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Abstract 

Recommender systems are a hot topic in this age of immense data and web 

marketing. Shopping online is ubiquitous, but online stores, while eminently 

searchable, lack the same browsing options as the brick-and-mortar variety.  Visiting 

a movie rental store in person, a customer can wander over to the science fiction 

section and casually look around without a particular author or title in mind. Online 

stores often offer a browsing option, and even allow browsing by genre, but often the 

number of options available is still overwhelming. 

 

Commercial sites try to counteract this overload by showing special deals, new 

options, and staff favorites, but the best marketing angle would be to recommend 

items that the user is likely to enjoy or need. Unless online stores want to hire 

psychics, they need a new technology. The field of machine learning has an ever-

growing field of research in recommender systems, which fits the bill. 

“Recommender systems are systems that based on information about a user's past 

patterns and consumption patterns in general, recommend new items to the user.“ 

The research in this scope has led to the development of many methods to get 

through the opinion of other people, the relevant items for a specific person. Most 

of these methods work around the idea of finding similarities in people’s tastes, 

using Social Network platforms, such as Facebook and Twitter. The prediction for a 

specific person is then based on the opinion of the most similar user to the person 

present in the network. This procedure is known as Collaborative Filtering. The 

other approach is Content-based Filtering. But one approach isn’t enough in today’s 

time when internet access is easy, social network usage is high and there is a huge 

library of media content and inventory lists. A Hybrid Recommender System is our 

best bet to tackle the issue of suggestions. 

 

The idea of this project is to analyze different algorithms devised for making 

predictions and develop a system for recommending media content to the user 

according to his/her taste.
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CHAPTER 1 – INTRODUCTION 

1.1 Introduction 

Recommender systems are such an integral part of our lives and how we experience the web, 

whether it is on a browser, mobile application or on the desktop. They have become so 

pervasive and ubiquitous that we do not even notice them anymore. Every scalable system 

makes use of a recommendation system. It’s not just the apps or web sites where they are used 

– they are available in our automobile’s dashboard, our smart watch, even in our smart home 

devices. 

Why Recommender Systems? 

Over the past 25 years, since the birth of the World Wide Web, the Internet has matured a lot 

and today we’re in the third generation of the web (WWW 3.0+). As the web moved from an 

owner model to a public crowdsourcing model and allowed people to contribute freely, it 

witnessed an exponential rise in the amount of content available, which was a good thing. But 

this led to two major problems: 

(i) Aggregation: The amount of information became so large that it got tough to 

manage it while still being able to run a web service that was reachable to all parts 

of the world. This problem was solved by building worldwide content delivery and 

distribution networks, aided by the rise of NoSQL Database systems and decreasing 

storage costs. 

(ii) Searching: The second major problem was how to ensure that the information is 

within the reach of the user and that the user does not get lost in the vast data dumps 

available. This proved to be an even bigger problem than aggregation since the data 

troves are vast and each user brings along with him/her a unique perspective and 

thus a unique search pattern. We are still trying to solve this problem today and are 

far from achieving a perfect solution to it. This is where recommender systems 

come into play. 

In a nutshell, a recommender system is a system that helps predict user response to a variety of 

options. Predicting what the user might pick up next is the essential aim of a recommender 

system. There is an extensive class of web applications that involve predicting the user’s 

response to options. Such a facility is called a recommendation/recommender system.  
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As opposed to the previous approach of presenting user with the whole information library, 

recommender systems ease this task by reducing the amount of information available to the 

user and providing recommendations and predictions tailored to a user’s behaviour or profile, 

thereby making search simpler. This is the reason why Google is perhaps the best and most 

powerful recommender system in existence today. 

Recommender systems have changed the way people find information, media content, products 

and even other people. They study patterns of behaviour to know what someone will prefer 

from among a collection of things he has never experienced. The technology behind 

recommender systems has evolved over the past 20 years into a rich collection of tools that 

enable the practitioner or researcher to develop effective recommenders. 

1.2  Problem Statement 

The most widely used of recommender systems is seen in the field of media and content based 

applications since they are the most used category of applications. Moreover, the libraries for 

media content are huge and searching for content according to one’s taste becomes very 

difficult. 

Recommender systems for content based applications include those systems built for the 

following categories:- 

(i) Music 

(ii) Movies 

(iii) Television Shows 

(iv) Videos 

(v) Games 

(vi) Books 

(vii) News 

(viii) Articles 

Our problem statement is to build a recommender system for movies which is able to suggest 

a number of movies to the user which he/she may wish to watch in the near future. This 

may/may not use the social profile of a person from a third party social network such as 

Facebook, Twitter or his/her ratings on a review site such as Flixster, Metacritic or Rotten 

Tomatoes. 
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1.3 Objectives 

The objectives of the project are listed as follows:- 

(i) Select a topic with real-world applications 

(ii) Survey the existing literature and review the work done 

(iii) Study  and analyse real recommender systems in place today 

(iv) Design a recommendation engine 

(v) Develop the recommender system 

(vi) Perform an analysis of the system 

(vii) Create an appropriate interface for the user 

This is a listing of the goals we intend to achieve by working on this project. 

1.4 Methodology 

 Agile Development 

 Agile methodology is an alternative to traditional project management, typically used in 

software development. It helps teams respond to unpredictability through incremental, 

iterative work cadences, known as sprints. Agile methodologies are an alternative to 

waterfall, or traditional sequential development. 

 

  

Figure 1 - Agile Methodology 
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1.5 Organization 

The report follows the timeline in which the project work was done. It starts with an 

introduction to the topic – “Recommender Systems” which includes an abstract, a brief idea, 

objectives of the project and the methodology followed. 

This is followed by a Literature Survey of the topic. It includes:- 

(i) Applications of Recommender Systems 

(ii) Types of Recommender Systems 

(iii) Classification of Algorithms 

(iv) Recommender Systems Studied 

The report then follows up on the System Development of the project which includes analytical, 

computational, experimental, mathematical and statistical Model development. 

This is followed by a Performance Analysis of the recommender system using various 

parameters and metrics. The report ends with a conclusion which includes Future Scope and 

Applications & Contributions. 
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CHAPTER 2 – LITERATURE SURVEY 

2.1 Introduction 

There is an extensive class of Web applications that involve predicting user responses to 

options. Such a facility is called a recommendation system. We shall begin this chapter with a 

survey of the most important examples of these systems. However, to bring the problem into 

focus, two good examples of recommendation systems are: 

(i) Offering news articles to on-line newspaper readers, based on a prediction of reader 

interests. 

(ii) Offering customers of an on-line retailer suggestions about what they might like to buy, 

based on their past history of purchases and/or product searches. 

Recommendation systems use a number of different technologies. We can classify these 

systems into two broad groups. 

 Content-based systems examine properties of the items recommended. For instance, if 

a Netflix user has watched many cowboy movies, then recommend a movie classified 

in the database as having the “cowboy” genre. 

 Collaborative filtering systems recommend items based on similarity measures between 

users and/or items. The items recommended to a user are those preferred by similar 

users. 

2.2 Applications of Recommender Systems 

We have mentioned several important applications of recommendation systems, but here we 

shall consolidate the list in a single place. 

1. Product Recommendations: Perhaps the most important use of recommendation systems is 

at on-line retailers. We have noted how Amazon or similar on-line vendors strive to present 

each returning user with some suggestions of products that they might like to buy. These 

suggestions are not random, but are based on the purchasing decisions made by similar 

customers or on other techniques we shall discuss in this chapter. 

2. Movie Recommendations: Netflix offers its customers recommendations of movies they 

might like. These recommendations are based on ratings provided by users, much like the 

ratings suggested in the example utility matrix of Fig. 9.1. The importance of predicting 

ratings accurately is so high, that Netflix offered a prize of one million dollars for the first 

algorithm that could beat its own recommendation system by 10%. The prize was finally 

won in 2009, by a team of researchers called “Bellkor’s Pragmatic Chaos,” after over three 

years of competition. 
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3. News Articles: News services have attempted to identify articles of interest to readers, based 

on the articles that they have read in the past. The similarity might be based on the similarity 

of important words in the documents, or on the articles that are read by people with similar 

reading tastes. The same principles apply to recommending blogs from among the millions 

of blogs available, videos on YouTube, or other sites where content is provided regularly. 

 

2.3 Classification of Algorithms 

2.3.1 Collaborative Filtering 

The collaborative filtering is a technique for recommender systems that generates 

recommendations using the preferences and tastes given by others users of the system. 

This technique tries to simulate the collaboration in the real world between users that share 

opinions about recommendations and reviews. 

In many cases, people have to choose between different alternatives without a complete 

knowledge of them. In these cases, the people believe in the recommendation of other 

familiar people or people whose opinion is valued by them.  

The collaborative filtering systems use this idea, trying to get the users of the system that 

have the best opinion about an item for a user (based in his or her taste) and calculate the 

utility of the items for the specific user, using the opinion of the other users. 

Appropriate Scenarios 

Collaborative filtering can be applied in many domains, but for it to work efficiently, it is 

better to apply it in scenarios with some characteristics. The most important is that the 

evaluation of the items is based on subjective criteria (e.g. movies) or when the items have 

a lot of objective criteria and they need a subjective weight to choose between them (e.g. 

computers). In these situations, the collaborative filtering is very powerful, but if the 

recommendations are only based on objective criteria, the collaborative filtering does not 

make sense. It does not mean that the items have no objectives criteria to be evaluated. It 

means that the objective criteria are very similar, and they differ only in subjective criteria.  

It is important too, that each user can find others users with similar tastes, because the 

rating of these similar users will be an important component of recommendations. The 

taste of the user cannot change a lot in short time, because then the previous ratings of this 

user do not represent his or her preferences and they become useless for predictions. And 
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about the data that is necessary in one scenario to use a Collaborative Filtering 

system, it is important that there are many ratings per item, to ensure a good inference of 

recommendation and predictions and that each user rates multiple items. The system needs 

enough information to provide recommendations with high quality. 

Collaborative Filtering Algorithms 

Most recommendation algorithms start by finding a set of customers whose purchased and 

rated items overlap the user’s purchased and rated items. The algorithm aggregates items 

from these similar customers, eliminates items the user has already purchased or rated, 

and recommends the remaining items to the user. Two popular versions of these 

algorithms are collaborative filtering and cluster models. Other algorithms — including 

search-based methods — focus on finding similar items, not similar customers. For each 

of the user’s purchased and rated items, the algorithm attempts to find similar items. It 

then aggregates the similar items and recommends them. 

(i) Traditional Collaborative Filtering 

A traditional collaborative filtering algorithm represents a customer as an N-

dimensional vector of items, where N is the number of distinct catalog items. The 

components of the vector are positive for purchased or positively rated items and 

negative for negatively rated items. To compensate for best-selling items, the 

algorithm typically multiplies the vector components by the inverse frequency (the 

inverse of the number of customers who have purchased or rated the item), making 

less well-known items much more relevant. For      almost      all      customers,      this      

vector       is       extremely       sparse.     The algorithm generates recommendations 

based on a few customers who are  most similar to the user. It can measure the 

similarity of two customers, A and B, in various ways; a common method is to 

measure the cosine of the angle between the two vectors: 

 

The algorithm can select recommendations from the similar customer’s items using 

various methods as well; a common technique is to rank each item according to how 

many similar customers purchased it. 
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Using collaborative filtering to generate recommendations is computationally 

expensive. It is O(MN) in the worst case, where M is the number of customers and N 

is the number of product catalog items, since it examines M customers and up to N 

items for each customer. However, because the average customer vector is extremely 

sparse, the algorithm’s performance tends to be closer to O(M + N). Scanning every 

customer is approximately O(M), not O(MN), because almost all customer vectors 

contain a small number of items, regardless of the size of the catalog. But there are a 

few customers who have purchased or rated a significant percentage of the catalog, 

requiring O(N) processing time. Thus, the final performance of the algorithm is 

approximately O(M + N). Even so, for very large data sets — such as 10 million or 

more customers and 1 million or more catalog items — the algorithm encounters 

severe performance and scaling issues. 

It is possible to partially address these scaling issues by reducing the data size. We can 

reduce M by randomly sampling the customers or discarding customers with few 

purchases, and reduce N by discarding very popular or unpopular items. It is also 

possible to reduce the number of items examined by a small, constant factor by 

partitioning the item space based on product category or subject classification. 

Dimensionality reduction techniques such as clustering and principal component 

analysis can reduce M or N by a large factor. 

Unfortunately, all these methods also reduce recommendation quality in several ways: 

 If the algorithm examines only a small customer sample, the selected customers 

will be less similar to the user. 

 Item-space partitioning restricts recommendations to a specific product or 

subject area. 

 If the algorithm discards the most popular or unpopular items, they will never 

appear as recommendations, and customers who have purchased only those 

items will not get recommendations. 

(ii) Cluster-based Collaborative Filtering 

To find customers who are similar to the user, cluster models divide the customer base 

into many segments and treat the task as a classification problem. The algorithm’s 

goal is to assign the user to the segment containing the most similar customers. It then 

uses the purchases and ratings of the customers in the segment to generate 

recommendations. 
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The segments typically are created using a clustering or other unsupervised learning 

algorithm, although some applications use manually determined segments. Using a 

similarity metric, a clustering algorithm groups the most similar customers together to 

form clusters or segments. Because optimal clustering over large data sets is 

impractical, most applications use various forms of greedy cluster generation. These 

algorithms typically start with an initial set of segments, which often contain one 

randomly selected customer each. They then repeatedly match customers to the 

existing segments, usually with some provision for creating new or merging existing 

segments. For very large data sets - especially those with high dimensionality - 

sampling or dimensionality reduction is also necessary. 

Once the algorithm generates the segments, it computes the user’s similarity to vectors 

that summarize each segment, then chooses the segment with the strongest similarity 

and classifies the user accordingly. Some algorithms classify users into multiple 

segments and describe the strength of each relationship. Classification can be done on 

the basis of Euclidean Distance: 

The rating will be the summation of ratings of the item by the users in the cluster 

divided by the number of users in the cluster: 

 

 

Cluster models have better online scalability & performance than collaborative 

filtering because they compare the user to a controlled number of segments rather 

than the entire customer base. The complex clustering computation is run offline. 

However, recommendation quality is low. Cluster models group numerous 

customers together in a segment, match a user to a segment, and then consider all 

customers in the segment similar customers for the purpose of making 

recommendations. Because the similar customers that the cluster models find are not 

the most similar customers, the recommendations they produce are less relevant. It is 

possible to improve quality by using numerous fine grained segments, but then online 

user–segment classification becomes almost as expensive as finding similar 

customers using collaborative filtering. 
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Types of Collaborative Filtering 

(i) User-based Collaborative Filtering 

In this method, we predict the user behavior against a certain item using the 

weighted sum of deviations from mean ratings of users that previously rated this 

item and the user mean rate. 

Also known as memory-based collaborative filtering, it is an effective technique 

and pretty easy to implement. 

A weight is assigned to all users wrt similarity with the active user 

→ The Rating value user ‘u’ gives to item ‘i’ is calculated as an aggregation of 

similar users’ ratings 

→ Find top-N users who are similar to user ‘u’, who also rated item ‘i’ positively, 

i.e., users who have maximum similarity with user ‘u’ 

→ Compute a prediction from a weighted combination of the selected 

neighbours’ ratings 

(ii) Item-based Collaborative Filtering 

E-commerce websites extensively uses recommendation algorithms to personalize 

its Web site to each customer’s interests. Because existing recommendation 

algorithms cannot scale to tens of millions of customers and products, item-to-

item collaborative filtering, scales to massive data sets and produces high-quality 

recommendations in real time. 

Figure 2 - User-based Collaborative Filtering 
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Rather than matching the user to similar customers, item-to-item collaborative 

filtering matches each of the user’s purchased and rated items to similar items, 

then combines those similar items into a recommendation list. 

Proposed first in 2003, it does NOT match similar users, but MATCHES similar 

items 

→ Difference: Similar items bought vs Users who bought similar items 

• Leads to faster online systems 

• Results in improved recommendations 

• Pearson correlation is the most common technique 

 

 

 

 

 

 

 

 

 

 

 

 

(iii) Model-based Approach 

→ Develop models using data mining and machine learning algorithms to find 

patterns, based on a particular training dataset 

→ Bayesian networks, clustering models, latent semantic models (Markov 

Decision process) 

Figure 3 - Item-based Collaborative Filtering 



RECOMMENDER SYSTEMS 
 

12 
 

→ Parameter reduction can take place using Principal Component Analysis 

→ Helps enterprises in user identification and classification, for targeted 

recommendation 

→ Handles sparsity (gap in number of likes) better than memory-based ones 

(iv) Hybrid Approach 

→ Most successful approaches are a mix of memory-based and model-based 

approaches 

→ Hard to recommend without a profile in times of social networks 

→ Overcome sparsity (in user-based) as well as loss of information (in model-

based) 

→ Example: Google Newsstand recommender system 

2.3.2 Content-based Filtering 

The system learns to recommend items that are similar to the ones that the user liked 

in the past. The similarity of items is calculated based on the features associated with 

the compared items. In content-based recommendations, keywords are used to 

describe the items and a user profile is built to indicate the type of item this user likes. 

If the user has few purchases or ratings, content based recommendation algorithms 

scale and perform well. For users with thousands of purchases, however, it’s 

impractical to base a query on all the items. The algorithm must use a subset or 

summary of the data, reducing quality. In all cases, recommendation quality is 

relatively poor. The recommendations are often either too general (such as best-selling 

drama DVD titles) or too narrow (such as all books by the same author). 

Recommendations should help a customer find and discover new, relevant, and 

interesting items. Popular items by the same author or in the same subject category 

fail to achieve this goal. 

Methodology 

• Use an item-presentation algorithm (Ex: tf-idf) 

• Create a user profile, by focusing on 
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→ A model of user’s preference (gained explicitly or implicitly) 

→ A history of user’s interaction with the recommender system 

 

 

The main problems with the Content Based Filtering approach are: 

a. Domain and problem dependency: For each application area one has to select 

the appropriate metadata describing the contents the best and ensure its 

availability. The availability of the right metadata content may not always be 

guaranteed, for instance, when the sites aggregate contents of different content 

providers, or products of numerous sellers/retailers. Typical examples are 

auction or classified sites. 

b. Scalability: If the catalogue is large (millions of content items) then the 

selection of the right content requires comparing the user profile with all 

available content, which may take relatively long time. 

2.3.3 Hybrid Recommender Systems 

Implementation Techniques 

→ Making content-based predictions & collaborative-based predictions separately 

and then combining 

→ Adding content-based capabilities to a collaborative-based approach (& vice versa) 

→ Unifying the approaches into one model 

 

 

 

 

Figure 4 - Content-based Filtering 
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Example: Netflix 

→ Collaborative filtering for comparing users’ watching & searching habits 

→ Content-based filtering for rating 

Approaches may combine 

(i) Collaborative 

→ Information about rating profiles for different users 

(ii) Content-based 

→ Features associated with products and their ratings by users 

(iii) Demographic-based 

→ Recommend using ratings of users in a specific demographic dividend 

(iv) Knowledge-based 

→ Suggest products based on inferences about a user’s needs & preferences 

Hybridisation Techniques 

• Weighted – Combine score of different recommendation components numerically 

• Switching – System chooses among recommendation components & applies the 

selection 

• Mixed – Recommendations from different recommenders are presented together 

• Feature Combination – Combine features from multiple sources, give to a single 

algorithm 

• Feature Augmentation – Use one recommendation technique to compute 

feature(s) set, and then provide to next technique 

• Cascade – Assign priority to different recommenders 

• Meta-Level – Use model of one recommendation technique as input to another. 

 

 

Figure 5 - Hybrid Recommender Systems 
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2.4 Recommender Systems Studied 

To get a good idea of how recommender systems work out in the real world, we studied a 

number of products, mainly web and mobile applications which made use of 

recommendations. Different types of applications have different needs for the kind of 

recommender system they use. We studied recommender systems being used in different 

types of online services. 

  

Figure 6 - Recommender Systems Studied 
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2.4.1. E-Commerce Recommendation Engines 

Recommendation algorithms are best known for their use on e-commerce Websites, there 

they use input about a customer’s interests to generate a list of recommended items. Many 

applications use only the items that customers purchase and explicitly rate to represent 

their interests, but they can also use other attributes, including items viewed, 

demographic data, subject interests, and favourite artists. 

At Amazon.com, recommendation algorithms are used to personalize the online store for 

each customer. The store radically changes based on customer interests, showing 

programming titles to a software engineer and baby toys to a new mother. The click-

through and conversion rates — two important measures of Web-based and email 

advertising effectiveness — vastly exceed those of untargeted content such as banner 

advertisements and top-seller lists. 

E-commerce recommendation algorithms often operate in a challenging environment. 

For example: 

 A large retailer might have huge amounts of data, tens of millions of customers and 

millions of distinct catalogue items. 

 Many applications require the results set to be returned in real-time, in no more 

than half a second, while still producing high-quality recommendations. 

 New customers typically have extremely limited information, based on only a few 

purchases or product ratings. 

 Older customers can have a glut of information, based on thousands of purchases 

and ratings. 

 Customer data is volatile: Each interaction provides valuable customer data, and 

the algorithm must respond immediately to new information. 
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I. Amazon 

Amazon.com uses recommendations as a targeted marketing tool in many email 

campaigns and on most of its Web sites’ pages, including the high traffic Amazon.com 

homepage. Clicking on the “Your Recommendations” link leads customers to an area 

where they can filter their recommendations by product line and subject area, rate the 

recommended products, rate their previous purchases, and see why items are 

recommended (see Fig 1). 

As Figure 2 shows, Amazon’s shopping cart recommendations, which offer customers 

product suggestions based on the items in their shopping cart. The feature is similar to 

the impulse items in a supermarket checkout line, but our impulse items are targeted to 

each customer. Amazon.com extensively uses recommendation algorithms to 

personalize its Web site to each customer’s interests. Because existing recommendation 

algorithms could not scale to Amazon’s tens of millions of customers and products, 

Amazon developed its own. Amazon’s algorithm, item-to-item collaborative filtering, 

scales to massive data sets and produces high-quality recommendations in real time. 

Figure 7 - "Your Recommendations" Feature on Amazon.com 

Figure 8 - Amazon.com Shopping Cart Recommendations 
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Rather than matching the user to similar customers, item-to-item collaborative 

filtering matches each of the user’s purchased and rated items to similar items, then 

combines those similar items into a recommendation list. 

To determine the most-similar match for a given item, the algorithm builds a similar-

items table by finding items that customers tend to purchase together. We could build 

a product-to-product matrix by iterating through all item pairs and computing a 

similarity metric for each pair. However, many product pairs have no common 

customers, and thus the approach is inefficient in terms of processing time and 

memory usage. 

The following iterative algorithm provides a better approach by calculating the 

similarity between a single product and all related products: 

For each item in product catalog, I1 

For each customer C who purchased I1 

For each item I2 purchased by 

customer C 

Record that a customer purchased I1 

and I2 

For each item I2 

Compute the similarity between I1 and I2 

 

Scalability 

Amazon.com has more than 29 million customers and several million catalog items. 

Other major retailers have comparably large data sources. While all this data offers 

opportunity, it’s also a curse, breaking the backs of algorithms designed for data sets 

three orders of magnitude smaller. Almost all existing algorithms were evaluated over 

small data sets. For example, the MovieLens data set contains 35,000 customers and 

3,000 items, and the EachMovie data set3 contains 4,000 customers and 1,600 items. 

For very large data sets, a scalable recommendation algorithm must perform the most 

expensive calculations offline. 

  



RECOMMENDER SYSTEMS 
 

19 
 

II. eBay 

Feedback Profile: The Feedback Profile feature at eBay.com (www.ebay.com) allows 

both buyers and sellers to contribute to feedback profiles of other customers with whom 

they have done business. The feedback consists of a satisfaction rating 

(satisfied/neutral/dissatisfied) as well as a specific comment 

about the other customer. Feedback is used to provide a recommender system for 

purchasers, who are able to view the profile of sellers. This profile consists of a table 

of the number of each rating in the past 7 days, past month, and past 6 months, as well 

as an overall summary (e.g., 867 positives from 776 unique customers). Upon further 

request, customers can browse the individual ratings and comments for the sellers. 

III. Levi’s 

Style Finder: Style Finder allows customers of the Levi Straus (www.levis.com) 

website to receive recommendations on articles of Levi’s clothing. Customers indicate 

whether they are male or female, then view three categories -- Music, Looks, Fun -- 

and rate a minimum of 4 “terms” or “sub-categories” within each. They do this by 

providing a rating on a 7-point scale ranging from “leave it” to “love it.” They may also 

choose the rating of “no opinion.” Once the minimum number of ratings are entered 

customers may select “get recommendations.” Here, they are provided with thumbnails 

of 6 items of recommended clothing. Customers may provide feedback by use of the 

“tell us what you think feature” which allows them to enter an opinion rating for the 

recommended article of clothing. Feedback may change one or all of the six items 

recommended. 

  



RECOMMENDER SYSTEMS 
 

20 
 

2.4.2. Social Networks - Recommendation Engines 

There are findings in the sociological and psychological disciplines that point to the 

relevance of a person’s social network in determining their tastes, preferences, and 

activities. The principle of homophily, for instance, is well established in the Social 

Networks field. McPherson et al. reported how “similarity breeds connection”. They 

discovered that “people’s personal networks are homogeneous with regard to many 

sociodemographic, behavioural, and intrapersonal characteristics”. In other words, we 

share many attributes with the people close to us. Reversing this principle suggests that, 

if we have information about the connections in a person’s network, we can infer some 

of the person’s attributes.  

 

It is possible that at least some of the similarities within a network are caused by the 

influence and interactions of the people in the network. People tend to remember 

information that was concretely given to them (that is, in personal interactions) better 

than abstract information (like statistical base rates). For example, Hogarth states that 

when considering to buy a certain car model we will likely give more thought to the 

direct advice of a friend than to each of the 100 respondents to a survey in a specialized 

magazine. 

 

More specifically, Leskovec et al. discuss the phenomenon of information cascades, in 

which individuals adopt a new action or idea due to influence by others. In the most 

extreme cases, knowledge about a full network’s behaviour determines the behaviour 

of its members –making a “top hits” list available in a music downloading website 

affects the popularity of the songs, and several different networks, kept in isolation of 

each other, prefer completely different songs, to the point that it is impossible to predict 

which will be the most popular songs for a network without observing the behaviour of 

the users in the network. 
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I. Facebook – News Feed 

What is News Feed? 

News Feed is the constantly updating list of stories in the middle of your home page. 

News Feed includes status updates, photos, videos, links, app activity and likes from 

people, Pages and groups that you follow on Facebook. 

The order of stories in your News Feed is influenced by who posted the story, the 

number of comments and likes it received, and what kind of story it is (ex: photo, 

video, status update). This helps you to see the most interesting stories from the 

friends you interact with the most. 

 

How does News Feed work? 

The stories that show in your News Feed are influenced by your connections and 

activity on Facebook. This helps you to see more stories that interest you from friends 

you interact with the most. The number of comments and likes a post receives and 

what kind of story it is (ex: photo, video, status update) can also make it more likely 

to appear in your News Feed. 

So how does News Feed know which of those 1,500 stories to show? By letting people 

decide who and what to connect with, and by listening to feedback. When a user likes 

something, which tells News Feed that they want to see more of it; when they hide 

something, which tells News Feed to display less of that content in the future. This 

allows us to prioritize an average of 300 stories out of these 1,500 stories to show each 

day. 

Figure 9 - Facebook EdgeRank Algorithm 
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The News Feed algorithm responds to signals from you, including, for example: 

 How often you interact with the friend, Page, or public figure (like an actor or 

journalist) who posted. 

 The number of likes, shares and comments a post receives from the world at 

large and from your friends in particular. 

 How much you have interacted with this type of post in the past. 

 Whether or not you and other people across Facebook are hiding or reporting a 

given post. 

 

In search of perfection, Facebook engineers constantly tweak the algorithm, using 

machine learning to study how people react and engage with content from friends and 

Pages. Two years ago, the algorithm was said to weigh as many as 100,000 factors — 

and getting more so over time. This is after EdgeRank was discontinued in 2013. 

The feed must be completely personalized but still highly engaging to Facebook’s users 

so they’ll keep coming back and seeing more ads from the company’s 2 million 

advertisers. But most users see only a sliver of the potential posts in their network each 

day. Facebook says the average user has access to about 1,500 posts per day but only 

looks at 300. (A user who scrolls endlessly will eventually see every post from their 

friends and a smattering of posts from Pages they follow.) 

To ensure that those 300 posts are more interesting than all the rest, Facebook says it 

uses thousands of factors to determine what shows up in any individual user’s feed. The 

Figure 10 - Facebook News Feed 
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biggest influences are pretty obvious. How close you are to a person is an increasingly 

important metric, as judged by how often you like their posts, write on their Timeline, 

click through their photos or talk with them on Messenger, Facebook’s chat service. 

The post-type is also a big factor, as Facebook hopes to show more links to people who 

click lots of links, more videos to people who watch lots of videos and so forth. The 

algorithm also assumes that content that has attracted a lot of engagement has wide 

appeal and will place it in more people’s feeds. 

But there are other, less intuitive factors to the algorithm. Use a phone with a slow 

mobile connection and you may see less video. Writing “congratulations” in a comment 

signals the post is probably about a big life event, so it will get a boost. Liking an article 

after you clicked it is a stronger positive signal than liking before, since it means you 

probably read the piece and enjoyed it. 

The new team of human raters, which Facebook calls the “feed quality panel,” are key 

to surfacing this meaningful content. Each day a typical panelist rates 60 stories that 

would actually appear in their own News Feeds on a 1 to 5 scale, judging how 

interesting they found the posts. They also reorder their own feeds to show how their 

priorities differ from the algorithm’s, providing what Facebook calls a transposition 

score. And they write paragraph-long explanations for why they like or dislike certain 

posts, which are often reviewed in the News Feed engineers’ weekly meetings. 

Facebook also regularly conducts one-off online surveys about News Feed satisfaction 

and brings in average users off the street to demo new features in its usability labs. 
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II. Twitter – Twitter Timeline 

What's in your home timeline? 

When you log in to Twitter, you'll land on your home timeline. 

 A user’s home timeline displays a stream of Tweets from accounts the user has 

chosen to follow on Twitter. New users may see suggested content powered by a 

variety of signals. 

 One may see a summary of the most interesting Tweets he/she received since his/her 

last visit. 

 A user may also see content such as promoted Tweets or Retweets in his/her timeline. 

 Additionally, when Twitter identifies a Tweet, an account to follow, or other content 

that's popular or relevant, it may add it to the user’s timeline. This means the user will 

sometimes see Tweets from accounts he/she doesn't follow. Twitter select each Tweet 

using a variety of signals, including how popular it is and how people in the user’s 

network are interacting with it. Twitter’s goal is to make the user’s home timeline 

even more relevant and interesting. 

 The newest updates are at the top. The user can reply, Retweet, or like a Tweet from 

within the timeline. 

 Clicking anywhere on a Tweet in your timeline expands the Tweet, so the user can 

see photos, videos, and other information related to that Tweet. 

Where the user might see other timelines: 

– Timelines can also consist of collected Tweets from users in lists that you've curated 

or as search results. 

– When you click on a list, you will see an aggregated stream of Tweets (a timeline) 

posted by the users included in that list. 

– Similarly, when you perform a search, you'll see a timeline of Tweets that all match 

your search terms. 

 

https://support.twitter.com/articles/20170451
https://support.twitter.com/articles/77606-faqs-about-retweets-rt
https://support.twitter.com/articles/14023-what-are-replies-and-mentions
https://support.twitter.com/articles/77606-what-is-retweet-rt
https://support.twitter.com/articles/20169874
https://support.twitter.com/articles/76460-how-to-use-twitter-lists
https://support.twitter.com/articles/132700


RECOMMENDER SYSTEMS 
 

25 
 

Tailored Suggestions: 

Tailored suggestions make building a great timeline — filled with Tweets, links, media, 

and conversations from the people a user interested in — easier and faster. Twitter can 

make smarter and more relevant suggestions about who a user might enjoy following.  

When a user first signs up for Twitter, it might offer him/her a unique list of relevant 

suggestions about who to follow so that the user can quickly experience the value and 

fun of Twitter. Twitter determines the people the user might enjoy following based on 

the user’s visits to websites in the Twitter ecosystem (sites that have integrated Twitter 

buttons or widgets). Twitter might suggest people who are frequently followed by other 

Twitter users that visit the same websites. 

If the person is a current user, this feature offers dynamic suggestions about people the 

user might enjoy following, keeping Twitter naturally aligned with the user’s evolving 

interests. The user can find some of these suggestions in the Who to follow section of 

his/her Home timeline, as well as the Notifications and Me pages of the user’s account. 

 

  

Figure 11 - Twitter Timeline 
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2.4.3. Media Applications - Recommendation Engines 

I. Netflix Recommendation Engine 

Netflix has discovered through the years that there is tremendous value to its subscribers 

in incorporating recommendations to personalize as much of Netflix as possible. 

Personalization starts on its homepage, which consists of groups of videos arranged in 

horizontal rows. Each row has a title that conveys the intended meaningful connection 

between the videos in that group. Most of the personalization is based on the way we 

select rows, how we determine what items to include in them, and in what order to place 

those items. 

Take as a first example the Top 10 row: this is Netflix’s best guess at the ten titles you 

are most likely to enjoy. Of course, when Netflix says “you”, it really means everyone 

in your household. It is important to keep in mind that Netflix’ personalization is 

intended to handle a household that is likely to have different people with different 

tastes. That is why when it sees your Top10, you are likely to discover items for dad, 

mom, the kids, or the whole family. Even for a single person household Netflix wants 

to appeal to your range of interests and moods. To achieve this, in many parts of our 

system Netflix is not only optimizing for accuracy, but also for diversity. 

 

Another important element in Netflix’ personalization is awareness. Netflix wants 

members to be aware of how Netflix is adapting to their tastes. This not only promotes 

trust in the system, but encourages members to give feedback that will result in better 

recommendations. A different way of promoting trust with the personalization 

component is to provide explanations as to why Netflix decides to recommend a given 

movie or show. Netflix is not recommending it because it suits its business needs, but 

Figure 12 - Netflix - Diversity & Awareness of Recommendation Engine 
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because it matches the information it has from you: your explicit taste preferences and 

ratings, your viewing history, or even your friends’ recommendations. 

 

On the topic of friends, in 2012, Netflix released its Facebook connect feature in 46 out 

of the 47 countries it operates in – all but the US because of concerns with the VPPA 

law. Knowing about your friends not only gives Netflix another signal to use in our 

personalization algorithms, but it also allows for different rows that rely mostly on your 

social circle to generate recommendations. 

Some of the most recognizable personalization in our service is the collection of 

“genre” rows. These range from familiar high-level categories like "Comedies" and 

"Dramas" to highly tailored slices such as "Imaginative Time Travel Movies from the 

1980s". Each row represents 3 layers of personalization: the choice of genre itself, the 

subset of titles selected within that genre, and the ranking of those titles. Members 

connect with these rows so well that we measure an increase in member retention by 

placing the most tailored rows higher on the page instead of lower. As with other 

personalization elements, freshness and diversity is taken into account when deciding 

what genres to show from the thousands possible. 

 

Netflix presents an explanation for the choice of rows using a member’s implicit genre 

preferences – recent plays, ratings, and other interactions --, or explicit feedback 

provided through our taste preferences survey. Netflix also invites members to focus a 

row with additional explicit preference feedback when this is lacking. 

Figure 13 - Netflix - Social Connect 
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Similarity is also an important source of personalization in Netflix’s service. Netflix 

thinks of similarity in a very broad sense; it can be between movies or between 

members, and can be in multiple dimensions such as metadata, ratings, or viewing data. 

Furthermore, these similarities can be blended and used as features in other models. 

Similarity is used in multiple contexts, for example in response to a member's action 

such as searching or adding a title to the queue. It is also used to generate rows of 

“adhoc genres” based on similarity to titles that a member has interacted with recently. 

Ranking 

The goal of recommender systems is to present a number of attractive items for a person 

to choose from. This is usually accomplished by selecting some items and sorting them 

in the order of expected enjoyment (or utility). Since the most common way of 

presenting recommended items is in some form of list, such as the various rows on 

Netflix, there needs to be an appropriate ranking model that can use a wide variety of 

Figure 14 - Netflix - Explanation for Recommendations 

Figure 15 - Netflix - Similarity Results 
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information to come up with an optimal ranking of the items for each of Netflix’s 

members. An obvious baseline is item popularity. The reason is clear: on average, a 

member is most likely to watch what most others are watching. However, popularity is 

the opposite of personalization: it will produce the same ordering of items for every 

member. Thus, the goal becomes to find a personalized ranking function that is better 

than item popularity, so we can better satisfy members with varying tastes. 

 

There are many ways one could construct a ranking function ranging from simple 

scoring methods, to pairwise preferences, to optimization over the entire ranking. 

Netflix initially followed a very simple scoring approach - by choosing its ranking 

function to be a linear combination of popularity and predicted rating. This gives an 

equation of the form frank(u,v) = w1 p(v) + w2 r(u,v) + b, where u=user, v=video item, 

p=popularity and r=predicted rating. This equation defines a two-dimensional space 

like the one depicted below. 

Once there is such a function, a set of videos can be passed through the function and be 

sorted in descending order according to the score. The question is - how can the weights 

w1 and w2 be set in the model (the bias b is constant and thus ends up not affecting the 

final ordering). In other words, in Netflix’s simple two-dimensional model, how is it 

determined whether popularity is more or less important than predicted rating? There 

are at least two possible approaches to this. You could sample the space of possible 

weights and let the members decide what makes sense after many A/B tests. This 

procedure might be time consuming and not very cost effective. Another possible 

Figure 16 - Netflix Ranking System 
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answer involves formulating this as a machine learning problem: select positive and 

negative examples from your historical data and let a machine learning algorithm learn 

the weights that optimize your goal. This family of machine learning problems is known 

as "Learning to rank" and is central to application scenarios such as search engines or 

ad targeting. 

Data & Models 

Netflix has many relevant data sources and selects optimal algorithms to turn data into 

product features. Here are some of the data sources it uses to optimize user 

recommendations: 

 Netflix has several billion item ratings from members and counting. 

 Netflix mentions item popularity as a baseline. But, there are many ways to 

compute popularity. It can compute it over various time ranges, for instance 

hourly, daily, or weekly. Or, within a region or a group. 

 Netflix receives several million stream plays each day, which include context 

such as duration, time of day and device type. 

 Members add millions of items to their queues each day. 

 Rich metadata: actors, director, genre, parental rating, and reviews. 

 Presentations: How a recommendation affects user’s actions. Netflix also 

observes the member's interactions with the recommendations: scrolls, mouse-

overs, clicks, or the time spent on a given page. 

 Social data - what connected friends have watched or rated. 

 Search terms keyed in by the members in the Netflix service each day. 

 External data such as box office performance or critic reviews. Other features 

such as demographics, location, language, or temporal data. 

II. Spotify 

Spotify is a service for streaming music. The catalogue of music can be accessed by 

downloading the Spotify client, an application developed to be small and very 

responsive to the user. Features include: 

 An assortment of several million tracks 

 An easy-to-use interface 

 Streaming music from central servers, caching music on the client computers 

and replaying it between clients using Peer-to-Peer routing 
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Music streaming is a unique phenomenon in today’s times because the user doesn’t 

need to store any data and can stream any track online. Since most of our devices are 

connected 24x7 to the Internet, all the user needs to do is pick up a song by selecting 

an artist, song, or genre. The main question is – what the user hears next? And if the 

user will like the recommendations added to his infinite queue. 

 

We have quite a few services which are unique: 

 Spotify – scalable recommendation engine with good predictability 

 Apple Music – recommendation engine + human curation 

 Pandora – radio station service based on user’s music like 

 

Recommendations 

While referring to recommendations, it corresponds to the normal usage of the term. 

Spotify is concerned with how much user u would like track i if he/she were to be 

presented with the track. Factors included in this is (among other) whether the track is 

good enough, whether there is an element of novelty, whether the track is different from 

other recommended tracks, and much more. Many of these aspects are hard to estimate, 

and in order to simplify the problem setting, we have to make some fundamental 

assumptions on what we are trying to achieve. To simplify the problem, Spotify treats 

predictions instead of recommendations. The predictions can be seen as probabilities 

estimated by the system, i.e., what is the probability that the user u will listen to track i 

next time? Instead of directly trying to find the best recommendations, Spotify tries to 

predict what the user will listen to in the future. The idea is that by predicting this, 

Spotify can present these results to the user immediately, and these tracks will hopefully 

be good and relevant recommendations. Whether predictions and recommendations are 

equivalent is another fundamental question. Treating predictions and recommendations 

enables us to analyse our methods, though there is many subtle differences. 
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Representation 

To treat the problem numerically, Spotify first defines a common way for the 

algorithms to treat predictions, in order to ensure consistency over all algorithms and 

provides a way to compare outputs from several algorithms. The time stamps of log 

entries are not taken into account. Spotify views a user’s collected history of tracks in 

no particular order. Which last track the user listened to does not affect predictions more 

than any other tracks. Spotify also uses time dependency. It defines P(Nui) as the 

probability that the next track the user u will listen to is track i. By definition, it obtains 

the normalization criterion 

∑ 𝑃(𝑁𝑢𝑖) = 1

𝑛

𝑖=0

 

for all users u, i.e., the probability of any track being played as the next track is 1.0 

(ignoring the very small possibility that the user has actually left Spotify and will never 

come back). 

 

Methodology 

Assuming predictions are good recommendations, recommending tracks to a user 

amounts to:  

 Predict a set of tracks the user is most likely to play next. 

 Recommending tracks which the user has already listened to will in general be 

less relevant, so remove all already played tracks. 

 Recommend the top n remaining tracks to the user. 

Figure 17 - How Spotify Gets Data 
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Having introduced the next track probability, the main objectives of the recommender 

system can be summarized as: Given a set of tracks that the user has listened to, together 

with the number of times: 

 What is the probability that a user will listen to track i as the next track? 

 Find the n tracks having the largest such probability 

How to actually predict these probabilities will be discussed in the next section, where 

the models are introduced. 

 

Models 

(i) Collaborative Filtering 

→ Item-oriented algorithms 

→ User-oriented algorithms 

(ii) Contextual or Feature-based Algorithms (Metadata Models) 

→ Finding structures in whether users from specific countries do like songs in 

specific languages (for example, users from Germany are more likely to listen 

to German lyrics) 

→ Finding correlations between music tastes and demographic data (such as age, 

sex, etc.) 

→ Using editorial data on similar artists to produce recommendations (earlier 

system at Spotify) 

→ Analysing audio contents of all tracks 

 

Audio-based Algorithm 

Audio-based methods are likely to be the best feature-based methods, having prediction 

accuracy on par with collaborative filtering methods. Using a feature extraction tool, 

one can produce a feature vector for each track. 

Ideally, the feature vectors should express the human perception as much as possible. 

Common values that can be extracted are: 

 Rhythm (most often measured in BPM, Beats Per Minute) 

 Major/minor key 

 Rhythm complexity (regularity/irregularity, etc.) 

 Timbre, which is an umbrella term for many different aspects of audio 
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 Mel-Frequency Cepstral Coefficients (MFCC) are automatically extracted 

coefficients corresponding to timbre 

 

The Ensemble Method 

Instead of developing one algorithm to produce predictions, Spotify develops an array 

of them, the rationale being that different algorithms best handle different aspects of 

data and data scalability. These predictions can be combined to produce one final set of 

predictions. This method is commonly referred to as the ensemble method. 

 

 

 

 

 

 

 

Figure 18 - Spotify's Ensemble Model 
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III. Apple Music 

Apple Music offers a section called For You which provides a personalized selection 

of music based on your listening habits. According to Apple, “their experts handpick 

songs, artists, and albums based on what you listen to and like” while giving you “their 

take on the freshest and most relevant stuff around.” 

How “For You” Recommendations Work? 

Apple’s recommendation system on Apple Music is basically a supercharged Genius 

system that iTunes has been using for years now. Telling Apple about music you like 

helps them deliver better and better suggestions to you over time. The recommendation 

engine takes into account the following: 

 Hearts – Hearting anything that’s playing through Apple Music helps the system 

better tailor For You recommendations to your tastes. You can heart the following 

items on Apple Music by tapping the heart icon in Now Playing view: 

→ Any song in your personal library 

→ Any song available for streaming in Apple Music’s catalogue 

→ Songs found through search 

→ Songs played from Beats 1 and Apple Music Radio 

→ Apple-curated playlists 

 Plays – Apple Music’s recommendation engine pays attention to what you actually 

play to help surface similar content you may find interesting. It’s important to note 

that Apple Music’s recommendation engine takes into account full plays, but 

discards skips. 

 Your library – Songs you’ve downloaded from the iTunes Store, ripped from CDs 

or imported into iTunes from other sources are analyzed. Your personal library data, 

along with any music manually added from Apple Music to your library, influences 

music you get exposed to in the For You section. 

 Genres and bands you’re into – As part of Apple Music’s setup procedure, Apple 

asks you to tell them which songs and genres you like. This data helps the system 

quickly learn what you’re into. 

These aforementioned items directly influence what content you’ll be exposed to when 

browsing ‘For You’ recommendations. 
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The recommendation engine considers each and every like you make. “Whether you 

love a song or not, your feedback helps our suggestions get better and better,” by paying 

attention to what you actually play. Also, the cold start problem is solved in Apple 

Music by asking the user to select genres and artists at the initial stage of setup. This 

ensures that the system has at least something to offer the user, even if he/she hasn’t 

streamed any tracks yet. 

 

  

Figure 19 - Apple Music - Initial Selection 
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CHAPTER 3 - SYSTEM DEVELOPMENT 

The application segment developed and mentioned further is for generating recommendations 

for movies. For the development, the Movie-Lens dataset is being used. It consists of info for 

about 1,000,000 ratings (1-5) from 11000 users on 30,000 movies. 

The recommendations will be made through the following procedures. First the data is analyzed 

and the dataset is trained for mining the rules for frequent itemsets. Association Rule Mining 

is then performed on the dataset to extract the association rules with length=3, conf=0.6, 

minsup=0.8. In data mining, association rule learning is a popular and well researched method 

for discovering interesting relations between variables in large databases. The Algorithm used 

for the association rule mining is Apriori Algorithm. In computer science and data mining, 

Apriori is a classic algorithm for learning association rules. Apriori is designed to operate on 

databases containing transactions (for example, collections of items bought by customers, or 

details of a website frequentation). Other algorithms are designed for finding association rules 

in data having no transactions (Winepi and Minepi), or having no timestamps (DNA 

sequencing). 

The mined rules are then used to perform cluster analysis. K-means Nearest Neighbour 

Algorithm is used to find out the clusters from the data-set according to the rules mined earlier 

by using the Apriori Algorithm. It is most often used for classification, although it can also be 

used for estimation and prediction. K-Nearest Neighbour is an example of instance-based 

learning, in which the training data set is stored, so that a classification for a new unclassified 

record may be found simply by comparing it to the most similar records in the training set. The 

Cluster Analysis gives us the information about the movies with similar behaviour with respect 

to their ratings & genre. 

3.1 Apriori Algorithm 

The definition of association rules can be given as: Let I be a set of items. Each transaction, T, 

is also a set of items, called itemset, and T⊆ I. The entire dataset, D, consists of uniquely 

identifiable transactions. An association rule is defined as an implication of the form X→Y 

where X, Y ⊆ I and X∩Y = ∅. The sets of items (for short itemsets) X and Y are called 

antecedent (left-hand-side or LHS) and consequent (right-hand-side or RHS) of the rule 

respectively. Various metrics describe the utility of an association rule. The most common 

ones are the percent of all containing A∪B, called the support, and the percent of transactions 

containing B among transactions containing A, called the confidence of the rule. 
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The Apriori Algorithm to mine association rule takes the dataset as input along with the 

minimum support and confidence thresholds, and its final output is the list of all association 

rules whose confidence and support are above the minimum thresholds. As an 

intermediate step, it produces frequent itemsets. An itemset is frequent if its support is 

greater than or equal to the minimum support specified by the user. An itemset of size k 

is called K-itemset. 

Support: 

The support supp(X) of an itemset X is defined as the proportion of transactions in the data set 

which contain the itemset.  

supp(X)= no. of transactions which contain the itemset X / total no. of transactions 

Confidence: 

The confidence of a rule is defined: conf(X→Y) = supp(X∪Y) / supp(X) 

The implementation of the Apriori Algorithm discussed above is done in R language in order 

to mine frequent itemsets from the dataset that has been considered for the project. The R script 

was executed using RStudio. 

3.1.1 Implementation of Apriori in R 

In R to study the association mining we use two important packages 

called arules and arulesViz written be Michael Hahsler. In order to implement the 

Apriori Algorithm in R, arules package of R is used. The arules is used for mining 

transaction records and extracting association rules. The package arulesViz is used as a 

presentation layer to visualize the association rules. 

Package: arules 

Version: 1.3-1 

Description: 

Mine frequent itemsets, association rules or association hyperedges using the Apriori 

algorithm. The Apriori algorithm employs level-wise search for frequent itemsets. The 

implementation of Apriori used includes some improvements (e.g., a prefix tree and 

item sorting). 
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Usage: 

apriori(data, parameter = NULL, appearance = NULL, control = NULL 

 

Arguments: 

data 

object of class transactions or any data structure which can be coerced into transactions 

(e.g., a binary matrix or data.frame). 

parameter 

object of class APparameter or named list. The default behavior is to mine rules with 

support 0.1, confidence 0.8, and maxlen 10. 

appearance 

object of class APappearance or named list. With this argument item appearance can 

be restricted (implements rule templates). By default all items can appear unrestricted. 

control 

object of class APcontrol or named list. Controls the algorithmic performance of the 

mining algorithm (item sorting, etc.) 

Details: 

Calls the C implementation of the Apriori algorithm by Christian Borgelt for mining 

frequent itemsets, rules or hyperedges. 

Note: Apriori only creates rules with one item in the RHS (Consequent)! 

Note: The default value in APparameter for minlen is 1. This means that rules with only 

one item (i.e., an empty antecedent/LHS) like {} => {beer} will be created. These rules 

mean that no matter what other items are involved the item in the RHS will appear with 

the probability given by the rule's confidence (which equals the support). If you want 

to avoid these rules then use the argument parameter=list(minlen=2) 

Values: 

Returns an object of class rules or itemsets. 
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Package: arulesViz 

Description: 

Even after filtering the rules using some constraint measures, we might end up with 

large list of interesting rules outputted by the aprior rule function. And it not viable to 

go through all rules one by one. We can use Visualization technique to get deep insight 

about the rules. We can use arulesViz package to visualize the association rules. The 

package arulesViz gives us ability to draw different charts and graphs without getting 

our hard much dirty in coding. 

Scatter plot: Default plot for arulesViz 

package is scatter plot. In this plot 

association rules are plotted again axes. 

Usually X-axis corresponds to support 

and Y-axis corresponds to confidence. 

However these shading represents an 

additional coordinate that can be 

represented in this two dimensional space. Here color coordinate represent the lift value 

for each point on the scatter plot. 

plot(rules, measure=c(“support”, ” confidence “), shading=”confidence“) 

  

Figure 21 - Top 20 Results of Apriori 

Figure 20 - Scatter Plot 
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3.2 K-Nearest Neighbour Algorithm 

The k-nearest neighbour algorithm assigns the classification of the most similar record or 

records. But just how do we define similar?  

For example, suppose that we have a new action movie with a rating of 4.5/5. Which movie is 

this more similar to, a comedy | action movie of 80’s with a rating of 4 or a latest thriller movie 

with a rating 4.   Data analysts define distance metrics to measure similarity. A distance metric 

or distance function is a real-valued function d, such that for any coordinates x, y, and z: 

1. d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y  

2. d(x,y) = d(y,x)  

3. d(x,z) ≤ d(x,y) + d(y,z) 

Statement (1) assures us that distance is always greater than or equal, and the only way for 

distance to be zero is when the coordinates (e.g., in the scatter plot) coincide. 

Statement (2) state the commutativity property, considering an example, that the distance from 

New Delhi to Hyderabad is the same as the distance from Hyderabad to New Delhi.  

Finally, Statement (3) indicates the triangle inequality, this can be understood as, introducing 

a third point can never shorten the distance between two other points.  

The most common distance function is Euclidean distance, which represents the usual manner 

in which humans think of distance in the real world: 

dEuclidean(x,y) = = √ (∑ (𝑥𝑖 − 𝑦𝑖)2
𝑖

) 

Where x = x1, x2, . ., xm, and y = y1, y2, . .  , ym represent the m attribute values of 2 records. 

Figure 22 - Visualisation of Euclidean Distance 
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For example, suppose that patient A is x1 = 20 years old and has a Na/K ratio of x2 = 12, while 

patient B is y1 = 30 years old and has a Na/K ratio of y2 = 8. Then the Euclidean distance 

between these points, is shown as: 

 

When measuring distance, however, certain attributes that have large values, such as income, 

can overwhelm the influence of other attributes which are measured on a smaller scale, such as 

years of service. To avoid this, one should make sure to normalize the attribute values.  

For continuous variables, the min–max normalization or Z-score standardization, may be used:  

Min–max normalization: 

 

Z-Score standardisation: 

 

For categorical variables, the Euclidean distance metric is not appropriate. Instead, we may use 

Hamiltonian Distance metric, defining a function, “hamDist()” used to compare the ith attribute 

values of a pair of records, as follows: 

hamDist(xi, yi) =  

Where xi and yi are categorical values. We may then substitute different (xi, yi) for the ith 

term in the Euclidean distance metric above. 

3.2.1 Implementation of K-Nearest Neighbour Algorithm 

In R for cluster analysis, we use a package named kknn. This package is used  for 

weighted k-Nearest Neighbors Classification, Regression and spectral Clustering The 

complete list of functions can be displayed with library(help = kknn). The package is 

written by Klaus Schliep and Klaus Hechenbichler and maintained by: Klaus Schliep. 

Package: kknn 
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Version: 1.3.0 

Description:  

The package is titled as Weighted K-Nearest Neighbours. It has dependencies based 

on the version of R, i.e. version >= 2.10. It imports the following modules 

igraph(>=0.6), Matrix, stats and graphics 

Method: kknn() 

Description:  

Performs k-nearest neighbour classification of a test set using a training set. For each 

row of the test set, the k nearest training set vectors are found, and the classification is 

done via the maximum of summed kernel densities. In addition even ordinal and 

continuous variables can be predicted.  

Usage: 

 kknn(formula = formula(train), train, test, na.action = na.omit(), k = 7, distance = 2, 

kernel = "optimal", ykernel = NULL, scale=TRUE, contrasts = c('unordered' = 

"contr.dummy", ordered = "contr.ordinal")) kknn.dist(learn, valid, k = 10, distance = 2) 

Arguments: 

formula A formula object.  

train Matrix or data frame of training set cases.  

test Matrix or data frame of test set cases.  

learn Matrix or data frame of training set cases.  

valid Matrix or data frame of test set cases.  

na.action A function which indicates what should happen when the data contain ’NA’s. 

k Number of neighbours considered.  

distance Parameter of Euclidean distance.  

kernel Kernel to use. Possible choices are "rectangular" (which is standard unweighted 

knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" 

(or beta(4,4)), "cos", "inv", "gaussian", "rank" and "optimal".  



RECOMMENDER SYSTEMS 
 

44 
 

ykernel Window width of an y-kernel, especially for prediction of ordinal classes.  

scale logical, scale variable to have equal sd.  

contrasts A vector containing the ’unordered’ and ’ordered’ contrast 

Details:  

This nearest neighbour method expands knn in several directions. First it can be used 

not only for classification, but also for regression and ordinal classification. Second it 

uses kernel functions to weight the neighbours according to their distances. In fact, not 

only kernel functions but every monotonic decreasing function f(x)∀x > 0 will work 

fine. The number of neighbours used for the "optimal" kernel should be [(2(d + 4)/(d + 

2))(d/(d + 4))k], where k is the number that would be used for unweighted knn 

classification, i.e. kernel="rectangular". This factor (2(d + 4)/(d + 2))(d/(d + 4)) is 

between 1.2 and 2 

Value:  

kknn returns a list-object of class kknn including the components  

fitted.values Vector of predictions.  

CL Matrix of classes of the k nearest neighbours.  

W Matrix of weights of the k nearest neighbours.  

D Matrix of distances of the k nearest neighbours.  

C Matrix of indices of the k nearest neighbours.  

prob Matrix of predicted class probabilities.  

response Type of response variable, one of continuous, nominal or ordinal.  

distance Parameter of distance.  

call The matched call.  

terms The ’terms’ object used. 
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Figure 25 - Clustering Iteration 3 

Figure 23 - Clustering Iteration 2 Figure 24 - Clustering Iteration 1 
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3.3 Collaborative Filtering 

In this approach the traditional “Collaborative filtering” has been modified to generate user 

specific recommendations. The algorithm asks the user for a specific movie ratings on which 

he/she wants to get recommendations on, and then calculate the predictions for the movies 

according to their interests. 

Here, we make predictions (filtering) about the interests of a user by collecting preferences or 

taste information from many users (collaborating). The underlying assumption is that if a user 

A has the same opinion as a user B on an issue, A is more likely to have B's opinion on a 

different issue x than to have the opinion on x of a user chosen randomly. 

The image below (from Wikipedia) shows an example of collaborative filtering. At first, people 

rate different items (like videos, images, games). Then, the system makes predictions about a 

user's rating for an item not rated yet. The new predictions are built upon the existing ratings 

of other users with similar ratings with the active user. In the image, the system predicts that 

the user will not like the video. 

Getting and Processing Data 

In order to build an on-line movie recommender we need to use Spark, and have our model 

data as pre-processed as possible. Parsing the dataset and building the model every time a new 

recommendation needs to be done is not the best of the strategies. 

The list of task we can pre-compute includes: 

 Loading and parsing the dataset. Persisting the resulting RDD for later use.  

 Building the recommender model using the complete dataset. Persist the dataset for 

later use. 

Loading and Parsing Datasets 

No we are ready to read in each of the files and create an RDD consisting of parsed lines. 

Each line in the ratings dataset (ratings.csv) is formatted as: 

userId,movieId,rating,timestamp 

Each line in the movies (movies.csv) dataset is formatted as: 

movieId,title,genres 
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Were genres has the format: 

Genre1|Genre2|Genre3... 

The tags file (tags.csv) has the format: 

userId,movieId,tag,timestamp 

And finally, the links.csv file has the format: 

movieId,imdbId,tmdbId 

How to Make Recommendations? 

When using collaborative filtering, getting recommendations is not as simple as predicting for 

the new entries using a previously generated model. Instead, we need to train again the model 

but including the new user preferences in order to compare them with other users in the dataset. 

That is, the recommender needs to be trained every time we have new user ratings (although a 

single model can be used by multiple users of course). This makes the process expensive, and 

it is one of the reasons why scalability is a problem (and Spark a solution). Once we have our 

model trained, we can reuse it to obtain top recommendations for a given user or an individual 

rating for a particular movie. These are less costly operations than training the model itself. 

3.4 Content-Based Filtering 

Content-based filtering, also referred to as cognitive filtering, recommends items based on a 

comparison between the content of the items and a user profile. The content of each item is 

represented as a set of descriptors or terms, typically the words that occur in a document. The 

user profile is represented with the same terms and built up by analyzing the content of items 

which have been seen by the user. 

Several issues have to be considered when implementing a content-based filtering system. 

First, terms can either be assigned automatically or manually. When terms are assigned 

automatically a method has to be chosen that can extract these terms from items. Second, the 

terms have to be represented such that both the user profile and the items can be compared in 

a meaningful way. Third, a learning algorithm has to be chosen that is able to learn the user 

profile based on seen items and can make recommendations based on this user profile. 

 

 



RECOMMENDER SYSTEMS 
 

48 
 

Exploration Strategies 

The learning methods applied to content-based filtering try to find the most relevant documents 

based on the user’s past behaviour. Such approach however restricts the user to documents 

similar to those already seen. This is known as the over-specialization problem. As stated 

before the interests of a user are rarely static but change over time. Instead of adapting to the 

user’s interests after the system has received feedback, one could try to predict a user’s interests 

in the future & recommend documents that contain information that is entirely new to the user. 

A recommender system has to decide between two types of information delivery when 

providing the user with recommendations: 

 Exploitation. The system chooses documents similar to those for which the user has 

already expressed a preference. 

 Exploration. The system chooses documents where the user profile does not provide 

evidence to predict the user’s reaction. 

3.5 Technology 

i. Operating System - Windows 10, Ubuntu 14.04 LTS 

ii. Languages  - R, Java, Python 

iii. Environment  - RStudio, IntelliJ IDEA, Enthought Canopy 

iv. Build Tools  - Maven, Apache Spark 

v. System Requirements - Python 2.7+, JDK 7+, Git 
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CHAPTER 4 – PERFORMANCE ANALYSIS  

4.1 Apriori Algorithm Analysis 

The execution time of the algorithm significantly depends on the support count and confidence 

parameter.  

As the support count is decreased the computation time of the algorithm increases since with 

the decrease in the support count there is a large increase in the number of large sequences in 

the result. The generation of rules does not count any candidate sequence that contains any 

subsequence which is not large. There exist some memory constraints although. If memory 

gets filled up, it is forced to count the last set of candidates generated even if the heuristic 

suggests skipping some more candidate sets. This effect decreases the skipping distance 

between the two candidate sets that are indeed counted and the efficiency henceforth decreases. 

I. Frequent Item-set Generation 

A brute-force approach for finding frequent itemsets is to determine the support count for 

every candidate itemset in the lattice structure. To do this we need to compare each candidate 

against every transactions, as shown in the above figure. If the candidate is contained in the 

transaction, its support count is incremented. Such an approach can be very expensive. 

Complexity: O(NMw)   

Figure 26 - Itemset Generation Lattice 



RECOMMENDER SYSTEMS 
 

50 
 

N is the number of transactions,  

M = 2k − 1 is the number of candidate itemsets. 

w is the maximum transaction width. 

Ways to reduce the computational complexity of frequent itemset generation. 

1. Reduce the number of candidate itemsets (M ). The Apriori principle, described in the 

next section, is an effective way to eliminate some of the candidate itemsets without 

counting their support values. 

2. Reduce the number of comparisons. Instead of matching each candidate itemset against 

every transaction, we can reduce the number of comparisons by using more advanced 

data structures, either to store the candidate itemsets or to compress the data set. 

 

4.2 K-nearest Neighbor Analysis 

I. k = 1 or Nearest Neighbor Rule 

This is the simplest scenario. Let x be the point to be labeled. Find the point closest to x 

Let it be y. Now nearest neighbor rule asks to assign the label of y to x. This seems too 

simplistic and sometimes even counter intuitive. If it feels that this procedure will result 

a huge error, we are right – but there is a catch. This reasoning holds only when the 

number of data points is not very large. 

If the number of data points is very large, then there is a very high chance that label of x 

and y are same. An example might help – Let’s say we have a (potentially) biased coin. 

We toss it for 1 million time and you have got head 900,000 times. Then most likely your 

next call will be head. We can use a similar argument here. 

 

II. k = K or k-Nearest Neighbor Rule 

This is a straightforward extension of 1NN. Basically what we do is that we try to find 

the k nearest neighbor and do a majority voting. Typically k is odd when the number of 

classes is 2. Lets say k = 5 and there are 3 instances of C1 and 2 instances of C2. In this 

case , KNN says that new point has to labeled as C1 as it forms the majority. We follow 

a similar argument when there are multiple classes. 

One of the straight forward extension is not to give 1 vote to all the neighbors. A very 

common thing to do is weighted kNN where each point has a weight which is typically 

calculated using its distance. For eg under inverse distance weighting, each point has a 

weight equal to the inverse of its distance to the point to be classified. This means that 
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neighboring points have a higher vote than the farther points. 

It is quite obvious that the accuracy *might* increase when you increase k but the 

computation cost also increases. 

III. Some Observations: 

1. If we assume that the points are d-dimensional, then the straight forward 

implementation of finding k Nearest Neighbor takes O(dn) time.  

2. We can think of KNN in two ways  – One way is that KNN tries to estimate the 

posterior probability of the point to be labeled (and apply bayesian decision 

theory). An alternate way is that KNN calculates the decision surface (either 

implicitly or explicitly) and then uses it to decide on the class of the new points.  

3. There are many possible ways to apply weights for KNN – One popular example 

is the Shephard’s method.  

4. Even though the naive method takes O(dn) time, it is very hard to do better unless 

we make some other assumptions. There are some efficient data structures 

like KD-Tree  which can reduce the time complexity but they do it at the cost of 

increased training time and complexity.  

5. In KNN, k is usually chosen as an odd number if the number of classes is 2.  

6. Choice of k is very critical – A small value of k means that noise will have a higher 

influence on the result. A large value make it computationally expensive and 

defeats the basic philosophy behind KNN (that points that are near might have 

similar densities or classes ) .A simple approach to select k is set    

4.3 Evaluation Metrics 

In recommender systems, most important is the final result obtained from the users. In fact, in 

some cases, users don’t care much about the exact ordering of the list; a set of few good 

recommendations is fine. Taking this fact into evaluation, we could apply classic information 

retrieval metrics to evaluate those engines: 1. Precision 2. Recall and 3. F1-Score. These 

metrics are widely used on information retrieving scenario and applied to domains such as 

search engines, which return some set of best results for a query out of many possible results. 

For a search engine for example, it should not return irrelevant results in the top results, 

although it should be able to return as many relevant results as possible. Precision is the 

proportion of top results that are relevant, considering some definition of relevant for your 

problem domain. The Precision at 10 would be this proportion judged from the top 10 results. 

The Recall would measure the proportion of all relevant results included in the top results. 
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In a formal way, we could consider documents as instances and the task it to return a set of 

relevant items given a search term. So the task would be assigning each item to one of two 

categories: relevant and not relevant. Recall is defined as the number of relevant items retrieved 

by a search divided by the total number of existing relevant items, while precision is defined 

as the number of relevant items retrieved by a search divided by the total number of items 

retrieved by the search. 

In recommender systems those metrics could be adapted hence; the precision is the proportion 

of recommendations that are good recommendations. And recall is the proportion of good 

recommendations that appear in top recommendations. 

Where tp is the interesting item recommended to the user, fp is the uninteresting item 

recommended to the user, and the fn is the interesting item not recommended to the user. 

In recommendations domain, a perfect precision score of 1.0 means that every item 

recommended in the list was good (although says nothing about if all good recommendations 

were suggested) whereas a perfect recall score of 1.0 means that all good recommended items 

were suggested in the list. Typically when a recommender system is tuned to increase precision, 

recall decreases as a result (or vice versa). 

The F-Score or F-measure is a measure of a statistic test’s accuracy. It considers both precision 

p and recall r of the test to compute the score: p is the number of correct results divided by the 

number of all returned results and r is the number of correct results divided by the number of 

results that should have been returned. It should interpret it as a weighted average of the 

precision and recall, where the best F1 score has its value at 1 and worst score at the value 0. 

F- Score calculation using precision and recall: 

In recommendations domain, it is considered a 

single value obtained combining both the precision and recall measures and indicates an overall 

utility of the recommendation list. 

 

Evaluations are really important in the recommendation engine building process, which can be 

used to empirically discover improvements to a recommendation algorithm. 
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CHAPTER 5 – CONCLUSION 

In the context of ever-increasing amounts of available information and data, it is difficult to 

know what information to look for and where to look for it. Computer-based techniques have 

been developed to facilitate the search and retrieval process; one of these techniques is 

recommendation, which guides users in their exploration of available information by seeking 

and highlighting the most relevant information. Recommender systems have their origins in a 

variety of areas of research, including information retrieval, information filtering, text 

classification, etc. They use techniques such as machine learning and data mining, alongside a 

range of concepts including algorithms, collaborative and hybrid approaches, and evaluation 

methods. 

 

Having first presented the notions inherent in data- and information-handling systems 

(information systems, decision support systems and recommender systems) and established a 

clear distinction between recommendation and personalization, we then presented the most 

widespread approaches used in producing recommendations for users (content-based 

approaches, collaborative filtering approaches, knowledge-based approaches and hybrid 

approaches), alongside different techniques used in the context of recommender systems 

(user/item similarity, user/item relationship analysis and user/item classification). These 

concepts were then illustrated by a discussion of their practical applications in a variety of 

domains. Finally, we considered a number of different techniques used in evaluating the quality 

of recommender systems. 

 

However, systems and techniques need to evolve over time, with the aim of improving 

performance, speed and proximity to the expectations or requirements of users. Several 

challenges remain to be met, for example: 

 The improvement of collaborative filtering techniques, using more data sources 

(metadata or tagging data, demographic information, temporal data, etc.) or combining 

techniques that have yet to be used together. 

 The volume of available data is constantly increasing and recommender systems 

encounter performance issues. They need to provide high-quality recommendations in 

record time in spite of this increase in data volume. 
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 Multi-criteria recommendation approaches are undergoing significant developments. 

The exploitation of multi-criteria scores, which contain contextual information, would 

be useful in improving recommendation quality. 

 Contextual approaches (also mentioned briefly in this book) aim to take account of an 

individual’s emotional context: for example, a person in love will find a romantic film 

more relevant than someone in a different emotional situation. 

 Recommender systems use user data (profiles, etc.) to generate personalized 

recommendations. These systems attempt to collect as much data as possible. This may 

have a negative effect on user privacy (the system knows too much). Systems, therefore, 

need to make selective and reasonable use of user data and to guarantee a certain level 

of data security (non-disclosure, etc.). 

 

In conclusion, recommender systems still need to respond to a number of different challenges. 

Developed in the context of various research areas, they take different forms and transcend 

multiple disciplines. This field of research needs to remain as wide as possible in order to 

identify the most appropriate techniques and approaches for each specific application.  

Future Scope & Applications 

(i) Location Variable 

With increasing smartphone penetration and the advent of “Internet of Things” devices, 

the use of location in recommender systems and machine learning techniques is only 

bound to increase. Location based services exist today, but in isolation. Services need 

to become more responsive according to the context of the user. Ex: Google Maps, 

Yelp, Foursquare, etc. 

A Location Aware Recommender System tackles a problem untouched by traditional 

recommender systems by dealing with 3 types of location-based ratings, namely: 

 Spatial ratings for non-spatial items, 

 Non-spatial ratings for spatial items, and 

 Spatial ratings for spatial items 
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(ii) Personal Assistants and Artificial Intelligence 

As our devices start collecting more and more personal data of users and big data 

analytics becomes more advanced, the devices will be able to decipher our ‘daily living 

patterns’ in real time. This can only happen via IoT devices and a central inflexion 

point. This inflexion point would be the voice assistant or personal assistant, becoming 

ever ubiquitous in our life and offering suggestions based on user habits and behaviour. 

 

Intelligent assistants will be able to gather data via a knowledge graph, i.e., via the 

semantic web where connections to different data entities will be already available. 

These assistants need to be cross-platform and open to all kinds of third party apps in 

order to become truly ubiquitous. Also, they would need to be a holding platform, i.e., 

→ They need to be baked into the OS, and 

→ Be the social networking hub of the user – a digital living room 

 

This would eventually lead to the creation of Artificial Intelligence through deep neural 

networks where the assistants will be able to tell our needs through our daily habits and 

sense our mood via real time sentiment analysis of our social networks and 

communication behaviour. Ex: Siri, Google Now, Cortana, Facebook M.  

Figure 27 - Location Based Recommendations 
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