MALWARE DETECTION SYSTEM USING MACHINE
LEARNING

Project report submitted in partial fulfillment of the requirement for the degree of
Bachelor of Technology

In
Computer Science and Engineering

By
Rajat Kumar Puri, 161269

Under the supervision of

Mr. Praveen Modi
Assistant Professor

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

l|Page

Candidate’s Declaration

We hereby declare that the work presented in this report entitled “MALWARE
DETECTION SYSTEM USING MACHINE LEARNING” in partial fulfillment of the
requirements for the award of the degree of Bachelor of Technology in Computer
Science and Engineering submitted in the department of Computer Science &
Engineering and Information Technology, Jaypee University of Information Technology
Waknaghat is authentic record of our own work carried out over a period from August
2019 to December 2019 under the supervision of Mr.Praveen Modi(Assistant Professor),
Computer Science and Engineering and information technology.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

&F

Rajat Kumar Puri, 161269

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

-

\ O\
Yok

05-08-2020

Mr. Praveen Modi
Assistant Professor

Computer Science and Engineering/ Information Technology

2|Page

Dated:

2|Page

Acknowledgement

We would like to express our special thanks of gratitude to our teacher and mentor Mr.
Praveen Modi who gave us the great opportunity to do the project on the topic
MALWARE DETECTION SYSTEMUSING MACHINELEARNING, which also
helped us in doing a lot of Research and we came to know about so many new things. We
are really thankful to him. Secondly, we would also like to thank Lab assistants who helped us

a lot in finalizing this project within the limited time frame.

Rajat Kumar Puri, 161269

3|Page

1)

2)

3)

4)
5

6)

8)

Table of Content

ABSTRACT

Chapter 1 -INTRODUCTION

1.1 Introduction to the project
1.2 Problem Statement

1.3 Aims and Objectives

1.4 Methodology

1.5 Organization of Report
Chapter 2 - LITERATURE REVIEW

2.1 Malware analysis and classification

2.2 Behavior based malware detection
Chapter 3 - SYSTEM DESIGN

3.1 System Requirements
3.2 Why Python?

3.3 Why ANACONDA?
3.4 SCIKIT learn

3.5 Pandas

Chapter 4 - ALGORITHMS

Chapter 5 - TEST PLAN

Chapter 6 —- RESULT AND ANALYSIS

Chapter 7 - SYSTEM DESIGN

REFRENCES

4|Page

10

11
17
18
19
20

21

21
23

26

26
26
26
27
27

28

34

38

49

50

List of Abbreviation

e ML- Machine learning

e LR- Logistic Regression

e DL- Deep Learning

¢ KNN- K nearest neighbors

e SVM- Support Vector Machines

e Al- Artificial Intelligence

e CSV- Comma Separated Values

e CNN- Convolutional neural network

e OS - Operating Systems

5|Page

Figure No.

Fig 1.1
Fig 1.2
Fig 1.3
Fig 1.4
Fig 1.5
Fig 1.6
Fig 2.1
Fig 2.2
Fig 2.3
Fig 4.1
Fig 4.2
Fig 4.3:
Fig 4.4
Fig 5.1:
Fig 5.2:
Fig 5.3:
Fig 5.4:
Fig 6.1:
Fig 6.2
Fig 6.3
Fig 6.4
Fig 6.5
Fig 6.6
Fig 6.7
Fig 6.8
Fig 6.9

6|Page

List of Figures

Description

Introduction to ML

ML algorithm workflow
Types of machine learning.
Confusion Matrix

Pictorial representation of confusion matrix

Graphical representation of total malware infection growth rate

Overview of the research methodology.

Classifier performance comparison without feature selection

Classifier performance comparison with feature selection

Diagram of decision tree

Diagram of random forest

Pictorial representation of SVM.

Pictorial representation of Logistic Regression

Created dataset

Created dataset with feature scaling
Result without feature scaling

Result with feature scaling

Decision tree confusion matrix

Random Forest confusion matrix
XGBoost confusion matrix

KNN confusion matrix

Logistic Regression confusion matrix
SVM confusion matrix

Gaussian Naive Bayes confusion matrix
Feature extracted Decision Tree confusion matrix

Feature extracted Random Forest confusion matrix

Page No

11
12
13
14
15
17
23
24
24
29
30
31
33

35
36
36
37
40
40
41
41
42
42
43
44
44

Fig 6.10
Fig 6.11
Fig 6.12

Fig 6.13
Fig 6.14

7|Page

Feature extracted XGBoost confusion matrix

Feature extracted KNN confusion matrix

Feature extracted Logistic Regression confusion matrix
Feature extracted SVM confusion matrix

Feature extracted Naive Bayes confusion matrix

45
45
46

46
47

Table No

Table 4.1:
Table 6.1:

Table 6.2

8|Page

List of Tables

Description

Difference between various ML Algorithms
Results without feature extraction

Results with feature extraction

Page No.

33
38

39

Abstract

Malware is risky these day and age for those web clients. It can compromise the host pc.
By polymorphic malware we mean the one that changes its signature regularly to fool
detection. We can define malware as piece of code or malicious code that harm the data
or device. here, we made a alternative of virus detection by using machine learning
techniques and created a dataset and used machine learning algorithms for categorizing
the file into malicious or not and compared their results to determine the best algorithm

suiting for our dataset.

9|Page

Chapter-1
INTRODUCTION

As the internet users increasing day by day Malware become the major problem in the
field of internet. We can define the malware as a malicious code that can harm the file or
software in the computer.

As the technology will increasing day by day the types of malwares also increasing and
become more powerful from the previous ones. According to a research around 3900
different malware objects were identified. Expertise plays a important role for handling
the malware as the malware are polymorphic now a days so there is a need of expert
algorithms that will detect the malware accurately.

Now days it is very difficult to handle the malware for most of the companies because
the samples of the malware increased very rapidly. There are around four lakhs malware
samples so protection from the malware become the major task because due to malware a
big amount of data will lost that is beneficial for us.

There are many ways to deal with the malware. The techniques are static analyses,
dynamic analyses, and at last machine learning for detecting malware. In our project we
focus on the last techniques. we use different types of algorithms for malware detection
such as KNN ,decision tree ,Logistic Regression etc. and analyze the result of all the

algorithms at the last.

10|Page

(1.1) Terminologies

1. Machine Learning- These algorithms are a type of algorithms that makes the system
or the software application to be smart enough to be able to more accurate without
being explicitly programmed and can predict outcomes. The main idea behind these
types of algorithms is that it receives input data in the form of text or images and the
system or the model is trained with the statistical inputs to identify or predict the
output and even updated the outputs as new data becomes available. It requires the
algorithm to search through the dataset and look for patterns or similarities and

manipulating or adjusting the system accordingly.

(i)l?a.t,?
Introduction to Learns
Machine Learning

=1 — ? —> T —>

Ordinary With Al Machine \

System Learning

_/

| I l Improves

Fig 1.1: Introduction to ML [1]

2. How ML works - The procedure of machine learning begins with the assortment of
information or perceptions as the info dataset which can be as pictures, content, tables
and so on. Further, numerous predefined Al calculations are applied to the info
information which either characterize the information into gatherings or distinguishes

designs among the dataset to anticipate the yield and give fitting outcomes.

1l1|Page

QL
How does

Machine Learning
Work?

Input _, Analyze _, Find —> Prediction —p Stores the
Data Data Patterns Feedback

IR

Fig 1.2: ML algorithm workflow [1]

3. Types of machine learning

Supervised learning-here algorithms works for a dataset that is as of now being
prepared by past yields and results of the past utilizing marked information to
foresee the result of the new information. It can also analyze the data and the
outcome and compare it with the previously stored data to find errors and to be

able to modify and train the model accordingly.

Unsupervised learning- it is different from the supervised learning as it is used to
calculate result where the target value is not provided and we have to make a
prediction. The most form of unsupervised learning is cluster analysis which used

to analyze hidden pattern and helps in maintaining the data into the groups.

Semi supervised learning-it is the mix of both learning’s that discuss above for
training the datasets and produce much productive and powerful clusters. the
model uses both labeled and unlabelled data for the training and it mostly need a
small quantity of labeled data and a relatively huge quantity of unlabelled data
which are used simultaneously to train the model.

Reinforcement learning-basically it is a reward based learning in which the

12|Page

model will interact with the environment by doing action and discovering error or
rewards. We can say that in this model learns from its mistakes and maximize the

performance.

Machine Learning

Supervised Unsupervised Reinforcement
Learning Learning Learning

!
(_Gassfcation]

— Fraud detection Text Mining

— Email Spam Detection Face Recognition

— Diagnostics Big Data Visualization
L Image Classification Image Recognition

Risk Assessment Biology
Score Prediction City Planning
Targetted Marketing

Fig 1.3: Types of machine learning [1]

13|Page

4. Interpretation of Performance Measures- We can evaluate the performance in
many ways. We can find the performance with the help of confusion matrix.

Predicted

Positive Negative

Actual

Positive | True Positive (TP) | False Negative (FN)

Negative | False Positive (FP) | True Negative (TN)

Fig 1.4: Confusion Matrix [2]

Confusion matrix has four tables it is type of two way table as shown in the diagram.

The 2 sections in the green are the true positive and crimson is true negative and the

results which are correctly predicted. The other 2 sections are in crimson are wrong

because these values are wrongly calculated and thus needs to be decreased. These 2

sections are called as false negative and false positive respectively and this happens

when there is a contradiction between true class and the calculated class.

e True Positive-This is the value that is correctly calculated and is positive value
which can be defined as the +ve value of true class and +ve value of calculated
class. It is shown with TP.

e True Negative — This is the value which is correctly calculated but negative result
which refers to the negation of true class and negation of calculated class. It is
shown by TN.

e False Positive-This is the value which is wrongly calculated but is true in
existence that is when we have true values of actual class but negation in
calculated class.

e False Negative — This is the value which is calculated wrong and -ve in true
class.

l4|Page

[et | [ne setection |

\ /

(1)

False Megative True NMegative

Fig 1.5: Pictorial representation of confusion matrix [3]

15|Page

Accuracy — Accuracy is the most common execution measurement and it is
specifically a proportion of effectively calculated perception to the aggregate
perceptions. Some might imagine that on the chances of high trueness, our model is
good. Truly exactness a unique quantity yet just you have symmetrical data where
estimations of FP and FN are relatively same. In this manner, you need to take a
gander at different parameters to achieve the execution of your model. For our model,
we have 0.982939 which equals to 98%.

Accuracy = TrueP+TrueN/TrueP+FalseP+FalseN+TrueN

Precision-Precision is the ratio of accurately found positive perceptions to the
aggregate calculated +ve perceptions .The inquiry that this acquired answer is of all
travelers with name dasendure, what number of really endure? High precision shows

with the low false positive rate.

Precision = TrueP/TrueP+FalseP

Recall (Sensitivity) - The Recall actually calculates how much of the true Positives
our model calculates through labeling it as true (True Positive). Applying the same

knowledge, we know that the Recall should be the model metric we used to choose our

best model when there is a high price associated with False Negative.

Recall = TrueP/TrueP+FalseN

F1Score- It is the weighted normal of Precision with addition to Recall.
Consequently, this score finds both FP and FN. Instinctively it isn't as right as
exactness, yet F1 is normally more essential than precision, mainly on the off chance
of odd class. Precision works good if FP , FN have comparable expense. On the off
chance that the price of FP and FN are together dissimilar, it is good to take a gander

at both Precision with Recall.

F1 Score =2*(R*P)/ (R +P)

16|Page

(1.2) Problem Statement

With the development of innovation, the quantity of malware is likewise expanding step
by step. Malware now are structured with transformation trademark which causes a huge
development in number of the variety of malware (Ahmadi, M. et al., 2016). Not just that,
with the assistance of robotized malware created apparatuses, beginner malware creator is
currently ready to effortlessly produce another variety of malware (Lanzi, A. et al., 2010).
With these developments in new malware, conventional mark based malware
identification are demonstrated to be incapable against the huge variety of malware (Feng,
Z. et al., 2015). Then again, Al strategies for malware recognition are demonstrated
powerful against new malwares. Simultaneously, Al strategies for malware identification
have a high false positive rate for identifying malware (Feng, Z. et al., 2015).So we have

to achieve the false rate as low as possible with machine leaning Algorithms.

812.67

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Total Malware Infection Growth Rate (In Millions)

Fig 1.6: Graphical representation of total malware infection growth rate [4]

17|Page

(1.3)Aims and Objectives

The aim of the project is to the purpose of this project is to get the best accuracy for
malware detection and also to get the best algorithm which provides the result on this
dataset.

Objectives-

e Download the dataset which contain both malicious and benign file and list them into
CSVfile.

e Use the various ML algorithms and compare the algorithms on the behalf of
parameters like accuracy, precision and reduce the FP rate.

e Use various methods such as feature extraction, feature scaling, to improve the

accuracy and to avoid over fitting.

18|Page

(1.4)Methodology

Malware detection is the most crucial step in securing the host computers. There are
many machine learning algorithms that are important in the machine learning and we
classified them into many techniques some of the examples are SVM, K-nearest
neighbors clustering, Decision Trees etc. Our main aim is to find out whether a file

contains malware or not.

MALWARE

We gathered the dataset from kaggle. As our problem statement comes under the category
of classification. It is a single class classification in which a file is

1. Malicious

2. Benign
So our motive is to classify the following dataset into these classifications. Firstly we
analyze the dataset. As there are so many columns in the dataset we use different
techniques such as feature extraction, feature scaling etc. to avoid over fitting and to
improve the accuracy of the project.
We can train our model in different ways. It depends how the dataset appeared after
applying feature extraction and feature scaling techniques. we used

1. Decision Tree

2. XG Boost

3. KNN
4. Random Forest
5

Logistic regression

19|Page

(1.5) Organization of Report

In Chapter 2, literature review, we study about two research paper. First of all there is a
abstract of research paper then display some figure related to this and at last we write

conclusion in which we saw the accuracy of the algorithms.

In Chapter 3,in this we write the system requirement so we can run all the algorithms and

here we discuss all the libraries needed and why these libraries needed.

In Chapter 4, it is the algorithm part here we list all the algorithms we used in the project,

so we can apply these algorithms in the project and get better results.

In Chapter 5,here we discuss about the dataset and the observation towards our result

such as accuracy in all the algorithms.

InChapter6,here we compare the result of each algorithms without feature extraction and
then with feature extraction and see which algorithm is best suited that is having high

accuracy.

InChapter7, At last we concluded all we did in the project and more over we discuss the

future work also such as we run the malware on the virtual environment.

20|Page

Chapter-2
LITERATUREREVIEW

(2.1)EktaGandotra, DivyaBansal, SanjeevSofat “Malware analysis and
classification: A survey, Journal of Information Security, 2014” [5]

The greatest danger on internet is the safety of the user pc they over and over again get
attacked by a malicious code infected file. The malwares being planned by aggressors are
polymorphic and changeable which can change their code as they engender. It has
become very difficult to keep track of all these new malwares and provide the customer
with protection against all these new types of attacks by traditional methods.

ML for recognizing Malwares — In this we use various types of algorithms such
as SVM, Decision Tree, Random Forest, Naive Bayes and Clustering. The result
that is obtained gave insight that the best machine learning algorithm is a J48

decision tree.

Dataset and Methodology-dataset is small about 220 malicious samples or 250
Benign samples with and without feature selection. They are using five different
Classifiers. Names of the classifiers are SVM, KNN, J48 decision tree and SVM.

Result- the best machine learning algorithm is a J48 decision tree providing a
recall of 96.01%, a FPR of 3.39%, a precision of 96.97%, and an accuracy of
97.2%.

21|Page

Now a days with increasing population in the developed malwares it has possessed a great
danger to various online resources like host connected to internet or the web servers, etc.
Identifying malwares on the basis of their digital signature is not a very efficient approach
we have used machine learning approach. Firstly we analyze the malware file size and
signature and apply static approach and then we apply dynamic if the classification could
not be performed. The techniques that are developed are not sufficient to rectify the
problem of detecting and removing the malwares efficiently without much adverse effect
and some better methods needs to be developed to solve this issue.

22|Page

(2.2)Ilvan Firdausi, Charles Lim “ANALYSIS OF VARIOUS MACHINE
LEARNING TECHNIQUES USED FOR BEHAVIOR-BASED MALWARE
DETECTION”[6]

The increasing amount of malware that are coming daily became a greatest computer
threat. Manually correcting is no longer taken as effective and efficient or good as
compared against the high increasing rate of malware. Therefore dynamic or automatic
malware detection on the basis of behavior using ML techniques is taken to be the best in

the market.

Automatic Report

—— Behavior I 1
Monitoring Generation

Data Acquisition
and Storage

XML format

Computer security -
group or community Sandbox environmernt

wnenw . wirologi.info Anubis Sandbox
[Ar rooking |

Sysbtem call
monitoring

Data |] Learning and > Result::dnalvsw
Preprocessing Classification Baimentaticn
HML file parsing Apply machine | ing Analysis of tests and
techniques and ool experiments
Feature selection

[Parameter tuning |
Vector model creation |

[Experiments and tests ‘

| Data Mining

Fig 2.2 Overview of the research methodology [6]

23|Page

M Recall (TPR)
O Precision (PPV)
B Accuracy [ACC)

Fig 2.3 classifier performance comparison without feature selection [6]

100.0%

90.0% -

B Recall (TPR)
80.0% -

O Precision (PPV)
70.0%

B Accurac CC
60.0% 7 y(ACC)
50.0% -

Fig 2.4 classifier performance comparison with feature selection [6]

24|Page

we can be say that By adding feature selection, the features were decreased to a large
amount such as attributes reduced from 5191 to 116 in binary weighted data set and the
time taken for training and building the model got shorter at the expense of the
performance depreciation slightly. In some cases, the performance of the project can also
get hiked a little bit. The evaluation of five unique models was also presented. The overall
best accuracy was achieved by the decision tree called J48 decision tree using frequency-
weight and not using feature selection data set, with a TP rate of 94.6%, a FPR of 3.6%, a
+ve predictive value of 96.76%, and a score of 98.02%. The examination of the tests and

experimental reports concluded that this approach is very useful to find out malware.

25|Page

Chapter-3
SYSTEM DESIGN

(3.1) System Requirements

Algorithms being implemented in this project requires some generic system for the
processing of algorithms.

Windows 10 (64-bit)

ANACONDA

Python

8 GBRAM

Intel(R) Core(TM) i5-6200U CPU @ 2.50GHz

(3.2) Why Python

Python is a programming language with a huge group of spectators and it is exceptionally
straightforward and can be effectively coherent. Moreover, python offers the assortment
of bundles which makes the most scary calculations or ventures more straightforward.
Python has libraries for pretty much every usable record for example - with working with
pictures, working with content or working with audio records. In any event, when
working with another OS, python is truly pliable. Python has a huge network which

makes it simpler to look for help and tips and tricks.

(3.3) Why ANACONDA

ANACONDA is widely popular as it provides all the libraries pre-installed and make the
user free from hassle of the otherwise installing all libraries. Approximately it has 100

packages which can be used for data science, machine learning or statistical analysis.

26|Page

(3.4) SCIKIT LEARN

it is in python usually used for machine learning and create a lot of features for ML
algorithms and in statistical modeling like regression, classification, clustering.

(3.5) PANDAS

It is software library offer a data structures and perform various operations like tables
time series. It provides high-performance data manipulation and analysis tool using its
powerful data structures. It used in various domains like finance, Analytics, Statistics etc.

27|Page

Chapter-4
ALGORITHMS

This section contains of various machine learning algorithms which are to be used in the
project and discussed-

Supervised learning

e K-Nearest Neighbors- This algorithm used for both for the regression tasks as
well as classification tasks but for most of the time in classification problems. This
algorithm quite easy in implementation and need very less computation time and
therefore is widely used machine learning algorithm. K in this algorithm stands
for the number of neighbors which are specified by the user. In this the
mathematical formula used to measure the K-nearest neighbors of the data points

and then depending on the classes to which these data points belong it makes the

prediction of the output.
Distance Functions
Euclidean \/Zﬁil(xi — ¥;)?
Manhattan 11 — il
- - k q 1/q
Minkowski (X (x; —y:D9)

28|Page

o Decision Trees- This it is the type of algorithms in which we use tree data
structure for the solution of the given problem. In this algorithm the terminal node
stands for the any given class or category and the internal nodes between the root
and the leaf are the nodes which define the attributes. The prediction that is made
is based on some series of questions based on the features and upon reaching the
terminal node by following the questions from root the final leaf node is the

required class.

Formulation-

Has feathers?

False True

Hawk Penguin Dolphin

Fig 4.1 diagram of decision tree[7]

29|Page

e Random Forest- Random forest belongs to the ensemble category of machine
learning. In ensemble method several machine learning models are used to make a
decision. In this algorithm several decision trees are created to make the
classification or regression tasks. In this several decision trees are made and each
of them is slightly different from the other this uniqueness is achieved by two
methods firstly by not selecting all the data points in decision making instead
using only some data points and then repeating some of them to make the count
equal and the other method is not selecting all the features instead selecting only a
subset of features to make different predictions and then taking average of all the
decision trees. In this way the problem of over fitting which is in decision trees is
also overcome. Here nestimators shows the number of decision trees to be made
and maxfeatures shows the number of features to be selected for the subset.

Tree3 Treed Random Forest

Fig4.2diagram of random forest

30|Page

e Support Vector Machines- It is mostly applied for classification problems in this
search data point is plotted in n dimensional space and n equals to number of
features present and the value that each feature represents is the value of each
coordinate. separate hyper plane is used to differ as a boundary for classes.we can
also call it support vector network.it can solve both linear and non linear

problems.

Yy

[
w
3 bt
Support Vectors k -
.'.':: --------------- . »
... Rvvonne - 6
o e L=
~, @ o ¢
Oaa
g
o

Fig 4.3: Pictorial representation of SVM [8]

e XGBoost- full form is extreme gradient boosting technique. It is ensemble
machine learning technique which is an implementation of gradient boosted
decision trees. In gradient boosted decision trees several decision trees are made
and instead of randomly selecting the features the succeeding trees learn from the
preceding trees to improve the accuracy of the algorithm, in order to achieve this
the decision trees are mostly prepared shallow with depth of around 5 in order for
easy interpretation it also has a learning rate which defines how much a tree will
learn from its preceding tree. The height and learning rate parameters are mostly

set low in order to achieve and to reduce over fitting to a large extent.

31|Page

e Naive Bayes- It is a classification technique based on Bayes theorem. It thinks
that one feature is not in relation with other features. eg. We take an example of
apple if it is red , round and has a diameter of around 3 inches. All these factoring
individually contribute to the probability that it is an apple. Due to this property it
is known as naive. Bernoulli Naive Bayes Algorithm is used to binary
classification problems. Gaussian Naive Bayes used for normal classification

problem but it is popular.
Formula of Bayes theorem used in Naive Bayes

Likelihood Class Prior Probability

P(C|X)P(c)

P(;(&

Posterior Probability Predictor Prior Probability

P(c|x) =
lcx

P(c|X) = P(x1|c) x P(x2|c)x ... x P(xa|c) x P(c)

32|Page

e Logistic Regression- -.it is the simplest for applying to binary classification. in
short LR take the features values and calculate the probability using sigmoid or
softmax function.

Inputs (X) logits (Y) S(Y)
x1
X2 T S(Y)
> &
x3 Linear Model Softmax
x4

Logistic Regression for Binary Classification

Fig 4.4: Pictorial representation of Logistic Regression

Algorithms Problem Type | Average predictive | Training Prediction speed
accuracy speed

KNN Either Lower Fast Depend on (n)

Linear Regression Regression Lower Fast Fast

Logistic Regression | Classification Lower Fast Fast

Naive Bayes Classification Lower Fast Fast

Decision Trees Either Lower Fast Fast

Random Forest Either Higher Slow Moderate

Table 4.1: Difference between various ML Algorithms

33|Page

Chapter-5
TEST PLAN

Here, we focused on working out our algorithms on the project to apply the machine
learning algorithms and to carry out comparative analysis and store the results for further
analysis. we have a dataset with 10539 rows and 57 columns.

Features:

Machine',"S1zeOfOptionalHeader', 'Characteristics’, MajorLinkerVersion'
Mﬂ;ﬂls lmgﬂﬁﬂéﬂ','ﬁiﬂmm 1 I: ﬂlﬁ&lm 1 I:
MajorOperatingSvstemVersion', Minor Operatin gSvstemVersion','Major
ImageVersion', MinorImageVersion','MajorSubsystemVersion', ' MinorS
ubsystemVersion', 'SizeQflmage’.'SizeQfHeaders’, 'CheckSum, |
‘Subsystem’, DIUCharacteristics. Size0Of5tackReserve’,
S1zeOfStackComumit’,. SizeOfHeapReserve ', 'SizeOfHeapComumit’,
LoaderFlags, TumberOfBvaAndSizes, 'SectionsNb'
TmportsNbOrdinal’, ExportiNb', ResourcesNb','ResourcesMeanEntropy’,

34|Page

Activities Fri Nov 29, 10:43 PM

dataset - DataFrame

Index Name md5 Machine eOfOptionalHea Characteristics ajorLinkerVersic inorLinkerVersic SizeOfCode reOfinitializedDz :OfUninitializedC IdressOfEntryPoi E
) Windows.Int.. 09e83f1dicS.. 34404 240 8226 14 12 779776 253952] 56256 40
1 hidserv.dll 3030f19c6a7.. 34404 240 8226 14 12 21504 13312] 22816 40
2 DmApiSetExt.. 8271846f8f5.. 34404 240 8226 14 12 33792 27648 <] 32192 40
3 FSResizerSe.. 5802b421556.. 332 224 271 6 [} 23552 164864 1024 12515 40
4 asc-setup.e.. 8cb1fb45489.. 332 224 33167 2 25 87040 71680) 91076 40
5 PeerDistHtt.. ff42a597ecd.. 34404 240 8226 14 12 38912 16384] 38768 40
6 shutdownux... d38dfef6c48.. 34404 240 8226 14 12 104448 176640] 100768 40
7 OnlineArmor.. d69d127fb52.. 332 224 33167 2 25 37888 17920 <] 39960 40
8 tapiperf.dll 383af082659.. 34404 240 8226 14 12 5120 7680) 6208 40
9 tscfgwni.dll 5d6c8631b6b.. 34404 240 8226 14 12 130048 77312 <] 127776 40
10 mcupdate_Au.. 365dd269e50.. 34404 240 34 14 12 4608 91136] 110608 40
11 dafpos.dll d65a5fd868d.. 34404 240 8226 14 12 202752 88064 <] 189424 40
12 httpprxc.dll 400cbSe63b7.. 34404 240 8226 14 12 7168 11776) 8528 40
13 Scrivener-0.. d18b0589dc5.. 332 224 271 6 (<] 602112 49152 1445888 2047984 14
14 upnp.dll 3445b6e05d8... 34404 240 8226 14 12 225280 165376] 18544 40
15 mbussdapi.d.. 2d7ab2226e6.. 34404 240 8226 14 12 52736 29696 (] 51792 40
16 Chandler_wi.. clcc@14a9a8.. 332 224 271 6 [} 23040 119808 1024 12491 40
17 comcat.dll 590c68e5aec.. 34404 240 8226 14 12 3584 6656 0 4768 40
18 Windows.UI... 49a78f5dfeb.. 34404 240 8226 14 12] 612864 <] <] 40
19 appmgr.dll 236316a1fbc.. 34404 240 8226 14 12 223232 236032 0 204560 40
4

Format Resize

Fig 5.1: Created dataset

First of all we remove first two columns as they have categorical values. Then we applied
feature scaling using algorithms called standard scalar. By this the mean of all the

columns became zero and standard deviation became one.

35|Page

Fri Nov 29, 10:43 PM

X_train - NumPy array

0 1 2 3 4 5 6 7 8 9 10 11 12 [+
0 -B.665677 -0.654523 -0.618849 0.668023 -0.710192 -0.6349932 -0.0384227 -0.013322 -0.198884 -0.0545115 -0.0351425 -0.653887 -0.2443f
1 1.50223 1.4657 ©.164965 ©0.398797 0.286981 -0.0277247 -0.0341763 -0.0207522 -0.0400486 -0.0545115 -0.0351425 1.27654 -0.24431
2 -8.665677 -0.654523 -0.618849 ©.398797 -6.800844 -0.8342783 0.0460876 -0.8207522 -0.198699 -0.8545115 -8.0327785 -0.653887 -0.2443¢
<l 1.58223 1.4657 9.164965 ©.398797 9.286981 -0.8302985 -0.8189962 -0.8207522 -0.178274 -0.8545115 -8.0351425 1.55808 -0.2443¢
4 1.50223 1.4657 ©.164965 0.398797 0.286981 -0.0200631 -0.0247305 -0.0207522 ©.119626 -0.0545115 -0.0351425 1.55868 -0.24431
5 1.50223 1.4657 ©.164965 ©0.398797 0.286981 -0.0350408 -0.0381051 -0.0207522 -0.195559 -0.0545115 -0.0351425 1.55868 -0.24431
6 -8.665677 -0.654523 -0.568385 -1.08194 -6.800844 -0.00182042 -0.638289 0.107651 1.71774 2.04846 0.143749 -0.653887 -0.2443¢
7 -8.665677 -8.654523 -0.618849 ©.398797 9.196329 -0.0286065 -0.00438093 -0.8207522 -0.123282 -0.8545115 -8.0211079 -0.653887 -0.2443¢
8 1.50223 1.4657 ©.164965 0.398797 0.286981 -0.0275579 -0.6334741 -0.0207522 -0.0298134 -0.0545115 -0.0351425 1.55868 -0.24431
9 -0.665677 -0.654523 -8.61757 -0.678165 -6.800844 -0.0338493 -0.837219 -0.0207522 -0.181834 -0.0545115 -08.0319798 -0.653887 -0.2443t
10 665677 .654523 -0.618849 ©.398797 -6.800844 -8.8333727 0.018712 -0.8207522 -0.182479 -0.8545115 -8.0309914 -0.653887 -0.2443¢
11 -8.665677 -0.654523 -0.618849 ©.398797 0.196329 -0.0286065 -0.00430093 -0.8207522 -0.123282 -0.8545115 -8.0211079 -0.653887 -0.2443¢
12 -0.665677 -0.654523 2.61832 -1.21656 1.46546 -0.0249603 0.00872253 -0.0207522 0.0308904 -0.0545115 -0.0133988 -0.653887 -0.2443t
13 -0.665677 -0.654523 -0.618849 -0.274267 -6.800844 -0.06551423 ©.00185136 -0.0207522 0.369937 -0.0545115 0.026926 -0.653887 -0.2443t
14 -8.665677 -0.654523 2.61842 -1.21656 1.46546 -0.8344093 -8.8378543 -0.8207522 -6.181131 -0.8545115 -8.0329681 -0.653887 -0.2443¢
15 -8.665677 -0.654523 2.61832 -1.21656 1.46546 -0.8329914 -0.8275893 -0.8207522 3.253e8 -0.8545115 -8.0302007 -0.653887 -0.2443¢
16 -0.665677 -0.654523 -0.618849 ©0.398797 0.196320 -0.0291784 -0.0101189 -0.0207522 -0.132798 -0.0545115 -0.0222939 -0.653887 -0.2443
17 -0.665677 -0.654523 2.61832 -1.21656 1.46546 -0.0249603 0.00872253 -0.0207522 0.0300904 -0.0545115 -08.0133988 -0.653887 -0.2443t
18 -8.665677 -0.654523 -8.61757 -8.678185 -6.800844 -0.834731 -08.8345107 -0.8206941 -0.194947 -0.8545115 -8.0337588 -0.653887 -0.2443¢~
. y
Format Resize | Background color
Close

Fig 5.2: Created dataset with feature scaling

After that we apply the entire algorithm without feature extraction such as logistic
regression, decision tree, XGBoost, Random Forest, KNN .and then compare the result of
all the algorithms. The 75% of the data used to train the model and remaining 25% data is

used to test the model in all the algorithms.

9 Consocle 1fA

Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy

TOP: TOTAL NO.

th

JILVER _CONVERG
Accuracy i on training
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy

IPython console Histor

Limne 115, Col 42 Mem 72

Fig 5.3: result without feature scaling

36|Page

After that we apply the entire algorithms with feature extraction such as logistic
regression, decision tree, XGBoost, Random Forest, KNN and then compare the result of
all the algorithms. The 75% data used to train the model and remaining 25% data is used

to test the model in all the algorithms.

7 Console 1/A

After feature selection

Accuracy on d

Accuracy on dec

Accuracy with random forest classifier training set: @.99
Accuracy with random forest classifier testing set: @.
Accuracy with X

Accuracy with X

Accuracy with

Accuracy with lc ic regression testing

Accuracy with k ifier training B.97887
Accuracy with k-ne ier testing set: 8.97647
Accuracy with S

Accuracy with S

Accuracy with Naive

Accuracy with Naive Bay

Accuracy with Naive Bayes training :

Accuracy with Naive Bayes testing set: 8.968

IPython console History

&) conda: base (Python 3.7.8) Line 115, Col 42 UTF-8 CRLF RW Mem 80%

Fig 5.4: result with feature scaling

37|Page

Chapter-6
RESULT AND PERFORMANCE ANALYSIS

Here we find the accuracy of different algorithms without feature extraction and then with
feature extraction after that we compare the accuracy of both the algorithms. The

algorithms are

Decision Tree
Random forest
XGBoost
K-nearest

Logistic Regression
SVM

Naive Bayes

No ok~ wdhE

Now we show the accuracy of the algorithms without feature extraction on both training

and testing set .

Algorithms Accuracy

Training Testing
set Set

Decision Tree 99.975 97.533
Random forest 99.975 98.254
XG Boost 99.975 98.254
KNN 97.723 97.268
Logistic Regression 96.179 96.622
SVM 95.888 96.589
Naive Bayes 05.888 96.589

Table 6.1: Results without feature extraction

38|Page

Now we show the accuracy of the algorithms with feature extraction on both training and

testing set.

Algorithms Accuracy

Training Testing
set Set

Decision Tree 99.734 97.571
Random forest 99.734 98.292
XG Boost 99.734 98.140
KNN 97.887 97.647
Logistic Regression 95.711 96.471
SVM 95.420 96.053
Naive Bayes 95.420 96.053

Table 6.2: Results with feature extraction

After comparing all the algorithms the algorithm Random Forest gives the most accurate
result after features extraction that is 98.292% .without feature extraction Random
Forest and XGBOOST both gives the same result with highest accuracy that is 98.254%.

Now we discuss the accuracy of each algorithm with their confusion matrix. First we
display the confusion matrix without feature extraction and then with feature extraction.
Confusion matrix has four tables. These sections are false negative and False Positive
respectively and this occurs when there is a contradiction between actual class and the
predicted class. The two sections are the True Positive and True Negative and these are

the observations which are correctly predicted.

39|Page

CONFUSION MATRIXWITOUT FEATURE EXTRACTION

1. Decision Tree

Activities

File Edit Search Source Run Debug Consoles
O @ » B
Editor - _detection.py |
o repy X

demographic.py ¥ malware_detection.g

from sklearn.preprocessing import Standardse
15 sc=standardscaler()

16 X_train=sc.fit_transforn(X_train)

X_test=sc. transforn(X_test)

19 from sklearn.metrics import confusion_matri:

from sklearn.tree import DecisionTreeClassi!
tree = DecisionTreeClassifier(random_states
tree.fit(X_train, y_train)

y_pred = tree.predict(X_test)
decision_cm=confusion_matrix(y_test,y_pred)
27 print("Accuracy on decision tree training s
28 print("Accuracy on decision tree test set:

from sklearn.ensemble import RandomForestCli
classifier = RandomForestClassifier(n_estimi
classifier.fit(X_train, y_train)

y_pred = classifier.predict(X_test)
random_cm=confusion_matrix(y_test,y_pred)
36 print("Accuracy with random forest classifi
7 print("Accuracy with random forest classifi

Proia

Fri Nov 29, 10:45 PM

decision_cm - NumPy array

0 1
1708 36
29 862

Resize

V| Background color

[close

ents/malware-detection -
@®
*
L Value -
16]
86111
names: Name, mdS, Machine, SizeOfOptionalHeader,..
[361
862]1
36]
86311
26]
| 85511 2
e®
| V-4
734 -

ing set: ©.99734
ng set: 0.98292

et: 0.95711

£: 0.96471
kages/sklearn/linear_model/logistic.py:433:

d to 'lbfgs' in 0.22. Specify a solver to silence

from xgboost import XGBClassifier

xgb. fit(X_train,y_train)
print("Accuracy with XGboost training set:

print("Accur with XGboost testing set:
5y_pred = xgb.predict(X_test)

2. Random Forest

Activities

File Edit Search Source Run Debug Consoles

Oes B & @ » Bhphp

: detection.py |

Prg

Doci

Editor -

D repy X

demographic.py ¥ malware_detection.g

from sklearn.preprocessing import Standards¢
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.transform(X_test)

19 from sklearn.metrics import confusion_matri

from sklearn.tree import DecisionTreeClassi
tree = DecisionTreeClassifier(random_state=
tree.fit(X_train, y_train)

y_pred = tree.predict(X_test)
decision_cm=confusion_matrix(y_test,y_pred)
print("Accuracy on decision tree training s
print("Accuracy on decision tree test set:

from sklearn.ensemble import RandomForestCl
classifier = RandonForestClassifier(n_estim
s classifier.fit(X_train, y_train)

34y_pred = classifier.predict(X_test)
random_cn=confusion_matrix(y_test,y_pred)
print("Accuracy with random forest classifil
print("Accuracy with random forest classifil

) from xgboost import XGBClassifier

5B B WL

2 xgb. Fit(X_train,y_train)
print("Accuracy with XGboost training set:
print("Accuracy with XGboost testing set: {
y_pred = xgb.predict(X_test)

40|Page

i3

xgb=XGBClassifier(max_depth=20,learning_rate=0.3,n_estimators=150)

f}".format(xgb.score(X_traul
.format(xgb.score(X_test,

Fig 6.1: decision tree confusion matrix

random_cm - NumPy array

0 1
1731 13
33 858
Resize

ACCUTacy Witk

In [2]:

IPython console
Permissions: RW

Fri Nov 29, 10:45 PM

V| Background color

History log

TassTTier

End-of-lines: LF

Close

Encoding: ASCIl

TFaUATNG set: 0.97887
Accuracy with k-nearest classifier testing set: 0.97647

Line: 65 Column: 43 Memory: 25%

lents/malware-detection =

L Vvalue
21]
823]]
13]
858]]
names: Machine, SizeOfOptionalHeader, Characteri..
16]
| 861]]
object of pandas.core.series module

| V-4
54

ing set: 0.99734
ng set: ©.98292

et: 0.95711

t: 0.96471
ages/sklearn/linear_model/logistic.py:433:

d to 'lbfgs' in 0.22. Specify a solver to silence

5£)
sf}

1 xgb=XGBClassifier(max_depth=20,learning_rate=0.3,n_estimators=150)

}".format(xgb.score(X_traii

.format(xgb.score(X_test,:

»

Gracy with

In [2]:

IPython console

SETETSESTFISF EFSUNTAG set : 0.97887
Accuracy with k-nearest classifier testing set: 8.97647

History log

Permissions: RW

Fig 6.2: random forest confusion matrix

End-of-lines: LF

Encoding: Ascil

Line: 65 Column: 43 Memory: 25%

a2

>

e®

.

3. XG Boost

Activities Fri Nov 29, 10:45 PM

File Edit Search Source Run Debug Consoles Prog

DeERa%2E0 bOED

Editor - Do _detection.py |

xgboost_cm - NumPy array R c s/ malware-detection ML

°
o

®

& =

Qrepy X demographic.py malware_detection,| —
tree.fit(X_train, y_train) 1 o i 1

Value =
y_pred = tree.predict(X_test) 1 30 861 § 217
decision_cn=confusion_matrix(y_test,y_pred) 82311
print("Accuracy on decision tree training 13]
print("Accuracy on decision tree test set: | 858]]

names: Machine, SizeOfOptionalHeader, Characteri..
1 from sklearn.ensemble import RandomForestCl 16]
classifier = RandomForestClassifier(n_estim; 861]]
classifier.fit(X_train, y_train)

lobject of pandas.core.series module
y_pred = classifier.predict(X_test) E

randon_cn=confusion_matrix(y_test,y_pred) |
print("Accuracy with random forest classifil
7 print("Accuracy with random forest classifi e®
L (LY
from xgboost import XGBClassifier 34 B
xgb=XGBClassifier(max_depth=20,learning_rat
xgb. fit(X_train,y_train) ing set: 0.99734
print("Accuracy with XGboost training set: ng set: 0.98292
print("Accuracy with XGboost testing set: {
y_pred = xgb.predict(X_test)
xgboost_cm=confusion_matrix(y_test,y_pred) et: 0.95711
= £: 0.96471
Resize ||v! Background color kages/sklearn/linear_model/logistic.py:433:
from sklearn.metrics import confusion_matri: d to 'lbfgs’ in 0.22. Specify a solver to silence
cn = confusion_matrix(y_test, y_pred) [Close
ACCUracy With K nearest classtfier training set: 0.97887
from sklearn.neighbors import KNeighborsClassifier Accuracy with k-nearest classifier testing set: 0.97647
kclassifier=KNeighborsClassifier(n_neighbors=7)
kclassifier.fit(X_train,y_train) In [2]
print("Accuracy with k-nearest classifier training set 5f}".format(kcl. -
2 .5F}" . format(kcla: |+ .
< » IPython console | History log
Permissions: RW End-of-lines: LF Encoding: AsCll Line: 65 Column: 43 Memory: 25%

Fig 6.3: XG Boost confusion matrix

Activities Fri Nov 29, 10:46 PM

File Edit Search Source Run Debug Consoles Projg

0O D RiEQ P OB D knearest_cm - NumPy array jents/malware-detection 'S
Editor - Do _detection.py | ®
Cycepy % | demographicpy % | malware detectiong 2 L -3

Trom xgboost import XGBClassifier 1 Ged 1 Value -
xgb=XGBClassifier(max_depth=20,learning_rats 1 28 863 [26]
xgb. fit(X_train,y_train) 85511
print("Accuracy with XGboost training set: 26]
print("Accuracy with XGboost testing set: { 824]]
y_pred = xgb.predict(X_test) 18
46 xgboost_cm=confusion_matrix(y_test,y_pred) ﬁg‘H]
a8 | 86311
15 from sklearn.metrics import confusion_matri 32;]
cm = confusion_matrix(y_test, y_pred) 11 -
fron sklearn.neighbors import KNeighborsCla e®
kclassifier=KNeighborsClassifier(n_neighbor:
kclassifier.fit(X_train,y_train) L LI
56 print("Accuracy with k-nearest classifier 34 -
57 print("Accuracy with k-nearest classifier
y_pred = kclassifier.predict(X_test) ing set: ©.99734
5 knearest_cn=confusion_matrix(y_test,y_pred) ng set: ©.98292

62 from sklearn.linear_model import LogisticReg :t:eeézjzu

63 lr=LogisticR i d tate=2 F ©. 1

64 1:,&2?; Liafﬁrisi}‘;’{ﬁga“ SRl Resize | v/ Background color kages/sklearn/linear_model/logistic.py:433:

65 print("Accuracy with logistic regression tf _dto 'lbfgs' in 0.22. Specify a solver to silence

66 print("Accuracy with logistic regressi [close |

y_pred = lr.predict(X_test)
1og_cn=confusion_matrix(y_test,y_pred) REEUFSEY WUt R=AEST et E e TFIer Eratntng set: 0.97687
v Accuracy with k-nearest classifier testing set: 0.97647

#svm

from sklearn.svm import SV In [2]:

svm_classifier=svC(kernel='linear") =
73 svm_classifier.fit(X_train,y_train)

» 7 | IPython console | History log
Permissions: RW End-ofines: LE Encoding: Ascll Line: 65 Column: 43 Memory: 25%

Fig 6.4: KNN confusion matrix

41|Page

5. Logistic Reqgression

Fri Nov 29, 10:46 PM

Activities

File Edit Search Source Run Debug Consoles Proa

D B R S%EO0 P g’ al 13 log—cm - NumPy array jents/malware-detection
Editor - _dete(tion.pyJ 1 B®
[ycepy X | demographicpy X | malware detectionf 0 L
43 print("Accu ith XGboost traint 0 ST s 1 Value -
print("Accuracy with XGboost testi 68 823 f 211
y_pred = xgb.predict(X_test) L 86311
46 xgboost_cm=confusion_matrix(y_test,y_pred) 44]
a7 86311
48 21]
49 from sklearn.metrics import confusion_matrii 823]]
50 cm = confusion_matrix(y_test, y_pred) 13]
51 85811
52 names: Machine, SizeOfOptionalHeader, Characteri.
53 from sklearn.neighbors import KNeighborsCla: . =
54 kclassifier=KNeighborsClassifier(n_neighbor: [
55 kclassifier.fit(X_train,y_train) _
56 print("Accur th k-nearest classif t @®
57 print("Accuracy with k-nearest classif T
58 y_pred = kclassifier.predict(X_test) L83
59 knearest_cm=confusion_matrix(y_test,y_pred) = =
61 ing set: 0.99734
62 from sklearn.linear_model import LogisticRef fg set: 0.98292
3 lr=LogisticRegression(random_state=2)
54 1r.fit(X_train,y_train)
65 print("Accu th logistic regression tf gt: 0.95711
5 print("Acc stic regression te! : 0.96471
7y_pred = lr.predict(X_test) Resize | V! Background color kages/sklearn/linear_model/logistic.py:433:
8 log_cm=confusion_matrix(y_test,y_pred) ‘ d to 'lbfgs' in 0.22. Specify a solver to silence
69 "' Close [

—— set: 0.97887
Accuracy with k-nearest classifier testing set: 0.97647

In [2]:

v IPython console | History log

L]
Permissions: RW End-of-lines: LF Encoding: Ascil Line: 65 Column: 43 Memory: 25%

Fig 6.5: Logistic Regression confusion matrix

File Edit Search

IPython console H

Lin

Fig 6.6 : SVM confusion matrix

42 |Page

7. GaussianNB

& Spyder (Python 3.7) - X

= temppy

Accuracy with

[Python console

3.7.6) Line 197, C

Fig 6.7: Gaussian Naive Bayes confusion matrix

43 |Page

CONFUSION MATRIXWITH FEATURE EXTRACTION

1. Decision Tree

Fri Nov 29, 10:50 PM

Activities

File Edit Search Source Run Debug Consoles

B 5 %iE0 » BB fdecision_cm - NumPy array ents/malware-detection 'S
Editor - :_detection.py (=[]
[qcepy % | demographicpy % | malware_detection. 0 L -3

elect=RFE(ExtraTreesClassifier(n_estinatord | LGS 20 value -

91 select.fit(X_train,y_train) 28 263 | = R ¢ R

ey il bl R 1 names: Name, mdS, Machine, SizeOfOptionalHeader,..
5 elect. transform(X_test) 361
94 ' 862]1
95 print("After feature selection") 36]
863]1
from sklearn.tree inport DecisionTreeClassi 26]
DecisionTreeClassifier(random_states 8?2%]
824]] =
e®
| -3
166 from sklearn.ensemble import RandomForestCl 34 -
107 classifier = RandomForestClassifier(n_estim
)8 classifier.fit(Xt_new, y_train) ing set: 0.99734
y_pred = classifier.predict(Xtest_new) ng set: 0.98292
print("Accuracy h random forest classifi
print("Accuracy h random forest classifi
y_pred = classifier.predict(Xtest_new) gt: 0.95711
frandom_cm=confusion_matrix(y_test,y_pred) - £: 0.96471 . L
Resize | V| Background color kages/sklearn/linear_model/logistic.py:433:
d to 'lbfgs' in 0.22. Specify a solver to silence
116 from xgboost import XGBClassifier [Close

117 xgb=XGBClassifier(max_depth=20,learning_rate
xgb. fit(Xt_new,y_train)
print("Accuracy with XGboost training se

ACCUracy With R nearest classirter tratning set: 0.97887

5F}".format(xgb.score(Xt_new Accuracy with k-nearest classifier testing set: 0.97647

print("Accuracy h XGboost testing set: {:.5f}".format(xgb.score(Xtest_n

y_pred = xgb.predict(Xtest_new) In [2]:

fxgboost_cm=confusion_matrix(y_test,y_pred) z;
y IPython console | History log

Permissions: RW End-of-lines: LF Encoding: Ascil Line: 65 Column: 43 Memory: 25%

Fig 6.8: After feature extraction decision tree confusion matrix

2. Random Forest

Fri Nov 29, 10:51 PM

Activities

File Edit Search Source Run Debug Consoles Proja

0 BsEe P frandom_cm - NumPy array ents/malware-detection B
Editor - Doc . detection.py | ®
= = : 0 1 -3
[yrepy X | demographicpy % | malware detection.f b
95 print("After feature selection") o NiEe 18 L Value -
2 . . 4 27 864 36]
97 from sklearn.tree import DecisionTreeClassi 863]]
tree = DecisionTreeClassifier(random_states 26]
tree.fit(Xt_new, y_train) 85511
print("Accuracy on decision tree training sf 26]
print("Accuracy on decision tree test set: 824]1
y_pred = tree.predict(Xtest_new) 8]
3 fdecision_cm=confusion_matrix(y_test,y_pred Bg‘H]
5 86311 >
from sklearn.ensemble import RandomForestCl
7 classifier = RandonForestClassifier(n_estim a
classifier.fit(Xt_new, y_train) e®
y_pred = classifier.predict(Xtest_new)
110 print("Accuracy with random forest classifi LI
111 print("Accuracy h random forest classifi 34 -
112 y_pred = classifier.predict(Xtest_new)
frandom_cm=confusion_matrix(y_test,y_pred) ing set: 0.99734
ng set: 0.98292
from xgboost import XGBClassifier
117 xgb=XGBClassifier(max_depth=20,1learning_rati et: 0.95711
8 xgb. fit(Xt_new,y_train) . £: 0.96471 . e
print("Accu t XGboost Enaeing s Resize | |v! Background color kages/sklearn/linear_model/logistic.py:433:
rint("Accuracy with XGboost testing set: { _ dto 'lbfgs' in 0.22. Specify a solver to silence
y_pred = xgb.predict(Xtest_new) [close

fxgboost_cm=confusion_matrix(y_test,y_pred)

ACCUracy with EUSSSTFTerTtrathing set: 0.97887
Accuracy with k-nearest classifier testing set: ©.97647
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(random_state=2) In [2]:
1r.fit(Xt_new,y_train) -
print("Accuracy with logistic regression training set: {: .format(lr.s: & .

y IPython console | History log

Permissions: RW End-of-lines: LF Encoding: Ascll Line: 65 Column: 43 Memory: 25%

Fig 6.9: After feature extraction Random Forest confusion matrix

44|Page

3. XG Boost

Activities Fri Nov 29, 10:51 PM

File Edit Search Source Run Debug Consoles Pro

@ » B

Editor - Do :_detection.py | B®

fxgboost_cm - NumPy array

[ycepy X | demographicpy % | malware_detectiong 0 i -3

tree = DecisionTreeClassifier(random_state= Value =
59 tree.fit(Xt_new, y_train) < 1 28 863 B

print("Accuracy on decision tree training si 863]1
1print("Accuracy on decision tree test set: 26
y_pred = tree.predict(Xtest_new) 855]]
fdecision_cm=confusion_matrix(y_test,y_pred, 26.

from sklearn.ensemble import RandomForestCl: 864]]
classifier = RandomForestClassifier(n_estim 21]
classifier.fit(Xt_new, y_train)

y_pred = classifier.predict(Xtest_new)

6 print("Accuracy with random forest classifij
1 print("Accuracy with random forest classifi @®
2y_pred = classifier.predict(Xtest_new)
frandom_cm=confusion_matrix(y_test,y_pred) = L83

T

from xgboost import XGBClassifier ing set: 0.99734
7 xgb=XGBClassifier(max_depth=20, learning_rat g set: 0.98292
xgb. FLt(Xt_new,y_train)

9 print("Accuracy with XGboost training set:
print("Accuracy with XGboost testing set: { et: 0.95711

y_pred = xgb.predict(Xtest_new) £: 0.96471
Fxgboost_cn=confusion_matrix(y_test,y_pred) Resize |[v]Background color ages/sklearn/linear_model/logistic.py:433:

d to 'lbfgs' in 0.22. Specify a solver to silence
| Close
from sklearn.linear_model import LogisticReg

lr=LogisticRegression(random_state=2) R RS set: 0.97887
1r. fit(Xt_new,y_train) Accuracy with k-nearest classifier testing set: 8.97647
print("Accuracy with logistic regression training se {:.5f}".format(lr.s

print("Accuracy h logistic regression testing set f}".format(lr.sci In [2]:

y_pred = lr.predict(Xtest_new)

flog_cm=confusion_matrix(y_test,y_pred) - >

< » IPython console | History log

Permissions: RW End-of-lines: LF Encoding: Ascll Line: 65 Column: 43 Memory: 25%

Fig 6.10: After feature extraction XGBoost confusion matrix

4. Loagistic Regression

Activities Fri Nov 29, 10:51 PM

File Edit Search Source Run Debug Consoles Pi

0O 2 @ » BB flog-cm - NumPy array ents/malware-detection B
Editor - - detection.py | B®
Qrepy X demographic.py ¥ malware_detection.f _o — L o

168 classifier. FLt(Xt_new, y_train) T 28 value B

9y_pred = classifier.predict(Xtest_new) 1 67 824 36]
110 print("Accuracy with random forest classifil 86311
1 print("Accuracy h random forest classifi
y_pred = classifier.predict(Xtest_new) 85511
frandom_cn=confusion_matrix(y_test,y_pred) 26]
824]]
5 18]
6 from xgboost import XGBClassifier seall
7 xgb=XGBCLassifier(max_depth=20, learning_rati Bt
xgb. fit(Xt_new,y_train) —-- =
9 print("Accuracy with XGboost training set: |
print("Accuracy with XGboost testing set: {
y_pred = xgb.predict(Xtest_new) a®
fxgboost_cm=confusion_matrix(y_test,y_pred)
TZEY
734 N
from sklearn.linear_model import LogisticReg
1r=LogisticRegression(random_state=2) ing set: 0.99734
1r.fit(Xt_new,y_train) Ng set: 0.98292
print("Accuracy with logistic regression tf
9 print("Accuracy with logistic regression te!
y_pred = lr.predict(Xtest_new) gt: 0.95711
flog_cm=confusion_matrix(y_test,y_pred) > £: 0.96471 s -
Resize | [v|Background color ages/sklearn/linear_nodel/logistic.py:433:
d to 'lbfgs' in 0.22. Specify a solver to silence
from sklearn.neighbors import KNeighborsCla: | Close
kclassifier=KNeighborsClassifier(n_neighbor:
kclassifier.fit(Xt_new,y_train) AECUraey Wi Eh R=RESrEst e IaseTTIer "Eratning set: 0.97887
print("Accuracy h k-nearest classifier training se }".format(kcl. Accuracy with k-nearest classifier testing set: 0.97647
print("Accuracy with k-nearest classifier testing set: }".format(kcla:

y_pred = kclassifier.predict(Xtest_new) In [2]:
fknearest_cm=confusion_matrix(y_test,y_pred)

k0 5~ | Ipython console | History log
Permissions: RW End-of-lines: LF Encoding: ASCIl Line: 65 Column: 43 Memory: 25%

Fig 6.11: After feature extraction logistic regression confusion matrix

45|Page

Fri Nov 29, 10:52 PM

Activities

File Edit Search Source Run Debug Consoles Projg

0O D RiE b BBD

fknearest_cm - NumPy array ents/malware-detection ML 2K 3

Editor - _detection.py | B®
e % 0 1 .
ey % | demographicpy 3 | malware detection.f
= 7 3 : 1 o 1718 26
classifier.fit(Xt_new, y_train) Value =
) y_pred = classifier.predict(Xtest_new) 1 36 855 [36]
110 print("Accuracy with random i 86211
1 print("Acc y orest classifif 36]
y_pred = classifier.predict(Xtest_new) 863]1
frandom_cm=confusion_matrix(y_test,y_pred) 26]
85511
6]
from xgboost import XGBClassifier 9%‘;%]

117 xgb=XGBClassifier(max_depth=20,learning_rat¢
118 xgb. fit(Xt_new,y_train) | 864]] 02
119 print("Accuracy with XGb
120 print("Accurac th XGboost

t training
testing set:

121y_pred = xgb.predict(Xtest_new) i B®
122 fxgboost_cm=confusion_matrix(y_test,y_pred)
3 | -4 -3
34 -
from sklearn.linear_model import LogisticRe |
lr=LogisticRegression(randon_state=2) ng set: 0.99734
7 lr.fit(Xt_new,y_train) | Ng set: ©.98292
print("Accuracy with 1 n teg
print("Accur g n ted
y_pred = lr.predict(Xtest_new) :t:aeézi;il
1 flog_cm=confusion_matrix(y_test,y_pred) : 0.
Resize V| Background color kages/sklearn/linear_model/logistic.py:433:
d to 'lbfgs' in 0.22. Specify a solver to silence
from sklearn.neighbors import KNeighborsClag | Close
5 kclassifier=KNeighborsClassifier(n_neighbors =——=
kclassifier.fit(Xt_new,y_train) TTTTREEUTEEY Wth TSSSTFEr Eratning set: 0.97887
print("Accuracy with k-nearest cla: er training set: .format(kcl. Accuracy with k-nearest classifier testing set: 0.97647
print("Accuracy with k-neare a e }".format(kcla
y_pred = kclassifier.predict(Xtest_new) In [2]:
o fknearest_cn=confusion_matrix(y_test,y_pred) =
] = IPython console | History log
Permissions: RW End-of-lines: LF Encoding: AsCll Line: 65 Column: 43 Memory: 25%

Fig 6.12: After feature extraction KNN confusion matrix

6. SVM

& Spyder (Python 3.7)

File Edit Search S

13 |temp.py

ogisticRear
cplorer Help Pl

In

Fig 6.13: After feature extraction SVM confusion matrix

46 |Page

7. GaussianNB

File Edit Search Source Run Debu ojects Te ew Help

) 2 ¢

fav_cm - NumPy array
3 temp.py

Value
18

xplorer Help Plots Fles

Background

ccuracy
Accurac!
Accuracy

IPython console
Line 104, ¢ 3 CRLF RW

Fig 6.14: After feature extraction Gaussian Naive Bayes confusion matrix

47|Page

Chapter-7
CONCLUSION&FUTURE SCOPE

CONCLUSION

Various ML algorithms of supervised learning has been applied for the detection and
removal of infected malware files or anomaly in the given dataset samples and classified
them into 2 categories that is malicious and benign. We used a dataset that was taken
from kaggle. We were able to get a labeled dataset and then applied various supervised
ML algorithms and split the dataset into 75% training and 25% testing set. With this
dataset, we evaluated the values of different accuracies of algorithms and thus evaluated
the parameters and features for various supervised algorithms and concluded that the
machine learning algorithm which gave the best accuracy is the Random Forest. Thus
with an accuracy of 98.29% after feature extraction and 98.25% before feature extraction,

it is the best algorithm for this dataset.

48 |Page

FUTURE SCOPE

For the future work we will implement deep learning and use neural networks for the
recognition of rare malwares and we will also run a live malware file on a virtual
environment like Anubis and then get its log file for filling the entries in the data set and
hen using the predefined machine learning algorithm for predicting whether the file is
malicious or not. And with more features and parameters of algorithms added to increase
the accuracy of performance matrix. Evaluation of malwares only on the basis of static
approach also can be used like prediction of malware on the basis of analysis of code and

signatures.

49|Page

REFERENCES

[1] Dataflair Team. (2020, January) www.data-flair.training. [Online]. https://data-
flair.training/blogs/machine-learning-tutorial/

[2] (2013) www.analyticsvidhya.com. [Online]. https://i0.wp.com/www.analyticsvidhya.com/wp-
content/uploads/2016/03/cost1.png?resize=564%2C232

[3] Kambria Team. (2019, July) www.kambria.io. [Online]. https://kambria.io/blog/confused-

about-the-confusion-matrix-learn-all-about-it/

[4] Purplesec Team. (2019) www.purplesec.us. [Online]. https://purplesec.us/resources/cyber-

security-statistics/

[5] Ekta Gandotra, Divya Bansal, Sanjeev Sofat. (2014, April) www.scrip.org. [Online].
https://file.scirp.org/pdf/JIS_2014040110394271.pdf

[6] Ivan Firdausi, Charles Lim. (2010, December) www.ieeexplore.ieee.org. [Online].
http://ieeexplore.ieee.org/iel5/5672650/5675795/05675808. pdf

[7] Simran Kaur Arora. (2020, April) hackr.io. [Online]. https://hackr.io/blog/supervised-vs-

unsupervised-learning

[8] Adebayo Segun. (2019, August) www.researchgate.net. [Online].
https://www.researchgate.net/figure/Support-Vector-Machine figl 336020465

[9] Saimadhu Polamuri. (2017, March) dataaspirant.com. [Online]. https://dataaspirant.com/how-

logistic-regression-model-works/

50|Page

https://data-flair.training/blogs/machine-learning-tutorial/
https://data-flair.training/blogs/machine-learning-tutorial/
https://i0.wp.com/www.analyticsvidhya.com/wp-content/uploads/2016/03/cost1.png?resize=564%2C232
https://i0.wp.com/www.analyticsvidhya.com/wp-content/uploads/2016/03/cost1.png?resize=564%2C232
https://kambria.io/blog/confused-about-the-confusion-matrix-learn-all-about-it/
https://kambria.io/blog/confused-about-the-confusion-matrix-learn-all-about-it/
https://purplesec.us/resources/cyber-security-statistics/
https://purplesec.us/resources/cyber-security-statistics/
https://file.scirp.org/pdf/JIS_2014040110394271.pdf
http://ieeexplore.ieee.org/iel5/5672650/5675795/05675808.pdf
https://hackr.io/blog/supervised-vs-unsupervised-learning
https://hackr.io/blog/supervised-vs-unsupervised-learning
https://www.researchgate.net/figure/Support-Vector-Machine_fig1_336020465
https://dataaspirant.com/how-logistic-regression-model-works/
https://dataaspirant.com/how-logistic-regression-model-works/

PLAGIARISM REPORT

Project report

ORIGINALITY REPORT

9. 1. 7a A

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Aditya Kapoor, Himanshu Kushwaha, Ekta
Gandotra. "Permission based Android Malicious
Application Detection using Machine Learning",
2019 International Conference on Signal
Processing and Communication (ICSC), 2019

Publication

3%

Firdausi, lvan, Charles lim, Alva Erwin, and Anto
Satriyo Nugroho. "Analysis of Machine learning
Techniques Used in Behavior-Based Malware
Detection”, 2010 Second International
Conference on Advances in Computing Control
and Telecommunication Technologies, 2010.

Publication

29

Submitted to The Robert Gordon University

Student Paper

T

Submitted to University of Strathclyde

Student Paper y y <1 %
www.ijert.or

Internet Siurce g <1 OA)

51|Page

Hongtai Yang, Xiaozhao Lu, Christopher Cherry,

	MALWARE DETECTION SYSTEM USING MACHINE LEARNING
	Computer Science and Engineering
	By

	Jaypee University of Information Technology Waknaghat,
	Solan-173234, Himachal Pradesh
	Candidate’s Declaration

	Acknowledgement
	Table of Content
	List of Abbreviation
	 ML- Machine learning
	Chapter-1
	INTRODUCTION
	4. Interpretation of Performance Measures- We can evaluate the performance in many ways. We can find the performance with the help of confusion matrix.
	Precision = TrueP/TrueP+FalseP
	F1 Score = 2*(R * P) / (R + P)

	(1.2) Problem Statement
	Objectives-

	(1.4)Methodology
	Chapter-2
	LITERATUREREVIEW

	we can be say that By adding feature selection, the features were decreased to a large amount such as attributes reduced from 5191 to 116 in binary weighted data set and the time taken for training and building the model got shorter at the expense of ...
	Chapter-3
	SYSTEM DESIGN
	(3.2) Why Python
	(3.3) Why ANACONDA
	(3.4) SCIKIT LEARN
	(3.5) PANDAS
	Chapter-4
	Supervised learning
	Chapter-5
	TEST PLAN
	Chapter-6
	RESULT AND PERFORMANCE ANALYSIS
	CONFUSION MATRIX WITOUT FEATURE EXTRACTION
	1. Decision Tree
	2. Random Forest
	3. XG Boost
	4. KNN
	5. Logistic Regression
	6. SVM
	7. GaussianNB
	CONFUSION MATRIX WITH FEATURE EXTRACTION
	1. Decision Tree (1)
	2. Random Forest (1)
	3. XG Boost (1)
	4. Logistic Regression
	5. KNN
	6. SVM (1)
	7. GaussianNB (1)
	Chapter-7
	REFERENCES

