, such as the ability to perform iero-
overhead loops, and to fetch two data values in a single processor cycle, will be useful in
implementing this filter. Reviewing briefly, an FIR filter is an all-zeros filter that is
| calculated by convolving an input data-point series with filter coefficients. Its governing

equation and direct-form representation are shown in Figure 1.

@-\'[n N2 =) N(n-N+2)
e h{N-2} h{N-1)
/”/'f"f
A N-1
OUFPUT y{n)= E h(m)x(n-m)

m=0

IMrect forma FIR filter structure

In this structure, each "z " box represents a single increment of histdry of the input data
in z-transform notation. Each of the successively delayed samples is mulﬁplied by the
appropriate coefficient value, h(m), and the resulfs, added together, generate a single
value repres_enting the output corresponding to the nth input sample. The number of delay
elements, or filter taps, and thejr coefficient values, determine the filter’s performance,
The filter structure suggests the physical elements needed to implement this algorithm by
computation using a DSP. For the computation itself, each output sample requires a
| number of multip_iy-accumulate operations equal to the length of the filter. The delay line
for input data and the coefficient value list require re;erved areas of memory in the DSP
for storing data values and coefficients. The DSP’s enhanced Harvard architecture lets
programmers store data in Program Memory as well as'in Data Memory, and thus

perform two simultaneous memory accesses in every cycle from the DSP’s internal
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SRAM. With Data Memory holding the incoming samples, and Program Memory storing
the coefficient values, both a data value and a coefficient value can be fetched in a single

cycle for computation.

This DSP architecture favors programs that use circular buffering. The implication is that
address pointers need to be initialized only at the beginning of the program, and the
circular buffering mechanism ensures that the pointer does not leave the bounds of its
assigned memory buffer—a capability used extensively in the FIR filter code for both
input delay line and coefficients. Once the elements of the program have been

determined, the next step is to develop the DSP source code to implement the algorithm.

DEVELOPING DSP SOFTWARE:

Software development flow for the ADSP-2100 Family consists of the following steps:
architecture description, source-code generation, software -validation (debugging), and

hardware implementation. Figure 2 shows a typical development cycle.

GENERATE
ARCHITECTURE
DESCRIPTION ARCHITECTURE
DESCRIPTION

VERIFICATION,

- Software development flow
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Source-code generation:

Moving from theory into practice, this step—where an algorithmic idea is turned into

code that runs on the DSP—is often the most fime—consuming step in the process. There
are several ways to generate source c_ode. Some programmers prefer to code their
algorithms' in a high-level language such as C; others prefer to use the processor’s native
assembly language. Implementations in C may be faster for the programmer to develop,
but compiled DSP code lacks efficiency by not taking full advantage of a processor’s

architecture.

Assembly code, by taking full advantage of a processor’s design, yields highly efficient
implementations. But the programmer needs to become familiar with the processor’s

native assembly language. Most effective is combining C for high-level program-control

functions and assembly code for the time-critical, math-intensive portions of the system.

In any case, the programmer must be aware of the processor’s system constraints and
y prog y _

peripheral specifics. The FIR filter system example in this article uses the native assembly

language of the ADSP-2100 Family.
Software validation ("'debugging'):

This phase tests the results- of code generation—using a software tool known as a
simulator— to check the logical flow of the program and verify that an algorithm is
performing as intended. The simulator is a model of the DSP processor that a) proVides_
visibility into all memory locations and processor registers, b) allows the user to run the

DSP code either continuously or one instruction at a time, and c¢) can simulate external

devices feeding data to the processor.

.

Hardware implementation:

Here the code is run on a real DSP, typically in several phases: a) tryout on an evaluation
platform such as EZ-Kit Lite;. b) in-circuit emulation, and c) p'roduction ROM generation.
Tryout provides a quick go/no-go detefmination -of the program’s operation; this
technique is the implementatibn method used in this article. In-circuit emulation monitors

software debug in the system, where a-tool such as an EZ-ICE™ conirols processor
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operation on the target platform. After all debug is complete, a boot ROM of the final

code can be generated; it serves as the final production implementation.
GENERATING FILTER CODE:

The code is augmented to incorporate some EZ-Kit Lite-specific features, specifically

“codec initialization and data I/O. The core filter-algorithm elements (multiply-

accumulates, data addressing using circular buffers for both data and coefficients, and

reliance on the efficiency of the zero-overhead loop) do not change.

The incoming data will be sampled using the on-board AD1847 codec, which has
programmable sampling rate, input gain, output attenuation, input selection, and input
mixing. Its programmable nature makes the system flexible, but it also adds a task of

programming to initialize it for the DSP system.

ACCESSING DATA:

_For this example, a series of control words to the codec—to be defined at the beginning

of the program in the first section of the listing—will initialize it for an 8-kHz sampling

-rate, with moderate gain values on each of the input channels. Since the AD1847 is

programmable, users would typically reuse interface and initialization code segments,
changing only the specific register values for different applications. This example will
add the specific filter segmént to an existing code segment found in the EZ-Kit Lite

software.

This interface code declares two areas in memory to be used for data I/0Q: "tx_buf", for
data to be transmitted out of the codec, and "rx_buf", where incoming data is received.

Each of these memory dreas, or buffers, contains three elements, a control or status w'ord,

- left-channel data, and right-channel data. For each sample pcfiod, the DSP will receive

from the codec a status word, leﬂ chénnel data, and right channel data. On every sample
period, the DSP must supply to the codec a transmit control ‘\Ndrd, left channel data, and
right channel data. In this application, the control information sent to the codec will not
be altered, so the first word in the transmit data buffer will be left as is. We will assume
that the source is a monophonic microphone, using the right channel (no concern about

leftfchannel input data).
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Using the I/O shell program found in the‘EZ-Kit Lite software, we need only be involved
with the section of code labeled "input_samples". This section of code is accessed when
new data is received from the codec ready to be processed. If only the right channel data
is required, we need to read the data located in data memory at location rx_buf + 2, and

place it in a data register to be fed into the filter program.

The data arriving from the codec needs to be fed into the filter algorithm via the input
delay line, using the circular buffering capability of the ADSP-2181. The length of the
input delay line is determined by the number of coefficients used for the filter. Because
the data buffer is circular, the oldest data value in the buffer will be wherever the pointer
is pointing after the last filter ﬁcéess. Likewise the coefficients, always accessed in the
same order every time through the filter, are placed in a circular buffer in Program

Memory.

Algorithm ‘
To operate on the received data, the code section published in the last installment can be

used with few modifications. To implement this filter, we need to use the

multiply/accumulate (MAC) computational unit and the data address-generators.

The ADSP-2181’s MAC stores the result in a 40-bit register (32 bits for the product of 2
' 16-bit words, and 8 bits to allow the sum to éxpand without overflowing). This allows
intermediate ﬁltér values to grow and shrink as necessary without corrupting data. The
code segment being used is generic (i.e., éan be used for any length filters); so the MAC’s

extra output bits allow arbitrary filters with unknown data to be run with little fear of

losing data.

To implement the FIR filter, the multiply/accumulate operation is repeated for all taps of

the filter on each data point. To.do this (and be reédy for the next data point), the MAC

instruction is written in .the form of a loop. The ADSP-21xx’s zero-overhead loop
capability allows the MAC instruction to be repeated for a-specified number of c.ounts
without programming intervention. A counter is set to the number of taps minus one, and
the loop mechanism automatically decrements the counter for each loop operation.

Setting the loop counter to "taps—1" ensures that the data pointers end up in the correct

location after execution is finished and allows the final MAC operation to include

rounding. As the ADI847 is a 16-bit codec, the MAC with rounding provides a
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As the filter code is executed for each input data sample, the output of the MAC loop will

statistically unbiased result rounded to the nearest 16-bit value. This final result is written

to the codec.

For optimal code execution, every instruction cycle should perform a meaningful H
1
H

mathematical calculation. The ADSP-21xxs accomplish this with multi-function

instructions: the processor can perform several functions in the same instruction cycle.
For the FIR filter code, each multiply-accumulate (MAC) operation can be performed in
parallel with two data accesses, one from Data Memory, one from Program Mer'nofy. This
capability means that on every loop iteration a MAC operation is being performed. At the
same time, the next data value and coefficient are being fetched, and the counter is

automatically decremented. All without wasting time maintaining loops.

be written to the output data buffer, tx_buf. Although this program only deals with single-
channel input data, the result will be written out to both channels by writing to memory

¥
buffer addresses tx_buf+1 and tx_buf+2. : ' %

input samples:

ena sec_reg; /* use shadow register bank */

/* set up for filter 1 */ |

i2 = dm(filterl ptr); /* set data pointer for filter 1

)

ax0 = dm(rx_buf + 1); = /* read left channel data */ i
dm{i2,ml) = ax0; /* write new data into delay line, |

N pointer now pointing to oldest data
C o/ R '
call filtexr; - /* perform the first filter for left
Channel data */ o |
dm(tx_buf+1.) = mrl; V/* write left—channél output data */
dm{filterl_ptr) = 12; /* save updated filterl data

pointer */




/* set up for filter 2 */

i2 = dm(fi_lterZﬁptr).; /* set data pointer for filter 2
*/

ax0 = dm(rx buf + 2); /* read right channel data */
dm{i2,ml) = ax0; /* write new data into delay line,

Pointer now pointing to oldest

data */

Call filter: /* perform the filter again for the
Right channel data */

dm(tx buf+2) = mrl;/* write right channel output data */
dm(filter2 ptr) = i2; /* save updated filter?2 data

pointer */

rti; : /* return from interrupt */

The final source code listing is shown as above. The filter algorithm itself is listed under
"Interrupt service routines”. The rest of the code is used for codec and DSP initialization
and interrupt service routine definition. Those topics will be explored in future

installments of this series.

The following listing shows how the FIR Filter interrupt routine uses these new memory

elements. The original Filter subroutine from the 3rd installment has been modified to

"provide two separate éhannels of filtering. Instead of launching directly into the filter

calculation, the routine must first load the appropriate. data pointer. The filter routine is
then called, and the resulting output is placed in the correct location for transmission.

-1

Because the core filter algorithm no longer handles data 1/0, this subroutine can be
expanded to more channels -of filtering l':)y- merely adding more pointer variables and
declaring more buffer space (as long as sufficient memory exists!) Similarl'y, different
coefficients can be used for the two filters by setting up variables that contain coefficient-

buffer pointer information. In either case, the filter algorithm does not need to be altered.
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By using this style of modular programming, the user can build up a library of callable
DSP functions. Differences for particular systems can thus be reduced to data-handling

issues rather than the development of new algorithms. While this programming style does

T,

not necessarily allow the algorithm to perform its task more quickly, the system designer

has more flexibility in establishing how data flows through the system.

#include <def2181.h> /fsection A
#define taps 15

#define taps_less_one 14

.section/dm dfn;data; l/éection B
var/circ data_buffer[taps]; /* dm data buffer */
.section/pm pm_data;

var/circ/init24 coefficient[taps] = 'coeff.dat’;
section/pm interrupts; ~ Jisection C /
start:

! jump main: rti; rti:rti:/*0x0000:~reset vector*/ 1

rti rti: rti; rti; /* 0x0004:~IRQ2 */

rti; rti; rti; rﬁ; A 0x0008:~IRQL1 */

i, it rti; o,/ 0x000G:~IRQLO */

rti; rti; rti; rti; f* 0x0010:~SPORTO transmit */

jump fir_start; rti; rti; rti; ~ /* 0x0014: SPORTO receive */

i ot i rti; 0x0018:~IRQLE *

lrti; rti; rti; rti; /* 0x001c:~BDMA */ -

ittt 6, /" 0x0020:~SPORTA transmit or IRQ1 */
} fh; of ot i 0x0024:~SPORTO transmit or IRQO */ | |
'? Tti: ot rt.i-; i * 0x0028: timer */

rti; rti; rti; rti; ~ * 0x002c: power down(non maskable) */




.section/pm pm_code, {/section D

main:

1 |0=length (data_buffer);
/* setup circular buffer length */
l4=length(coefficient); /*setup circular 'buffer*/
m0=1; /* modify=1 for incremént */
m4=1; /* through buffers */
0= .drata_buffer; | /* point to start of buffer */

i4=coefficient; {* point to start of buffer */

ax0=0;

cntr = length{data_buffer); -

/* initialize loop counter */
do clear until ce;

clear ; dm(i0,m0) = ax0;  /* clear data buffer */

B T DB A R T O P Ay %

/* setup divide value for 8 KHz RFS */
' ax0 = 0x00c0; // section E i
dm(Sport0_Rfsdiv) = ax0; | : ' 3

/* 1.5385 MHz internal serial clock */

ax0= 0x000; | - 1
dm(Sport0_Sclkdiv) =ax0; :

/* multichannel disabled,internally generated sclk, recieve frame sync required,
receive width = 0,transmit frame sync,internal recieve frame sync, u-law '
companding, 8-bit words */ '

ax0=0x69b7;
dm(Sport0_Ctrl_Req) =ax0;

ax0 = 0x1000; /* enable sport0 */
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T
dm(Sys_Ctrl_Reqg) = ax0;
N -icntl = 0x00; /* disable inter_rupt nesting */ |
1 imask = 0x0060; i'
| /* enable SportO, rx and tx interrupts orﬂy * {
mainioop: ' _ - s
idle; /* wait here for interrupt */ | 5
jump mainloop; /* jump back to idle after rti */
fir_étart:
:
si = rx0; * read from sport0 */
-dm(i0,m0) = si; ' /* transfer data to buffer */
mr =‘O,myO = pm(i4,m4),mx0 ='dm(i0,m0); ;
*setup muitiplier for loop */ ii]
| cntr = taps_less_one; ‘/*perform loop taps-1 times */ ' J ‘
! do convdiution until ce;
convolution:
mr = my + mx0 * myO(ss),’myO = pm(i4,m4),mx0= dm(i0,m0); -
/* perform MAC and fetch next values */ | : ? '
mr =mr+ mx0 * myO0 (rnd), | t
_/*Nth pass of Ioép with rounding of result */ %
if mv sat rﬁ'r; '
tx0. = mr1; I wfite result to sportQ tx */
rti; [ return from fnterrupt *
%

The primary data flows into and out of a.digital signal processor can be both parallel and

serial. Parallel transfers are typically at least as wide as the native data word of the
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processor's architecture, i.e.,16 bits for an ADSP-2100 Family processor, 32 bits for the

SHARC. Parallel transfers occur via the external memory bus or external host interface

% bus of the processor. Serial data transfers require considerably fewer interconnections;

they are frequently used to communicate with data converters.

‘Serial Interface: Easer of hardware interfacing is an important element of efficient DSP
system implemehtation. The ADSP-2181 EZ-Kit Lite system uses an ADI1847 serial
codec (Coder/Decoder). Serial codec pefmit data transfers via a serial port (SPORT) on
the DSP. This éerial port is not an RS-232 PC-style asynchronous serial port; it is a 5~wire
synchronous interface that passés bit-clock, Receive-data, Transmit-data, and frame-
synchronization signals. Major-beneﬁts of serial interfaces are low pin count and ease of
hardware hookup. The AD1847 requires only 4 signals to interface to the DSPV: serial
clock, Receive data, Transmit data, and Recei_ve frame-synchronization signal; The serial
data stream is time-division niultiplexed (TDM), meaning that the same physical line can:
carry more than one type of information in serial order. In the case of the AD1847

“application on EZ-Kit Lite, initiated in the last issue, the serial line carries both left- and

right-channe] audio information, along with codec control and status information.

IRESET |——— FO
. SDI f——————{ DT0

. 8DO————m{DRO
SDFS ] RFS0
 SCLK [————m{ SCLK

+5V
m—T
AD1847 ADSP-218x
. SOUNDPORT 16-BIT DSP
STEREO CODEC

Serial interfacing between
digital signal processor and /O device

-

As noted earlier, the processor has various means for handling this data. SPORT
Interrupts are generated automatically by the serial port hardware for either Receive or

Transmit data and for either a.single word or a block of words.
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5.4 Analog measurements on a DSP system.

For just a few moments, forget that you are studying digital techniques. Let's take a look

——

at this from the standpoint of an engineer that specializes in analog electronics. He doesn't
care what is inside of the EZ-KIT Lite, only that it has an analog input and an analog

output.

: . ' Oscilloseapy
Stgnal Generatoy it

)

input s o output
% LZ-KIT ,
e - . -

|

Testing the EZ-KIT Lite. Analog engineers test the performance of a system by connecting a signal
" generator to its input, and an oscilloscope to its olltpui. When a DSP system (such as the EZ-KIT

Lite) is tested in this way, it appesrs to be a virtually perfect analog system

_ AS in figure the traditional analog method of analyzing a "black box,"
attach a signal generator to the input, and look at the output on an oscilloscope. First, the
system is linear (as least as far as this simple test can tell). If a sine wave is placed into
the input, a sine wave is observed on the output. If the amplitude or frequency of the input
is éhanged,' a corresponding change is seen in the output. When the input'frequency is

.slowly increased, there cbmés a point where the amplitude'of the output sine wave
decreases rapidly to zero. That occurs just below one-half the sampl'ing rate, due to the
.action of the anti-alias filter on the ADC. Now our engineer notices something unknown

in the ahalog world: the system has a perfect linear phase.
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Figure 2 . Response of ADPCM

Figure 3. Response of FIR Filter
at 130 Hz.

Figure 4. Response of FIR Filter
At 140 Hz.
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Figure 5. Response of FIR Filter
At 150 Hz.

In other words, there is a constant delay
between an event occurring in the input signal, and the result of that event in the output
signal. Since the center of symmetry is at sample 150, the output signal will be delayed by
150 samples relative to the input signal. If the system is sampling at 8 kHz, for example,
this delay will be 18.75 milliseconds. In addition, the sigma-delta converter will also

provide a small additional fixed delay.

(i}




Conclusion:-

In other words, the device being evaluated is one-hundred times more
precise than the measurement tool being used. A proper evaluation of the
frequency response would require a specialized instrument, such as a
computerized data acquisition system with a 20 bit ADC. It is not surprising
that DSPs are often used in measurement instruments to achieve high
precision.

Only a decade ago, state-of-the-airt'signal processing was carried out with

precision op amps and similar transistor circuits. Today, the highest quality
analog processing is accomplished with digital techniques. It was nice
experience to work on ADSP-2181 and enhance our technological
knowledge. ' '
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