P e R

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. -< PO2o Zlcall Num:
General Guidelines:

¢ Library books should be used with great care.
¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead

to disciplinary action.

& Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

@ The loss of LRC book(s) must be immediately

brought to the notice of the Librarian in writing.

|
|
!
|
|
I
{
}
|
A

il

I

SP02034

Learning Resource Centre-JUIT

NI

P

TP o g

|
i
!

SERIAL PORT
COMMUNICATION WITH
AVR 8535-8 BIT MICROCONTROLLER

BY

AMIT MAGO-021072
PRAMOD KUMAR-021033
PRAVEEN KR. GUPTA-021061
ARVIND GUPTA-021098
SHAUNAK VYAS -021064

JAYPEE UNIVERSITY OF
INFORMATION T ECHNULOGY

MAY- 2006

Submitted in partial fulfillment of the requirements
of the degree of Bachelor of Technology

DEPARTMENT OF ELECTRONICS &
COMMUNICATION
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY — WAKNAGHAT

e B

CERTIFICATE

This is to certify that the work entitled, “SERIAL PORT
COMMUNICATION WITH AVR 8535-8 BIT
MICROCONTROLLER?” submitted by Amit Mago (02]0';’2), Pramod
Kumar (021033), Praveen Kr. Gupta (021061), Arvind Kumar (021098),
and Shaunak R. Vyas (021064) in partial fulfillment for the award of
degree of Bachelor of Technology iﬁ May 2006 of Jaypee University
of Information Technology has beel-l‘carried out under my supervision.
This work has not been submitted partially or Wholly to any other
University or Institute for the award of this or any other degree or

diploma.

‘\J_\MJ P B

Sr.Lecturer, Dept. of ECE

ACKNOWLEDGMENT

The team wishes to express their sincere appreciation for Mr. Vivek Sehgal,
Lecturer, Dept. of Electronics & Communication Engineering for his
guidance and whose familiarity with the needs and ideas of this topic was
helpful during the programming phase of the project “SERIAL PORT
COMMUNICATION WITH AVR 8535-8 BIT
MICROCONTROLLER”. We are also grateful to Prof. S. V. Bhooshan,

H.0.D, Dept. of ECE, for giving us an opportunity to undertake this project.

TABLE OF CONTENTS

ABSTRACT .. cooveoveeesessesesseeeeeeevesssemmmessessssseme s esssssessseesmessinsnen 7
1. INTRODUCTION ...ttt eee e 8
2. WHY NOT ARMcoooooveoeeeeoeeeeeoseeeseoereesesessseeeesmsssssssessssoesoeee 10
2.1 ATmega8535. ..o 10
3, PIN DESCRIPTIONS ..ot 14
4. AVR ARCHITECTURE.eooiiieiieeoeeees e 16
5. ALU — AIRTHMETIC LOGIC UNIT.......c.ooiveeeerareenn., 19
5.1 STATUS REGISTERcoeiieeeereeeeeeeeeeena . 20
5.2 STACK POINTEReveeverieeee e, 21
6. AVR ATMEGAB8535 MEMORIES...........ccovevveeeenensn, 22
6.1 PROGRAM MEMORYooouieeeieeerreeeneenanen, 22
6.2 SRAM DATA MEMORYoooeoviiieiiineeisinin e 23
6.3 EEPROM DATA MEMEORYcccoorviiiiannranran, 24
T INTERRUPTS ... oeeeee e eeeeeeee e et eeee e eeee e 25
8. INSTRUCTION SET NOMENCLATUREcccccvven... 26
9. VO REGISTERS.vovvvviereertreeeieeueeeteeeseseceeeneenenns 27
10. INSTRUCTION SET SUMMARYoovvviriviiriisanaineannns 29
11 MAX 232N et s 34
12. CODE vt e ettt ettt e e ee e ene e 36
13. SERIAL PORT COMMUNICATION........cc0eoevrerrcnienenn, 46
14, SNAPSHOTS...cee oo 49

15. BIBLOGRAPHY ... 51

LIST OF FIGURES

1. PINOUT ATMEGA B3 . ittt iiiieiiiriisesreairirarassensm 12
2. BLOCK DIAGRAM OF ATMEGABS 3. ... i iieceiiie es 13.
3. BLOCK DIAGRAM OF AVR ARCHITECTURS........covinnn, 18
4, STATUS REGISTER . ..ottt i et i e e 19
5. STACK POINTER i e e e 21
0. PROGRAM MEMO R Y ..ottt 22
F. DA T A MEMO R Y it e e et eenens 23
8. LOGICAL DIAGRAM OF MAX232N.. i 34
10. TYPICAL OPERATING CIRCIUT OF MAX232N........ccvuveen. 35
11. SCREEN SHOT OF SERIAL PORT COMMUNICATION........ 48
N N T 5 (0 1 T 49

LIST OF ABBREVIATIONS

-

RISC- Reduced Instruction Set Computing

CISC- Complex Instruction Set Computing

ARM-Acorn RISC Machine

ALU-Arithmetic Logical Unit.

EEPROM- Electrically Erasable Program Read Only Memory
SRAM- Static Random Access Memory

SP- Stack Pointer.

SPL- Stack Pointer Low.

SPH- Stack Pointer High.

UART- Universal Asynchronous Receiver Transmitter

ABSTRACT

The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the
AVR enhanced RISC architecture having 8K Bytes in-system '
programmable flash. By executing instructions in a single clock cycle, the
ATmega8535 achieves throughputs approaching 1 MIPS per MHz allowing
the system designer to optimize power consumption versus processing
speed. In this project we have used ATmega8535 Microcontroller to build a
robot car capable of moving in all the directions.At its simplest, a robot is
machine that can be programmed to perform a variety of jobs, which usually
involve moving or handling objects. Robots can range from simple
machines to highly complex, computer-controlled devices. We have shown

that it is possible to make a robot in low cost if selection of microcontroller

18 done properly as we did in this project.

CHAPTER 1. INTRODUCTION

The AVRs are a family of RISC microcontrollers from Atmel. Their internal
architecture was conceived by two students: Alf-Egil Bogen and Vergard
Wollan, at the Norwegian Institute of Technology (NTH) and further -
developed at Atmel Norway, a subsidiary founded by the two architects.

The AVR.is a Harvard architecture machine with programs and data
stored separately. Program instructions are stored in semi-permanent Flash
memory which loads and manipulates data in the volatile SRAM. The AVRs

have thirty-two single-byte registers.

The term Marvard architecture originally referred to computer
architectures that used physically separate storage and signal pathways for
their instructions and data (in contrast to the von Neumann architecture).
The term originated from the Harvard Mark I relay-based computer, which
stored instructions on punched tape (24-bits wide) and data in relay latches
(23-digits wide). These early machines had very limited data storage,
entirely contained within the data processing unit, and provided no access to
the instruction storage as data (making loading, modifying, etc. of programs

entirely an oftline process).

In a computer with von Neumann architecture, the CPU can be either
reading an instruction or reading/writing data from/to the memory. Both
cannot occur at the same time since the instructions and data use the same
signal pathways and memory. In a computer with Harvard architecture, the
CPU can read both an instruction and data from memory at the same time. A
computer with Harvard architecture can be faster because it is able to feich
the next instruction at the same time it completes the current instruction.

Speed is gained at the expense of more complex electrical circuitry.

Modern high performance CPU chip designs incorporate aspects of both

Harvard and von Neumann architecture. On chip cache memory is divided

into an instruction cache and a data cache. Harvard architecture is used as
the CPU accesses the .cache. In the case of a cache miss, however, the data is
retrieved from the main memory, which is not divided into separate
instruction and data sections. Thus von Neumann architecture is used for off

chip memory access.

Harvard architectures are also frequently used in specialized DSPs, or digital

signal processors, commonlty used in audio or video processing products.

CHAPTER 2. WHY NOT ARM?

ARM processors are characterized by having small amounts of program and
data memory, and take advantage of the Harvard architecture and reduced
instruction set (RISC) to ensure that most instructions can be executed
within only one machine cycle. The separate storage means the program and
data memories can be in different bit depths. For example, the PIC
microcontrollers have an 8-bit data word but (depending on specific range of
PICs) a 12-bit, 14-bit, or 16-bit program word. This allows a single
instruction to contain a full-size data constant. Other RISC architectures,
like the ARM, typically have to use at least two instructions to load a full-

size constant.

2.1 ATmega8535

The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the
AVR enhanced RISC architecture. By executing instructions in a single
clock cycle, using RISC architecture. By executing instructions in a single
clock cycle, the ATmega8535 achieves throughputs approaching 1 MIPS
per MHz allowing the system designer to optimize power consumption

versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose
working registers. All 32 registers are directly connected to the Arithmetic
Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is
more code efficient while achieving throughputs up to ten times faster than

conventional CISC microcontrollers.

The ATmega8535 provides the following features: 8K bytes of In-System
Programmable Flash with Read-While-Write capabilities, 512 bytes

10

EEPROM, 512 bytes SRAM, 32 general purpose I/O lines, 32 general
purpose working registers, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, a
byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with
optional differential input stage with programmable gain in TQFP package,
a programmable Watchdog Timer with Internal Oscillator, an SPI serial
port, and six software selectable power saving modes. The Idle mode stops
the CPU while allowing the SRAM; Timer/Counters, SPI port, and interrupt

system to continue functioning.

The Power-down mode saves the register contents but freezes the Oscillator,
disabling all other chip functions until the next interrupt or Hardware Reset.
In Power-save mode, the asynchronous timer continues to run, allowing the
user to maintain a timer base while the rest of the device is sleeping. The
ADC Noise Reduction mode stops the CPU and all /O modules except
asynchronous timer and ADC, to minimize switching noise during ADC
conversions. In Standby mode, the crystal/resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up
combined with low-power consumption. In Extended Standby mode, both

the main QOscillator and the asynchronous timer continue to run.

The device is manufactured using Atmel’s high density nonvolatile memory
technology. The On-chip ISP Flash allows the program memory to be
reprogrammed In-System through an SPI serial interface, by a conventional
nonvolatile memory programmer, or by an On-chip Boot program running
on the AVR core. The boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot
Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit
RISC CPU with In-System Self-Programmable Flash on a monolithic chip,

11

the Atmel ATmega8535 is a powerful microcontroller that provides a highly

flexible and cost effective solution to many embedded control applications.
The ATmega8535 AVR is supported with a full suite of program and system

development tools including: C compilers, macro assemblers, program

debugger/simulators, In-Circuit Emulators, and evaluation kits.

Flgure 1. Pinout ATmegaBb35

PP

NCKTa) PER I 1 40 [PAB {ADCO)
15120 = F] & B FAY (ADCY)
{INTUANG) PB2 PA2 {ADCY)
{OCOrAMY) PB3 [FAZ {ADCY)
(531 P4 PM {ATCY)
ovogt pes I &] FAS (ADCS)
MEQ)PES Y 7 FAG (ADCE)
{B0K] PBY AT $ADCT)
AREF
yiC GND
\ gNE 1 AVCC
/ Il g2 PCT (FOBCY
YL 13 PCE {FOBC)
(RXD) FOO I 14 PGS
{TAD) FOH I 13 PC4
{INT; FO2 Y 18 25 | Pl
{NTH POI LS 1T PC2

BCA PRSI 19 22 [PCB i80L)-
21 B FO7 00

12

Figure 2. Block Dlagram
Paa-Far P, PG
Ven
l__ AR RERYER R
RORTA CANERABUFFERS PORTC ORYERSBUFFERS
aHe PORTAQRTAL NTEFFACE l PORTE DIGITAL INTERFACE
’/\ "1'30& _'I w8 ek T §
O E—— _ _
i
T T] o o oo [
I T
4 i
e -1 Shad ki
)|
l 1 Xl b
il L e W_ﬁ-&)&] CSLLLATCR =
FEGISTER
1 — ,|, Yle d
WSTRLCTION | | oy MLIR 54
MR
{ INTERAL
g S
T ;
wacry [e Lid Lod e
g o
s |
P CORT.
e WERFACE
A N
— —
PORTE DRITAL NTERFACE ' PORSO IGITAL INT ERFACE
PORTE CRVERSBUFFERS SORTDOAVERSBAFFERS
Pan. PBy P PO7
BLOCK DIAGRAM OF ATMEGA 8535
13

CHAPTER 3. PIN DESCRIPTIONS

vVCC Digital supply voltage.
GND Ground.
Port A (PAT...PAD) Port A serves as the analog inputs to the A/D

Converter. Port A also serves as an 8-bit bi-directional /O pout, if the A/D
Converter is not used. Port pins can provide internal pull-up resistors
(selected for each bit). The Port A output buffers have symmetrical drive
characteristics with both high sink and source capability. When pins PAO to
PA7 are used as inputs and are externally pulled low, they will source
current if the internal pull-up resistors are activated. The Port A pins are tri-
stated when a reset condition becomes active, even if the clock is not

running.

Port B (PB7..PB0) Port B is an &-bit bi-directional I/O port with internal
pull-up resistors (selected for each bit). The Port B output buffers have
symmetrical drive characteristics with both high sink and source capability.
As inputs, Port B pins that are externally pulled low will source current if
the pull-up resistors are activated. The Port B pins are tri-stated when a reset

condition becomes active, even if the clock is not running,

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal
pull-up resistors (selected for each bit). The Port C output buffers have
symmetrical drive characteristics with both high sink and source capability.
As inputs, Port C pins that are externally pulled low will source current if
the pull-up resistors are activated. The Port C pins are tri- stated when a

reset condition becomes active, even if the clock is not running.

14

Port D (PD7...PD0) Port D is an 8-bit bi-directional I/O port with internal
pull-up resistors (setected for each bit). The Port D output buffers have
symmetrical drive characteristics with both high sink and source capability.
As inputs, Port D pins that are externally pulled low will source current if
the pull-up resistors are activated. The Port D pins are tri-stated when a reset

condition becomes active, even if the clock is not running,

RESET Reset input. A low level on this pin for longer than the minimum

pulse length will generate a reset, even if the clock is not running,.

XTALI1 Input to the inverting Oscillator amplifier and input to the internal

clock operating circuit.

XTAL2. Output from the inverting Oscillator amplifier

AVCC AVCC is the supply voltage pin for Port A and the A/D Converter.
It should be externally connected to VCC, even if the ADC is not used. If

the ADC is used, it should be connected to VCC through a low-pass filter.

AREF AREFF is the analog reference pin for the A/D Converter.

15

CHAPTER 4. AVR ARCHITECTURE

This section discusses the AVR core architecture in general. The main
function of the CPU core is to ensure correct program execution. The CPU
must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts. In order to maximize performance and
parallelism, kthe AVR uses Harvard architecture — with separate memories
and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being
executed, the next instruction is pre-fetched from the program memory. This
concept enables instructions to be executed in every clock cycle. The

program memory is In-System Re-Programmable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working
registers with a single clock cycle access time. This allows single-cycle
Arithmetic Logic Unit (ALU} operation. In a typical ALU operation, two
operands are output from the Register File, the operation is executed, and

the result is stored back in the Register File — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect addresses register
pointers for Data Space addressing — enabling efficient address calculations.
One of these address pointers can also be used as an address pointer for look
up tables in Flash program memory. These added function registers are the

16-bit X-, Y-, and Z-registers, described later in this section.

The ALU supports arithmetic and logic operations between registers or
between a constant and a register. Single register operations can also be
executed in the ALU. After an arithmetic operation, the Status Register is
updated to reflect information about the result of the operation. Program
flow is provided by conditional and unconditional jump and call

instructions, able to directly address the whole address space. Most AVR

16

e T Te T Y

instructions have a single 16-bit word format. Every program memory
address contains a 16- or 32-bit instruction. Program Flash memory space is
divided in two sections, the Boot Program section and the Application
Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application
Flash memory section must reside in the Boot Program section. During
interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data
SRAM, and consequently the Stack size is only limited by the total SRAM
size and the usage of the SRAM. All user programs must initialize the SP in
the reset routine (before subroutines or interrupts are executed). The Stack
Pointer SP is read/write accessible in the I/0O space. The data SRAM can
easily be accessed through the five different addressing modes supported in
the AVR architecture. The memory spaces in the AVR architecture are all
linear and regular memory maps. A flexible interrupt module has its control
registers in the I/O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher
the priority. The IO memory space contains 64 a'ddressés for CPU
peripheral functions as Control Registers, SPI, and other I/O functions. The
I/O Memory can be accessed directly, or as the Data Space locations

following those of the Register File, 0x20 - Ox5F.

17

BLOCK DIAGRAM AVR ARCHITECTURE

8-bit Data Bus

h 4

Program Status
Flash « Counter %7 and Control
Program
Memorry P
l Interrupt
- 32x8 Unit
Instruction Ganeral
Raglster Purposa SP|
T i Registrers Unit
¥
{nstruction Watchdog
Decoder Timer
o g2
é g Analog
Control Lines - Gomparator
2 =
3 £
3 =)
o = #0 Modulet
Ko Module 2
/O Module n

EEPROM

O Linas

18

i . OF

Bt 7 6 3 4 3 2 1 0 |
.+ | 7 | K | 8 | v | N | Zz | C | Shl

ReagWrte RW RW RW RW RW RW AW RW

Intial vaiug 0 0 0 0 0 0 0 0

CHAPTER 5. ALU - AIRTHMETIC LOGIC UNIT

The high-performance AVR ALU operates in direct connection with all the
32 general purpose working registers. Within a single clock cycle,
arithmetic operations between general purpose registers or between a
register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier

supporting both signed/unsigned multiplication and fractional format.

5.1 STATUS REGISTER

The Status Register contains information about the result of the most
recently executed arithmetic instruction. This information can be used for
altering program flow in order to perform conditional operations. Note that
the Status Register is updated after all ALU operations, as specified in the
Instruction Set Reference. This will, in many cases, remove the need for
using the dedicated compare instructions, resulting in faster and more
compact code. The Status Register is not automatically stored when entering
an interrupt routine and restored when returning from an interrupt. This
must be handled by software.

The AVR Status Register — SREG — is defined as:

19

* Bit 7 — I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled.

* Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-
bit as source or destination for the operated bit. A bit from a register in the
Register file can be copied into T by the BST instruction, and a bit in T can

be copied into a bit in a register in the Register File by the BLD instruction.

* Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations.

Half carry is useful in BCD arithmetic.

+Bit4 - S: Sign Bit, S=N @ V

The S-bit is always an exclusive or between the Negative Flag N and the
Two’s Complement Overflow Flag V.

* Bit 3 — V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement

arithmetic.

= Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic

operation.

* Bit 1 — Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

* Bit 0 — C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation.

20

e

5.2 STACK POINTER

The Stack is mainly used for storing temporary data, for storing local
variables and for storing return addresses after interrupts and subroutine
calls. The Stack Pointer Register always points to the top of the Stack. Note
that the Stack is implemented as growing from higher memory locations to
lower memory locations. This implies that a Stack PUSH command

decreases the Stack Pointer.

The AVR Stack Pointer is implemented as two 8-bit registers in the /O
space. The number of bits actually used is implementation dependent. Note
that the data space in some implementations of the AVR architecture is so

small that only SPL is needed. In this case, the SPH Register will not be

present.
Bit 15 14 13 12 11 10 9 Bl
z : - . - - SP9 SP8
ﬁ SP6 SP5 SPa SP3 5Pz SP1 srl
7] 3 4 3 2 1 0
Read/Writa AW R/W RW RW RW RW RW RW
AW RW R/W AW AW RW RW RW
Inttial valua o] 0 0 0 o] 0 o]
0 0 0 0 0 0 o

21

SPH
SPL

CHAPTER 6. AVR ATMEGAS8535 MEMORIES

This section describes the different memories in the ATmega8535. The
AVR architecture has two main memory spaces, the Program Memory and
the Data Memory space. In addition, the ATmega8535 features an
EEPROM Memory for data storage.

6.1 PROGRAM MEMORY

The ATmega8535 contains 8K bytes On-chip In-System Reprogrammable
Flash memory for program storage. Since all AVR instructions are 16 or 32
bits wide, the Flash is organized as 4K x 16. For software security, the Flash
Program memory space is divided into two sections, Boot Program section
and Application Program section. The Flash memory has an endurance of at
least 10,000 write/erase cycles. The ATmega8535 Program Counter (PC) is
12 bits wide, thus addressing the 4K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for
software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming”. “Memory Programming’contains a

detailed description on Flash Programming in SPI or Parallel Programming

Program Moemory Map

$000
" Applkeation Flash Saction
Boot Flash Sectton
$FFF
mode.
22

6.2 SRAM DATA MEMORY

The 608 Data Memory locations address the Register File, the I/O Memory,
and the internal data SRAM. The first 96 locations address the Register File
and /O Memory, and the next 512 locations address the internal data
SRAM. The five different addressing modes for the data memory cover:
Direct, Indirect with Displacement, Indirect, Indirect with Pre-decrement,
and Indirect with Post-increment. In the Register File, registers R26 to R31
feature the indirect addressing pointer registers. The direct addressing
reaches the entire data space. The Indirect with Displacement mode reaches
63 address locations from the base address given by the Y- or Z-register.
When using register indirect addressing modes with automatic pre-
decrement and post increment, the address registers X, Y, and Z are
decremented or incremented. The 32 general purpose working registers, 64
I/O Registers, and the 512 bytes of internal data SRAM in the ATmega83535

are all accessible through all these addressing modes.

Register File Daia Address Space
£ 20000,
1 30001
R2 $0002_
g2g
R30 $001E
1 N $004F
VO Registars e
$0 S020 e
$01 $0021
$62 $0022
20 0020
L SO,
8 1 §005F
infernat SRAM
50061
SiZ5E
—S025F
Figure for Data Memory

23

6.3 EEPROM DATA MEMORY

The ATmega8535 contains 512 bytes of data EEPROM memory. It is
organized as a separate data space, in which single bytes can be read and
written. The EEPROM has an endurance of at least 100,000 Write/erase
cycles. The access between the EEPROM and the CPU is described in the
following, specifying the EEPROM Address Registers, the EEPROM Data
Register, and the EEPROM Control Register.

24

CHAPTER 7. INTERRUPTS

Interrupt Vectors in ATmega8535

This section describes the specifics of the interrupt handling as performed in

ATmega8535.

Veetor | Program
No. Address? | Source Inferrupt Definition
L ox000t"" | RESET External Pin, Power-on Reset, Brown-out Reset
and Watchdog Reset
2 0x001 INTO External Interrupt Regquest ¢
3 0x002 INTY External Interrupt Request 1
4 0x003 TIMER2 COMP | Timer/Counter2 Compare Match
5 0x004 TIMER2 OVF Timer/Counter2 Overflow
] 0x005 TIMER1 CAPT Timer/Counteri Capture Event
7 0x008 TIMER1 COMPA | Timer/Countert Compare Match A
> 8 0x007 TIMERt COMPB | Timer/Gountert Compare Match B
9 0x008 TIMER1 QVF Timer/Countert Overflow
10 0x009 TIMERO OVF Timer/Counter0 Overflow
11 Ox00A SPI, STC Serial Transfer Complete
12 0x00B USART, RXC USART, Rx Complete
13 0x00C USART, UDRE USART Data Register Empty
14 0x00D USART, TXC USART, Tx Complete
15 0x00E ADC ADC Conversion Complete
16 0x00F EE_RDY EEPROM Ready
17 0x010 ANA_COMP Analog Comparator
18 0x011 TWI Two-wire Serial Interface
19 0x012 INT2 External Interrupt Request 2
20 0x013 TIMERO COMP | Timer/Countero Compare Match
21 0x014 SPM_RDY Store Program Memory Ready

25

:
&

=2 R ® <z N

T E R R

XY, Z:

CHAPTER 8. INSTRUCTION SET NOMENCLATURE

Status Register (SREG)

Status register

Carry flag in status register

Zero flag in status register

Negative flag in status register

Two’s complement overflow indicator

N @V, for signed tests

Half Carry flag in the status register

Transfer bit used by BLLD) and BST instructions
Global interrupt enable/disable flag

Registers and Operands

Destination (and source) registers in the register file
Source register in the register file

Result after instruction is executed

Constant data

Constant address

Bit in the register file or I/O register (3 bit)

Bit in the status register (3 bit)

Indirect address register

(X=R27:R26, Y=R29:R28 and Z=R31:R30)

I/O location address

Displacement for direct addressing (6 bit)

26

e

i TP,

CHAPTER 9. IO REGISTERS

RAMPX, RAMPY, RAMPZ

Registers concatenated with the X, Y and Z registers enabling indirect
addressing of the whole data space on MCUs with more than 64K bytes data
space, and constant data fetch on MCUs with more than 64K bytes program

space.

RAMPD |
Register concatenated with the Z register enabling direct addressing of the

whole data space on MCUs with more than 64K bytes data space. {

EIND

Register concatenated with the instruction word enabling indirect jump and
call to the whole program space on MCUs with more than 64K bytes

program space.

STACK
STACK: Stack for return address and pushed registers
SP: Stack Pointer to STACK

FLAGS

& Flag affected by instruction
0: Flag cleared by instruction
1: Flag set by instruction

-: Flag not affected by instruction

27

Conditional Branch Summary

L e e

Test Boolean Mnemonic | Complementary Boolean Inemonic Comment
RdsRr | Z{N@V)=0 BRLT™ Rdl < Rr Z+{N® V) =1 BRGE’ Signed
Rd=Rr | (N&V)=0 BRGE Rd <Rr (NdV)=1 BRLT Signed
Rd=Rr | Z=1 BREQ Rd = Rr Z=0 BRNE Signed
Ri<Rr | Z+#{N&V)=1 BRGEW Rd » Rr LNeV =0 BRLT* Signed
Rd<Rr | (N®V)=1 BALT Rd>Rr (N®V)=0 BRGE Signed
Rd=Rr | C+Z=0 BRLOMW Rd<Rr C+Z=1 BRSH" Unsigned
RdzRr |C=0 BRSHBRCC | Rd<Rr C=1 BRLO/BRCS | Unsigned
Rd=Rr |Z=1 BREQ Rd « Rr Z=0 BANE Unsigned
) Rd<Rr | C+Z=1 BRSH" | Rd>Rr C+Z=0 BRLO* Unsigned
Rd<Ar |C=1 BALO/BRCS | Rd=Ar C=0 BRSH/BRCC | Unsigned
Carry C=t BRCS No carry C=0 BRCC Simple
Negative [N=1 BRMI Positive N=0 BRPL Simple
Overflow | V=1 BRVS No overflow V=0 BRVC Simple
Zero Z=1 BREQ Not zero Z=0 BRNE Simple

Note: 1. Interchange Rd and Rr in the operation befors the test. i.6. GP Rd,Rr » GP Rr,Rd

CHAPTER 10. INSTRUCTION SET SUMMARY

Instruction Set Summary

Unsigned

Mnemonics | Operands | Description Operation Flags #Clock Note
Arithmelic and Logic Instructions

ADD Rd, Rr Add without Carry Rd <« BRd + Rr ZCNVSH |1
ADC Hd, Rr Add with-Garry Pd—Bd+Rr+C ZOCNVSH [1
ADIW RAd, K Add Irmmediate to Weord Ad+1:Rd «— Rd+1:Rd+ K ZCGNVE 2
suBe Rd, Ar Subtract withcut Garry Rd — Rd - Rr ZONVSH |t
SuBlL Rd, K Subtract Immediate Ade Rd-K ZCNVSH |1
SBC Ad, Rr Subtract with Carry RdeRd-Br-C ZCNVSH |1
SBCI Rd, K Subtract Immediate with Carry Rd+ Rd-K-C ZCNVSH |1
sBiwW Hd, K Subtract Immediate from Word Rd+1:Rd « Rd+1:Rd- K ZCNVE 2
AND Rd, Rr Logical AND Rd« Rd+Rr ZN\V,8 1
ANDI Rd, K Logical AND with Immediate Rde—Rde K ZNVS 1
OH Rd, Rr Logical OR Rd« RdvRAr ZNVS 1
OR| Rd, K Logical OR with Immediate Rd e RdvK ZNV.S 1
EOR Ad, Rr Exclusive OR Rd « Rd & Rr ZNVS5 1
COM Rd Ona’s Complement Rd « $FF - Rd ZCNVS 1
NEG Rd Two's Complement Rd « $00 - Rd ZCNVSH |1
SBR Rd.K Set Bit(s} in Ragister Rd« RdvK ZN VS 1
CBR Rd.K Clear Bit{s) in Register Ad « Rd e (3FFh-K) ZNVS 1
INC Rd Increment Rd « Rd + 1 ZN V.S 1
DEC Rd Decrement Rd < Rd-1 ZNVS 1
TST Rd Test for Zero or Minus RAd+« Rd«Rd ZNVS 1
CLR Rd Clear Register Ad «—Rd @ Rd ZNVS 1
SER Rd Set Register Rd « $FF None 1
MUL Rd,Rr Multiply Unsigned R1:R0 < Rdx Rr (UU) A 2
MuLs Rd,Rr Multiply Signed A1:R0 « Ad x Rr (56} zZC 2
MULSU Rd,Rr Multiply Signed with Unsigned R1:R0 « Ad x Rr (SU) ZC 2
EMUL Rd,Rr Fractional Multiply Unsigned R1:R0 « (Rd x Rr}e<1 (UL) zZC 2
FMULS Rd,Rr Fractional Multiply Signed R1:R0 « (Rd x Rri<<1 (8S) zZC 2
FMULSU Rd,Rr Fractional Muhiply Signed with R1:R0 « (Rd x Rrj<<! (8U) ZC 2

29

Instruction Set Summary (Continued)

Mnemanics | Operands | Description | Operation Flags #Clock Note
Branch Instructions
RJMP k Relative Jump PCe—PC+k+1 None 2
IJMP Indirect Jump to {Z) PC5:0) « Z, PC{21:16) «- 0 None 2
ENMP Extanded Indirect Jump to {Z) PC{156:0) « Z, PC(21:16) « EIND None 2
JMP k Jurmp PC «k Note 3
RCALL Relative Call Subroutine PCe-PCa+ka+1 Nonea 374
IGALE Indirect Call to {Z} PC(156:0) +— Z, PC(21:16} < 0 None 3/4
EICALL Extended Indiract Call to (2) PC{15:0) «— Z, PCi21:18) «~ EIND None 4
CALL k Call Subreuting PC <k tNone 476
RET Subroutine Return PG « STACK None 4/5
RETi Interrupt Return PG — STACK] 4/5
CPSE \Rd,Rr Compare, Skip if Equal f(RA=RNPC—PC+20r3 None 1/2/3
cp Ad,Rr Compare Rd- Ar ZCNVSH |1
CPC Rd,Rr Compare with Carry Ad-Rr-C ZCNVSH |1
CPi Ad,K Compare with Immediate Rd-K ZCNVSH |1
SBRC Ar b Skip i Bit in Register Cleared if{Rrp)=0)PC—PC +20r3 None i/2/3
SBRS Rr, b Skip if Bit in Register Set F{(Rr}=1yPC—PC+20r3 None i/2/3
SBIC Ab Skip If Bit in O Register Cleared | iflIOAL)=0) PC—PC+20r3 None 1/2/3
SBis Ab Skip if Bit in ¥O Register Sst HUVOAL=1)PC — PC+20r3 None 1/2/3
BRBS 8 k Branch if Status Flag Set if (SREG(s) = 1} then PC «PC+k+ 1 | Nene 1/2
BRBC s K Branch if Status Flag Cleared if (SREGIs) = 0} then PC «PC+k+ 1 | None i/2
BREQ k Branch if Equal fH{Z=1)thenPC < PC+k + 1 None 1/2
BRNE k Branch if Not Equal f{Z=NthenPC e~ PC+ k+ 1 None 1/2
BRCS k Branch if Carry Set H{C=1thenPCPC+k+1’ None 1/2
BRCC k Branch if Carry Cleared fFIC=0then PC—PC+k+1 None i/2
BRSH k Branch if Same or Higher f{C=0)then PCPC+k+1 None i/2
BRLO k Branch if Lower f{C=1)than PC« PC+k+1 None 1/2
BRMI k Branch if Minus f{N=1)thenPC = PC+k+1 None 1/2
BRPL k Branch if Plus if{N=0)thenPC PC+k+1 Nones 172
BRGE k Branch if Greatar or Equal, f{N@&V=0)thenPC« PC+k+1 | None 1/2
Signad
BRLT k Branch if Less Than, Signed f{iN@V=1)thenPC—PC+k+1 | None i/2
BRHS k Branch if Hall Carry Flag Set if{H=1)thenPC« PC+k+1 None i/2
BRHC k Branch if Helf Carry Flag Cleared | f (H=0)then PC« PC+k + 1 None 1/2
BRTS k Branch if T Flag Set H{T=1)then PG &« PC+k + 1 None t/2
BRTC k Branch if T Flag Cleared f{T=0)then PC— PC+k+ 1 None ir2

30

Instruction Set Summary (Conlinued)

increment

Mnremonica | Operands | Description Operation Flags #Clock Note

BRVS k Branch i Overflow Flag is Set it{V=1)}thenPC«—PC+k+1 None 1/2

BRVC k Branch i Overflow Flag is it(V=0)then PC—PC +k+1 None 1/i2
Cleared

BRIE k Branch if Interrupt Enabled if{)=1thenPC «PC+k+1 None ii2

BRID Branch if Interrupt Disabled H{t=0}than PC — PC +k+ 1 None t/2

Data Transfer Instructions

MOV Rd, Rr Copy Register Rd — Rr Mone 1

MOV Ad, Rr Copy Register Pair Rd+1:Rd — Rr+1:Rr None 1

LD# Ad, K Load inmediate Rd «— K Mone 1

LBS Rd, k Load Direct from data space Rd « (k) None 2

LG Rd, X Load Indirect RAd « (X} None 2

LD Rd, X+ Leoad Indiract and Post-incrament | Bd «— (), X « X + 1 Mone 2

LD Rd, -X Load Indirect and Pre- XeX-1,Rde (X) MNona 2
Deacrement

LD Rd. Y Load indirect Ad « (Y} Nane 2

LD Rd, Y+ Load Indirect and Post-Increment | Rd « (Y), Y —~ Y + 1 MNone 2

LD Ad, -¥ Load Indirect and Pre- YeY-1,Rde(¥) None 2
Decrement

1DD Rd,Y+q Load Indireot with Displacemont | Rd < (Y +q) None 2

D Rd, Z Load Indirect Rd « {Z} None 2

LD RAd, Z+ Load Indirect and Post-increment | Rd « (Z}, Z « Z+1 None 2

LD Ad, -Z Load Indirect and Pre- Ze—Z-1,Rd« {Z} None 2
‘Decrement

LDbD Rd, Z+q Load Indiract with Displacement | Rd« {(Z +q) None 2

8TS k, Rr Store Direct to data space Rd « (k) None 2

8T X, fr Store Indirect (X) < Rr None 2

8T X+ Ar Store Indirect and Post- Xye—RrXeX+1 None 2
Increment

8T -X, Rr Store Indirect and Pre- XeX-1 00« Rr None 2
Decrement

ST Y, Br Store Indirect (Y} = Rr None 2

ST Y+, Ar Store Indirect and Post- (MN—R,Ye¥Y+1 MNone 2
Inerement

ST =Y, Rr Store Indirect and Pre- YeV¥-1,(Y)Rr None 2
Dacrement

sTD Y+q.Rr Stora Indirect with Displacement | (Y + q)« Rr None 2

ST Z,Rr Store Indirect (£ « Rr None

8T Z+, Rr Store Indirect and Post- (D)—RrZe—Z+1 None

31

Instruction Set Summary (Continued)

Mnemonics | Operands | Description Operation Flags #Clock Note
ST -Z,Rr Store Indirect and Pre- ZeZ-1,E)«Rr None 2

Decrement
STD Z+q,Ar Store Indirect with Displacement | (Z+ q) « Br None 2
LPM Load Program Memory RO « (Z) None 3 ’
LPM Rd, Z Load Program Memory Ad « (Z) None 3
LPM Rd, 2+ Load Program Memory and Post- | Rd e~ (), 2« Z + 1 None 3

Increment
ELPM Extended Load Program Memory | RO «- (RAMPZ:Z) None 3
ELPR Rd 2 Extended Load Program kemory | Rd «— (RAMPZ:7) None
ELPI R, 7+ Extended Load Program Memory | Rd « (RAMPZ:2). 2 — 7 41 Mone

and Post-Increment
5P Store Program Memory (Z} « R1:RO None
ESFM Extended Store Program (RAMPZ:Z) — R1:R0 Nons

Memory
IN Rd, A In From I/Q Location Rd « VO(A} None 1
QUT A, Rr Out To VO Lecation WO(A) e Rr None 1
PUSH Ar Push Register on Stack STACK « Rr None
POP Rd Pop Regiater from Stack Rd « STACK None

Bit and Bit-test Inatructions

LsL RAd Logica! Shift Left Rd{n+1}—Rd{n},Rd{0)«0,CRd{7) | ZCNVH 1
LSR Ad Logical Shift Right Rd{n}—Rd{n+1),Rd{7}+0.CRd{0) | ZCNV 1
ROL Rd Rotate Left Through Carry Rd{0)C,Rd(n+1)«Rd(n),C—Rd4(7) | Z,CNVH 1
ROR Rd Rotata Right Through Carry Rd{7}-C.Rd{n)=Rd{n+1},CRdI{0) | ZCNV 1
ASR Rd Arithmetic Shift Right Rd(n) « Rd{n+1}, n=0..6 ZONY 1
SWAP Rd | Swap Nibbles Ad(3..0) +> Rd{7..4) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) 1
BCLR 3 Flag Clear SREG(s} < 0 SREG(s) 1
s8I A b Set Bit in /0 Register IO{A, b) «~1 . None 2
CBl Ab Clear Bit in YO Register IYO{A, b) 0 None 2
BST Rr, b Bit Store from Registerto T T « Rr{b) T]
BLD Rd, b Bit load from T to Register Rd{b) « T None 1
SEC Set Carry Ce 1 C 1
CLC Clear Camy Ce0 C 1
SEN Set Negative Flag Ne1 N t
CLN Clear Negative Flag N0 N 1
SEZ Set Zero Flag Ze1 Z 1
cLzZ Clear Zero Flag Ze0 Z 1

32

Instruction Set Summary (Continued)

Mnemonics | Operands | Description Operation Flags #Clock Note
SE| Global Interrupt Enable le1 | 1
CLI Global Interrupt Disable |0 I 1
SES Set Signed Test Flag S« 1 S 1
CLS Clear Signed Test Flag S0 S 1
SEV Set Two's Complement Overflow | V « 1 V 1
CLv Clear Two's Complement Ve O v i
Overflow
SET Set T in SREG Te 1 T 1
CLT Clear T in SREG T«0 T 1
SEH Set Half Carry Flag in SREG He1 H 1
CLH Clear Half Carry Flag in SREG He0 H 1
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep) None 1
WDR Watchdog Reset {see specific descr. for WDR) None 1

33

CHAPTER 11. MAX232N

The MAX232 is a dual driver/receiver that includes a capacitive voltage
generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply.
Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels.
These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5
V, and can accept £30-V inputs. Each driver converts TTL/CMOS input
levels into TIA/EIA-232-F levels. The driver, receiver, and vollage-
generator fuinctions are available as cclls in the Texas Tusttuments LinASTC

library.

Function Tables

EACH DRIVER

INPUT | OUTPUT
TIN TOUT

£ H
H L

H = high level, L = low
level

EACH RECEIVER

INPUT | OUTPUT
RiN ROUT

|3 H
H L

H = high level, L = low
level

iogic diagram {positive logic)

" 14

TIIN DC TiOUT
10 7
T2 T20UT
12 11
RIOUT O< RAIN
9 P
RIOUT 0{ R2IN

34

APPLICATION INFORMATION

5V
+
CRYPASS =11F I
16]
= c3t AR AW
‘ | Voo) I
1 Ci+ _— g5V
CIZ=yF 3 V5 » o
el ci- 6
4 -
€275 14F Cat Ys- csI bV
uF 5 14F
TE] = 1
f b LT Output
From CMOS or TTL 10 7
B e FIA-232 Output
12
+— I |—2— paz2mput
ToCMOS or TTL 9 g
oy I ——— EIA-232Input
15
GND
1C3 can be connected ko Vi or GND.

HOTES: A Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electroiytic capacitors are used, they shouid be
connected as shown. In addition to the 1-uF capacitors showm, the MAX202 can operate with 0.1-4F capacilors.

Figure 4. Typical Gperating Circuit

35

CHAPTER 12. CODE

.include "C:\AtmeNAVR Tools\AvrAssembler\Appnotes\m8535def.inc"

deftemp =rl16 \\ Defines temp and puts its value
equal to rl6

.def mode =121 W\ Defines mode and puts its value

equal to 121

.equ forward = 0b00000001
-equ reverse = 0b00000010
qu left = 0b00000100
.equright = 0b00001000

org 0x00
jmp reset \\ Relative jump to reset
.org-OVF0addr \\ Overflow0 Interrupt Vector Address !
rjmp timer \\ Relative jump to timer
.org URXCaddr \\ UART Receive Complete Interrupt Vector
Address
Ijmp receive \\ Relative jump to recieve i
j
reset: "
1di temp,high(ramend) \\ Set temp to high initialize SP
out SPH,temp \\ Writes high to i/o port SP
1di temp,low(ramend) \\ Sets temp to low i
out SPL,temp \\ Writes low to i/o port
Idi temp,0xFF \\ Sets temp to OxfTf

, _ :.

out DDRB,temp \\ Writes Oxff to i/o port Data Direction
Register PORTB
Idi temp,0xFF \\ Sets temp to Oxff
out PORTB,temp W Writes 0xff to i/o port
1di temp,0xFF \\ Sets temp to OxFF
out DDRA temp \\ Writes Oxff to i/o port
Idi temp,0x00 \\ Sets temp to 0x00
out PORTA temp W Writes 0x00 to i/o port
1di temp,0xFF \\ Sets temp to OxFF
out DDRC, temp \\ Writes Oxff to i/o port
1di temp,0x00 \\ Sets temp to 0x00
out PORTC, temp W Writes 0x00 to /o port
y
1di temp,0 \\ Clears temp E
out UBRRH,temp \\ Writes 0 to i/o port BAUD RATE ‘
1di temp,51 W\ Sets temp to 51 g
out UBRRL,temp W\ Writes 51 to i/o port

-

out UCSRB,temp

cbr mode,left
cbr mode,right
cbr mode,forward

cbr mode,reverse

UBRR to 51 implies 9600 baud with an 8 Mz crystal. -
1di temp,0b10010000

\\ Sets temp to 0b10010000
W\ Writes 0b10010000 to i/o port

\\ Clears mode

1di 26,0 \\ Clears 126

1di 27,0 W Clears 127

sei \\ Enables interrupts
37

loop:

bst mode,0
brts poll
bst mode, 1
brts backs

rjmp endout

poll:
cbi PORTB,0

sbi PORTA,0
cbi PORTA,1
cbi PORTA,2
cbi PORTA,3

rcall delay

cbi PORTA,0
sbi PORTA, 1
cbi PORTA,2
cbi PORTA,3

rcall delay

cbi PORTA,0
¢bi PORTA,1

; speed

\\ Stores bit 0 of mode in T flag

\\ Branch if this bit was reset

\\ Stores bit 1 of mode in T flag
\\ Branch if this bit was set

W\ Relative jump to endout

\\ Clear bit 0 in port B

\\ Set read bit in port A
W Clear bit 1 in port A
W\ Clear bit 2 in port A
\\ Clear bit 3 in port A

\\ Relative call to subroutine - delay

\\ Clear bit 0 in port A
\\ Set bit 1 in port A

\\ Clear bit 2 in port A
W Clear bit 3 in port A

\\ Relative cali to subroutine - delay

W Clear bit 0 in port A
\\ Clear bit 1 in port A

38

cbi PORTA,2
sbi PORTA,3

rcall delay

cbi PORTA,0
cbi PORTA, 1
sbi PORTA,2
cbi PORTA,3

rcall delay

endout:

sbi PORTB,0

rjnip loop

backs:
cbi PbRTB,O
cbi PORTA,0
cbi PORTA, 1
sbi PORTA,2
cbi PORTA,3

rcall delay

cbi PORTA,0
cbi PORTA,1
cbi PORTA,2
sbi PORTA,3

\\ Clear bit 2 in port A
\\ Set bit 3 in port A

\\ Relative call to subroutine - delay

\\ Clear bit 0 in port A
W Clear bit 1 in port A
W\ Set bit 2 in port A
W\ Clear bit 3 in port A

\\ Relative call to subroutine - delay

\\ Set read bit in port B

\\ Relative jump to loop

\\ Clear bit 0 in port B
\\ Clear bit 0 in port A
W\ Clear bit 1 in port A
\\ Set bit 2 in port A

\\ Clear bit 3 in port A

\\ Relative call to subroutine - delay

\\ Clear bit 0 in port A
\\ Clear bit 1 in port A
\\ Clear bit 2 in port A
\\ Set bit 3 in port A

39

- i g S s e B

YT T

rcall delay \\ Relative call to subroutine - delay i
! '

cbi PORTA,0 \\ Clear bit 0 in port A

sbi PORTA,1 W Set bit 1 in port A

cbi PORTA,2 \\ Clear bit 2 in port A

cbi PORTA,3 \\ Clear bit 3 in port A .

rcall delay \\ Relative call to subroutine - delay

sbi PORTA,0 \\ Set read bit in port A

cbi PORTA,! W Clear bit 1 in port A

i

cbi PORTA,2 ;speed \\ Clear bit 2 in port A

cbi PORTA,3 \ Clear bit 3 in port A

rcall delay \\ Relative call to subroutine - delay |

sbi PORTB,0 \\ Set read bit in port B o

rjmp loop \\ Relative jump to loop i

» 36 o o o o ok o ok sk ok sk s ke s ok o e of ofe st ke sk ok ke e ddeke e s s e ok s ok sk st ke sl e e ok o ok ok ok ok ke ok sk sk ke ok
3

recieve:

cpi temp,'w’ \\ Compare temp with ‘w’
breq run_forward \\ Branch if equal

cpi temp,'s' \\ Compare temp with ‘s’

breq run_backward W\ Branch if equal

cpi temp,'h’ W Compare temp with ‘h’
breq stop \\ Branch if equal

cpi temp,'a’ \\ Compare temp with ‘a’

breq lean_left \\ Branch if equal

cpi temp,'d’ \\ Compare temp with ‘d’

40

breq lean_right | \\ Branch if equal
rjmp outloop \\ Relative jump to outloop
run_forward:

sbr mode, forward

cbr mode, reverse

rjmp outloop \\ Relative jump to outloop
run_backward:

sbr mode, reverse

cbr mode, forward

tjmp outloop \\ Relative jump to outloop
stop:

cbr mode,reverse

cbr mode,forward

cbi PORTA,0 \\ Clear bit 0 in port A ,
cbi PORTA,1 W Clear bit 1 in port A
cbi PORTA,2 \\ Clear bit 2 in port A b
cbi POBTA,.’S \\ Clear bit 3 in port A ";
gjmp outloop \\ Relative jump to outloop
lean_left:
1di temp,0600000001 \\ Set temp to 0b00000001
out TCCRO,temp \\ Store Temp to i/o port
1di temp,0x01 \\ Set temp top 0x01
out TIMSK, temp \\ Store temp to i/o port TIMSK
sbr mode,left
cbr mode,right
rjmp outloop \\ Relative jump to outloop
lean_right:
1di temp,0b00000001 W\ Set temp to 0b00000001
out TCCRO,temp \\ Store temp to i/o port TCCRO
1di temp,0x01 \\ Set temp to 0x01
out TIMSK,temp \\ Store temp to /o port TIMSK

41

sbr mode,right
cbr mode,left
< jmp outloop
. straight:
| 1di temp,0b00000001
1; out TCCRO,temp
| 1di temp,0x01
out TIMSK,temp
cbr mode,right
cbr mode,left
sbr mode,strait

rjmp outloop

outloop:

reti

\\ Relative jump to outloop

\\ Set temp to 0b00000001

\\ Store temp to i/o port TCCRO
\\ Set temp to 0x01

\\ Store temp to i/o port TIMSK

\\ Relative jump to outloop

o 3k 3k ok 3k ok sk sk sk sk sk sk sk ok sk sk sk ok sk steoske sl sk sk sk sk sk sk sk sk sk sk st st sk sie sk sk sk sie sk s sk ste sk sk e sk sk sk skeskeoke
)

timer:

bst mode,2
brts turn_left
bst mode,3
brts turn_right
bst mode, 4
brts position0

rjmp out_timer

turn_left:

inc 126

1
_

\\ Store bit 2 of mode in T
\\ Branch if this bit was set
\\ Store bit 3 of mode in T
\\ Branch if this bit was set
\\ Store bit 4 of mode in T
\\ Branch if this bit was set

\\ Relative jump to out_timer

\\ Increment 126

42

™™=

dec 127

cbr mode,left
cbr mode,right
cbi PORTC 4
sbi PORTC, 1
cbi PORTC,2
cbi PORTC,3
rcall delay
cbi PORTC,4
cbi PORTC,1
sbi PORTC,2
¢bi PORTC,3
rcall delay
sbi PORTC,4
cbi PORTC,1
cbi PORTC,2
cbi PORTC,3
rcall delay
cbi PORTC,4
cbi PORTC,1
¢bi PORTC,2
sbi PORTC,3
rcall delay
jmp out_timer

turn_right:

inc 127

cbr mode,left
cbr mode,right
1di temp,0

\\ Decrement 127

W Clear bit 4 in port C
\\ Set bit 1 in port C
\\ Clear bit 2 in port C
W Clear bit 3 in port C

\\ Relatice call subroutine - delay
\\ Clear bit 4 in port C
W Clear bit 1 in port C
W Set bit 2 in port C
\\ Clear bit 3 in port C
\\ Relative call to subroutine - delay
\\ Set bit 4 in port C
\\ Clear bit 1 in port C
W\ Clear bit 2 in port C
\\ Clear bit 3 in port C

nE

-
¥

\\ Relative call to subroutine - delay
\\ Clear bit 4 in port C

W Clear bit 1 in port C

W Clear bit 2 in port C

\\ Set bit 4 in port C

\\ Relative call to subroutine - delay

\\ Relative jump to out_timer

W Increment 127

W Clear temp

43

' out TCCRO,temp \\ Store temp in i/o port TCCRO

cbi PORTC,4 \\ Clear bit 4 in port C
cbi PORTC,1 \\ Clear bit 1 in port C
cbi PORTC,2 \\ Clear bit 2 in port C
sbi PORTC,3 \\ Set bit 3 in port C !
rcall delay \\ Relative call to subroutine - delay l[
sbi PORTC, 4 \\ Set bit 4 in port C |
cbi PORTC, 1 \\ Clear bit 1 in port C 1
cbi PORTC,2 \\ Clear bit 2 in port C '
cbi PORTC,3 \\ Clear bit 3 in port C
rcall delay \\ Relative call to subroutine - delay
cbi PORTC,4 \\ Clear bit 4 in port C
cbi PORTC,1 \\ Clear bit 1 in port C
sbi PORTC,2 \\ Store bit 2 in port C
cbi PORTC,3 \\ Clear bit 3 in port C | 1
rcall delay \\ Relative call to subroutine - delay .‘54‘ ‘;
cbi PORTC,4 \\ Clear bit 4 in port C v 1
sbi PORTC, 1 \\ Store bit 1 in port C i
cbi PORTC,2 \\ Clear bit 2 in port C 1\
cbi PORTC,3 \\ Clear bit 3 in port C |
rcall delay \\ Relative call to subroutine - delay |
rjmp out_timer \\ Relative jump to out_timer

position0:

cbr mode,strait

mov temp,126 \\ Copy 126 to temp
subi temp,0 \\ Substract 0 from temp

44

brmi turned_right \\ Branch if minus

breq out_timer \\ Branch if equal

mov temp,r27 \\ Copy 127 to temp

subi temp,0 \\ Substract 0 from temp
brmi turned_left \\ Branch if minus

breq out_timer \\ Branch if equal

rjmp out_timer \\ Relative jump to out_timer

turned_left:

cbi PORTC 4
cbi PORTC,1
cbi PORTC,2
sbi PORTC,3
rcall delay

sbi PORTC 4
cbi PORTC,1
cbi PORTC,2
¢bi PORTC,3
rcall delay

¢bi PORTC,4
cbi PORTC,1
sbi PORTC,2
cbi PORTC,3
rcall delay

cbi PORTC,4
sbi PORTC,1
¢bi PORTC,2
¢bi PORTC,3
rcall delay

1di temp,0

\\ Clear bit 4 in port C
W Clear bit 1 in port C
W Clear bit 2 in port C
\\ Store bit 3 in port C

\\ Relative call to subroutine - delay

\\ Store bit 4 in port C
W Clear bit 1 in port C
W\ Clear bit 2 in port C
W Clear bit 3 in port C

\\ Relative call to subroutine - delay

\\ Clear bit 4 in port C
W\ Clear bit 1 in port C
\\ Store bit 2 in port C
W\ Clear bit 3 in port C

\\ Relative call to subroutine - delay

\\ Clear bit 4 in port C
\\ Store bit 1 in port C
\\ Clear bit 2 in port C
\\ Clear bit 3 in port C

\\ Relative call to subroutine - delay

\\ Clear temp

45

T

=3

out TCCRO,temp
‘ dec 126
1 brne tumed_left
| 1di 126,0
1di r27,0

rjmp out timer

turned_right:

cbi PORTC, 4
sbi PORTC,1
cbi PORTC,2
cbi PORTC,3
rcall delay

cbi PORTC,4
¢bi PORTC,1
sbi PORTC,2
¢bi PORTC,3
rcall delay

sbi PORTC4
c¢bi PORTC,1
cbi PORTC,2
¢bi PORTC,3
rcall delay

cbi PORTC 4
cbi PORTC,1
E cbi PORTC,2
| sbi PORTC,3
rcall delay

\\ Store temp in i/o port TCCRO
\\ Decrement 126

\\ Branch if not equal

W\ Clear 126

W\ Clear 127

 \\Relative jump to out_timer

\\ Clear bit 4 in port C

\\ Set bit 1 in port C

W Clear bit 2 in port C

\\ Clear bit 3 inport C

\\ Relative call to subroutine - delay

\\ Clear bit 4 in port C

\\ Clear bit 1 in port C

\\ Set bit 2 in port C

W\ Clear bit 3 in port C

W\ Relative call to subroutine - delay
;set O position

\\ Clear bit 1 in port C.

\\ Clear bit 2 in port C

\\ Clear bit 3 in port C

\\ Relative call to subroutine - delay

\\ Clear bit 4 in port C

W Clear bit 1 in port C

W\ Clear bit 2 in port C

\\ Set bit 3 in port C

\\ Relative call to subroutine - delay

46

T e ol

Idi temp,0
out TCCRO,temp
dec 127
brne turned_right
1di 126,0
1di r27,0
out timer:
1di temp,0
out TCCRO,temp

reti

« 35 ek s ok sk sk sk ok ok ok s sk o sk sie e ok ok ok sk st e e e sk sk o ok oot sk sk ok ok sk sl s ko ok o ok ok ok ok ok e ok ok
’

delay:

1di r25,0xFF
lopl:

1di 124,0xFF
lop:

dec 124

brne lop dec 125
brne lopl

ret

\\ clear temp

\\ Store temp to i/o port TCCRO
\ Decrement 127

\\ Branch if not equal

W\ Clear r26

W Clear r27

W Clear temp
\\ Store temp to i/o port TCCRO

W\ Store 0xFF to 125
\\ Store 0xFF to 124
\\ Decrement 124

\\ Branch if not equal
W Branch if not equal

T TR Ve sl

o sk o oo of ol e sk s o ok e sk st ok o s s ot ot b sk s s ok ok s ok sk e s s e s s ok ok ek e sk e o sk o sk ok ok o
E .

47

Port

CHAPTER 13. SERIAL PORT COMMUNICATION

If you use the UART to talk to a PC, the UART should be connected to a
COM port of the PC. You can use a simple terminal program, such as
HyperTerminal, on the PC. The terminal program should be set to 9600
baud, no parity, one stop bit, and no flow control. The connection to the PC
for the AVR development board assumes a RS232 cable with straight-
through connection. It transmits a 16 bit ASCII value of the data through the

RS232 port serially. We designed the same in Visual Basic.

THE SCREENSHOT

Baud Rate Data Bits Parity Stop Bits

[comi =] feso0 =] f& =] [nene <] [t =] OpenPat Close Port |

—~Wiite

= GUIDANCE BY:

Iw

ESTEEMED FACULTY
MR. VIVEK Ki. SEHGAL

~MADE BY:

AMIT MAGO

PRAMOD KUMAR

ARVIND Kr. GUPTA
PRAVEEN GUPTA
SHAUNAK RAJINDER VYAS

48

CHAPTER 14. SNAPSHOTS

49

CONCLUSION

Target of our team were achieved and responses were well as per our
algorithm. This robot car is tested in various terrains and found running
smoothly. The careful and economical design by our team reduced the
overall cost of the project. The program is running successfully without any
error and warning. The performance of the robot validates the design of

hardware and software, implemented by the team.,

9 50

CHAPTER 16 .BIBLIOGRAPHIES

1. Microprocessor Architecture Programming and Application with
8085. By:- Ramesh Gaonkar |
2. Microprocessor Programming and [nterfacing in 8086
By: - B.Brey
3. CMOS Digital Integrated Circuits Analysis and Design
By:- Sung-Mo Kang and Yusuf Leblebicl

4. www.atmel.com

5. www.8051 .com

51

