Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPoLo)3 Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

9 The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

iy

LN

e N

WA

SYNTHESIZING NORMALIZED RELATIONS
FROM
A UNIVERSAL RELATION

A PROJECT REPORT

Submitted by

Aayush Singal (031401)
Saurabh Srivastava (031402)

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

fom = Tt

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT

MAY 2007

DT e s e R —
TR D B e

i o e L S e e
S TN IO S S E T

_

5
/)
{

CERTIFICATE

This is to certify that the work entitled, “Synthesizing Normalized Relations from a
Universal Set of Relation” submitted by Aayush Singal and Saurabh Srivastava in
partial fulfillment for the award of degree of Bachelor of Technology in Information
Technology of Jaypee University of Information Technology has been carried out under
my supervision. This work has not been submitted partially or wholly to any other

University or Institute for the award of this or any other degree or diploma.

oo

Mr. Vipin Arora

PROJECT SUPERVISIOR

LECTURER
(CSE & IT)

Jaypee University of
Information Technology,
Waknaghat, Solan (H.P)

ACKNOWLEDGEMENT

No task is a single man’s effort. Various factors, situations and persons integrate to
provide the background for accomplishment of a task. We would wish to convey our
sincere gratitude to our project supervisor and guide Mr. Vipin Arora, Lecturer, Jaypee
University of Information Technology for his valuable and inspiring guidance, constant
encouragement and constructive criticism throughout the duration of the project which

helped us work upon the project as well as the report and refine wherever possible.

This opportunity is also availed by the group to thank each other for their constant

) support and encouragement.

[Xaj“% %,QL\L‘Q’

\
Aayush Singal (031401) Saurabh Srivastava (031402)

Synthesizing Normalized Relations 2

|
TABLE OF CONTENTS E
) 1
ACKNOWLEDGEMENT ----nnnnnnmmmmmm e s 2 i
LIST OF FIGURES--— S NERE— e e b i |
LIST OF ABBRE VIATIONS:-#sse-scsasssuuiscsimntcammammmnsnnmnnns 7 H i
ABSTRACT- T e 8 1 ;
CHAPTER 1: INTRODUCTION memmneen 9 | s‘
1.1 About the Normalization TOOl-========nem e 9 3:35 5
1.2 Purpose of Normalization-----===ue e 10 ‘
1.3 Terms Related to Normalization-==-==-=--- o omceomoemeee. 10
> 1.3.1 Universal Set---=n=nmnsemm e 10 ;
- 1.3.2 Relation-=-=-mmmmmm e 11
1.3.3 Attributemmm e s 11
1.3.4 Relational Database-----=-=--==--n el 11
1.3.5 Relational Schema----==-===ceommmeeeeeee L 11
1.3.6 Functional Dependencies=----=-==-==--mm-meommoemmemmmcee . 11
CHAPTER 2: REQUIREMENTS ANALYSIS---mecmmom oo e 13 \
2.1 IntroduCtion =====nmmmmmm e e 13
2.2 System Requirements=n====mnmmmmmmmmm e 13
2.2.1 Minimum System Requirements--=-----=---ceeemmemomcmeceo. 13 !
(2.2.2 Recommended System Requirements------------=mesmcmmmeucecaee 13 :
I 2.3 Hardware Requirements----=--=n- e 14 |
2.3.1 Minimum Hardware Requirements--=--=-smmemeueeommamomanen 14
2.3.2 Recommended Hardware Requirements-------===-eccececeaeeeoo 14 !
2.4 Software Requirements==-====smmmmmmmm oo 15 'f :‘
2.4.1 Platformssnssmm e e oo 15 H
RN <7 S W S I5 | 5
| P T — 15 lll
| AR AR T R O e e S 17 '[
|

Synthesizing Normalized Relations 3

CHAPTER 3: ANOMALIES --- e 19
CHAPTER 4: NORMAL FORM S e 21
4.1 First Normal Forme-m-mem e 21

4.1.1 Objectives of INF-mn e 21

4.1.2 Problems==nmnmnmmem oo 21

4.2 Full Functional Dependengy-==-==sm--c-esemmmmomem oo 21

4.2.1 Definition-==mmemmm e e 21

4.2.2 EXaMple--nnnmnmm e 22

4.3 Second Normal Formee-m-mmmemmm e 22

4.3.1 Definition=--==nmuceem oL 22

4.3.2 Transforming a INF relation to 2NF relation-------=-=---=-=---- 23

4.3.2.1 EXample---=-=-mcn e e 23

4.3.3 Objectives Of 2NFacmcommemmeam e 24

4.3.4 ReVIOW-mmm e e e 24

4.4 Third Normal Forme-seammemee e oo 25

4.4.1 Definition-===mmmmmm e e 23

4.4.2 EXample-=nmn-cneem e 25

4.4.3 Transforming a 2NF relation to 3NF relation-----=---enmmmmu-- 25

4.4.3.1 Example---mnemmmm e 26

4.4.4 Objectives of INF---nmmmeme e 26

4.5 Boyce Codd Normal FOrme-=-mmmmmm e se oo 26

4.5.1 Definition--=-m-mc-ee e 26

4.5.2 EXaMple--nm-mm oo e 27

4.5.3 Objectives Of BCNFamm=nn e ool 27

4.6 Fourth Normal FOrm-=-=--eeem e 28

4.6.1 Definition of MV D=c-cceem el 28

4.6.2 Definition of 4NF=mecmem o 29

4.6.3 Objectives of 4NF---mmmmemmmmeeeeeeoe memmem e 30

CHAPTER §5: THE NORMALIZATION PROCESS --n 31
S B D L0l T L1 0] T ——— 31

Synthesizing Normalized Relations

|
|
|
|
S 2 STt HBSI§e =2 dmebmtin o frmnbimi bl o i i S 31
5.2.1 Basic Steps-=--=-=--=-=cssemmmmmmmm e oo oo oo e 31 it
! T o)L T 32
5.2.3 Examples-------=mn-smemmm oo oo oo oo 32 .
CHAPTER 6: SYNTHESIS-BOTTOM UP PROCESS-----=-smmmmmmmmmemmeecoane e 34 |
6.1 Synthesizing Third Normal Form Relations-----=-=-==-s-rezoeeue-ee 34 il
6.2 Algorithm=--------=-=smeecomommmmm oo e cncn e en oo e e 35 1
6.2.1 EXample------=-nnmmmmmmmmomo oo 36
CHAPTER 7: NORMALIZATION TOOL DESIGN--------- --- 38 i |
7.1 Main Page or Welcome Screen--------===s===smmsmmmmmmmmnonnzmncnnnnns 38 ” |
7.2 Synthesizing Normalized Relationges=e=remms-omeemecmmerenanmaaennes 39 ’i
} 7.3 Normalizing 3NF Relations------===n=-seemmemeommocoenm oo oo e eoe 40 :]
‘ 7.4 Normalizing BCNF Relations-----------=-==-=snmememmcmecocacaaoen oo 41
7.5 Normalizing 4NF Relations---=-==-=-=cmemmmememacomemomeoncocooenneee 42 ‘
7.6 Relations in 3NF---n--rmomoememmm e oo oo oo oo 44 !
7.7 Relations in BONF---c-ceecesmrmrammmmmmmmmmmmcmmmmmmm e e 45 |
7.8 Relations in 4NF-emmmmemmmme oo oo oo oo 46 /
7.9 Insert Values in Database-------=-=======mmmmmemmcomcomoommmmm oo oo e 47 f
7.10 View Databage---=----=-===nsnmmmmmmmmmmmnoo oo omom oo oo om oo 48 }3
: 7.11 Access Database Tables---------------=-=c=mmmmmmmmmcoo oo cmne e 49
\ CONCLUSTON i i s sl 50 r
f REFERENCE- - 51 ;1'
|

B T

Synthesizing Normalized Relations 5

—-- -

LIST OF FIGURES

Fig. 1 Main Page or Welcome Screen----=---=-=sssesmmmmmemmnmememncm e oo oo 38
Fig. 2 Synthesizing Normalized Relations-------=--=-eeememmmmm oo 39
Fig. 3 Normalizing 3NF Relations------=-==-=s=mssmmmmmmmmme oo oo oo 40
Fig. 4 Normalizing BCNF Relations=--=-=-====mnmemm oo 41

Fig. 5 Normalizing 4NF Relations---------=csssmnemm oo eeeeeceeee 42
Fig. 6 Relations in 3NF---a-acmmmmm e oo 44
Fig. 7 Relations in BCONF -----emmm oo oo 45
Fig. 8 Relations in 4NF---cmmemmmm oo oo 46
Fig. 9 Insert Values in Database-----=-=-====mmmmmmcemeommecmec oo oo oo 47
Fig. 10 View Database-------=-=-=nsnmmmmmmm e oo oo 48
Fig. 11 Access Database Tables--------------=-===mmmmmmmmme oo 49

Synthesizing Normalized Relations

—

— ——

LIST OF ABBREVIATIONS

1. NF — Normal Form
2. MVD — Multi-valued Dependency
. BCNF - Boyce Codd Normal Form
. DBMS — Database Management Systems
. RDBMS - Relational Database Management Systems

. ROM — Read Only Memory
. RAM — Random Access Memory
. GHz — Giga hertz
10. Mb — Megabytes
11. Gb — Gigabytes
12. STU — Refers to student
13. FACID — Refers to faculty identity
14. SCHED — Refers to schedule
15. .Net — Dot Net
16. FACNAME — Faculty Name

3
4
5
6. FD — Functional Dependency
7
8
9

Synthesizing Normalized Relations

ABSTRACT

Our project Synthesizing Normalized Relations takes a practical approach towards
implementing normalization. “Normalization Tool” is our software that implements

normalization.

Normalization Tool is meant to synthesize normal form relations. It converts a universal
set of aftributes given with their respective functional dependencies into any of the given

normal form:

1. Third Normal Form (3NF)
2. Boyce Codd Normal Form (BCNF)
3. Fourth Normal Form (4NF)

Normalization Tool can also create tables for the normalized set of relations and we can
insert the values directly in the tables. We can, not only create tables but can update,

insert, and delete also. We can view the database and entries in a given table also.

It has the reusability feature in it. The universal set, functional dependencies and
normalization set of relations are stored in a text file. Whenever we want to change
values and get new set of relations we can directly do it through the Normalization Tool

and we can save it into a new file,

Through the text file we can directly load all the required information into the
Normalization Tool and can convert to higher normal form by adding some extra
information. For example: we can convert third normal form relations to fourth normal

relations by adding information about multi-valued dependencies to it.

Synthesizing Normalized Relations 8

g

CHAPTER 1

INTRODUCTION

Databases and database technology are having a major impact on the growing use of
computers. It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, engineering, medicine, law, education and library

science, to name a few.

A database is a collection of related data and the Database Management System (DBMS)
is the software that manages and controls access to the database. A database application

is simply a program that interacts with the database at some point in its execution.

When we design a database for a relational system, the main objective is to create an
accurate representation of the data, its relationships, and constraints. To achieve this
objective, we must identify a suitable set of relations. A technique that we can use to

identify such relations is called normalization.

1.1 About the Normalization Tool

Normalization is a bottom-up approach to database design that begins by examining the
relationships between attributes. It’s a technique for producing a set of relations with
desirable properties, given the data requirements of an enterprise. Our Normalization
Tool normalizes the given universal set of attributes with the help of given functional

dependencies between the attributes.

It makes the process of normalization easy for the user, as the user can get desired normal
form relations by simply entering only the basic information about the data i.e. attributes

and FDs. It can also insert, delete, and update the relations into database tables.

Synthesizing Normalized Relations 9

e

1.2 Purpose of Normalization

Normalization is often performed as a series of tests on a relation to determine whether it

satisfies or violates the requirements of a given normal form.

We describe a relation as consisting of a number of attributes, and a relational schema as

consisting of a number of relations. Attributes may be grouped together to form a
relational schema based largely on the common sense of the database designer, or by i
mapping the relational schema from an ER model. Whatever the approach taken, a formal i
method is often required to help the database designer identify the optimal grouping of |

attributes for each relation in the schema.

The process of normalization is a formal method that identifies relations based on their {

primary or candidate keys and the functional dependencies among their attributes.
Normalization supports database designers by presenting a series of tests, which can be
applied to individual relations so that a relational schema can be normalized to a specific

form to prevent the possible occurrence of update anomalies.

1.3 Terms Related to Normalization

:> There are certain terms related to normalization in Relational Database Management
j' System (RDBMS), so are they related to our project. Before going into the details of our

| project we must know about these terms in relation to database.

1.3.1 Universal Set

A relational schema has attributes (A, B, C,..., Z) and the whole database is described by
a single universal relation called R = (A, B, C,..., Z). This assumption means that every

attribute in the database has a unique name. R is also called as the universal set.

Synthesizing Normalized Relations 10

1.3.2 Relation

A relation is a set of values. The relation has a name that is distinct from all other
relation names in the relational schema. In terms of RDBMS a relation is a table with
columns and rows. For example: Relation Class = (STUID, COURSE#, STUNAME,
FACID, SCHED, ROOM, GRADE).

1.3.3 Attribute

An attribute is a named column of a relation. In the relational model, relations are used to
hold information about the objects to be represented in the database. A relation is
represented as a two-dimensional table in which the rows of the table correspond to
individual records and the table columns correspond to attributes. For example: in the
above given relation STUID, COURSE#, STUNAME, FACID, SCHED, ROOM,
GRADE are the attributes.

1.3.4 Relational Database

A collection of normalized relations with distinct relation names is called as a relational

database.

1.3.5 Relational Schema

It’s a named relation defined by a set of attribute and domain name pairs whereas a

domain is the set of allowable values for one or more attributes.
1.3.6 Functional Dependencies (FDs)
It describes the relationship between attributes in a relation. For example:

Let’s consider the following relation
CLASS (STUID, COURSE#, STUNAME, FACID, SCHED, ROOM, GRADE)

Synthesizing Normalized Relations 11

Then the FDs are:
STUID, COURSE# = STUNAME, FACID, SCHED, ROOM, GRADE

COURSE# - FACEID, SCHED, ROOM
STUID = STUNAME

Synthesizing Normalized Relations 12

N —

CHAPTER 2

REQUIREMENTS ANALYSIS

2.1 Introduction

Requirements analysis encompasses those tasks that go into determining the
requirements of a new or altered system. Systematic requirements analysis is also known
as requirements engineering. 1t is sometimes referred to loosely by names such as
requirements gathering, requirements caplture, Or requirements specification.
Requirements must be measurable, testable, related to identified business needs or

opportunities, and defined to a level of detail sufficient for system design.

2.2 System Requirements

To design and implement our Normalization Tool we had some system requirements. To
be used efficiently, all computer software needs certain hardware components or other
software resources to be present on a computer system. These pre-requisites are known as
system requirements and are often used as a guideline as opposed to an absolute rule.
Most software defines two sets of system requirements: minimum and recommended.
With increasing demand for higher processing power and resources in newer versions of
software, system requirements tend to increase over time. Industry analysts suggest that
this trend plays a bigger part in driving upgrades to existing computer systems than

technological advancements.
2.2.1 Minimum System Requirements
This set of requirements must be satisfied for the software to be usable at all. Computers

with lower specifications than the minimum requirements may sometimes also run the

software. It is suggested, however, that the user will not have a representative experience

Synthesizing Normalized Relations 13

of the software this way. Generally this set is regarded more of a rule than a guideline. A
system meeting this requirement will provide basic performance of a software

application.

2.2.2 Recommended System Requirements

This set of requirements is often suggested by software vendors for optimal performance
of a software. Although not a necessity, this set of requirements is often sought after by
power users who expect to gain a better experience of software usability. Recommended
System Requirements do not promise best possible performance of a software and are
treated as more of a guideline than a rule. Almost always a better system is available, or

will be in future, to provide better performance.

2.3 Hardware Requirements

Hardware requirements for implementation of our project are as follows:

2.3.1 Minimum Hardware Requirements

Minimum hardware requirements for our project are:
1. Intel system architecture

2. Intel Pentium 4 Processor-1.6 GHz

3.256 MB RAM (Random Access Memory)

4. Hard Disk Space- 4GB

5. CD-ROM Drive-24x

2.3.2 Recommended Hardware Requirements
Recommended hardware requirements for our project are:

1. Intel system architecture

2. Intel Pentium 4 Processor-2.0 GHz

Synthesizing Normalized Relations 14

3.512 MB RAM (Random Access Memory)
4, Hard Disk Space- 6 GB
5. CD-ROM Drive-52x

2.4 Software Requirements

Software Requirements deal with defining software resource requirements and pre-
requisites that need to be installed on a computer to provide optimal functioning of the
application. These requirements or pre-requisites are, almost always, not included in the
software installation package and need to be installed separately before the software is

installed.

. 2.4.1 Platform

In computing, a platform describes some sort of framework, either in hardware or
software, which allows software to run. Typical platforms include a computer’s

architecture, operating system, or programming language and their runtime libraries.

Operating system is one of the first requirements mentioned while defining System
requirements (software). Much software may not be compatible with different versions of
same line of operating systems, although some measure of backward compatibility is
often maintained. Most software designed for Microsoft Windows XP does not run on
Microsoft Windows 98, although converse is not always true.

As our software Normalization Tool is a windows application, it runs only on Windows

Platform. Microsoft Windows’XP is the recommended platform.

2.4.2 Interface

In order to give a presentable interface to our software, we analyzed various packages

and finally decided upon VISUAL BASIC.NET.

Synthesizing Normalized Relations 15

2.4.2.1 Visual Basic.Net

Visual Basic .NET (VB.NET) is an object-oriented computer language that can be
viewed as an evolution of Microsoft's Visual Basic (VB) implemented on the Microsoft
NET framework. Like all .NET languages, programs written in VB.NET require the
NET framework to execute. We have used Visual Basic.Net 2003 version for our

project.

Visual Basic .NET 2003 was released with version 1.1 of the .NET Framework. New
features included support for the NET Compact Framework and a better VB upgrade
wizard. Improvements were also made to the performance and reliability of the .NET
IDE (particularly the background compiler) and runtime.

In addition, Visual Basic .NET 2003 was also available in the Visual Studio .NET 2003
Academic Edition (VSO03AE).

2.4.3 Databases

Many options were available to us regarding the databases or backend that we could use
in the development of the project like Microsoft SQL Server, Oracle, MS access, DB2
etc. We short listed a few and decided to use Microsoft SQL Server.

2.4.3.1 SQL Server

Microsoft SQL Server is a relational database management system (RDBMS may be a
DBMS in which data is stored in the form of tables and the relationship among the data is
also stored in the form of tables). The primary query language is Transact-SQL, an
implementation of the ANSI/ISO standard Structured Query Language (SQL) used by
both Microsoft and Sybase. Microsoft SQL Server and Sybase/ASE both communicate
over networks using an application-level protocol called Tabular Data Stream (TDS). The
TDS protocol has also been implemented by the Free TDS project in order to allow more

kinds of client applications to communicate with Microsoft SQL Server and Sybase

Synthesizing Normalized Relations 16

databases. Microsoft SQL Server also supports Open Database Connectivity (ODBC).
We have used SQL server 2003 as the back-end for our project.

SQL Server 2003 also supports the ability to deliver client connectivity via the Web
Services SOAP protocol. This allows non-Windows Clients to communicate cross
platform with SQL Server. Microsoft SQL Server 2003 also features automated database

mirroring, failover clustering, and database snapshots.

Microsoft and other vendors provide a number of software development tools designed to
allow business applications to be developed using the data stored by Microsoft SQL
Server. Microsoft SQL Server 2003 now includes the common language runtime (CLR)
component for Microsoft .NET. Applications developed with .NET languages such as
Visual Basic can implement stored procedures and other functions. Older versions of
Microsoft development tools typically use APIs to access Microsoft SQL Server
functionality. Rapid application development tools incorporate native database gateways
for high speed database access and automatic table drill-down for the creation of quick

prototype applications for viewing, editing and adding data to any table in the database.

2.4.4 .NET Framework

The Microsoft .NET Framework is a software component that can be added to or is
included with the Microsoft Windows operating system. It provides a large body of pre-
coded solutions to common program requirements, and manages the execution of
programs written specifically for the framework. The .NET Framework is a key
Microsoft offering, and is intended to be used by most new applications created for the
Windows platform.

The pre-coded solutions that form the framework's class library cover a large range of
programming needs in areas including: user interface, data access, database connectivity,
cryptography, web application development, numeric algorithms, and network
communications. The functions of the class library are used by programmers who

combine them with their own code to produce applications.

Synthesizing Normalized Relations 17

e

Programs written for the .NET Framework execute in a software environment that
manages the program's runtime requirements. This runtime environment, which is also a
part of the .NET Framework, is known as the Common Language Runtime (CLR). The
CLR provides the appearance of an application virtual machine, so that programmers
need not consider the capabilities of the specific CPU that will execute the program. The
CLR also provides other important services such as security mechanisms, memory
management, and exception handling. The class library and the CLR together compose
the .NET Framework. The framework is intended to make it easier to develop computer
applications and to reduce the vulnerability of applications and computers to security

threats.

Net Framework is required for our software, as it allows our software to run on any
system having a SQL Server 2003 or higher. No other software is required once the .exe
file is created of the Normalization Tool from VB.Net Package except the SQL Server.
For the software, recommended hardware requirements are same as for the designing

phase of the software.

Synthesizing Normalized Relations 18

g

CHAPTER 3

ANOMALIES

Database normalization is a design technique by which relational database tables are

structured in such a way as to make them less vulnerable to certain types of logical
inconsistencies and anomalies. Tables can be normalized to varying degrees: relational
database theory defines "normal forms" of successively higher degrees of stringency, so,
for example, a table in third normal form is less open to logical inconsistencies and
anomalies than a table that is only in second normal form. Although the normal forms are
often defined (informally) in terms of the characteristics of tables, rigorous definitions of
the normal forms are concerned with the characteristics of mathematical constructs

known as relations.

A table that is not sufficiently normalized can suffer from logical inconsistencies of
various types, and from anomalies involving data operations. In such a table:

o The same fact can be expressed on multiple records; therefore updates to the table
may result in logical inconsistencies. For example, each record in an
unnormalized "CLASS" table might contain a STUID, COURSE#, STUNAME,
ROOM, and GRADE; thus a change of a ROOM for a particular student will
potentially need to be applied to multiple records. If the update is not carried
through successfully—if, that is, the student’s ROOM is updated on some records
but not others—then the table is left in an inconsistent state. Specifically, the table
provides conflicting answers to the question of what this particular student's

ROOM is. This phenomenon is known as an update anomaly.

e There are circumstances in which certain facts cannot be recorded at all. In the
above example, if it is the case that student ROOM is held only in the "CLASS"
table, then we cannot record the ROOM of a student who has not yet registered

for any of the course. This phenomenon is known as an insertion anomaly.

Synthesizing Normalized Relations 19

e There are circumstances in which the deletion of data representing certain facts
necessitates the deletion of data representing completely different facts. For
example, suppose a table has the attributes Student 1D, Course ID, and Lecturer
ID (a given student is enrolled in a given course, which is taught by a given
lecturer). If the number of students enrolled in the course temporarily drops to
zero, the last of the records referencing that course must be deleted—meaning, as
a side-effect, that the table no longer tells us which lecturer has been assigned to

teach the course. This phenomenon is known as a deletion anomaly.

[deally, a relational database table should be designed in such a way as to exclude the
possibility of update, insertion, and deletion anomalies. The normal forms of relational
database theory provide guidelines for deciding whether a particular design will be
vulnerable to such anomalies. It is possible to correct an unnormalized design so as to

make it adhere to the demands of the normal forms: this is normalization.

Synthesizing Normalized Relations 20

CHAPTER 4

NORMAL FORMS

4.1 First Normal Form (1NK)

4.1.1 Objectives of INF

- The schema of an unorganized relation gives no clues to which attributes can have

multiple values.
- Semantics of a INF are more explicit.
- The relational operators are applicable only on flat that is INF relations.

4.1.2 Problems

» Update Anomalies

80Uy o,
s S -ﬁ,'_'.\
e LA

: : o
» Deletion Anomalies \}a'
% Acc. No,

 Insertion Anomalies d;)\ =

% -{;f"-—--.s—-ﬂ'“‘.”\ N,
~2knaghat, S0T.~
i M

4.2 Full Functional Dependency

4.2.1 Definition

In a relation R attribute B of R is “fully functional dependent” on an attribute or set of
attribute A of R if B is functional dependent on A but not functional dependent on any

proper subset of A.

Synthesizing Normalized Relations

4.2.2 Example
(Let’s consider the following relation:

CLASS (STUID, COURSE#, STUNAME, FACID, SCHED, ROOM, GRADE)
FDs:

STUID, COURSE# - STUNAME, FACID, SCHED, ROOM, GRADE
COURSE# - FACEID, SCHED, ROOM

STUID = STUNAME

4.3 Second Normal Form (2NF)

~{ -

4.3.1 Definition

A relation is in second normal form (2NF) if and only if it in INF and all nonkey

attributes are fully dependent on the key.

Clearly if the relation is in INF and the key consists of a single attribute the relation is 4
automatically 2NF. ﬁ
4
For example the previous relation is not in 2NF. 'ﬂl
\ |
| CLASS (STUID, COURSE#, STUNAME, FACID, SCHED, ROOM, GRADE) |
STUID, COURSE# - STUNAME, FACID, SCHED, ROOM, GRADE |
COURSE# - FACEID, SCHED, ROOM
STUID - STUNAME
The CLASS relation is not in 2NF.
- The STUNAME is not fully dependent on { COURSEID#, STUID}.
- The {FACEID, SCHED, ROOM} are not fully dependent on { COURSE#,
STUID}. ‘
:

Synthesizing Normalized Relations 22

» Intuitively a relation might not be in 2NF if is trying to describe information for more
r than one entity i.e. through a many-many relationship.

- In the previous example: student and the course entity.
4.3.2 Transforming a 1NF relation to 2NF relation

1. Identify each nonfull functional dependency.

2. Form projections by removing the attributes that depend on each of the determinants so

identified.
3. Place these determinants in separate relations along with their dependent attributes.

4. The original relation still contains the composite key and any attributes that are fully

functional dependent on it.
These types of projections are called “lossless projection” because the original relation

can be reconstructed by taking the natural join of the resulting projections.

4.3.2.1 Example

CLASS (STUID, COURSE#, STUNAME, FACID, SCHED, ROOM, GRADE)

FDs:

STUID, COURSE# - STUNAME, FACID, SCHED, ROOM, GRADE
COURSE# - FACEID, SCHED, ROOM

STUID = STUNAME

Changing the FDs to 2NF

CLASS2 (STUID, COURSEID#, GRADE)

COURSE (COURSE#, FACEID, SCHED, ROOM)

STU (STUID, STUNAME)

Synthesizing Normalized Relations 23

4.3.3 Objectives of 2NF

(1. The semantics of a 2NF are more explicit: all the attributes are dependent on the entire

primary key.

2. Database designed with 2NF relations avoid undesirable update anomalies present in

INF relations.

3. The schema of a INF relation gives no glue to which attributes are dependent on which

other attributes.

Knowing that a relation in 2NF means that no attribute is dependent on only part of the
7 key.
4.3.4 Review

« Transitive Dependency (3rd Amstrong’s axiom)

Let’s consider the following relation
STUDENT (STUID, STUNAME, MAJOR, CREDITS, STATUS)

P

 —2

\ FDs:

STUID - All the other attributes

So,

STUID - CREDITS

But also,

CREDITS = STATUS

» The STUID functionally determines STATUS in two ways: Directly and Transitively

through CREDITS.

» So the attribute STATUS is said to be transitively dependent on the attribute STUID.

Synthesizing Normalized Relations 24

4.4 Third Normal Form (3NF)

4.4.1 Definition
A relation is in third normal form (3NF) if and only if
- Itisin 2NF and
- No nonkey attribute is “transitively dependent” on the key.

4.4.2 Example

The following relation is in 2NF but not in 3NF.

/

STUDENT (STUID, STUNAME, MAJOR, CREDITS, STATUS)

- Because the nonkey attribute STATUS is transitively dependent on the key,
STUID. |
i
Clearly a 2NF relation with one nonkey attribute must always be a 3NF relation. d
A
4.4.3 Transforming a 2NF relation to 3NF relation 4
\

1. We look to see if any nonkey attribute is functionally dependent on another nonkey

attribute.

2. Remove the functionally dependent attribute from the relation placing it in a new

relation with its determinant.

3. The determinant can remain in the original relation.

Synthesizing Normalized Relations 25 '

4.4.3.1 Example

STUDENT (STUID, STUNAME, MAJOR, CREDITS, STATUS)

Changing the FDs to 3NF

STU2 (STUID, STUNAME, MAJOR, CREDITS)
STATS (CREDITS, STATUS)

4.4.4 Objectives of 3NF

1. The semantics of a 3NF are more explicit: all the attributes are dependent ONLY on

the primary key.

2. Database designed with 3NF relations avoid undesirable update anomalies present in

2NF relations.

3. The schema of a 2NF relation gives no glue to which nonkey attributes are dependent

on which other nonkey attributes.

4. Knowing that a relation in 3NF means that no nonkey attribute is dependent on only

part of the key.

4.5 Boyce Codd Normal Form (BCNF)

4.5.1 Definition

A relation is in Boyce-Codd normal form (BCNF) if and only if every determinant is a

candidate key.

Synthesizing Normalized Relations 26

4.5.2 Example

FACULTY (FACNAME, DEPT, OFFICE, RANK, DATEHIRED)

Constrains

1. No two faculty members within a single department have the same name.
2. Each faculty member has only one office.

3. A department may have several faculty offices.

4. Faculty members from the same department may share offices.
Resulting FDs

OFFICE -» DEPT

FACNAME, DEPT - OFFICE, RANK, DATEHIRED

FACNAME, OFFICE - DEPT, RANK, DATEHIRED
The relation is not in BCNF because OFFICE is not a candidate key.

Relation schema in BCNF

=

FACI (OFFICE, DEPT) |
FAC2 (FACNAME, OFFICE, RANK, DATEHIRED) |

4.5.3 Objectives of BCNF

1. The semantics of multiple candidate keys are more explicit: all the attributes are

dependent ONLY on the candidate key.

Synthesizing Normalized Relations 27

2. Database designed with BCNF relations avoid undesirable update anomalies present in

3NF relations.

3. In previous example
We can not delete a faculty member from a department without loosing information
about an office (assuming he is the only occupant). That is because OFFICE is not a

candidate key.

4.6 Fourth Normal Form (4NF)

4.6.1 Definition of Multivalued dependency (MVD)

Given a relation R with attributes A, B, and C, the multivalued dependency (MVD)

R.A2>->R.B

holds in R if and only if the set of B-values matching a given (A-value, C-value) pair in R

depends only on A-value.

i.e.if (a,bl,cl) e R, (a,b2,c2) e R
then (a, bl, c2) € R, (a, b2,cl) e R

Another way to view MVD

Definition

Let R(X, Y, Z) be a relation and X, Y, Z be pairwise disjoint.

Let Yxz={y|(x,y,2) e R}

Synthesizing Normalized Relations 28

The MVD X=-3Y is said to hold for R(X, Y, Z) if and only if Yxz depends on X i.e.

Yxz= Yxz' for all x, z, z' values of attributes X and Z, such that Yxz and Yxz' are non-

[empty.
We sometime use
X22Y|2Z
The two definitions for MVD are equivalent.

For the relation CTX, we have

Course—~> —~> Teacher
Course = 2> Text i
i.e. Course > Teacher | Text

Note

X == @and X=>=> Y hold for R(X, Y).

X Y whenever Y < X < R for R, there we use R to represent all attributes of relation

R also.

These are called frivial multivalued dependencies.

(Note: A functional dependency X —Y is said to be trivial if Y € X)

4.6.2 Definition of 4NF

A relation R is in fourth normal form (4NF) if and only if any nontrivial MVD X>=2>
Y holds in R implies X is a superkey of R. i.e. X - a for all attribute a of R. |

(Note: A relation R is in BCNF if and only if any nontrivial FD X Y holds in R implies
X a for all attribute a of R.) |

Synthesizing Normalized Relations 29

4.6.3 Objectives of 4NF

1. The semantics are more explicit.

2. All dependencies are related.

3. Database designed with 4NF relations avoid undesirable update anomalies present in

3NF.

Synthesizing Normalized Relations

30

= e

CHAPTER 5

THE NORMALIZATION PROCESS

The process of finding stable set of relations that is a faithful model of the enterprise.

5.1 Decomposition (Top-Down Process)

1. Start with a universal relation

2. Identify functional dependencies

3. Use decomposition techniques to split the universal relation into a set of ones.

The previous example was based on the decomposition approach.

o

=

5.2 Synthesis (Bottom-Up Process)

= { T

Begin with attributes and combine them into related group using functional dependencies

to develop a set of normalized relations.

A synthesis algorithm was developed by Philip A. Bernstein.
5.2.1 Basic Steps

1. Make a list of all FDs.

2. Group together those with the same determinant

Synthesizing Normalized Relations 31

3. Construct a relation of each group.

5.2.2 Problems

1. Some FDs have more attributes in the determinant than needed.

We must eliminate extraneous attributes or 2NF relations might not result.

2. Eliminate redundant FDs before grouping 3NF will not result.

3. Two relations may appear to have different keys when in fact the keys are equivalent.

5.2.3 Examples

Case 1

FDs
fl: ABF=> G R1 (A.B,F, G) Rl notin 2NF
12: A2 F R2 (A, F)

Extraneous attribute is f1.

Case 2

FDs
fliXi—= Y RI(X: Y. 2)
{2 Xk RZ (Y, Z) R1 in 2NF but not in 3NF.
f3eY=r

Redundant FD; f2 can be derived from f1 and f3.

Synthesizing Normalized Relations 32

Case 3

FDs
fl: X< A
;Y3 B
By X€E2>Y

Case 3A

FDs
fl. X=>A
RiAY
EER L .6

RI (X, A,Y)

R2 (Y, B. X) Too many relations.

R1 (X, A)
R2(AY)

R3 (Y, X) Too many relations.

Synthesizing Normalized Relations

33

|
!
|

CHAPTER 6

SYNTHESIS-BOTTOM UP PROCESS

6.1 Synthesizing Third Normal Form Relations (by Philip A. Bernstein)

A Description of the Algorithm:

The simple synthesis procedure led to problems because the rules for composing FDs
were ignored. The main difficulty is that the redundant FDs that filter into the synthesized
schema creates extra attributes and contributes to unnormalized connections among
attributes. By first taking a nonredundant covering of the given set of FDs, the
normalization problems can be alleviated. In the example given in the previous chapter
F2 is redundant and therefore will not appear in a nonredundant covering of the given

FDs, and the 3NF violation of R1 is thereby avoided.

Finding a nonredundant covering is not sufficient to avoid problem FDs such as F6. This
further problem can be eliminated by excising extrancous attributes from the left sides of
FDs. An attribute Xi is extraneous in an FD g E G, g: X1, ..., X, =2 Y, if X1,. .., Xi-],
Xi+l , ..., X, 2> Y is in G+. Eliminating extraneous attributes helps to avoid partial

dependencies and superkeys that are not keys, as in R4.

If two relations have keys that are functionally dependent upon each other (i.e. are
equivalent), then the two relations can be merged together. This can be accomplished in
the synthesis procedure by merging together two groups of FDs if their left sides are

functionally equivalent, For example g2 and g3 can be merged into a single group.

Synthesizing Normalized Relations 34

6.2 Algorithm

1. Eliminate extraneous attributes

Let F be the given set of FD’s where the right side of each FD is a single attribute.

Eliminate extraneous attributes from the left side of each FD in F, producing the set G.
II. Finding covering
Find a non-redundant covering H of G.

II1. Partition

Partitions H into groups such that all of the FD’s in each group have identical left sides.

IV. Merge equivalent keys

Let] = ®. For each pair of groups, say Hi and Hj with left sides X and Y respectively. If
X and Y are properly equivalent, then
- Merge Hi and Hj together
- AddX->YandY >Xtol
- IfX>Z€HandZ €Y, then delete X 2Z from H. Similarly, if Y 2Z € H and
Z € X, and then delete Y 2Z from H.

V. Eliminate transitive dependencies
Find a minimal H' which is subset of H such that

(H' v)+=Hv)+
Then add each FD ofJ into its corresponding group of H'.

Synthesizing Normalized Relations 35

VI. Construct relations
] - Each group forms a relation.
- Each set of attributes that appears on the left side of any FD in the group is a key

of relation. They are explicit keys.

Result1: The relations produced by step 6 are all in 3NF.

Result2: The number of relations produced is minimum.

6.2.1 Example

Given F= {A 2B, A 2C, B 2C, B 2D, D>B, ABE F}

Step I Eliminating extraneous attributes

G={A=>B,A>C,B->CB->D,D>B, AE 2F }

(since AE > ABE € F+) ‘%
Step II Find covering ¥
H= {A->B, B>C, B>D, DB, AE2>F}

(since A2C € (G = {A=2C}Ht)

Step III Partition

Hi= {A = B}

H2={B < C;B = I}}

H3= {D > B}
H4= {AE - F}

Synthesizing Normalized Relations 36

| Step IV Merge groups

B and D are properly equivalent
={B > D,D = B}

Hi= {A - B}

H2=H2vH3-{B->D,D - B}

| ={B > C}

| H4 = {AE > F}

Step V Eliminate transitive dependencies
None!

Step VI Construct relations

R1 (A, B)

R2 (B, D, C)
R3 (A.E, F)

Synthesizing Normalized Relations 37

CHAPTER 7

NORMALIZATION TOOL DESIGN

The Normalization tool was designed and working software was created. Front-end was

designed with the help of VB.NET.

7.1 Main Page or Welcome Screen

™ Normalization Tool

- =

-~

Description
This screen is our welcome screen which is displayed while the loading is on. After the
loading the next screen is the synthesizing normalized relations screen. It provides user

with the option of normalizing into any of the given normal forms.

Synthesizing Normalized Relations 38

7.2 Synthesizing Normalized Relations

E!Synlhzsiring

Synthesizing Normalized Relations

" Refations In 3AF

* Relations In BCAF

 Relations Inn INF

"IISiant [Owmaaro. B Reorins. | oibedbeo M Fomt

Description

This page has three radio buttons:

Relations in 3NF: Clicking on this radio button opens a new page for Normalization in
3NF.
Relations in BCNF: Clicking on this radio button opens a new page for Normalization in

BCNF.

Relations in 4NF: Clicking on this radio button opens a new page for Normalization in

4NF,

Synthesizing Normalized Relations 39

.

AN

b Universal Set

Uriversal Set Data Type

|
| i LU l D : Cousselitle
DalaType hd | Insest —> E-in ’

Lengh [t | : Advisor

Functional Dependencies

Insert To Left Hand Side I Inu!TnR‘d!ll-imiSidsl
Left Hand Side o Right Hand Side
A B
C DE
E F
i ! kA |
1 G

Mestan (0 aaun, | (Maces © Wpwetimes. | Muorsoco e | MEbmpchak | @ Edu B aciim

Description

In this page attributes are inserted in the universal set listbox through the attribute
textbox. The entries in the Universal Set are of this form - A: Employee Name. In
addition to attribute their data type and length are also inserted as they would be required
in case the user desires to create the normalized tables. The Remove Attribute button
removes the selected attribute from the universal set and the functional dependency
which has the selected attribute in it. The Insert To Left Hand Side button inserts the
selected attribute (in universal set listbox) to the left hand side listbox of the Functional
Dependencies. Same is for right hand side. Remove Functional Dependency button
removes the selected functional dependency from the set of functional dependencies.
Pressing the Get Normalized Relations opens a new page Relations In 3NF. The Back

button is to go back to the Synthesizing Normalized Relations Page.

Synthesizing Normalized Relations 40

In the File Menu we have open and save options. Option Open opens a text file which
already has the Universal Set and the Functional Dependencies set. Option Save saves the

Universal Set and the Functional Dependencies to a text file.

7.4 Normalizing BCNF Relations

% Normalization BCNF

BenPeee Umiversal Set

Urivessal Sel DataType

Functional Dependency

£ Irpaﬂ‘lat_.dﬂ_ud‘i‘hl Insest To Right Hand Side I

[Left Hand Side e Right Hard Side
f 3 5
% C DE
E F 3
| ACG H Resmove Functional Dependency]

AG |

Description

In this page attributes are inserted in the universal set listbox through the attribute
textbox. The entries in the Universal Set are of this form - A : Employee Name. In
addition to attribute their data type and length are also inserted as they would be required
in case the user desires to create the normalized tables. The Remove Attribute button
removes the selected attribute from the universal set and the functional dependency

which has the selected attribute in it. The Insert To Left Hand Side button inserts the

Synthesizing Normalized Relations 41

selected attribute (in universal set listbox) to the left hand side listbox of the Functional
Dependencies. Same is for right hand side. Remove Functional Dependency button
removes the selected functional dependency from the set of functional dependencies.
Pressing the Get Normalized Relations opens a new page Relations In BCNF. The Back

button is to go back to the Synthesizing Normalized Relations Page.
In the File Menu we have open and save options. Option Open opens a text file which
already has the Universal Set and the Functional Dependencies set. Option Save saves the

Universal Set and the Functional Dependencies to a text file.

7.5 Normalizing 4NF Relations

™ Normalization 4HF

Universal Set
i Universal Set DataType
| Atiibate [
|
I Data Type \ - Insest —>
|
| Length !
Remove Attibute I
Functional Dependency Multi Valued Dependency
i T Hand 565 | P e f | it TolehHandSi | inse ToRghiHandSide | |
by i BRI 1‘ : Left Hand Side T Right Hand Side |
| |
! |
| | |
1 | ’ | Renove Ml Valied Dependency | I

L l start FUB VG miedis player | &3 éa.n";ﬁg;_s Faic. ; : ‘h S_;lcaz_n._c?_ ; n Fn:-iéef-?ttfn._ Yy reltoostent s EM sleaser

Synthesizing Normalized Relations 42

i
|
|
|
|

Description |

In this page attributes are inserted in the universal set listbox through the attribute
textbox. The entries in the Universal Set are of this form - A : Employee Name. In
addition to attribute their data type and length are also inserted as they would be required
in case the user desires to create the normalized tables. The Remove Attribute button
removes the selected attribute from the universal set and the functional dependency
which has the selected attribute in it. In Functional Dependency the Insert To Left Hand
Side button inserts the selected attribute (in universal set listbox) to the left hand side
listbox of the Functional Dependencies. Same is for right hand side. Remove Functional
Dependency button removes the selected functional dependency from the set of
functional dependencies. . In Multi Valued Dependencies the Insert To Left Hand Side
button inserts the selected attribute (in universal set listbox) to the left hand side listbox
of the Multi Valued Dependencies. Same is for right hand side. Remove Multi Valued
Dependency button removes the selected functional dependency from the set of
functional dependencies Pressing the Get Normalized Relations opens a new page
Relations In 4NF. The Back button is to go back to the Synthesizing Normalized

Relations Page.

In the File Menu we have open and save options. Option Open opens a text file which
already has the Universal Set and the Functional Dependencies set. Option Save saves the

Universal Set and the Functional Dependencies to a text file.

Synthesizing Normalized Relations 43

7.6 Relations in INF

™= Relations in 34F

Creste
Rename

Relations In 3INT

Relations
R1 [Studno.Studname) Primary Key : Studno
R2 [Cowseno Coursetite Inshiuctname | Piimary Key : Cowsena
R3 [Instruciname Instructiocn) Primary Key : Inshiuciname
R4 [Studno CoursenoMajorGrade) Pomary Key : Studno Courseno Majo
R5 [StudnoMarAdvisor] Primary Key : Studno Major

¥4 start FIb e modia plaver. | | KD Ban 9813 Rak. .. - | B Profe-t)

Description
This page is the output page. On this Page we get the relations and the primary key

corresponding to the related Relation. The Relations are in 3NF.

In the File Menu we have the option to Save the output (Relations and the Primary Keys)
to a notepad file. We can also go back to the Main Page i.e. Synthesizing Normal Form

Page or exit from the software.

In the Table Menu we have options of creating, renaming the tables and entering the data
into the tables. Option Create creates the tables in the database. Option Rename renames
the table in the database as well as on the output page. Option Insert opens the Insert

Page from where we enter the data into the tables.

Synthesizing Normalized Relations 44

7.7 Relations In BCNF

8 Relations In BCNF

Relations In BOCNF

Relations
R1{ StudnoShudname] Primary Key : Studno
R2 [Couwseno.Coursetiie Instuctname | Primary Key : Courseno
A3 (Instruciname Instructioen) Primary Key : Instucinames
A { Studno.Courseno.MaiorGrade] Primasy Key : Studno.Courseno Mags
R5(StudnoAdvisor] Primary Key : Studno
R6 (AdvisorMajor) Primary Key : Advisar

iy start L ViCwediplner R IBanSS3 (A | oAt B ot Mora . L t§ perd b - Fant Bl Feiatnns 0k

Description
This page is the output page. On this Page we get the relations and the primary key

corresponding to the related Relation. The Relations are in BCNF.

In the File Menu we have the option to Save the output (Relations and the Primary Keys)
to a notepad file. We can also go back to the Main Page i.e. Synthesizing Normal Form

Page or exit from the software.

In the Table Menu we have options of creating, renaming the tables and entering the data
into the tables. Option Create creates the tables in the database. Option Rename renames
the table in the database as well as on the output page. Option Insert opens the Insert

Page from where we enter the data into the tables.

Synthesizing Normalized Relations 45

7.8 Relations In 4NF

i Relations In ANF

Relations In ANTF

Relations
R1 [Studno Stadname] Primary Key : Studno
R2 { Courseno Courselilejnstruciname)} Primary Key : Courseno
R { Instruciname Instruciocn) Primary Key : Instiuciname
R4 { Studno, Courseno Major Grade) Primasy Key : Studno.Courseno Major
R5(StudnoAdvisor) Primasy Key © Studno
R6 [AdvisorMajor) Primary Key : Advisor

I jiynie
iy Start 88 6 wodowsExpl e

Description
This page is the output page. On this Page we get the relations and the primary key

corresponding to the related Relation. The Relations are in 4NF.

In the File Menu we have the option to Save the output (Relations and the Primary Keys)
to a notepad file. We can also go back to the Main Page i.e. Synthesizing Normal Form

Page or exit from the software.

In the Table Menu we have options of creating, renaming the tables and entering the data
into the tables. Option Create creates the tables in the database. Option Rename renames
the table in the database as well as on the output page. Option Insert opens the Insert

Page from where we enter the data into the tables.

Synthesizing Normalized Relations 46

i
<

7.9 Insert Values In Database

™ |nsent
Insert Values
Table Name Performance
Attibute Vabue
Studno intfd)
Cowrseno vacha(20) ;
Moioc varchad2) |
Grade varchad20) ‘[=
Back < Insest Values

IR Ban 16005 . L NewFoier | Ak b

Fig. 9
Description
This page shows the table name and the attributes with their data types and length. The
Insert Values button inserts the values into the database. We can insert as many entries

we want to insert into the database. The Back button is to go back to the Relations Page.

Synthesizing Normalized Relations 47

7.10 View Database

£ Database
Database
| name crdate - o
[y cous 572072007
shudent 5/20/2007
R2 5/20/2007
R3 5/20/2007 |
an 51172007
| A4 5/20/2007 3
Back <¢ Delete Table

LF start : Ta e e plave: UE:« 13 (Rag s

Description

This Page shows all the tables in the database. We can delete any table from the database
by clicking the Delete Table button. On clicking it, it opens a pop up asking for the table
name to be deleted. On clicking OK the table gets deleted from the database.

Synthesizing Normalized Relations 48

7.11 Access Database Tables

M Table

Table

Key : Courseno

by + Studno Courseno Magx
b Major

PR3 R a5 |l Pt Y et R Bb 205
. o

£ stri' P2 MCmeds

Description
This Page has a Combobox which consists of all the tables in database. Selecting any

table opens the table and shows all the entries in the table.

Synthesizing Normalized Relations 49

n

T ————

CONCLUSION

The initial purpose of this project (Synthesizing Normalized Relations) was to implement
the algorithm for synthesizing a 3NF, 4NF and BCNF schema from a given set of
functional dependencies. Later certain other functionalities were added: creating the
tables, entering data into tables, renaming tables, deleting tables from the front end
making it easier for users to interact with the databases. The reusability factor would help

users to save time and get their desired results from the already saved universal relations.

Further work can be done on the project for synthesizing the universal relation to higher

normal forms.

TR T

Synthesizing Normalized Relations 50

REFERENCE

1. www.portal.acm.org

- ACM is the world's first educational and scientific computing society.
- Association for Computer Machinery.

- The Best Portal To Access All Kind Of Research Work.

2. www2.cs.ucy.ac.cy

- University of Cyprus.
- Notes on Relational Model and Synthesis of Database Design.

3. doi.ieeecomputersociety.org

- Institute for Electrical and Electronics Engineers, Inc.

- A Unified Approach to Functional Dependencies and Normalization Function.

4. www.cs.ucla.edu

- University of California, Los Angeles.
- A Formal Approach to the Definition and the Design of Conceptual Schemata for

Database Systems.

Synthesizing Normalized Relations 51

5. IBM labs research papers, IBM Research Labs, San Jose,
California

- Research work done by E.F. Codd.
- On A Relational Model of Data for Large Shared Data Banks.

6. ACM transaction of Database Systems, Vol. 7 (Published in
March, 1982)

- All Information Required for Database Related Research Work.

7. International Journal of Information Technology Education, Vol.

| (Seneate Hall Publishing 2004)

- Traditional and Alternative Database Normalization Techniques.

- By Hisang-Jui Kung and Thomas Case(Georgia Southern University- f

www.georgiasouthern.edu) ;

8. www.utoronto.ca

- Dep’t. Of Computer Science, University of Toronto, Toronto, Canada
- Research papers on “Synthesizing Third Normal Form Relations from Functional

Dependencies.

Synthesizing Normalized Relations 32

9. www.ucdavis.edu

a - University of California, Davis
- New Methods and Fast Algorithms for Database Normalization given by Jim
Diederich and Jack Milton

10. Fundamentals of Database Systems
- By Elmasri, Navathe, Somayajulu, Gupta
11. Database Systems

- By Thomas Connolly and Carolyn Begg

S

Synthesizing Normalized Relations 53

