
 
 

IMAGE GENERATION USING TEXT 

 
Project report submitted in partial fulfilment of the requirement for the degree of 

Bachelor of Technology  

 
in 

 

Computer Science and Engineering/Information 

Technology 

 
by 

 
Prajwal Thakur (161616) 

 

Under the supervision of 

Mr. Rizwan Ur Rehman 

 

to 

 
 

Department of Computer Science & Engineering and Information Technology 

 

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh 



ii 
 

Candidate’s Declaration 

 
 

We hereby declare that the work presented in this report entitled “Image Generation Using 

Text” in partial fulfilment of the requirements for the award of the degree of Bachelor of 

TechnologyinInformation Technology submitted in the department of Computer Science 

and Engineering and Information Technology, Jaypee University of Information 

TechnologyWaknaghat is an authentic record of my own work carried out over a period from 

August  2019 to May 2020 under the supervision of (Rizwan Ur Rehman) (Assistant 

Professor, Computer Science & Engineering and Information Technology). 

The matter embodied in the report has not been submitted for the award of any other degree 

or diploma. 

 

Prajwal Thakur (161616) 

This is to certify that the above statement made by the candidate is true to the best of my 

knowledge. 

 

 

Rizwan Ur Rehman 

Assistant Professor  

Department of Computer Science & Engineering and Information Technology, 

JaypeeUniversity of Information Technology 

Dated: 

  



iii 
 

ACKNOWLEDGEMENT 
 

Foremost, we would like to express our sincere gratitude to our project guide Rizwan Ur 

Rehman (Assistant Professor) for the continuous support in our project, for their patience, 

motivation, enthusiasm, and immense knowledge. Their guidance has helped us in all the 

time of this study and writing of this report. We could not have imagined having a better 

advisor and mentor for our project. We would also like to thank them for lending us their 

precious time. 

We are also very thankful to all the faculty members of the department, for their constant 

encouragement during the project. 

Last but not least we would like to thank our parents, who taught us the value of hard work by 

their own example. 

 

 

 

 

 

 

 

Date: ……………. 

 

Prajwal Thakur (161616) 

 

 

  



iv 
 

 

Contents 

Candidate’s Declaration ........................................................................................................ ii 

ACKNOWLEDGEMENT .................................................................................................... iii 

List of Figures ........................................................................................................................ v 

List of Abbreviations ............................................................................................................vi 

ABSTRACT .......................................................................................................................... 2 

CHAPTER 1: INTRODUCTION ........................................................................................... 3 

1.1 Introduction ............................................................................................................. 3 

Deep Learning and Content Generation .............................................................................. 4 

Generative Adversarial Networks .................................................................................... 4 

USES ............................................................................................................................... 10 

1.2) PROBLEM STATEMENT ........................................................................................ 12 

1.3) OBJECTIVE ............................................................................................................. 13 

1.4) METHODOLOGY .................................................................................................... 15 

1.5 Organization ............................................................................................................... 18 

Chapter 2: Literature survey ................................................................................................. 19 

2.1 Books and publication ................................................................................................ 19 

Chapter 3: System Development .......................................................................................... 21 

3.1 Text Description to Embedding .................................................................................. 21 

Why Word Embedding ................................................................................................. 22 

3.2 Pre-Processing the Images .......................................................................................... 26 

Mean and Standard Deviation for Proper Normalisation of Data: .................................. 26 

Data Augmentation ....................................................................................................... 26 

3.3Creating Customised Generator Model ........................................................................ 28 

3.4 Training the model ...................................................................................................... 30 

3.5 Final Web-app Production .......................................................................................... 36 

Chapter4: Performance Analysis .......................................................................................... 39 

4.1 Evaluation: ................................................................................................................. 39 

4.2 Training phase snapshots: ........................................................................................... 41 

Chapter5: CONCLUSIONS ................................................................................................. 47 

5.1 Conclusion: ................................................................................................................ 47 

52. Future Scopes: ............................................................................................................ 47 



v 
 

References ........................................................................................................................... 48 

 

List of Figures 
 

 

FIGURE 1 A STANDARD GENERATOR ARCHITECTURE FOR OUR TASK .........................................................6 

FIGURE 2A STANDARD DISCRIMINATOR FOR OUR TASK ........................................................................7 

FIGURE 3 THE PAINTING WAS CREATED BY A SIMPLE GAN ...................................................................10 

FIGURE 4 GAN MODEL ...............................................................................................................12 

FIGURE 5 ................................................................................................................................13 

FIGURE 6 ................................................................................................................................13 

FIGURE 7METHODOLOGY............................................................................................................15 

FIGURE 8 ................................................................................................................................15 

FIGURE 9 BIRD DATASET ..............................................................................................................16 

FIGURE 10PROCESSING SENTENCES ...............................................................................................21 

FIGURE 11ONE HOT ENCODED VECTORS ........................................................................................22 

FIGURE 12EMBEDDING ..............................................................................................................23 

FIGURE 13LSTM ......................................................................................................................24 

FIGURE 14 GENERATION PROCESS .................................................................................................30 

FIGURE 15CONVERGENCE FAILURE LOSS ..........................................................................................32 

FIGURE 16 CONVERGENCE FAILURE ACCURACY..................................................................................32 

FIGURE 17LEARNING RATE SCHEDULER ..........................................................................................34 

FIGURE 18FLOW GRAPH FOR THE WEB APP ....................................................................................37 

FIGURE 19 SAMPLE OF WEB APP ...................................................................................................38 

FIGURE 20LOSS GRAPH ...............................................................................................................39 

FIGURE 21 ACCURACY GRAPH .......................................................................................................40 

FIGURE 22 ..............................................................................................................................41 

FIGURE 23 ..............................................................................................................................41 

FIGURE 24 ..............................................................................................................................41 

FIGURE 25 ..............................................................................................................................42 

FIGURE 26 ..............................................................................................................................42 

FIGURE 27 ..............................................................................................................................42 

FIGURE 28 ..............................................................................................................................43 

FIGURE 29 ..............................................................................................................................43 

FIGURE 30 TEXT TO IMAGE ..........................................................................................................44 

FIGURE 31 ..............................................................................................................................45 

FIGURE 32 ..............................................................................................................................45 

FIGURE 33 ..............................................................................................................................46 

FIGURE 34 ..............................................................................................................................46 

 

file:///C:/Users/ADITYA%20THAKUR/Downloads/prajwal%20report.docx%23_Toc41478941
file:///C:/Users/ADITYA%20THAKUR/Downloads/prajwal%20report.docx%23_Toc41478946
file:///C:/Users/ADITYA%20THAKUR/Downloads/prajwal%20report.docx%23_Toc41478949


vi 
 

List of Abbreviations 

 

GAN-Generative Adversarial Networks 

CNN-Convolutional Neural Network 

AI-Artificial Intelligence 

ML-Machine Learning 

DL-Deep Learning 

LSTM-Long Short-Term Memory 

RNN-Recurrent Neural Network 

 

 

 

 

 

 

 

 

 

 

 



 
 

ABSTRACT 

 

Synthetic Content Generation Using Machines is a very trending topic in the 

field of DeepLearning and it is an extremely difficult task even for the state-of-

the-Art ML algorithms. Theupside of Using Deep Learning to do this is that it 

can generate Content that does not existyet. In the recent past Generative 

Adversarial Networks (GAN) have shown great promise when it comes to 

generating images but they are difficult to train and condition on any particular 

input which acts as a downside for them. However, they have tremendous 

applications in generating content in an unsupervised learning approach like 

generating video, Increasing the resolution of Images or Generating Images 

from Text. In this project we look at generating 64*64 Images on the fly using a 

text as an Input.The images generated will be unique in terms that they do not 

already exist and in doing that we will improve upon already existing 

Architecture models and try to reduce the difficulties that come with training 

GAN Models like Reduced Training Time and Better Convergence of The 

Model. 

The Final Project will be a WebApp,where, you can Input a Text and a 

Synthetic Image Will be generated Based on the Description of the Text.  
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CHAPTER 1: INTRODUCTION 
 

1.1 Introduction 
 

For a human mind it is very easily to thin of new content. what if someone asks 

you to “draw a flower with blue petals”. It is very easy for us to do that. but 

machines process information very differently. Just understanding the structure 

of the above sentence is a difficult task for them let alone generate something 

based on that description.   

Automatic synthetic content generation is a field that has been explored in the 

past and was discredited because at that time neither the algorithms existed nor 

enough processing power that could help solve the problem. However, the 

advent of deep learning started changing the earlier beliefs. The tremendous 

power of neural networks to capture the features even in the humongous of 

datasets makes them a very viable candidate for automatic content generation. 

another milestone was achieved when Ian Good Fellow proposed generative 

adversarial networks in 2014. 

GANs are a kind of architecture in Deep learning that can produce content from 

random noise. What is even more unique about GANs is that the content they 

create represents the dataset on which they are being trained upon but it is 

totally unique in some way or the other. 

Generating an image from a text-based description is one aspect of generative 

adversarial networks that we will focus upon. Since the GANs follow 

unsupervised learning approach we have modified them to take am input as a 

condition and generate based on the input condition. This can form base for a 

large number of things like synthetic audio generation like the ones used in Siri 

or assistant, video content generation from just scripts. imagine entire movies 

made out of just the script. These are some uses that many companies are 
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researching about. modifying GANs and applying conditions on them isn’t 

limited to just generating images, we can use it to create passwords that are very 

hard to crack and numerous similar applications like this 

 

Deep Learning and Content Generation 

 
Deep Learning is a field that utilises and relies completely on Various Flavours 

of Neural Networks to Extract Insights from the data and find patterns among 

that data. While it has been shown to be very successful in things like Image 

Classification (In some datasets even beating human level accuracy by a large 

margin) and Time Series Analysis(There are so many factors involved that it 

even becomes difficult for a human to take all those into account), A completely 

different Aspect of it has been started to explore. 

The big Question Being  

"Can We use Deep Learning to Generate Content?" 

As we know Neural Networks can extract features of a dataset that they have 

been trained upon, the goal becomes using those features to create new data 

points that do not belong in the dataset itself. 

Generative Adversarial Networks 
 

Generative Adversarial Networks (GAN’s) were created by Ian Good Fellow in 

2014 in an attempt to generate content instead of just representing it in a 

compact form and they are the most successful kind ofDeep Learning Models 

that are even remotely close to the task. 

What does GAN do? 

Basically, it can be trained to generate data from a scratch or random noise. 
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 It consists of two building blocks: 

1) Generator: 

The task of the Generator is to take in some input and generate something 

out of it. In cases ofImages it might take in some noise asinput and 

generate an image which might not mean anything Initially. It is simply 

the reverse of what a standard Convolutional Neural Network (CNN) is.A 

CNN takes in input as an image and down samples it along the height and 

width dimensions while increasing it along the channel dimension which 

acts as our features essentially. What a Generator Does is it takes in a 

down sampled input and through various Up sampling Operations 

Generates an Image. 

By comparing the real images and the images that is generated by 

generator, GAN builds a discriminator that helps us to learn the 

differences that makes that image real and then after it will provide 

feedback to generator about the image that is to be generated next.  
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Figure 1 A standard Generator Architecture for our task 

 

 

 

 

2) Discriminator:  
 

Generator alone will just generate something random, so basically 

discriminator will give guidance to generator on what images it should 

create. Discriminator is nothing more than a simple convolutional neural 

network that takes in an image as an input and determines whether the 

image came from the original dataset or is it an image generated by the 

generator.  Simply taking in an image as an input it determines whether it 

is real or fake (Synthetically Generated by Generator). 
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Figure 2A Standard Discriminator for our Task 
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Why “Adversarial” and How Do they Even Learn 

It has been already established that a generator creates an image and a 

discriminator identifies whether it is fake or real. But the bigger question is 

“How do these two model architectures learn to do that” and in answering that 

we will exactly know what “Adversarial” mean in our Context. So, models in 

deep learning optimise themselves by using something known as a “Loss 

Function”. A loss function is simply a cost function that the model tries to 

minimize and in doing so it starts representing the dataset better by fine-tuning 

its internal parameters. So, a generator takes in an input and generates an image 

which doesn’t mean anything in the beginning. Now the image is being passed 

on to a discriminator which can easily identify the difference because essentially 

it is very different from what the dataset represents after a few iterations. now 

we create two loss functions, one for the generator and other for the 

discriminator 

 
Equation 1The loss function for the Generator 

 

Initially the loss is very High for The Generator and in trying to minimize it, 

The Generator Starts Creating Images that are closer and closer to the dataset it 

is being Trained Upon 

 
Equation 2The loss function for the Discriminator 
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The Discriminator started off easy but it becomes more difficult for it to identify 

the real Images from the fake ones. An Ideal Equilibrium is Reached When the 

Generator gets so good at creating images that a Discriminator has no other 

choice but to take a random guess and all that is achieved by the two loss 

functions. If a generator produces an image that is meaningless or drastically 

different from the dataset. The loss Function comes out to be high and in trying 

to reduce that it generates better images that more accurately represent the 

features of the dataset. 
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s 

USES 

1) Advertising: 

It has huge commercial applications. Imagine advertisers Just typing in 

the kind of content they want (Scenes) and have the model automatically 

build it for them instead of spending thousands of hours of work and 

saving them lakhs of rupees which they Otherwise have to Spend.  

 

Figure 3The painting was created by a simple GAN 

 

2) Creation of Dataset: 

Deep Learning is a field that requires tremendous amount of data and 

most of the times that data isn’t available GANs could be given the 

smaller dataset and can learn features from them and in turn create even 

more data points that are unique but represent the features of current 

dataset. 
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3) Super Resolution: 

GANs Could be Used to turn a Low-Resolution Image into a High 

Resolution thereby Increasing the quality of the Image. 

 

4) Text to Speech Synthesis: 

Generation of Realistic Synthesized Audio from Text is another very 

important application of this kind of model where the user enters a text 

and a waveform is generated automatically. This is useful in applications 

like Assistant  

 

5) Image to Image translation: 

Transforming one Image into another is one use of Generative 

Adversarial Network that has become very popular. Examples include 

Style Transfer and Scene Conversion. Style Transfer means Painting One 

Image in the style of Others. Imagine modern day painting in style of 

Picasso or a day scene automatically converted to a night scene 

 

6) They can be used in medical field, due to their training, they can be used 

for image analysis and even in making of new drugs. 

 

7) It can be used in technology, imagine someone is saying something about 

his work and based on his words this will generate a image of what he is 

explaining and it will save a lot of time, money and work, they have to go 

through.   
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1.2) PROBLEM STATEMENT 

Generating Images from Text is a very difficult problem that can be approached 

by using Generative Adversarial Networks and will be extremely useful for 

content creators wherein they can type a description and have the type of 

content generated automatically saving them a lot of money and work. Imagine 

Thinking about a Description and having to draw something that matches the 

description in a meaningful way. It’s even a difficult task for humans. But Deep 

Learning Can Understand the Underlying Structure of The Content and might be 

able to generate that automatically. Thereby eliminating the need of domain 

expertise. 

GANs despite having all the upside for content generation are very difficult to 

train and Take a lot of time to converge and are unstable doing the training 

process and in this project, we also try to tackle these problems by modifying 

the Underlying Structure of the GAN Model 

 

 

Figure 4 Gan Model 
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1.3) OBJECTIVE 

The main objective of this project is to develop a web app in which a text can be 

inputted and it outputs an image matching the description of the text and in 

doing so try to improve upon the generator architecture of the Generative 

Adversarial Networks. By modifying the input to a generator and applying 

conditions on the input we can create a model that generates images not from 

noise but from a controlled input. In Our case the Controlled Input Being the 

text that is Embedded after passing onto another Neural Network  

 

 

Figure 6 
Figure 5 
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1.4) METHODOLOGY 

 

Figure 7Methodology 

We first start by downloading the Oxford 102 Dataset which contains 102 

different Categories of flowers and also contains annotation for each image in 

the form of a text Description. 

 

 

Figure 8 
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After this we download on more data set that is CUB dataset that contains 200 

bird species with almost 11700 images. 

 

Figure 9 bird dataset 

 

 

 

Next, We Begin importing all the packages and the sub packages and splitting it 

into the training, Validation and testing set. The following packages and 

libraries are being used to process The Dataset and build the architectures: 

 Numpy 

 Pytorch 
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 OpenCV 

 Flask 

 

 

We first start by downloading and pre-processing the dataset. During the pre-

processing phase we convert text into embedding and normalize the images so 

they are ready to be passed onto respective models We then start to build our 

Customised Generator Model and use a standard Pre-trained Model as the 

Discriminator After the model Creation we create a training script and take in 

some best practices in the field of Deep Learning to train the model with 

stability using our customised Pytorch Trainer. The Final task is to wrap up the 

final trained model into a Flask Web App so that Testing becomes easy. 
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1.5 Organization 

The steps required for the project is: 

Chapter 1 

In this we provide a brief introduction to all the work that we did in the project 

and what the End result looks like. Apart from that we also describe what are 

the exact steps followed to reach the results. 

Chapter 2  

In this chapter we did a literature survey of things already existing whether in 

academia or in various conferences. We got to know our basic Understanding 

from this. 

Chapter 3 

In this chapter we go through all the system development process that we did 

and describe the algorithms used in detail. From LSTM models to generators 

everything involved in the project has been described under this. 

Chapter 4 

In this chapter we presented the results of the working model with accuracy of 

the discriminator and various screenshots of the working model. 

Chapter 5 

In this we present whatever conclusions that came out of the project and future 

works that can be done. 
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Chapter 2: Literature survey 

2.1 Books and publication 
 

To understand how to generate content required an extensive study of Deep 

Learning and Unsupervised learning and to do that we used various Books and 

Publication along with Some Blogs, Talks and Conferences. 

To finally be able to generate content we needed to study how to properly do the 

following Steps. 

 Pre-process the words into embedding. Taking in input as a word and do 

proper tokenization 

 

 Creating an LSTM Model and generating embedding using the model. 

Using a LSTM model, we need to convert the long sentence description 

into a word embedding to pass it into the generator. 

 

  Pre-processing the image and using proper techniques to normalise them. 

Normalising and augmenting the images using own methods in numpy. 

 

 Studying various Deep Learning Architectures and pros and cons of each. 

Studying about different architectures like auto encoders and GANs that 

already exist. 

 

 Studying various methods and already existing architectures like the 

resnet. 
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Following books were studied to achieve the following: 

1)Natural Language Processing with Python by Steven Bird 

In this book I got familiarized with a lot of tools and techniques to process 

words and the Overall field of Natural Language Processing and the best 

practices to properly process my Input 

2)Neural Networks and Deep Learning by Michael Nielsen 

In this book I studied various architectures of Deep Learning that are 

mostcommonly used today along with proper techniques to train the models and 

steps to avoid overfitting and underfitting 

3)Generative Adversarial Networks by Ian GoodFellow 

Ian GoodFellow is the creator of Generative Adversarial Networks and this 

publication helped me understand what GANs are, how they function and more 

importantly how can they even do what they do. Also Introduced me to some 

Problems like Mode Collapse 
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Chapter 3: System Development 

3.1 Text Description to Embedding 

The veryfirst step involved in training our model is to convert the text to an 

embedding. Neural networks work on vectors and numbers and 

cannotessentially doanything if the input format is a text. So the very first thing 

we do is utilise a Long short Term Memory (LSTM) network which will take in 

the input as a pre-processed text afterremoving unnecessary space and 

improving semantics using standard text pre-processing libraries like spacy and 

converting the text description into a vector of numbers which is then given as 

an input to a pre-trained LSTM and the last layer is taken out which is 

essentially the word embedding that we are looking for.    

 

 

  

Figure 10Processing Sentences 
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Why Word Embedding 

Why exactly do we need to convert our sentence into an Embedding and not just 

a one hot Encoded vector.  

To Understand that let us take a very simple Example where in once we 

represent the Words as one hot encoded Vectors and in the other, we Use an 

Embedding Matrix 

 

Figure 11One Hot Encoded Vectors 

The issue with representing words like this is: 

1. Each word is a very high dimensional vector  

2. Those Vectors do not have any kind of relation among them that a model can 

Learn and it becomes very difficult for it to learn when it cannot even 

understand the relation between words 

Now let us Represent them in an Embedding 
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Figure 12Embedding 

When Represented like this the embedding for each vector has a meaning. When 

Representing these in Euclidean Space we will see that The Two Fruits are 

closer to each other while the King and Queen are very similar to each other in 

many respects except one which could be Gender. 

It is not pre-decided on what features the model should learn but during the 

process model Itself decides the best values that reduce the loss and in process it 

learns the embedding That makes more sense to it. 
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Long Short-Term Memory Network or LSTM is a type of Recurrent Neural 

Network that are very good for processing of long sentences because of its 

ability to learn long term dependencies within the text by modifying the weight 

of its gate cells. 

RNN Typically suffer with a problem that they can’t remember the proper 

dependencies When processing text whose length is long. To illustrate that 

problem, we will demonstrate Using a very simple Series.Suppose you are being 

provided with a series and you have to tell the next number 

Example 1) 2->4->6->8 

Figure 13LSTM 
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Example 2) 2->4->8 

Now in both the series three numbers are common and we know the first series 

is a Multiple of 2 while the second one is a power of 2. But when we pass the 

numbers to A Model the last input that it gets in both cases is 8 so how should 

the modeldistinguish  

Between both the series. It should essentially have previous pattern 

information combinedwith the current input to output the correct result. But 

when the sequence gets longer in Length an RNN fails to factor the previous 

information properly as with no proper mechanism to deal with degrading 

gradients and at the end it is unable to do any kind of learning 

This is the problem that LSTM were built to solve. An LSTM has additional 

gates that help It properly retains the information throughout the input. However 

Not all information is Important every time. As we go deeper into the sequence 

the chances that the next output Depends on a very old input is very less and 

that is where the forget gate of LSTM comes into action. At every Step of input 

in a sequence an LSTM remodifies the weight of the gates using 

backpropagation. In a very simple way, it helps it to determine what kind of 

inputs are important at the current step to predict the next word/element in a 

sequence. While the forget gate determines how much every input it has seen 

earlier in the sequence is important, the input gate helps to decide and update 

what information to keep and using combination of these it is able to retain 

information even in a long sentence and able to overcome the problems that 

arise with Recurrent Networks. The beauty of LSTM is that even a very shallow 

LSTM model can understand the structure of a sentence very well due to the 

large number of parameters that it has and its very uniqueconfiguration of the 

three gates. 
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3.2 Pre-Processing the Images 

Mean and Standard Deviation for Proper Normalisation of Data: 

We need to properly process the data before passing to the model as this will 

Determine the level of accuracy that we can reach Instead of Using the 0 mean 

and standard Deviation of 1, we can compute the mean and standard deviation 

for each channel easily. for the current dataset the mean comes out to be 

[0.484,0.451,0.406] andthe standard deviation comes to be [0.231,0.244,0.412] 

 

Data Augmentation 

Data Augmentation will help us to create more data to feed in to the model and 

help it to generalise well by letting it see the data in various orientations.we 

create our own transformation using Numpy.Here are some of the Augmentation 

that we will be implementing 

 Random Flip (Horizontal and Vertical) 

 Random 90-degree Rotations 

 Adding Lightening to the visual channels 

Combining the random flip and random rotation we have come up with the 8 

dihedral transformations that could be applied to any number of channels and on 

any kind of dataset as could be seen in the code snippet we first start by creating 

a function which takes in an input x as a tensor(Matrix Representation of Our 

Image) and a mode. We do not want to apply these image augmentations when 

we are in validation mode and testing the entire thing out in training mode, we 

need to randomly apply these transforms. We use the python’s default random 

number generator to determine what kind of transformations would be randomly 

applied to the image. 
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To flip the image horizontally we first convert our tensor into a numpy array 

and then use the numpy fliplr function to flip the array horizontally and flipup to 

flip the array vertically. To rotate the image, we generate a random number k 

between 0 and 3 which determines how many 90-degree rotations of the array 

we will do. The following dihedral transformations could be formed after this 

step 

 Horizontal Flip + Any of three 90-degree Rotations 

 Horizontal Flip with No Rotations 

 Vertical Flip + Any of three 90-degree Rotations 

 Vertical Flip with No Rotations 
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3.3Creating Customised Generator Model 

The way a standard Generator Model Works is that it takes in some input and by 

a series of Up sampling or Deconvolution operations, it creates the Image. The 

only issue with that is while generating the final output it takes into account is 

the Information from the previous layer which are very ideal for tasks like 

Classification and Bounding Box Regression. But when dealing with Image 

Generation we should also keep into account the original input constraints 

without much processing along with the Information in the last layer as it will 

not only help the gradient flow better but also help converge the model faster 

 

In the code snippet above we create our customisedgenerator model from 

scratch using pytorch .We start off by declaring the class and then initialising 
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the architecture within it.to properly use of pytorch’s inbuilt neural network 

layers we need to use super to inherit the properties of the base class we start 

off by declaring a convtranspose2d which essentially takes in the input 

embedding and starts by doubling along the height and width and reducing 

along the channel direction we add a dropout to increase regularization which 

not only deals with overfitting the model on the training but also helps the 

model generalise on the input features well this is followed by two 

convolutional blocks, one doubling along the channel dimension and the other 

one taking in that input and again reducing it back to original channel 

dimensions without any change in any other dimensions. This was done as inour 

practical implementations this trick worked out well now comes the major step 

of producing the final image. As we stated earlier that we also need to add in the 

original embedding directly. But the issue with that is embedding has different 

dimensions altogether. To resolve that we use a simple up sampling operation to 

bring the embedding to proper dimension before adding it to the output of last 

layer. In terms of equations we can see it aslet the input be x and desired output 

be h(x) 

 

Equation 3 

 

where F(x)=Conv Blocks+Non Linearities 

Instead of hoping the function to fit to a desired mapping we can specify a 

residual mapping and let model reduce it and optimise it so as to bring it closer 

to ourdesired output h(x) 

As x0     F(x)H(x) 
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Figure 14 Generation process 

 

 

 

3.4 Training the model 
The training process of a Generative Adversarial Network is a bit complicated 

than training a normal Neural Network as it involves training the discriminator 

and the generator in an alternating fashion. 
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Step 1: Train the discriminator on original dataset and some random noise to get 

the discriminator an edge in identifying real images from random noise. This 

step is very important in the beginning as if the discriminator doesn’t already 

know to some extentwhat the real dataset should look like.When we use the loss 

function to the generator it will give essentially a lower loss than it should 

which slows down the initial training. The training eventually stabilises if we do 

not train the discriminator first properlybut that takes a lot of time. by doing this 

we are decreasing the training time of the model. 

Here is the algorithm:  

 

Step 2:Afterthe discriminator has been initially trained for a while, we start by 

making a forward pass through the modified generator model and get in a 

random image initially and a high loss function, which is then backpropagated 

throughout the entire network in order to update and fine tune its internal 

parameters. The generated images are stored in a temporary variable and are 

passed on to the discriminator in its next phase. 

There might be a chance where our gan is not finding the equilibrium between 

the discriminator and generator. This graph shows us the loss for the 

discriminator in the blue colour and loss for the generator in the orange colour 
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that is both is heading towards zero in the initial phase of the training. It is 

possible when gan is not stable.  

 

Figure 15convergence failure loss 

This graph shows us the accuracy by the discriminator: 

 

 

Figure 16 convergence failure accuracy 

Here the accuracy of discriminator is 100% which means our gan is perfectly 

identifying that weather the image is real or fake. This is the most common 

failure and it is called convergence failure.  
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We can further Optimise our Training By following Some Simple Steps 

1) Proper Learning Rate Scheduler: 

A constant learning rate isn’t ideal when training our model as after some 

epochs we should decrease the learning rate by some amount to get closer 

to ourdesired value and fine tune the model better. This can be done with 

the help of a learning rate scheduler which takes in some input function 

and varies the learning rate by that. now decreasing the learning rate is a 

very common trend in machine learning. But initially we can increase the 

learning rate for a few epochs before starting to reduce it since it allows 

the model to jump high losses very quickly and then slowly fine tune as 

we can see in the graph it starts with a low learning rate and rises for a 

few iterations in an epoch and then it starts to fall down. We can set for 

how many iterations in an epoch will the learning rate rise and for how 

many iterations will it be decaying for  
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Figure 17Learning Rate Scheduler 

 

 

 

2)Using Different Learning Rates for different Layers of the 

Discriminator: 

Training all the layers with same learning Rate can affect the Training since 

theearlier Layers of The model(closer to the Input) are likely to have learned 

moregeneral features which we might not want to change that much as 

compared to later Layers so for earlier layers even a lower learning rate works 

while higher learning rate are suitable for later Layers 

3)Using Weight Decay and Dropout to deal with overfitting: 

Weight decay and dropout can be used to deal with overfitting. For our sample 

dataset a weight decay of 1e-4 and a dropout between 0.10 and 0.23 is working 

the best. 

 4)Finding an optimal Learning Rate for The Discriminator: 

Instead of randomly starting with any learning rate we can train a subset of data 

between a learning rate range say 1e-7 to 1e-2 and observe the effect of each 
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learning rate on the loss curve will help us determine the optimum rate. A graph 

could be plotted for learning rate vs training loss which could be used to 

determine the best learning rate to begin with. Going even further grouping up 

few layers we can find out the optimal learning rate for each layer groups and 

use that to further optimise the discriminator 
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3.5 Final Web-app Production 

We Develop a Web App using flask that presents the user. The user with a web 

app and an option to input the text and choose a model from various inference 

Models thatwe have trained. On clicking generate Image, the request is 

processed in the backend in python and a resultant image using the model is 

created and we hit another flask endpoint where the generated Image is 

displayed. The following end points have been created in our existing flask 

application: 

1)Home Route: 

At the home endpoint or route, we redirect to the page where the user can 

provide with an input if the model has been loaded successfully without any 

error. If the chosen model cannot be loaded properly, we redirect to a route 

describing the error. 

2)Generate Route: 

After the user successfully enters a text it is pre-processed into a vector and 

passed on to our LSTM model that generates the word embedding. The 

embedded vector is then passed to the loaded generator model and is saved onto 

a location using timestamp as the file name. 

3)Result Route: 

After the Image has been successfully generated, we redirect the application to a 

page which displays the generated image. 

4)Error Route: 

The default route in case any error exists. 
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Figure 18Flow graph for The Web App 
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A sample of the WebApp Could be seen in the Images Below: 

 

Figure 19 sample of web app 
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Chapter4: Performance Analysis 

4.1 Evaluation: 

It is not easy to evaluate the performance of a generative model based on any 

metric and mostly humans at the end have to decide whether the generated 

content is good or not and whether or not it holds any particular meaning. 

However, we can judge the discriminator model in its ability to distinguish real 

images from fake ones. now compared to ordinary convolutional models where 

high accuracy means better results it isn’t true in the case of generative models. 

If the discriminator has very high accuracy in distinguishing real images from 

fake ones then that implies generator hasn’t done a very good job in creating 

images that represent the dataset well. In the situation of a perfect equilibrium 

the discriminator should have an accuracy of 50% that is it has to take a random 

guess to determine whether the generated image is fake or not implying the 

generator has created images so good that are indistinguishable from the original 

images. The closer an accuracy is to 50% the better task the generator has done 

in creating images. 

Loss graph: 

 

Figure 20loss graph 
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The above graph shows us the loss that is the discriminator loss for the real 

images in blue colour and discriminator loss for fake images in orange colour 

and generator loss for the generated images in the green colour. 

This is an expected loss during this training and it will stabilize after around 100 

to 300 epochs. The discriminator loss for the real and the fake images is 

approximately 50% and the generator loss for the generated images is between 

to 50% to 70 %. 

Accuracy graph: 

 

Figure 21 accuracy graph 

This graph shows us the accuracy by the discriminator for the real images that is 

in blue color and for the fake images in orange color. 

This GAN model will get stabilized in 100 to 300 epochs and after that it will 

give us an accuracy approximately in between 70% to 80% and it will remain 

stabilized after that. 
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4.2Training phase snapshots: 

In the starting as we get those images that have more or less noise but without 

any meaning. 

 

 

Figure 22 

 

After about 55 epochs the results starts improving a little bit and the noise starts 

making some sense. 

 

Figure 23 

 

And slowly we start moving towards our final Model 

 

Figure 24 

Here are some text descriptions with our first data set and their results. 

A flower that is yellow and white in colour: 
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Figure 25 

 

A flower having pink petals: 

 

Figure 26 

A flower with white petals and purple and white anthers: 

 

Figure 27 

 

A flower with maroon petals and green leaves: 
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Figure 28 

 

 

A flower having pink petals and they are curled upwards: 

 

Figure 29 

 

 

 

 

Finally, we stop the training and load up our Inference model and here are the 

results after using the web app. 
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Figure 30 text to image 

 

 

 

 

Now these are the results we get from our second data set that is of birds: 

80 random pics of birds: 
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Figure 31 

 

A bird with a red head: 

 

Figure 32 

 

 

A bird that is yellow in colour: 
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Figure 33 

 

A bird which is flying and it has white wings: 

 

 

Figure 34 
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Chapter5: CONCLUSIONS 

5.1 Conclusion: 

In this project we have created a web app that can take in text description of a 

flower and bird and generate images based on that. And while doing that we 

have modified the generator architecture in such a way that we have reduced the 

training time of GAN. 

52. Future Scopes: 

For the Future Work we can take the 64*64 image that we have obtained 

through our results and using Super Resolution convert it into a 256*256 image 

which can again be accomplished with the help ofGAN. We can make two 

stages of the GAN that is the first stage will give us image that is 64*64 and 

second stage will give us 256*256 image. 
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