

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Self Balancing Bot” in

partial fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/ Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over a period from August 2015 to June 2016 under

the supervision of Dr. Vivek Sehgal (Associate Professor, Computer science and

Engineering).The matter embodied in the report has not been submitted for the award of

any other degree or diploma.

Shivam Gupta (121265)

This is to certify that the above statement made by the candidates is true to the best of my

knowledge.

Dr. Vivek Sehgal

Associate Professor

Computer Science & Engineering

Dated :)

(i)

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our project guide Dr. Vivek

Sehgal who helped us in conceptualizing the project and actual building of procedures

used to complete the project. We would also like to thank our Head of department for

providing us this golden opportunity to work on a project like this, which helped us in

doing a lot of research and we came to know about so many things.

At the end I would like to express my sincere thanks to all my friends and others who helped

me directly or indirectly during this project work.

Thanking you,

Shivam Gupta (121265)

(ii)

TABLE OF CONTENTS

List of Figures………... (v)

List of Tables…………….. (vi)

List of Abbrevations.....................................…………............. (vii)

Abstract……..……...… (viii)

S No Title Page No

1 Introduction

1.1 Project Background 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Project Scope 4

1.5 Organization of report 5

2 Literature Review 6

3 System Development

3.1 Project Methodology 9

3.2 Hardware 11

3.3 Software 33

3.4 Assembling the bot 34

 (iii)

4 Performance analysis

4.1 Algorithm to control Self Balancing Bot 37

4.2 Bluetooth Control 38

5 Conclusions

5.2 Future Scope 40

6 References 42

(iv)

LIST OF FIGURES

S. No. Figure Page No.

1 Flow Chart of process Methodology PS1 9

2 Flow Chart of process Methodology PS2 10

3 Arduino Uno 11

4 Atmel Atmega 328 microcontroller 18

5 Dual H-Bridge 19

6 DC geared motor 22

7 MPU 6000 Family Block Diagram 27

8 Arduino & MPU6050 29

9 Bluetooth Module 30

10 Temperature Sensor 32

11 IDE 33

12 Block diagram 34

13 Chassis 35

14 Components 35

15 final Structure 36

 (v)

LIST OF TABLES

Table no Description Page no

1 Technical Specifications 17

2 Pin Description 28

3 Pin Configuration 28

(vi)

LIST OF ABBREVIATIONS

S No. Abbreviations Description

1 IDE Integrated Development Environment

2 ADT Android Development Tools

3 SPI Serial Peripheral Interface

4 EEPROM Electrically Erasable Programmable Read-

Only Memory

5 PID Proportional-Integral-Derivative

(vii)

ABSTRACT

This report presents a development self-balancing bot using PID controller. The platform

has been designed using mobile robot kits including IMU and two servos, and controlled

by an open source microcontroller with PID. An Arduino microcontroller, and a two-

degree of freedom (axis) accelerometer and gyroscope or MPU-6050 have been used to

create the controlled platform. The controller has been designed to maintain the platform

at an initially selected angle when the support structure orientation changes. To simplify

things a little bit, I take a simple assumption; the robot’s movement should be confined on

one axis (e.g. only move forward and backward) and thus both wheels will move at the

same speed in the same direction. Under this assumption the mathematics become much

simpler as we only need to worry about sensor readings on a single plane. If we want to

allow the robot to move sidewise, then you will have to control each wheel independently.

The general idea remains the same with a less complexity since the falling direction of the

robot is still restricted to a single axis.

CHAPTER 1

INTRODUCTION

1.1 Project Background

Designing a mobile robot with special capabilities has become a trend these days for a

variety of universal human consumption. It also fits well with the needs and nature of the

human lifestyle. Different forms and uses, mobile robots have been designed and are now

in the market worldwide.

A mobile robot comprises of three main parts including sensors, logical processing unit

and actuator. In this project, a robot that can maintain an upright and balanced position on

a platform is designed and developed. The robot consists of Inertial Measurement Units

(IMU) sensors, microprocessor and motors. The design is designed and the resulting

parameters are used and burned into Arduino UNO controller. The main purpose of the

controller is to fuse the wheel encoder, gyroscope and accelerometer sensors to estimate

the attitude of the platform and then to use this information to drive there action wheel in

the direction to maintain an upright and balanced position platform.

If the platform system itself is not balanced, which means it keeps falling off away from

the vertical axis, then a gyro chip is needed to provide the angle position of the inverted

pendulum or robot base and input into the controller, which the program itself is a

balancing algorithm. The PID controller will then provide a type of feedback signal

through PWM control to turn the motor servo clockwise or anticlockwise, thus balancing

the platform. These two measurements are summed and fed-back to the actuator which

produces the counter torque required to balance the platform robot. 2

In this project, the PID will be used because it is relatively easy to implement yet

practical. Besides that, PID controller has only three adjustable parameters that can be

determined from several techniques. Previous research has shown that PID controller has

shown good results in terms of response time and accuracy when the parameters i.e, Kp ,

Ki and Kd, are properly tuned.

To make a self-balancing robot, it is essential to solve the inverted pendulum problem or

an inverted pendulum on cart. While the calculation and expressions are very complex,

the goal is quite simple: the goal of the project is to adjust the wheels’ position so that the

inclination angle remains stable within a pre-determined value (e.g. the angle when the

robot is not outside the premeasured angel boundary). When the robot starts to fall in one

direction, the wheels should move in the inclined direction with a speed proportional to

angle and acceleration of falling to correct the inclination angle. So I get an idea that

when the deviation from equilibrium is small, we should move “gently” and when the

deviation is large we should move more quickly.

To simplify things a little bit, I take a simple assumption; the robot’s movement should

be confined on one axis (e.g. only move forward and backward) and thus both wheels will

move at the same speed in the same direction. Under this assumption the mathematics

become much simpler as we only need to worry about sensor readings on a single plane.

If we want to allow the robot to move sidewise, then you will have to control each wheel

independently. The general idea remains the same with a less complexity since the falling

direction of the robot is still restricted to a single axis.

1.2 Problem Statements

Control systems are often designed to improve stability, speed of response, steady-state

error, or prevent oscillations. Many researchers wants to produce a mathematical equation

that is able to determine the position of a very accurate motor position, thus the steady

state error should be zero. DC motor systems have played an important role in the

improvement and development of the industrial revolution. Therefore, the development of

a more efficient control strategy that can be used for the control of a DC servomotor

system and a well defined mathematical model that can be used for off line simulation are

essential for this type of systems. Servomotor systems are known to have nonlinear

parameters and dynamic factors, so to make the systems easy to control, conventional

control methods such as PID controllers are very convenient. Also, the dynamics of the

servomotor and outside factors add more complexity to the analysis of the system, for

example when the load attached to the control system changes.

Due to these parameters and factors, this study will apply the PID controller to make the

steady-state error, due to continuous disturbance, to be zero. Accordingly this project will

review the principles of PID that is used to control the servo movement that depends on

the angle captured by the IMU. This project uses the PID to compensate the robot body

inclination to stabilize the platform. Among other performance requirements are to reach

the final position of the motor position very quickly without excessive overshoot. In this

case, focusing on systems that have a finish time of 10 ms and the overshoot is smaller

than 25%.

1.3 Project Objectives

The aim of this project is to implement PID controller to a mobile robot to maintain its

flatness on a moving platform. The objectives of this project are as follows:

a) To design and develop a mobile robot and a flat platform.

b) To design a PID controller to maintain the robot flatness

c) To simulate the controller using Matlab and analyse its performance.

d) To integrate the controller into the mobile robot.

1.4 Project Scopes

The scopes of study are as follows:

a) Using mobile platform kits available in the market.

b) Using sensor fusion to measure the tilts in the X-axis

 and Y-axis.

c) Using arduino Uno as the mainboard of the mobile robot.

1.5 Organization of Report

As an overview, the structure of this report is organized as follows:

Chapter 1 describes a general introduction of the project, problem statement project aims

and project scope.

Chapter 2 provides details literature review that includes an introduction to some basic

concepts and a survey of existing works in the areas of developing an algorithm for

solving PID controller to maintain flatness platform. This chapter explains in detail all the

researches, studies, theories and gathering that have been make throughout the project.

Chapter 3 discusses the methodology of the project which provides a detailed description

of the design to develop a mobile robot using PID controller to maintain the platform

flatness. It also discusses about the hardware which has been used in the project.

Chapter 4 discusses about the result and analysis.

Chapter 5 concludes the project and gives suggestions for future work.

CHAPTER 2

LITERATURE REVIEW

2.1 Previous Case Study

Conducting initial review research is very critical in understanding self balancing

platform control techniques. The review of research about related literature conducted in

this project summarizes some of topics related to the techniques used for the balancing of

platform based on Dc motor position. Comparisons between the present project and the

related topics of existing information will also be discussed. The methodologies and the

techniques used by other researchers around the globe on the balancing platform topic

will also be reviewed.

 An Azure-driven service for Arduino based PID controllers designed for

control and monitoring of grills and other cooking devices. The "Cloud Cooker"

system is a hobbyist project to interface cooking devices to the cloud using a

Microsoft Mobile App in an Azure App Service. The system will include

Arduino-based controller devices, web services, web apps, and mobile/universal

applications.

 Meena et al. (2011) proposed a design for a servo motor controller in discrete-

time system to obtain the transfer function of the PID controller design.

MATLAB / Simulink has been used to confirm the effectiveness of this new

design method, which provides a simple and powerful way to design a speed

controller for servo motor. It also extracted a DC servo motor mathematical model

and equations and there were three different motion controllers that were designed

and simulated to control the velocity of the motor.

 Popescu et al. (2011) did a comparison between PID and Fuzzy controllers

used in mobile robot control. There is a significant problem for fuzzy controllers

in which computing time is longer than the PID because a lot of complex

operations such as requiring fuzzification, inference, and defuzzification.

 Masakazu et al. (2005) proposed a tuning method for PID controller that

considers changes in system characteristics. It is about the concept of using the

optimization of PID controller tuning, depending on the obstacles on the control

input derivatives and considering model uncertainties caused by changes in the

system dynamics. Partial model matching method was used to evaluate

performance and control while the reference referred to interference and

repression compared to the tracking properties.

 Arpit et al. (2012) proposed a performance comparison of PID and Fuzzy logic

controller using different defuzzification techniques for positioning control of

dc motors. The result of the fine-tuned PID controller gives relatively less

overshoot and settling time with no steady state error. The fuzzy logic controller

with different defuzzification techniques gives zero % overshoot and lesser

settling time.

 In a paper titled ‘Attitude Estimation Using Low Cost Accelerometer and

Gyroscope’ written by Young SooSuh (2003), it shows two different sensors

which are the accelerometer and gyroscope that exhibit poor results when used

separately to determine the attitude which is referred as the pitch angle or roll

angle. However, the gyroscope can combine with accelerometer to determine the

pitch or roll angle with much better result with the use of Kalman filter.

 Tomislav et al (2012) proposed self-balancing mobile robot tilter. It provides a

summary of work done in the field of electronic, mechanical design, software

design, system characterization and control theory. Robotic system model and

simulation results of various control methods required for the stabilization of the

system were studied. Dynamic effects become increasingly important in assessing

performance limits in robotic. The processes where the project was carried out

including design and production of certain parts of the integration section,

electronic, mechanical and software.

 V.J. Van Doren (2009) suggested a two wheeled robot to perform the

balancing and control of mobile robots. In this project the Proportional, Integral,

Derivative (PID) has been implemented to control the flatness of a mobile robot

platform. PID has proven to be popular among the control engineering

community.

As stated by the author of article Vance J. VanDoren (2009), “For more than 60 years

after the introduction of Proportional-Integral-Derivative controllers, remain the

workhorse of industrial process control”.

CHAPTER-3

SYSTEM DEVELOPMENT

3.1 Project Methodology

This project is done in three phases. The first phase is to understand and design the mobile

robot as well as to implement the theories in the real hardware. The second phase is to

understand the PID controller and its characteristic and to design and implement the controller

into the robot. The last phase is to analyze the controller performance using M-file in Matlab

and compare it with the response of the real hardware.

.

Figure 1- Flow chart of process methodology PS1

Figure 2- Flow chart of process methodology PS2

3.2 HARDWARE

3.2.1 ARDUINO UNO

FIGURE 3: Arduino Uno

The Uno is a microcontroller board based on the ATmega328P. It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz

quartz crystal, a USB connection, a power jack, an ICSP header and a reset button. It

contains everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or battery to get started..

You can tinker with your UNO without worrying too much about doing something wrong,

worst case scenario you can replace the chip for a few dollars and start over again.

"Uno" means one in Italian and was chosen to mark the release of Arduino Software

(IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were the reference

versions of Arduino, now evolved to newer releases. The Uno board is the first in a series

of USB Arduino boards, and the reference model for the Arduino platform; for an

extensive list of current, past or outdated boards see the Arduino index of boards.

http://www.atmel.com/Images/doc8161.pdf

Programming

The Uno can be programmed with the Arduino Software (IDE). Select "Arduino/Genuino

Uno" from the Tools > Board menu (according to the microcontroller on your board). For

details, see the reference and tutorials.

The ATmega328 on the Uno comes preprogrammed with a bootloader that allows you to

upload new code to it without the use of an external hardware programmer. It

communicates using the original STK500 protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP

(In-Circuit Serial Programming) header using Arduino ISP or similar; see these

instructions for details.

The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is available

in the Arduino repository. The ATmega16U2/8U2 is loaded with a DFU bootloader,

which can be activated by:

 On Rev1 boards: connecting the solder jumper on the back of the board (near the

map of Italy) and then rese ing the 8U2.

 On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2 HWB line to

ground, making it easier to put into DFU mode.

Warnings

The Uno has a resettable polyfuse that protects your computer's USB ports from shorts

and overcurrent. Although most computers provide their own internal protection, the fuse

provides an extra layer of protection. If more than 500 mA is applied to the USB port, the

fuse will automatically break the connection until the short or overload is removed.

Differences with other boards

The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial

driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to version R2)

programmed as a USB-to-serial converter.

Power

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Tutorial/HomePage
https://www.arduino.cc/en/Hacking/Bootloader?from=Tutorial.Bootloader
http://www.atmel.com/Images/doc2525.pdf
http://www.atmel.com/dyn/resources/prod_documents/avr061.zip
https://www.arduino.cc/en/Main/ArduinoISP
https://www.arduino.cc/en/Hacking/Programmer
https://www.arduino.cc/en/Hacking/Programmer

The Uno board can be powered via the USB connection or with an external power supply.

The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or

battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the

board's power jack. Leads from a battery can be inserted in the GND and Vin pin headers

of the POWER connector.

The board can operate on an external supply from 6 to 20 volts. If supplied with less than

7V, however, the 5V pin may supply less than five volts and the board may become

unstable. If using more than 12V, the voltage regulator may overheat and damage the

board. The recommended range is 7 to 12 volts.

The power pins are as follows.

 Vin. The input voltage to the Uno board when it's using an external power source

(as opposed to 5 volts from the USB connection or other regulated power source). You

can supply voltage through this pin, or, if supplying voltage via the power jack, access it

through this pin.

 5V.This pin outputs a regulated 5V from the regulator on the board. The board can

be supplied with power either from the DC power jack (7 - 12V), the USB connector

(5V), or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins

bypasses the regulator, and can damage your board. We don't advise it.

 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current

draw is 50 mA.

 GND. Ground pins.

 IOREF. This pin on the Uno board provides the voltage reference with which the

microcontroller operates. A properly configured shield can read the IOREF pin voltage

and select the appropriate power source or enable voltage translators on the outputs to

work with the 5V or 3.3V.

Memory

The ATmega328 has 32 KB (with 0.5 KB occupied by the bootloader). It also has 2 KB

of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM

library).

https://www.arduino.cc/en/Reference/EEPROM
https://www.arduino.cc/en/Reference/EEPROM

Input and Output

See the mapping between Arduino pins and ATmega328P ports. The mapping for the

Atmega8, 168, and 328 is identical.

Each of the 14 digital pins on the Uno can be used as an input or output,

using pinMode(),digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each

pin can provide or receive 20 mA as recommended operating condition and has an

internal pull-up resistor (disconnected by default) of 20-50k ohm. A maximum of 40mA

is the value that must not be exceeded on any I/O pin to avoid permanent damage to the

microcontroller.

In addition, some pins have specialized functions.

 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial

data. These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL

Serial chip.

 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt

on a low value, a rising or falling edge, or a change in value. See the attachInterrupt()

function for details.

 PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite()

function.

 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication using the SPI library.

 LED: 13. There is a built-in LED driven by digital pin 13. When the pin is HIGH

value, the LED is on, when the pin is LOW, it's off.

 TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the

Wire library.

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of

resolution (i.e. 1024 different values). By default they measure from ground to 5 volts,

though is it possible to change the upper end of their range using the AREF pin and the

analogReference()function.

There are a couple of other pins on the board.

https://www.arduino.cc/en/Reference/PinMode
https://www.arduino.cc/en/Reference/DigitalWrite
https://www.arduino.cc/en/Reference/DigitalRead

 AREF. Reference voltage for the analog inputs. Used with analogReference().

 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a

reset button to shields which block the one on the board.

Communication

The Uno has a number of facilities for communicating with a computer, another Uno

board, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial

communication, which is available on digital pins 0 (RX) and 1 (TX). An ATmega16U2

on the board channels this serial communication over USB and appears as a virtual com

port to software on the computer. The 16U2 firmware uses the standard USB COM

drivers, and no external driver is needed. However, on Windows, a .inf file is required. The

Arduino Software (IDE) includes a serial monitor which allows simple textual data to be

sent to and from the board. The RX and TX LEDs on the board will flash when data is

being transmitted via the USB-to-serial chip and USB connection to the computer (but not

for serial communication on pins 0 and 1).

A Software Serial library allows serial communication on any of the Uno's digital pins.

The ATmega328 also supports I2C (TWI) and SPI communication. The Arduino

Software (IDE) includes a Wire library to simplify use of the I2C bus; see

the documentation for details. For SPI communication, use the SPI library.

Technical specs

https://www.arduino.cc/en/Guide/Windows#toc4
https://www.arduino.cc/en/Reference/SoftwareSerial
https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/SPI

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory
32 KB (ATmega328P)

of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

Length 68.6 mm

Width 53.4 mm

Weight 25 g

PIN DIAGRAM

http://www.atmel.com/Images/doc8161.pdf

FIGURE 4: Atmel Atmega 328 microcontroller

3.2.2 L298 Dual H-Bridge Motor Driver

Double H driver module uses ST L298N dual full-bridge driver. It is a high voltage, high

current dual full-bridge driver designed to accept standard TTL logic levels and drive

inductive loads such as relays, solenoids, DC and stepping motors.

Figure 5: Dual H-Bridge

FEATURES

 Light weight, small dimension

 Super driver capacity

 FWD protection

 Heavy load heat sink

 Power selection switch

 4 pull up resistor switch

 2 DC motor / 4 coil dual phrase stepper motor output

 Motor direction indication LED

 4 standard mouting holes

SPECIFICATIONS

 Driver:L298

 Driver power supply: +5v~+46v

 Driver peak current: 2A

 Logic current:0~36mA

 Controlling level

 Max drive power:25W

 Dimension: 60mm*54mm

 Driver Weight: ~48 gm

HARDWARE INSTALLATION

Double H driver module can drive two DC motors at the same time. Port A is completely

symmetrical as port B on the board. DC motor input port A has three pins, I1, I2 and EA.

I1 and I2 are digital ports which are used to control the direction of motor, EA is

connecting with PWM port of control board to control the speed of motor. If I1=1and

I2=0, the motor rotates clockwise. If I1=0 and I2=1, it rotates anticlockwise. If I1=I2，it

stops rotating.

Normally we do not need to connect wire to supply logic power. Only if the motor power

supply is +5V～+7V or +18V～+46V we have to take off the logic power jumper and

connect 5v to supply logic power. We can control 4-wire stepping Motor the same way as

two DC motors with the signals from EA,I1,I2 and EB,I3,I4.

 3.2.3 DC Geared Motor

FIGURE 6: DC Motor

A DC motor is any of a class of electrical machines that converts direct current electrical

power into mechanical power. The most common types rely on the forces produced by

magnetic fields. Nearly all types of DC motors have some internal mechanism, either

electromechanical or electronic, to periodically change the direction of current flow in

part of the motor. Most types produce rotary motion; a linear motor directly produces

force and motion in a straight line.

DC motors were the first type widely used, since they could be powered from existing

direct-current lighting power distribution systems. A DC motor's speed can be controlled

over a wide range, using either a variable supply voltage or by changing the strength of

current in its field windings. Small DC motors are used in tools, toys, and appliances.

The universal motor can operate on direct current but is a lightweight motor used for

portable power tools and appliances. Larger DC motors are used in propulsion of electric

vehicles, elevator and hoists, or in drives for steel rolling mills. The advent of power

electronics has made replacement of DC motors with AC motors possible in many

applications.

Electromagnetic motors

A coil of wire with a current running through it generates an electromagnetic field aligned

with the center of the coil. The direction and magnitude of the magnetic field produced by

the coil can be changed with the direction and magnitude of the current flowing through

it.

A simple DC motor has a stationary set of magnets in the stator and an armature with one

or more windings of insulated wire wrapped around a soft iron core that concentrates the

magnetic field. The windings usually have multiple turns around the core, and in large

motors there can be several parallel current paths. The ends of the wire winding are

connected to a commutator. The commutator allows each armature coil to be energized in

turn and connects the rotating coils with the external power supply through brushes.

(Brushless DC motors have electronics that switch the DC current to each coil on and off

and have no brushes.)

The total amount of current sent to the coil, the coil's size and what it's wrapped around

dictate the strength of the electromagnetic field created.

The sequence of turning a particular coil on or off dictates what direction the effective

electromagnetic fields are pointed. By turning on and off coils in sequence a rotating

magnetic field can be created. These rotating magnetic fields interact with the magnetic

fields of the magnets (permanent or electromagnets) in the stationary part of the motor

https://en.wikipedia.org/wiki/Universal_motor
https://en.wikipedia.org/wiki/AC_motors
https://en.wikipedia.org/wiki/Electromagnetic
https://en.wikipedia.org/wiki/Stator
https://en.wikipedia.org/wiki/Armature_(electrical_engineering)
https://en.wikipedia.org/wiki/Commutator_(electric)
https://en.wikipedia.org/wiki/Electromagnet

(stator) to create a force on the armature which causes it to rotate. In some DC motor

designs the stator fields use electromagnets to create their magnetic fields which allow

greater control over the motor.

At high power levels, DC motors are almost always cooled using forced air.

Different number of stator and armature fields as well as how they are connected provide

different inherent speed/torque regulation characteristics. The speed of a DC motor can be

controlled by changing the voltage applied to the armature. The introduction of variable

resistance in the armature circuit or field circuit allowed speed control. Modern DC

motors are often controlled by power electronics systems which adjust the voltage by

"chopping" the DC current into on and off cycles which have an effective lower voltage.

Since the series-wound DC motor develops its highest torque at low speed, it is often used

in traction applications such as electric locomotives, and trams. The DC motor was the

mainstay of electric traction drives on both electric and diesel-electric locomotives, street-

cars/trams and diesel electric drilling rigs for many years. The introduction of DC motors

and an electrical grid system to run machinery starting in the 1870s started a new second

Industrial Revolution. DC motors can operate directly from rechargeable batteries,

providing the motive power for the first electric vehicles and today's hybrid

cars and electric cars as well as driving a host of cordless tools. Today DC motors are still

found in applications as small as toys and disk drives, or in large sizes to operate steel

rolling mills and paper machines. Large DC motors with separately excited fields were

generally used with winder drives for mine hoists, for high torque as well as smooth speed

control using thyristor drives. These are now replaced with large AC motors with variable

frequency drives.

If external power is applied to a DC motor it acts as a DC generator, a dynamo. This

feature is used to slow down and recharge batteries on hybrid car and electric cars or to

return electricity back to the electric grid used on a street car or electric powered train line

when they slow down. This process is called regenerative braking on hybrid and electric

cars. In diesel electric locomotives they also use their DC motors as generators to slow

down but dissipate the energy in resistor stacks. Newer designs are adding large battery

packs to recapture some of this energy

https://en.wikipedia.org/wiki/Power_electronics
https://en.wikipedia.org/wiki/Railway_electrification_system
https://en.wikipedia.org/wiki/Traction_drive
https://en.wikipedia.org/wiki/Diesel-electric_locomotive
https://en.wikipedia.org/wiki/Electrical_grid
https://en.wikipedia.org/wiki/Second_Industrial_Revolution
https://en.wikipedia.org/wiki/Second_Industrial_Revolution
https://en.wikipedia.org/wiki/Hybrid_car
https://en.wikipedia.org/wiki/Hybrid_car
https://en.wikipedia.org/wiki/Electric_car
https://en.wikipedia.org/wiki/Cordless
https://en.wikipedia.org/wiki/Mine_hoist
https://en.wikipedia.org/wiki/Dynamo
https://en.wikipedia.org/wiki/Hybrid_car
https://en.wikipedia.org/wiki/Regenerative_braking

Wound stators

Series connection

A series DC motor connects the armature and field windings in series with

a common D.C. power source. The motor speed varies as a non-linear function of load

torque and armature current; current is common to both the stator and rotor yielding

current squared (I^2) behavior. A series motor has very high starting torque and is

commonly used for starting high inertia loads, such as trains, elevators or hoists. This

speed/torque characteristic is useful in applications such as dragline excavators, where the

digging tool moves rapidly when unloaded but slowly when carrying a heavy load.

A series motor should never be started at no load. With no mechanical load on the series

motor, the current is low, the counter-EMF produced by the field winding is weak, and so

the armature must turn faster to produce sufficient counter-EMF to balance the supply

voltage. The motor can be damaged by overspeed. This is called a runaway condition.

Series motors called universal motors can be used on alternating current. Since the

armature voltage and the field direction reverse at the same time, torque continues to be

produced in the same direction. However they run at a lower speed with lower torque on

AC supply when compared to DC due to reactance voltage drop in AC which is not

present in DC.[3]Since the speed is not related to the line frequency, universal motors can

develop higher-than-synchronous speeds, making them lighter than induction motors of

the same rated mechanical output. This is a valuable characteristic for hand-held power

tools. Universal motors for commercial utility are usually of small capacity, not more than

about 1 kW output. However, much larger universal motors were used for electric

locomotives, fed by special low-frequency traction power networks to avoid problems

with commutation under heavy and varying loads.

Shunt connection

A shunt DC motor connects the armature and field windings in parallel or shunt with a

common D.C. power source. This type of motor has good speed regulation even as the

load varies, but does not have the starting torque of a series DC motor. It is typically used

for industrial, adjustable speed applications, such as machine tools, winding/unwinding

machines and tensioners.

https://en.wikipedia.org/wiki/Armature_(electrical_engineering)
https://en.wikipedia.org/wiki/Field_coil
https://en.wikipedia.org/wiki/Series_circuits
https://en.wikipedia.org/wiki/Battery_(electricity)
https://en.wikipedia.org/wiki/Dragline_excavator
https://en.wikipedia.org/wiki/Universal_motor
https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Electrical_reactance
https://en.wikipedia.org/wiki/DC_motor#cite_note-3
https://en.wikipedia.org/wiki/Utility_frequency
https://en.wikipedia.org/wiki/Traction_power_network

Compound connection

A compound DC motor connects the armature and fields windings in a shunt and a series

combination to give it characteristics of both a shunt and a series DC motor. This motor is

used when both a high starting torque and good speed regulation is needed. The motor can

be connected in two arrangements: cumulatively or differentially. Cumulative compound

motors connect the series field to aid the shunt field, which provides higher starting

torque but less speed regulation. Differential compound DC motors have good speed

regulation and are typically operated at constant speed.

3.2.4 MPU – 6050

The InvenSense MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro in

a single chip. It is very accurate, as it contains 16-bits analog to digital conversion

hardware for each channel. Therefor it captures the x, y, and z channel at the same time.

The sensor uses the I2C-bus to interface with the Arduino.

The MPU-6050 is not expensive, especially given the fact that it combines both an

accelerometer and a gyro.

Also note that Invensense has combined the MPU-6050 with a magnetometer (compass)

in a single chip called MPU-9150.

FIGURE 7: MPU -6000 Family Block Diagram

http://playground.arduino.cc/Main/MPU-9150

PIN DESCRIPTION

FIGURE 9: Arduino & MPU6050

Bluetooth Module V2.0

HC-05 module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed

for transparent wireless serial connection setup.

FIGURE 10: Bluetooth Module

Serial port Bluetooth module is fully qualified Bluetooth V2.0+EDR (Enhanced Data

Rate) 3Mbps Modulation with complete 2.4GHz radio transceiver and baseband .It uses

CSR Blue core 04-External single chip Bluetooth system with CMOS technology and

with Adaptive Frequency Hopping Feature. It has the footprint as small as

12.7mmx27mm.

Hardware Features

 Typical -80dBm sensitivity

 Up to +4dBm RF transmit power

 Low Power 1.8V Operation ,1.8 to 3.6V I/O

 PIO control

 UART interface with programmable baud rate

 With integrated antenna

 With edge connector Software Features

 Default Baud rate: 38400, Data bits: 8, Stop bit:1Parity:No parity,

 Data control: has supported baud rate: 9600, 19200, 38400, 57600, 115200, etc.

 Given a rising pulse in PIO0, device will be disconnected.

 Status instruction port PIO1: low-disconnected, high-connected;

 PIO10 and PIO11 can be connected to red and blue led separately.

 When master and slave are paired, red and blue led blinks 1time/2s in interval, while

disconnected only blue led blinks 2 times/s.

 Auto-connect to the last device on power as default.

 Permit pairing device to connect as default.

 Auto-pairing PINCODE:”0000” as default

 Auto-reconnect in 30 min when disconnected as a result of beyond the range of

connection.

Temperature Sensor (LM35)

LM35 is a basic temperature sensor that can be used for experimental purpose. It gives the

readings in centigrade (degree Celsius) since its output voltage is linearly proportional to

temperature.

Figure 11: Temperature Sensor

It uses the fact that as temperature increases, the voltage across diode increases at known

rate (actually the drop across base-emitter junction of transistor). Its disadvantage is its

sluggish response. It has an output voltage that is proportional to the Celsius temperature.

The scale factor is .01V/C or 1mV/C. Another important characteristic of the LM35 is

that it draws only 60 micro amps from its supply and possesses a low self-heating

capability. The sensor self-heating causes less than 0.1 C temperature rises in still air. The

operating temperature range is from -55°C to 150°C.

3.3) Software Used

Arduino Integrated Development Environment (IDE)

The Arduino Integrated Development Environment - or Arduino Software (IDE) -

contains a text editor for writing code, a message area, a text console, a toolbar with

buttons for common functions and a series of menus. It connects to the Arduino and

Genuino hardware to upload programs and communicate with them. Programs written

using Arduino Software (IDE) are called sketches. These sketches are written in the text

editor and are saved with the file extension .ino.

 The editor has features for cutting/pasting and for searching/replacing text. The message

area gives feedback while saving and exporting and also displays errors. The console

displays text output by the Arduino Software (IDE), including complete error messages

and other information. The bottom right-hand corner of the window displays the

configured board and serial port. The toolbar buttons allow you to verify and upload

programs, create, open, and save sketches, and open the serial monitor.

FIGURE 12: IDE

3.4) Assembling The Robot

Block Diagram For Balancing Bot

FIGURE 13: Block Diagram

FIGURE 14: Chassis

FIGURE 15: Components

FIGURE 16: Final Structure

CHAPTER 4

PERFORMANCE ANALYSIS

4.1 Algorithm to control Self Balancing Bot vertically upward

 Take the necessary header files and global variables to support the main software.

 Configure PID angle and speed of the motor as well as PID constants.

 Take the read values of the IMU sensor and store it in a matrix up to 100 samples

Configure the start button, stop button and device configure button.

 Configure PID module to update it.

 Set digital pins, serial pins and PWM pins on the arduino board.

 Initialize PID speed, PID angle and Time action module.

 Update the IMU sensor and update the IMU matrix.

 Then we will face three conditions

 1) When debug-> a) calibrate the previous values and update the previous

declared variables.

2) When started->. calculate the PID angle and motor speed. B. According to the

angel check motor speed regularly and update the IMU sensor. C. If steering is

not applied then set the external offset to zero D. Else refer to SBB console

program.

 3) When stopped-> do the power off. Fall automatically.

To simplify things a little bit, I take a simple assumption; the robot’s movement should

be confined on one axis (e.g. only move forward and backward) and thus both wheels will

move at the same speed in the same direction. Under this assumption the mathematics

become much simpler as we only need to worry about sensor readings on a single plane.

If we want to allow the robot to move sidewise, then you will have to control each wheel

independently. The general idea remains the same with a less complexity since the falling

direction of the robot is still restricted to a single axis.

4.2) Blutooth Control Algorithm

 Control Analog Pin

 GET analogWrite DATA From ARDUDROID

If (ard_command==CMD_ANALOGWRITE)

analogWrite (pin_num,pin_value);

 Control Analog Pin

 GET DigitalWrite DATA From ARDUDROID

If (ard_command==CMD_DIGITALWRITE)

 If (pin_value==PIN HIGH)

pin_value=HIGH

Else return;

Set_digitalwrite(pin_num,pin_value);

4.3) Temperature sensing Module

Analog Read the temp pin

Convert the temperature to Celsius

If (temp==predefined value)

Display temperature

Else no display

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

To build a self-balancing robot we first derived the system equation then check its real

time response (both time and frequency). Then we designed a PID controller to control

the close loop function. We checked the controllability and set the pole location.

 Then by choosing the appropriate components we analyze their simulation successfully.

The above test steps are successful, then we are near to build a self- balancing bot. I've

spent quite some time trying to tune the system but with no success.

The stability of the self- balancing bot may be improved if you use a properly designed

gearbox that is having negligible gear backlash. So by implementation all of these

concepts and avoid the errors that we came across the self-balancing bot is completely

build.

5.2 FUTURE SCOPE

1. Position recovery. For that we need encoders for measure the movement of the

wheel and use it for bring the robot back to the initial position.

2. Control the movement of the robot, forward, backward and turning , that is easy,

the only thing we have to do is change the angle we want the robots stay then the

gravity will do his work and the robot will move in the direction of the angle, then we

put the angle to zero again and the robot stops. For turning we have to put some offset

in the motor velocity, for turning right we subtract the offset to the velocity in right

wheel and sum it to the velocity of the left wheel.

3. Adding a WiFi shield to control it via internet.

4. Implementation with Raspberry Pi to allow the robot to use a camera.

5. Implementation of a camera and artificial vision for the robot.

6. Use a ball instead of wheels, so hard, but we'll try.

Two wheel self-balancing robot is also a development in the field of robotics. This two

wheel self-balancing robot is actually based on the concept of Inverted pendulum theory.

This type of robot has gained fame and interest among researchers and engineers because

it utilizes such a control system that is used to stabilize an unstable system using efficient

microcontrollers and sensors. Two-wheeled balancing robots can be used in several

applications with different perspectives such as an intelligent gardener in agricultural

fields, an autonomous trolley in hospitals, shopping malls, offices, airports, healthcare

applications or an intelligent robot to guide blind or disable people. These types of robots

can effectively work in non-uniform surfaces due to their balanced control system.

REFERENCES

 http://www.instructables.com/id/Chappie-Self-Balancing-Robot/

http://www.instructables.com/id/Chappie-Self-Balancing-Robot/
http://www.instructables.com/id/Chappie-Self-Balancing-Robot/

 http://www.allaboutcircuits.com/technical-articles/an-introduction-to-control-

systems-designing-a-pid-controller-using-matlabs/

 http://www.codeproject.com/Articles/882552/CloudCooker-IoT-Temperature-

Controller

 http://www.csimn.com/CSI_pages/PIDforDummies.html

 https://en.wikipedia.org/wiki/PID_controller

 http://www.ijarcsse.com/docs/papers/Volume_3/7_July2013/V3I7-0257.pdf

 http://www.ijaiem.org/Volume2Issue2/IJAIEM-2013-02-16-015.pdf

 http://www.academia.edu/11153860/Simulation_of_boiler_using_PID_controller_

and_Automation_PLC_and_SCADA_A_Comprehensive_Study

 https://www.arduino.cc/en/Main/ArduinoBoardUno

 http://www.uniassignment.com/essay-samples/information-technology/two-wheel-

self-balancing-robot-information-technology-essay.php

 Lei Guo , Hong Wang , “PID controller design for output PDFs of stochastic

systems using linear matrix inequalities”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B 01/2005; 35:65-71. pp.65-71

 R.S.Meena,Vikas Kumawat(2011) .Controller Design For Servo Motor Using

MATLAB .In Proceeding of National Conferences on Advances & Research in

Electrical System Technology

 http://www.kerrywong.com/2012/03/08/a-self-balancing-robot-i/

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6565146&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6565146

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6021051&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6021051

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5420511&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5420511

 http://home.iitk.ac.in/~vipgupta/self-balancing-bot

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6885816&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6885816

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5668001&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5668001

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6568193&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6568193

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5968611&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5968611

http://www.allaboutcircuits.com/technical-articles/an-introduction-to-control-systems-designing-a-pid-controller-using-matlabs/
http://www.allaboutcircuits.com/technical-articles/an-introduction-to-control-systems-designing-a-pid-controller-using-matlabs/
http://www.allaboutcircuits.com/technical-articles/an-introduction-to-control-systems-designing-a-pid-controller-using-matlabs/
http://www.codeproject.com/Articles/882552/CloudCooker-IoT-Temperature-Controller
http://www.codeproject.com/Articles/882552/CloudCooker-IoT-Temperature-Controller
http://www.codeproject.com/Articles/882552/CloudCooker-IoT-Temperature-Controller
http://www.csimn.com/CSI_pages/PIDforDummies.html
http://www.csimn.com/CSI_pages/PIDforDummies.html
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller
http://www.ijarcsse.com/docs/papers/Volume_3/7_July2013/V3I7-0257.pdf
http://www.ijarcsse.com/docs/papers/Volume_3/7_July2013/V3I7-0257.pdf
http://www.ijaiem.org/Volume2Issue2/IJAIEM-2013-02-16-015.pdf
http://www.ijaiem.org/Volume2Issue2/IJAIEM-2013-02-16-015.pdf
http://www.academia.edu/11153860/Simulation_of_boiler_using_PID_controller_and_Automation_PLC_and_SCADA_A_Comprehensive_Study
http://www.academia.edu/11153860/Simulation_of_boiler_using_PID_controller_and_Automation_PLC_and_SCADA_A_Comprehensive_Study
http://www.academia.edu/11153860/Simulation_of_boiler_using_PID_controller_and_Automation_PLC_and_SCADA_A_Comprehensive_Study
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.uniassignment.com/essay-samples/information-technology/two-wheel-self-balancing-robot-information-technology-essay.php
http://www.uniassignment.com/essay-samples/information-technology/two-wheel-self-balancing-robot-information-technology-essay.php
http://www.kerrywong.com/2012/03/08/a-self-balancing-robot-i/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6565146&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6565146
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6565146&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6565146
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6021051&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6021051
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6021051&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6021051
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5420511&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5420511
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5420511&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5420511
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6885816&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6885816
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6885816&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6885816
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5668001&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5668001
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5668001&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5668001
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6568193&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6568193
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6568193&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6568193
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5968611&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5968611
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5968611&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5968611

 A. Warnasch, and A. Killen, Low cost, high G, micro electro-mechanical

systems (MEMS), inertial measurements unit (IMU) program, IEEE Position

Location and Navigation Symposium, 2002, pp. 299-305

(viii)

