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Abstract 

Since the launch of the smartphones, their usage is increasing exponentially and it has 

become an important part of our lives. We are very much dependent on smartphones 

for our daily routine and use numerous applications both from the play store or the third 

party applications. Most of the times the applications downloaded from unofficial 

sources pose a threat as it doesn’t undergoes the necessary checks or mechanisms to 

validate the authenticity of these applications and maybe infected with malware. The 

malware infected applications can lead to leakage of user’s personal data or for getting 

restricted access to the system. Initially, the use of signatures, which are a small number 

of bytes from the virus, were carried out to check the viruses but its database needs to 

be updated regularly. In this project, we present an alternative of virus detection by 

using machine learning techniques we extracted the permissions and created a dataset 

and used machine learning algorithms for classifying the applications into malicious or 

benign and compared their results to determine the best algorithm suiting for our 

dataset. Furthermore, we have converted the Android application samples into images 

and explored how convolutional neural network works for the classification of 

application into malicious or benign. 
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Aims and Objectives 

The aim of the project is to enhance the security measures of the Android application 

and to protect the users from the spread of viruses and the leakage of personal data or 

the unauthorized access to the restricted sections. This is done by using permissions and 

classifying the android applications into malicious or benign on the basis of the 

permissions they use. It also speeds up the malware detection process and performs 

better than the traditional method of virus detection- signatures.   

Objectives- 

 Study about various malwares and its effects on the android system. And also 

about the permissions requested by Android application and also about various 

machine learning algorithms and their differences. 

 Download multiple android application samples both malicious and benign to 

create a dataset to train the model. And creation of script to extract the 

permissions from apk samples and list them into CSV file. 

 Application of various Machine Learning algorithms to the created dataset and 

comparing the algorithms on the basis of parameters like accuracy, precision 

etc. 

 Conversion of Android samples into images. And Implementation of CNN on 

the images and classification into benign and malicious.  
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Chapter-1 

INTRODUCTION 

(1.1)  Introduction to the Project 

In today’s era, smartphones have become a ubiquitous device for storage, computing 

and for carrying out the transactions among these devices. It is more handy, portable 

and easy to use device. To make the usage experience of the mobile phones better and 

for determining the features and functions available on the device, a software platform 

i.e. an operating system is preinstalled in the mobile phones which is decided by the 

manufacturer. This operating system is specially designed for mobile phones and 

largely vary from the operating systems of that of computers and therefore able to run 

advanced functions to smartphones that were previously unable to be done on desktop 

computers. There are various kinds of operating systems available in the market namely 

Android OS, IOS, Windows OS etc. The first fully functional and popular smartphone 

operating system was the Symbian OS which was introduced in 2000. Another 

operating system that revolutionized the market was the IOS by Apple and came along 

with their first iphone model in 2007. But since the launch of Android operating system 

in 2007, it has become the most popular mobile operating system and has grown 

strongly through the years. According to the statista report on sales share globally in 

mobile OS market to end users from 2009 to 2018, 88% percent of all smartphones that 

were sold to the customers or the end users had Android OS in them. The availability 

of smartphones with android OS at a relatively cheaper rates have also led to this 

accelerated migration of feature phone users to smartphone users and exponential 

growth in android market. 

 

Fig 1.1: Statista report on sales share globally in mobile OS market 
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This accelerated growth of the android OS has largely attracted the malware developers 

and a large number of malware containing applications are being developed every day.  

Smartphones are becoming a major target to malware attacks with Android OS being the 

top on the hit list as it is open source OS and it is relatively easy to penetrate malware and 

viruses in these applications. Thus, the detection and removal of these malware containing 

applications and is becoming a major concern for both developers and to the end users. It 

is becoming the need of the hour to keep the platform safe for the community by providing 

detection and defensive methods against malware.    

(1.2) MOTIVATION 

In this project we work towards the improvement of user experience and the security 

measures of the android community. As discussed above a large proportion of the 

population rely on their smartphones for their daily transactions and thus need to be very 

secure and confidential for gaining trust of user and stand onto the expectations of the users. 

Most of the customers are overconfident when it comes to the security prowess and often 

keep their smartphones in vulnerable conditions and thus make it easier for the 

cybercriminals to attack the system and become able to steal data or leak personal data.  

According to the global report on Cyber Security Insights submitted by Norton in 2017, 

there has been 978 million people collective in 20 countries which were affected by 

cybercrime and as a result of this cybercrime, victims lost a collective of 172 billion US 

dollars globally and the average loss of 142 dollars per person which is huge. 

 

Fig 1.2: Analysis by Norton about Cybercrimes. 
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And the distributed representation of loss per person according to the country- 

According to the same report by Norton, a survey conducted by the Norton to enumerate 

the people according to the awareness and how careful they are when it comes to storing 

passwords- 

 

Fig 1.3: Analysis by Norton about how aware users are about Security. 

Thus, a graph was made to show the comparative analysis and to identify the area which 

needs to be targeted for improving the security measures. And the result was- 

 

Fig 1.4: Graphical representation of distribution of victims of cyberattacks by methods. 
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(1.3) Traditional Approaches 

The steep rising of the malware have drawn the attention of the researchers towards the 

malware detection techniques. Malware detectors are the tools which are used by the 

developers and the android community to check the application for malware. The quality 

and efficiency of such detectors are measured by certain techniques they employ. Many 

intrusive detection methods which were used can be listed into three categories namely 

host-based, cloud based or social collaboration. In the case of host-based method, the 

detection process runs entirely in mobile device, it assumes that the capabilities of 

smartphones increases following Moore’s theory. This method has an advantage that it will 

relocate some of the server functionality to the client-side and this will further result in the 

reduction of communication latencies while the cost in terms of the use of bandwidth is 

eliminated with ability for real-time detection. This method has a slight disadvantage that 

as it poses difficulty during the implementation process because of resource-poor 

limitations of mobile devices.  

The malware detection methods can be broadly classifies into three main categories – 

Signature based detection, anomaly- based detection which can be also referred to as 

Behaviour based detection and virtual Machine based.  

 

Fig 1.5: Methods of malware detection. 

All the detection methods are further classified into static, dynamic and hybrid. In the case of 

anomaly based or signature based technique, the approach is determined by the method of collecting 

information to be used for malware detection.  

The systems which use the anomaly based malware detection requires a training phase 

before the detection of malware to determine the normal behaviour of the system and for 

comparison. In this case, the system which is used for detection of malware is trained on 
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the normal behaviour which makes it easier to differentiate the anomalous behaviour from 

the normal behaviour occurring in the system. This technique can also be used to detect 

new and unknown attacks by malware. This method requires the use of feature vectors for 

training the classifier before the detection and classification of the sample is carried out. 

But this method have its disadvantages too. It was clearly shown by a paper by Didier 

Stevens that if a malware script is zero padded with a certain amount of zero bytes, then it 

becomes difficult and sometimes remains undetectable by the virus scanners used by him. 

[1]   

Further, a site consisting 60+ anti-virus scanners and aggregates many antivirus products 

and online search engines and check whether the file uploaded to the site is infected or not 

and even determines the viruses missed out by the user’s antivirus or listed as false positive. 

Another drawback of signature based approach is that the source code can be manipulated 

and can be rearranged to avoid the occurrence of common signature which makes it difficult 

for the anti-virus to collect and create a signature for that sample. 

Even in the case of polymorphic and metamorphic viruses, the process of creating signature 

becomes difficult. It is because in polymorphic viruses, a decrypter/ encrypter stub is used 

and a different key is used every time the virus is transferred to a different system and thus 

the body of the virus is different. On the other hand, in the case of metamorphic viruses, 

the virus is able to evolve themselves and can re-code themselves effectively. 

Metamorphic also involves techniques that can substitute the machine code registers used 

for alternating or inverting the logic of statements 
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Fig 1.6: VirusTotal Webpage 

VirusTotal is an online website providing free services used for the analysis of files and 

URLs for any kind of malicious content. Currently, it inspects the files with its 69 antivirus 

scanners for the detection of malicious content and give the detailed information about the 

file. It is freely available of the non-commercial users.  

Below we have inspected some files to show how the website works: 
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Fig 1.7: VirusTotal Result on benign android sample. 

This is the snapshot of a non-malicious file scanned with the VirusTotal. 

 

Fig 1.8: VirusTotal report on malicious android sample. 

This is the snapshot of a malicious file scanned with the VirusTotal. 

 

Here in this project we are going to talk about android permissions, Android permissions 

are divided in to several protection levels: 
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1. Normal Permissions are those permissions which have very little risk of user’s 

privacy. These permissions do not require user’s involvement; these are granted by 

the android system directly. 

Following permissions comes under the PROTECTION_NORMAL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.9: Permissions listed under PROTECTION_NORMAL 
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2. Signature Permissions 

 

Fig 1.10: Permissions listed under signature permissions. 

 

3.   Special Permissions 

The permissions that doesn’t comes under the normal and dangerous are the special 

permissions SYSTEM_ALERT_WINDOW and WRITE_SETTINGS are 

particularly sensitive, if an application wants to access these it must declare it in the 

manifest and access those with the help of intents. 
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4.   Dangerous permissions 

These are the permissions which require access to user’s private data. For granting 

these permissions a message is prompt on the screen asking about the user’s 

permissions. 

 

Fig 1.11: Permissions listed under dangerous permissions 

 

(1.4) Methodology 

(a) Identifying Malware Samples 

As previously mentioned in the traditional approaches section that most of the prevailing 

anti-virus scanners use the signature based approach. But there are many viruses that remain 

unnoticed by these anti-viruses and are discovered after about 3-4 months of entering the 

system when the system is very much affected. Thus, there is a clear need to find a more 
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effective and fast solution for the aforementioned problems and diminish the evolution of 

malware in the android system.  

(b) Using Java based Android package analyser  

Thus, in this project, we use an approach which is aimed at uncovering the already known 

malware families and also the unknown malware to reduce chances of malware in the 

android community from escaping detection from scanners. For this we created a dataset 

using multiple android .apk samples downloaded from both google play and VirusShare 

and other trusted sites providing malware samples. We got a collection of about 4000+ 

samples of both malicious and benign android application samples. As the permissions 

required by a particular application is inside the android manifest file of the android sample. 

There are multiple methods to extract the methods from the android sample. We accessed 

the permissions requested by a particular android application sample from the manifest.xml 

file of the android sample using a JAVA program to extract the permissions and store it. 

This JAVA decompiler program was developed by self by reverse engineering the JAVA 

decompiler tools available in the internet for the extraction of permission and other 

necessary details which were irrelevant to our project and was thus increasing the space 

and time required for extracting permissions. 

(c) Using Python based Android package analyser 

But this process was a cumbersome process and took very long time for extraction of 

permissions for a huge data. Thus, we created a script in python which reads and processes 

multiple samples at the same time and accesses the manifest.xml file and extract 

permissions and compile the permissions into a CSV format file which could be further 

used in the machine learning algorithms. This python script was run multiple times on the 

same samples to ensure the correct data and to lower the chances of randomization. The 

final result is used as a dataset in our project and made free from error and stored.  
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Fig 1.12: Steps followed for building Android package analyser based on Java. 

 (d) Using machine learning 

After the creation of the dataset, a script is run to analyse the permissions and classify the 

samples into two different classes i.e. – malicious and benign. In this project we focus on 

creating a labelled dataset for the machine learning algorithms and specifically for the 

supervised learning algorithms. The classifier is then trained using the previously created 

dataset and then tested to predict the result according to the feature vectors. In using 

machine learning, we encountered two main problems, at first the need to extract some 

variety of feature illustration of the applications and second, the requirement for a 

knowledge set that's virtually completely benign or well labelled which is able to be wont 

to train a classifier. In addressing these issues, 1st a heterogeneous knowledge square 

measure extracted processed and vectored into a feature set. Secondly, a K-NN classifier is 

trained victimisation a normality model that describes to the classifier the traditional 

behaviour. With this, it becomes doable to find abnormal behaviour by trying to find 

behaviours that deviate from the outlined traditional behaviours of applications.  

Another approach that can be followed is the use of novelty classifier, in which there is 

requirement of only one class. In this case, the system which is trained needs only one class 

for training with normal system activity which makes it possible to infer the abnormal 

activity. 
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No matter how complex or how advanced the machine algorithm is, any approach of the 

machine learning used can never be fully efficient to prevent the transmission of viruses.  

 

Fig 1.13: Steps followed for training & testing a ML model. 

(e) Conversion of Android samples into Images 

After the implementation of multiple Machine Learning algorithms on the dataset created 

by extracting the permissions of Android samples, for obtaining more realistic and correct 

results, we used complex deep learning algorithms especially Convolutional Neural 

Network. The CNN works best for images as input. Thus, we have converted the Android 

samples into images. The format of images are .jpg and are the greyscale images of Android 

samples. For this, we used a python script using image libraries that converts the Android 

samples into images. 

(f) Normalisation of Images 

As the Android samples are converted to greyscale images, the images formed could be of 

various sizes and dimensions depending on the respective size of each application and thus 

the images need to be normalised for the input images to be in the same range. The images 

were later renamed using a python script which identifies the unique MD5 hash which acts 
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as a fingerprint of the Android samples and distinguishes the sample from other samples 

and helps remove duplicacy.  

(g) Using Convolutional Neural Network 

After the creation of image dataset, a python script is run to classify the images into benign 

or malicious. During this process, the CNN model uses splitting of the dataset and splits 

the dataset for both training and testing of the model. This helps to determine the accuracy, 

precision and other parameters and give the result as to how effective the model is for the 

created dataset.  

 

Fig 1.14: Convolutional Neural Network diagram 
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Fig 1.15: Convolutional Neural Network after first layer 

In the process of convolutional neural network, the input image passes through multiple 

layers and each layer has its own filters and activation function of their respective 

perceptrons. In the first layer of convolutional neural network, the model only identifies the 

basic shapes such as circles, lines or other basic shapes. More and more complex filters and 

activation functions are to be used in the futher layers to identify more detailed features and 

extract useful information from the images. In the image above, the filter detecting the 

edges are called as edge detector. 

 

As the layers increase, that is, as the model go deeper, we are able to use more complex 

filters and activation functions to extract more detailed information. In the next image, the 

example is shown after the n=4 layers and we can obtain multiple information from 

multiple images. The information obtained from this layers gives out dog faces, bird legs 

etc. Thus, as we go deeper and deeper, we can extract more information from the images. 
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On the other hand, as we go deeper and increase the number of layers in the model, the 

computation speed and the runtime increases. This pattern detection makes CNN so useful 

for image analysis. 

 

 

 

Fig 1.16: Convolutional Neural Network after n layers 

The following image shows the example of the convolutional neural network used for 

handwriting detection. It is the most widely used and popular example of CNN and the 

model used has four convolutional layers with different and complex filters. An example 

of the filter being used in a convolutional layer is shown by a 3*3 matrix having random 

values. After all the layers, the result is convolved and we get the desired output or 

information.  
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Fig 1.17: Handwriting detection example of CNN  

 

 

In the next image, the working of convolutional neural network for the identification of 

handwriting is explained. The basis of CNN is that it receives an input and transforms the 

input in a way and then outputs the transform input to the next layer. With each 

convolutional layer, we need to specify the number of filters the layers should have. The 

filter is a matrix where the number of rows and number of columns are decided by the user 

and the values are initialized with random numbers. The matrix representation of an image 

of a 7 as given below is taken as an input by the convolutional layer. The values from the 

matrix are the individual pilexs from the image. 
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Fig 1.17: Matrix Representation of an image of 7 as input.  

 

 

This is the input and this input will be passed to convolutional layer. In this layer, it is 

specified to have only one filter. This filter further convolves across each 3 * 3 blocks of 

pixels form the input. The 3*3 filter of randomly initialized values are given in the next 

image. When the filter convolves the first 3*3 blocks of pixels of the input matrix, the dot 

product of the 3*3 blocks of pixels of filter with this 3*3 blocks of pixels of input matrix 

will be computed and stored it a new matrix as a single value and this output further 

transforms as an input for further layers.  
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Fig 1.18: Matrix Representation of 3*3 blocks of pixels of filter.  

Now, we slide to the next 3*3 block and take the dot product of the next 3*3 blocks of 

pixels with the 3*3 blocks of pixels of filter and the output is computed and stored as the 

next value in the output matrix. This process goes on for each 3*3 blocks of pixels of input 

and the output is stored and passed to the next layer where the same process is again 

repeated but with a different filter and activation function. 
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Fig 1.19: Computation for filter and input and stored in output matrix. 

 

Fig 1.20: Computation for filter and input and stored in output matrix. 
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In the above image, the input image of a 7 is convoluted with four different filters and the 

values of filters and given above and these values can be represented visually as the images 

shown below the matrixes. Here in the images, -1 correspond to the black, 1 corresponds 

to the white and 0 corresponds to the grey. After the convolution of the input image of 7 

with these filters, we get the images as shown as output. Here, we can see that all the filters 

detect the edges and the bright part corresponds to the white in this example. These filters 

are really basic and mostly detects edges. More complex filters would be located deeper in 

the network and gradually be able to detect more sophisticated information.  

 

(1.5) ORGANIZATION OF REPORT 

In Chapter 2, we have discussed the literature review, which consists of all the 

terminologies, importance and the working of the algorithms and its types. We have 

described various algorithms and its advantages and disadvantages to identify the best 

suited algorithm for our project. 

In Chapter 3, we have developed a system design and listed all the system requirements to 

run these algorithms and the environment on which these algorithms were tested to clearly 

analyse the data to get better results. 

In Chapter 4, we have discussed about all the algorithms used and the mathematics or the 

formulation behind these algorithms for better understanding and discussed about how all 

these algorithms were used. 

In Chapter 5, we have discussed about the testing of the model and observations of the 

results. 

In Chapter 6, we have discussed about the results and done analysis on the basis of various 

parameters to obtain the best suited algorithm for our dataset. 

In Chapter 7, we have thereby put an end and concluded the report and listed the conclusion 

learning of the project. Also we have discussed about the future scope and the 

advancements that could be carried out in the project. 
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Chapter-2 

LITERATURE REVIEW 

(2.1) Terminologies 

(a). Machine Learning- Machine learning algorithms are a type of algorithms that are a 

branch of artificial intelligence and that makes the system or the software application to be 

smart enough to be able to more accurate without being explicitly programmed and can 

predict outcomes. The main idea behind these type of algorithms is that it receives input 

data in the form of text or images and the system or the model is trained with the statistical 

inputs to identify or predict the output and even updated the outputs as new data becomes 

available. It requires the algorithm to search through the dataset and look for patterns or 

similarities and manipulating or adjusting the system accordingly. 

 

 

Fig 2.1: Introduction to ML 

(b). How machine learning works 

The process of machine learning starts with the collection of data or observations as the 

input dataset which can be in the form of images, text, tables etc. Further, many predefined 
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machine learning algorithms are applied to the input data which either classify the data into 

groups or identifies patterns among the dataset to predict the output and give appropriate 

results. Machine learning algorithms are loosely classified into supervised and 

unsupervised learning algorithms. 

 

Fig 2.2: ML algorithm workflow 

 

(c). Types of Machine Learning 

1. Supervised Machine learning- This type of algorithms work for a dataset which is 

already being trained by previous outputs and outcomes of the past using labelled data to 

predict the outcome of the new data. In this case the known dataset is analysed, the 

algorithm then produces an inferred function which help in prediction of the output values 

of new data. It can also analyse the data and the outcome and compare with the previously 

stored data to find errors and to be able to modify and train the model accordingly. 

2. Unsupervised Machine Learning- This type of different from supervised machine 

learning algorithms as this algorithms are used when the model is not trained before neither 

it is classified nor it is labelled. Unsupervised learning algorithms make the system to infer 

a hidden structure or pattern in the unlabelled dataset and predict possible results with the 

use of such patterns while removing the outliers. 

3. Semi-Supervised Machine Learning- The semi-supervised machine learning 

algorithms are algorithms which uses merits of both supervised and unsupervised machine 

learning algorithms for training the dataset and thus produces much productive and 
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powerful classifiers. In these type of algorithms, the model uses both labelled and 

unlabelled data for the training and it mostly requires a small amount of labelled data and 

a relatively large number of unlabelled data which are used simultaneously to train the 

model. This is used for enhancing the accuracy and the prediction abilities of the model and 

thus often used in the case of data which requires both skilled and relevant sources for 

training and learning from it.  

4. Reinforcement Machine Learning- The main idea of reinforcement learning is that it 

is reward based training in which the model interacts with the environment by doing actions 

and discovering errors or rewards. The most relevant characteristics of reinforcement 

learning are the trial and error and delayed reward. In this case the model learns from its 

mistakes or errors and the model is made to interact with the machines to automatically 

determine the outcome and the ideal behaviour to enhance the working and for performance 

maximization.   

 

Fig 2.3: Types of machine learning 
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(d). Machine Learning Algorithms- 

This section contains of various machine learning algorithms which are to be used in the 

project and discussed- 

 

 Supervised learning- 

o Nearest Neighbors- KNN or K-nearest neighbors is a type of algorithm 

which can be used both for regression and classification problems but is 

mostly used in classification problems. This algorithm is easy in 

interpretation and requires very low calculation time and thus is a widely 

used ML algorithm. The K in this algorithm is the number of neighbors 

which are defined by the user. In this algorithm we use the Euclidean 

distance to measure the K nearset neighbors of the data point and predict the 

output according to its neighbors.  

 

Fig 2.4: Formulae used for calculating nearset distance. 

 

o Naïve Bayes- Naive Bayes theorem is a type of classification algorithm 

which can be used for both binary and multi class classification problems. 

This theorem is called so because it has its roots of Bayes theorem. Naïve 

Bayes is often represented by probabilities. In this model the data is stored 

as probabilities for a learned model.  

Formulation- P(h|d) = (P(d|h)*P(h))/ P(d) 
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o Decision Trees- Decision tree algorithm is a type of supervised learning 

algorithm in which a data structure is used to solve a problem. In this case 

the leaf node is referred to as the class label and the internal nodes of the 

tree represent the attributes. They are able to solve the problems of both 

classification and regression. Initially, we consider the whole dataset as the 

root and categorical feature values are preferred and the continuous values 

are first made discrete values before using them to build the model. Then 

statistical methods are used for ordering the attributes as internal node or 

root. 

Formulation- 

 

 

 

o Linear Regression- Linear regression is an algorithm which uses the 

statistical concepts and models a relationship between the input and output 

numerical values. The model is represented by a linear equation which 

combines the input values of a specific set and predicts the output for a set 

of that input values. 
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Fig 2.5: Pictorial representation of example of LR. 

o Support Vector Machines- SVM is a supervised machine learning 

algorithm which is commonly used for both regression and classification 

problems. It is widely used in classification problems where each data item 

is plotted in n-dimensional space and n defines the features present and the 

value of each feature is the value of each coordinate. Further, a separate 

hyper plane is made to differentiate the two classes. 

o  

 

Fig 2.6: Pictorial representation of SVM. 

 

 



 

[30] 
 

 

Table 2.1: Difference between various ML Algorithms 

 

(e). Interpretation of Performance Measures 

There are various methods to evaluate the performance of the algorithms. One of these 

methods is to determine the area under the curve or the ROC curve and other parameters 

which are also known as Confusion Metrics. To evaluate the performance measure of the 

classification model for a dataset that gives the true values are known, the confusion matrix 

table is used.  

 Predicted Class 

Actual Class 

    Class = Yes    Class = No 

   Class = Yes  True Positive False Negative 

   Class = No False Positive True Negative 

Table 2.2: Confusion Matrix 

The table shown above is known as the confusion matrix and has four sections. The two 

section in the green are the True Positive and True Negative and these are the observations 

which are correctky predicted. The other two sections are in red because these values are 

wrongly predicted and thus needs to be minimized. These sections are false negative and 
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False Positive respectively and occurs when there is a contradiction between actual class 

and the predicted class. 

 True Positives (TP) - These are the values which are correctly predicted and are 

positive values which can be described as the positive value of actual class and 

positive value of predicted class. It is denoted by TP. 

 True Negatives (TN) - These are the values which are correctly predicted but 

negative values which refers to the negation of actual class and negation of 

predicted class. It is denoted by TN. 

 False Positives (FP) – These are the values which are wrongly predicted but is true 

in real i.e. - when we have positive values of actual class but negation in predicted 

class. 

 False Negative (FN) – These are the values which are wrongly predicted and 

negative in actual class. 

 

 

Fig 2.7: Pictorial representation of confusion matrix 

 

Further, we look into more parameters of performance which are accuracy, precision, 

Recall and F1 score. 
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 Accuracy – Accuracy is the most natural execution measure and it is essentially a 

proportion of effectively anticipated perception to the aggregate perceptions. One 

may imagine that, on the off chance that we have high exactness, our model is ideal. 

Truly, exactness is an extraordinary measure yet just when you have symmetric 

datasets where estimations of false positive and false negatives are relatively same. 

In this manner, you need to take a gander at different parameters to assess the 

execution of your model. For our model, we have 0.986839 which implies our 

model is approx. 98% precise. 

Accuracy = TP+TN/TP+FP+FN+TN 

 

 Precision - Precision is the proportion of accurately anticipated positive perceptions 

to the aggregate anticipated positive perceptions. The inquiry that this measurement 

answer is of all travellers that named as endure, what number of really endure? High 

precision identifies with the low false positive rate. 

Precision = TP/TP+FP 

 

 Recall (Sensitivity) - Recall is the proportion of effectively anticipated positive 

perceptions to the all perceptions in genuine class - yes. The inquiry review answers 

is: Of the considerable number of travelers that really endure, what number of did 

we mark? 

Recall = TP/TP+FN 

 

 F1 Score - F1 Score is the weighted normal of Precision and Recall. Consequently, 

this score considers both false positives and false negatives. Instinctively it isn't as 

straightforward as exactness, yet F1 is normally more valuable than precision, 

particularly on the off chance that you have an uneven class conveyance. Precision 

works best if false positives and false negatives have comparable expense. On the 

off chance that the expense of false positives and false negatives are altogether 

different, it's smarter to take a gander at both Precision and Recall. 

F1 Score = 2*(Recall * Precision) / (Recall + Precision) 
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(f) Deep Learning- 

Deep learning is a more complex and intelligent sub category of machine learning which 

has its algorithms inspired by the functioning and structure of the human brain broadly 

known as Artificial neural network. In addition to this, it also refers to the collection of 

techniques which are used for learning in neural network with multiple layers. Artificial 

Neural Network or ANN are the type of neural network model which takes its inspiration 

and works on the basic idea of the nervous systems and the processing of information in 

human brain to learn from data. Here, the learning mechanisms can be either supervised, 

semi-supervised or unsupervised. Deep learning has been proven successful in various 

fields and resulted in more realistic learning of machines. Its uses ranges from the field of 

drug design to the traffic prediction and also for the object recognition. A deep neural 

network is different from a neural network because of the number of layers. While the 

implementation of deep learning, we encountered two main problems such as 1) the 

computational power needed for the process of training the model was higher than that of 

the system available and thus requires more time for computation. 2) Another problem that 

encountered during the implementation is the gradient vanishing problem, that is, in a 

neural network that has activation functions such as the hyperbolic tangent or the sigmoid 

and the gradient range is (-1,1) or [0,1), the backpropagation is usually computed by chain 

rule, multiplying k to this small numbers from the the output layer through a k-layer 

network, which means that the gradient decreased exponentially with k. Resulting of this 

is that the front layers of the model trains slowly than the other layers. 

 

Fig 2.8: Pictorial representation of Deep learning Vs other learning algorithms 
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(g) Perceptrons 

The most basic and the early supervised learning algorithm is the perceptron and it is the 

smallest building block of the network that is Artificial Neural Network. The working of 

the perceptrons is by taking multiple inputs (x1,x2……xj) and production of a single output 

(y). In addition to this, weighted inputs were also considered to help determine the 

importance of respective inputs to the output. The resulting output is either 0 or 1  and it is 

only determined by checking if the weighted sum is greater than 0 or less than 0. 

Weighted Sum- ∑j wj * xj + b  

1:        if w * x + b > 0 

Output =  

0:      if w * x + b <= 0 

However, as the perceptron only gives the output as 0 or 1, it makes it very difficult or 

nearly impossible to extend the working and functionalities of the model to be able to work 

on classification tasks having multiple categories. Furthermore, this problem can be 

resolved by having multiple perceptrons in a layers making sure that each perceptron in the 

layer obtains the same input and all the perceptrons are responsible for the output function. 

The Artificial Neural Network (ANN) is only perceptrons with more than one layers 

whereas the perceptron is nothing more than a ANN with single layer, which is often the 

output layer having only 1 neuron. 

(h) Loss Function 

The performance of the neural network is measured by a function which is called as the 

cost function or the loss function which helps in measuring the discrepancy between the 

prediction by the algorithms and the correct label if the prediction or the collective set of 

prediction is given along with the label or a set of labels. Among the various cost function 

available the most simple and the commonly used in neural networks is the mean squared 

error (MSE).  
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The ultimate goal of training the neural networks is to minimize the cost / loss function and 

find the respective weights and biases that do so. For this procedure, we used an algorithm 

which called as gradient descent algorithm. 

 

(2.2) Related Work 

Due to the rise in the malware activities in the android community, more and more 

researchers are drawn towards the detection of malicious android samples and there have 

been many research efforts. Researchers from around the world follow different approaches 

to mitigate this issue. There have been many static as well as dynamic advancements in this 

field. Many static analysis approaches given in [2], [3], [4] follows basis on already known 

malware and compute applications through reverse engineering which help to decompile 

the packaged applications thereby making it easier to look for signatures or other heuristics 

written in the program code. Some follows different approaches like [5], [6], [7], which 

checks the usage of power by each application and reporting the user or developers about 

any anomalous consumption. 

Many dynamic analysis approaches used in [8], [9], [10] keeps a check on the pattern of 

system calls. Others like [11], [12] have implemented the approach of universal signature 

based that are able to compare the application in question with many known malware or 

other heuristics. 

Most of them like in [13], [14], [15], and [16] used the concept of machine learning with 

some concepts of data mining which made it relatively faster to detect malware.  
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In [9], a framework based on ML known as Crowdroid is used that is able to recognize 

malware on android smartphones like –trojan. It keeps a check on system calls and how 

many times each system call were issued. Similarly, in the case of Andromaly used in [17], 

which is an intrusion detection system based on machine learning. It keeps a check on the 

user’s and well as smartphone’s behaviour by observing certain parameters, spanning from 

sensor activities to CPU usage. This model uses 88 features which together describes the 

system behaviours along with rooting the system and the external use of Linux server. 

Further, these are pre-processed by feature selection mechanisms. A machine learning 

based clustering model is used in [18], this model analyses the static function calls from 

binaries to detect anomalies. The Symbian OS used this kind of technique. This framework 

uses a client, Remote Anomaly Detection System, which monitors and visualizes the 

component. In [19] Dini et al. presented a multi-level system called MADAM (Multi-Level 

Anomaly Detector for Android Malware) which is capable of extracting features at both 

the kernel and application levels using 13 features to describe system’s behaviour and 

system calls. But this model was only targeted for rooted device. In [20] Portokalidis et al. 

presented a different approach based on VMM approach to detect malware in their design 

of Paranoid Android system where a full malware analysis can be done in the clouds using 

many replicas of mobile phone. A secure virtual environment is created for the mobile 

replicas to run and which makes it possible for approximately 105 replicas. Mirela et al 

[21] presented an approach based on neural network which were very efficient in detecting 

the fraud calls and imposter. The main drawback of this method is that it is a slow process 

and it classifies the samples into groups having same behaviour and thus will lead to lot of 

false positives. Furthermore, Jerry et al, [22] worked on the transmission of viruses through 

SMS messages or other interfaces like Bluetooth and infrared. 
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Chapter-3 

SYSTEM DESIGN 

(3.1) System Requirements 

The algorithms that are being implemented in this project requires some generic system as 

it requires processing of algorithms. 

 Windows 10 (64-bit)  

 ANACONDA 

 Python  

 4 GB RAM 

 Intel(R) Core(TM) i3-3120M CPU @ 2.50 GHz 

 

(3.2) Why Python 

Python is a programming language with a large audience and it is very easy to understand 

and can be easily readable. Furthermore, python offers the collection of packages which 

makes the most intimidating algorithms or projects simpler. Python has libraries for almost 

every usable file i.e. - with working with images, working with text or working with audio 

files. Even when working with a new OS, python is very malleable. Python has a large 

community which makes it easier to seek for help and tips and tricks. 

 

(3.3) Why ANACONDA 

ANACONDA is widely popular as it provides all the libraries pre-installed and make the 

user free from hassle of the otherwise installing all libraries. It has around 100 packages 

which can be used for data science, machine learning or statistical analysis. 

 

(3.4) SCIKIT LEARN 

Scikit learn is a library in python usually used for machine learning and is capable of 

featuring various regression, classification and clustering algorithms. 
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(3.5) PANDAS 

It is an open source python library which provides high performance. This library is easy 

to use and even provide data structure and data analysis tools. This library is widely used 

in all academic fields, commercial and industrial fields. 

 

(3.6) KERAS  

It is an open source python library that is generally used for neural network. It is often 

designed to run fast experimentation of many complex deep learning algorithms. It usually 

focuses on being more user-friendly, more modular and more extensible. 

 

(3.7) Pillow 

It is an open source python library that is used for imaging and also adds supports in the 

script for opening, also manipulating, further saving many different image file formats. It 

offers standard procedures for doing image manipulation. This includes per-pixel 

manipulations and masking and transparency handling.  

 

(3.8) TENSERFLOW 

It is a free open source python library that is use for dataflow and differentiable 

programming which is used across a certain range of tasks. The tenserflow can be defined 

as a symbolic math library which can also be used for many machine learning applications 

for example neural networks. 
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Chapter-4 

IMPLEMENTATION 

In this chapter, we will discuss about all the phases of our project and the testing of our 

project. 

1. In the first phase, we studied about the malware and the permissions and the 

different categories of permissions that an application seeks during its functioning. 

These permission categories were available on google play and google developer 

and gave clear understanding of how the working of the application is affected by 

each permission the system requires both for software and hardware access. 

 

Fig 4.1: Categories of permissions as per google developer 
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2. In the second phase, we studied about the difference between the benign and 

malicious applications and the permission categories which were listed unsafe to be 

accessed by each category respectively of an application as was mentioned by 

Google. Thereby, we worked on a machine learning algorithm model to train our 

model with both safe and unsafe permission which would help us create a dataset. 

We downloaded multiple android application samples both malicious and benign to 

extract the permissions from the manifest.xml file. 

 

 

Fig 4.2: The android application samples used for creating dataset. 

 

3.  Furthermore, we studied about how the permissions are stored in android package 

analyser. It leads to the android manifest.xml file which contains all the data 

regarding the permissions. We created a Java based android package analyser to 

access the manifest file and extract the permissions usable for the project. But this 

package analyser worked on a single .apk file at a time. Thus, we created a python 

script which made it possible to extract permissions from multiple android 

application samples at the same time and further list them out according to the 
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previously created model which was trained with both the safe and unsafe 

permissions listed by Google.  

 

Fig 4.3: Creating CSV file from dataset using python script 

 

4. After the successful implementation if various machine learning algorithm on the created 

dataset, we went deeper into the more complex algorithms using deep learning. Firstly, we 

focused on the implementation of the Convolutional neural network which takes input as 

images and extracts features and parameters to give out the output and in our case, to 

classify the Android Applications into benign or malicious.  For this the Android 

Application are to be renamed into unique hash file name to avoid duplicacy. We created a 

python script to uniquely identify the MD5 and rename the Android Application into its 

respective MD5 name. If this python script encounters any duplicacy, it gives the name of 

the Android Application along with its respective MD5 and deletes the duplicate files. Thus 

ensuring unique files. 



 

[42] 
 

 

Fig 4.4: Renaming of the Android Application into MD5 hash name 

5. In addition to this, the unique hash file name also helps in extracting other properties of 

the Android Applications. Furthermore, these Android Applications which are renamed 

into their respective MD5 are to be converted into the images. For this, we created a python 

script using multiple python libraries such as PIL, imageio etc, to convert the Android 

Application to images. The Android Applications are converted into strings and the strings 

are further converted to binary strings of 0 or 1. Thus, using these binary strings, the strings 

are organized into 2D array. Then the respective array can be seen as a greyscale image 

which is in the range of [0,255].

 

Fig 4.5: Flow diagram to show conversion of Android Application to greyscale images. 
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Fig 4.6: The dataset of greyscale images. 

6.  After the successful conversion of Android Applications into images, we observe that 

the images obtained were of different sizes and dimensions. In order to get more accurate 

results and better understanding of the images, the images are to be normalised to be of 

same dimension and used as the input. The dimensions of the greyscale image used in the 

project is 256 * 256.  
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Chapter-5 

TEST PLAN 

In this chapter, we focused on working out our algorithms and scripts on the project to 

create a dataset and the machine learning algorithms and to carry out comparative analysis 

and store the results for further analysis. 

At first we run the script which extracts the above mentioned permissions and list them into 

a CSV file format making it easier to run machine learning algorithms on the dataset 

created. 

 

Fig 5.1: Python script to create a dataset 

With the help of this script, we parsed more than 4000 android application samples both 

benign and malicious and extracted permissions which was stored in a CSV file format and 

used as a dataset. The dataset was further divided in the ratio of 20:80. The 80% of the 

dataset was used to train the model and to identify the benign and malicious permissions 

and to create Labelled analysis. The remaining 20% of the dataset was utilized for the 

testing phase of the algorithm and to give out the accuracy measures and other parameters 

to finalize the algorithm for the project. 
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Fig 5.2: Created dataset 

Therefore, we studied about various machine learning algorithms specially the supervised 

learning algorithms as we were working on the labelled dataset and got the following 

observations as result.  

 

Fig 5.3: Results obtained after running various ML algorithms. 
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Chapter-6 

RESULTS AND ANALYSIS 

After the Implementation of the python script to extract the required permissions and to 

create the dataset and application of various supervised machine learning algorithms to the 

dataset created, we obtain certain results that gives out the measure of accuracy of the 

algorithms listed below- 

1. Linear Regression 

2. K- Nearest Neighbors 

3. Decision Trees 

4. Naïve Bayes 

5. Support Vector Machines 

The above mentioned algorithms were tested on various parameters and features such as 

True positives, True Negatives, False Positives and False Negatives were calculated and 

the measures such as Accuracy, Precision were calculated. 

Classifier TPR FPR FNR TNR Accuracy Precision F1 Score 

Logistic Regression 0.649 0.004 0.003 0.345 99.34% 99.40% 99.50% 

Linear Discriminant Analysis 0.649 0.004 0.012 0.336 98.42% 99.40% 98.80% 

K Neighbors Classifier 0.645 0.008 0.007 0.341 98.55% 98.79% 98.89% 

Decision Tree Classifier 0.641 0.012 0.005 0.342 98.82% 98.59% 99.09% 

Gaussian NB 0.392 0.261 0.003 0.345 73.68% 60.08% 74.87% 

SVC 0.650 0.003 0.018 0.329 97.89% 99.60% 98.41% 

 

Table 6.1: Results of comparative analysis 

According to the results obtained, we concluded that out of all the algorithms that were 

tested with our dataset, the algorithm LOGISTIC REGRESSION gives out the most 

accurate results with an accuracy measure of 99.34% and the precision and f1 score of 

99.40% & 99.50% respectively. 

According to the results obtained, we do graphical comparative analysis of finding the 

best suitable method for our project. Following are the graphical representation of the 

various parameters- 
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Graph 6.1: Graphical representation of TPR of various ML algos. 

The above graph shows the comparative analysis of the first feature of comparison that is 

True positive which is true if the output of both the actual class and predicted class is true. 

 

Graph 6.2: Graphical representation of FPR of various ML algos. 
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The above graph shows the comparative analysis of second feature of comparison that is 

False Positive which is true when the output value of the actual class is false and predicted 

class is true. 

 

 

Graph 6.3: Graphical representation of FNR of various ML algos. 

The above graph shows the comparative analysis of third feature of comparison that is False 

Negative which is true is the output value of the actual class is false and the predicted class 

is false. 
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Graph 6.4: Graphical representation of TNR of various ML algos. 

The above graph shows the comparative analysis of fourth feature of comparison that is 

True Negative which is true if the output value of both the actual class and the predicted 

class is false. 
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Graph 6.5: Graphical representation of Accuracy of various ML algos. 

The above graph shoes the comparative analysis of the first parameter that is accuracy 

which is calculate by the ratio of count of correctly predicted observation to the count of 

total observations. 

 

 

Graph 6.6: Graphical representation of F1 score of various ML algos. 

The above graph shows the comparative analysis of the second parameter that is F1 score 

which is calculated by the weighted average of the value of precision and the value of recall.  
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Graph 6.7: Graphical representation of Precision of various ML algos. 

The above graph shows the comparative analysis of the third parameter that is precision 

which is calculated by the ratio of the output value of the predicted output which are correct 

to the total predicted output which are positive. 

 

 

Graph 6.7: Graphical representation of accuracy by convoluting 2 × 2 filter matrix and 3 

× 3 filter matrix 
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The above graph shows the comparison of accuracy of two filters, that is, 2 × 2 & 3× 3. 

The first figure shows the average accuracy of 59% for 2 × 2 filter matrix of the training 

data and the second image shoes the accuracy of 69% for 3× 3 filter matrix of training data. 

So we can conclude that if the size of the filter is increased than the accuracy of the model 

increases. On the other hand, if the filter size is increased, the training log loss decreases 

that is, for the first filter (2 × 2) log loss is 0.63 and for (3× 3) the log loss is 0.42. 

 

Graph 6.7: Graphical representation of loss by convoluting 2× 2 filter matrix and 3× 3 

filter matrix. 
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Chapter-7 

CONCLUSION 

In our project, we have implemented various machine learning algorithms especially the 

supervised learning for detection of malware or anomaly in the android application samples 

and classified them into two groups namely benign and malicious. For this classification, 

we use a labelled dataset which was created using permissions extracted from multiple 

android applications from manifest file which was accessed programmatically using a 

python script which was made by reverse engineering the android package analyser. We 

were able to create a labelled dataset and thus used supervised learning algorithms on the 

dataset by splitting the dataset into training and testing set. With these dataset, we calculated 

the values of different parameters and thus compared the parameters and features for 

various supervised machine learning algorithms and concluded that the algorithm which 

gives the largest accuracy values is the Logistic Regression. Thus with an accuracy value 

of 99.34% and the precision value of 99.40%, it is the most suitable algorithm for our 

current dataset. After obtaining the above results, it is best to say that we obtained no normal 

samples which gave misclassified results whereas the malicious samples showed very 

minimal results. After the exploration of the convolutional neural network in classification 

of Android application into benign or malicious by converting them into images and using 

different filters on the input. We concluded that the convolutional neural network gives the 

accuracy percentage of 59% for the filter of 2× 2 blocks of pixels and 69% for the filter of 

3× 3 blocks of pixels. In conclusion, machine learning algorithms especially logistic 

regression works better for the dataset.  

FUTURE SCOPE 

After studying the concepts of various machine learning algorithms and after application 

of such machine learning algorithms on the dataset created by extracting the permissions 

from the android manifest file and comparing the results of these algorithms on the basis 

of various parameters such as accuracy, precision etc. we saw great potential in the machine 

learning algorithms in detection of malware and helping the android community to have 

safer experience. The dataset created by the python script is a self-created dataset and can 

be used in future research and used to implement other complex algorithms to get better 

outcomes or same algorithms can be implemented with a different approach to improve the  

time and space complexity of the models. Furthermore, more features and parameters can 

be included to enhance the analysis of performance measure. In our project, we only 

considered the permissions for the classification of android application samples, to extend 

the research we can include other comparison methods like intend call, system calls etc.  
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