

IMAGE GENERATION USING TEXT

Project report submitted in partial fulfilment of the requirement for the degree of

Bachelor of Technology

in

Computer Science and Engineering/Information

Technology

by

Prajwal Thakur (161616)

Under the supervision of

Mr. Rizwan Ur Rehman

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

ii

Candidate’s Declaration

We hereby declare that the work presented in this report entitled “Image Generation Using

Text” in partial fulfilment of the requirements for the award of the degree of Bachelor of

TechnologyinInformation Technology submitted in the department of Computer Science

and Engineering and Information Technology, Jaypee University of Information

TechnologyWaknaghat is an authentic record of my own work carried out over a period from

August 2019 to May 2020 under the supervision of (Rizwan Ur Rehman) (Assistant

Professor, Computer Science & Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Prajwal Thakur (161616)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Rizwan Ur Rehman

Assistant Professor

Department of Computer Science & Engineering and Information Technology,

JaypeeUniversity of Information Technology

Dated:

iii

ACKNOWLEDGEMENT

Foremost, we would like to express our sincere gratitude to our project guide Rizwan Ur

Rehman (Assistant Professor) for the continuous support in our project, for their patience,

motivation, enthusiasm, and immense knowledge. Their guidance has helped us in all the

time of this study and writing of this report. We could not have imagined having a better

advisor and mentor for our project. We would also like to thank them for lending us their

precious time.

We are also very thankful to all the faculty members of the department, for their constant

encouragement during the project.

Last but not least we would like to thank our parents, who taught us the value of hard work by

their own example.

Date: …………….

Prajwal Thakur (161616)

iv

Contents

Candidate’s Declaration .. ii

ACKNOWLEDGEMENT .. iii

List of Figures .. v

List of Abbreviations ..vi

ABSTRACT .. 2

CHAPTER 1: INTRODUCTION ... 3

1.1 Introduction ... 3

Deep Learning and Content Generation .. 4

Generative Adversarial Networks .. 4

USES ... 10

1.2) PROBLEM STATEMENT .. 12

1.3) OBJECTIVE ... 13

1.4) METHODOLOGY .. 15

1.5 Organization ... 18

Chapter 2: Literature survey ... 19

2.1 Books and publication .. 19

Chapter 3: System Development .. 21

3.1 Text Description to Embedding .. 21

Why Word Embedding ... 22

3.2 Pre-Processing the Images .. 26

Mean and Standard Deviation for Proper Normalisation of Data: 26

Data Augmentation ... 26

3.3Creating Customised Generator Model .. 28

3.4 Training the model .. 30

3.5 Final Web-app Production .. 36

Chapter4: Performance Analysis .. 39

4.1 Evaluation: ... 39

4.2 Training phase snapshots: ... 41

Chapter5: CONCLUSIONS ... 47

5.1 Conclusion: .. 47

52. Future Scopes: .. 47

v

References ... 48

List of Figures

FIGURE 1 A STANDARD GENERATOR ARCHITECTURE FOR OUR TASK ...6

FIGURE 2A STANDARD DISCRIMINATOR FOR OUR TASK ..7

FIGURE 3 THE PAINTING WAS CREATED BY A SIMPLE GAN ...10

FIGURE 4 GAN MODEL ...12

FIGURE 5 ..13

FIGURE 6 ..13

FIGURE 7METHODOLOGY..15

FIGURE 8 ..15

FIGURE 9 BIRD DATASET ..16

FIGURE 10PROCESSING SENTENCES ...21

FIGURE 11ONE HOT ENCODED VECTORS ..22

FIGURE 12EMBEDDING ..23

FIGURE 13LSTM ..24

FIGURE 14 GENERATION PROCESS ...30

FIGURE 15CONVERGENCE FAILURE LOSS ..32

FIGURE 16 CONVERGENCE FAILURE ACCURACY..32

FIGURE 17LEARNING RATE SCHEDULER ..34

FIGURE 18FLOW GRAPH FOR THE WEB APP ..37

FIGURE 19 SAMPLE OF WEB APP ...38

FIGURE 20LOSS GRAPH ...39

FIGURE 21 ACCURACY GRAPH ...40

FIGURE 22 ..41

FIGURE 23 ..41

FIGURE 24 ..41

FIGURE 25 ..42

FIGURE 26 ..42

FIGURE 27 ..42

FIGURE 28 ..43

FIGURE 29 ..43

FIGURE 30 TEXT TO IMAGE ..44

FIGURE 31 ..45

FIGURE 32 ..45

FIGURE 33 ..46

FIGURE 34 ..46

file:///C:/Users/ADITYA%20THAKUR/Downloads/prajwal%20report.docx%23_Toc41478941
file:///C:/Users/ADITYA%20THAKUR/Downloads/prajwal%20report.docx%23_Toc41478946
file:///C:/Users/ADITYA%20THAKUR/Downloads/prajwal%20report.docx%23_Toc41478949

vi

List of Abbreviations

GAN-Generative Adversarial Networks

CNN-Convolutional Neural Network

AI-Artificial Intelligence

ML-Machine Learning

DL-Deep Learning

LSTM-Long Short-Term Memory

RNN-Recurrent Neural Network

ABSTRACT

Synthetic Content Generation Using Machines is a very trending topic in the

field of DeepLearning and it is an extremely difficult task even for the state-of-

the-Art ML algorithms. Theupside of Using Deep Learning to do this is that it

can generate Content that does not existyet. In the recent past Generative

Adversarial Networks (GAN) have shown great promise when it comes to

generating images but they are difficult to train and condition on any particular

input which acts as a downside for them. However, they have tremendous

applications in generating content in an unsupervised learning approach like

generating video, Increasing the resolution of Images or Generating Images

from Text. In this project we look at generating 64*64 Images on the fly using a

text as an Input.The images generated will be unique in terms that they do not

already exist and in doing that we will improve upon already existing

Architecture models and try to reduce the difficulties that come with training

GAN Models like Reduced Training Time and Better Convergence of The

Model.

The Final Project will be a WebApp,where, you can Input a Text and a

Synthetic Image Will be generated Based on the Description of the Text.

3

CHAPTER 1: INTRODUCTION

1.1 Introduction

For a human mind it is very easily to thin of new content. what if someone asks

you to “draw a flower with blue petals”. It is very easy for us to do that. but

machines process information very differently. Just understanding the structure

of the above sentence is a difficult task for them let alone generate something

based on that description.

Automatic synthetic content generation is a field that has been explored in the

past and was discredited because at that time neither the algorithms existed nor

enough processing power that could help solve the problem. However, the

advent of deep learning started changing the earlier beliefs. The tremendous

power of neural networks to capture the features even in the humongous of

datasets makes them a very viable candidate for automatic content generation.

another milestone was achieved when Ian Good Fellow proposed generative

adversarial networks in 2014.

GANs are a kind of architecture in Deep learning that can produce content from

random noise. What is even more unique about GANs is that the content they

create represents the dataset on which they are being trained upon but it is

totally unique in some way or the other.

Generating an image from a text-based description is one aspect of generative

adversarial networks that we will focus upon. Since the GANs follow

unsupervised learning approach we have modified them to take am input as a

condition and generate based on the input condition. This can form base for a

large number of things like synthetic audio generation like the ones used in Siri

or assistant, video content generation from just scripts. imagine entire movies

made out of just the script. These are some uses that many companies are

4

researching about. modifying GANs and applying conditions on them isn’t

limited to just generating images, we can use it to create passwords that are very

hard to crack and numerous similar applications like this

Deep Learning and Content Generation

Deep Learning is a field that utilises and relies completely on Various Flavours

of Neural Networks to Extract Insights from the data and find patterns among

that data. While it has been shown to be very successful in things like Image

Classification (In some datasets even beating human level accuracy by a large

margin) and Time Series Analysis(There are so many factors involved that it

even becomes difficult for a human to take all those into account), A completely

different Aspect of it has been started to explore.

The big Question Being

"Can We use Deep Learning to Generate Content?"

As we know Neural Networks can extract features of a dataset that they have

been trained upon, the goal becomes using those features to create new data

points that do not belong in the dataset itself.

Generative Adversarial Networks

Generative Adversarial Networks (GAN’s) were created by Ian Good Fellow in

2014 in an attempt to generate content instead of just representing it in a

compact form and they are the most successful kind ofDeep Learning Models

that are even remotely close to the task.

What does GAN do?

Basically, it can be trained to generate data from a scratch or random noise.

5

 It consists of two building blocks:

1) Generator:

The task of the Generator is to take in some input and generate something

out of it. In cases ofImages it might take in some noise asinput and

generate an image which might not mean anything Initially. It is simply

the reverse of what a standard Convolutional Neural Network (CNN) is.A

CNN takes in input as an image and down samples it along the height and

width dimensions while increasing it along the channel dimension which

acts as our features essentially. What a Generator Does is it takes in a

down sampled input and through various Up sampling Operations

Generates an Image.

By comparing the real images and the images that is generated by

generator, GAN builds a discriminator that helps us to learn the

differences that makes that image real and then after it will provide

feedback to generator about the image that is to be generated next.

6

Figure 1 A standard Generator Architecture for our task

2) Discriminator:

Generator alone will just generate something random, so basically

discriminator will give guidance to generator on what images it should

create. Discriminator is nothing more than a simple convolutional neural

network that takes in an image as an input and determines whether the

image came from the original dataset or is it an image generated by the

generator. Simply taking in an image as an input it determines whether it

is real or fake (Synthetically Generated by Generator).

7

Figure 2A Standard Discriminator for our Task

8

Why “Adversarial” and How Do they Even Learn

It has been already established that a generator creates an image and a

discriminator identifies whether it is fake or real. But the bigger question is

“How do these two model architectures learn to do that” and in answering that

we will exactly know what “Adversarial” mean in our Context. So, models in

deep learning optimise themselves by using something known as a “Loss

Function”. A loss function is simply a cost function that the model tries to

minimize and in doing so it starts representing the dataset better by fine-tuning

its internal parameters. So, a generator takes in an input and generates an image

which doesn’t mean anything in the beginning. Now the image is being passed

on to a discriminator which can easily identify the difference because essentially

it is very different from what the dataset represents after a few iterations. now

we create two loss functions, one for the generator and other for the

discriminator

Equation 1The loss function for the Generator

Initially the loss is very High for The Generator and in trying to minimize it,

The Generator Starts Creating Images that are closer and closer to the dataset it

is being Trained Upon

Equation 2The loss function for the Discriminator

9

The Discriminator started off easy but it becomes more difficult for it to identify

the real Images from the fake ones. An Ideal Equilibrium is Reached When the

Generator gets so good at creating images that a Discriminator has no other

choice but to take a random guess and all that is achieved by the two loss

functions. If a generator produces an image that is meaningless or drastically

different from the dataset. The loss Function comes out to be high and in trying

to reduce that it generates better images that more accurately represent the

features of the dataset.

10

s

USES

1) Advertising:

It has huge commercial applications. Imagine advertisers Just typing in

the kind of content they want (Scenes) and have the model automatically

build it for them instead of spending thousands of hours of work and

saving them lakhs of rupees which they Otherwise have to Spend.

Figure 3The painting was created by a simple GAN

2) Creation of Dataset:

Deep Learning is a field that requires tremendous amount of data and

most of the times that data isn’t available GANs could be given the

smaller dataset and can learn features from them and in turn create even

more data points that are unique but represent the features of current

dataset.

11

3) Super Resolution:

GANs Could be Used to turn a Low-Resolution Image into a High

Resolution thereby Increasing the quality of the Image.

4) Text to Speech Synthesis:

Generation of Realistic Synthesized Audio from Text is another very

important application of this kind of model where the user enters a text

and a waveform is generated automatically. This is useful in applications

like Assistant

5) Image to Image translation:

Transforming one Image into another is one use of Generative

Adversarial Network that has become very popular. Examples include

Style Transfer and Scene Conversion. Style Transfer means Painting One

Image in the style of Others. Imagine modern day painting in style of

Picasso or a day scene automatically converted to a night scene

6) They can be used in medical field, due to their training, they can be used

for image analysis and even in making of new drugs.

7) It can be used in technology, imagine someone is saying something about

his work and based on his words this will generate a image of what he is

explaining and it will save a lot of time, money and work, they have to go

through.

12

1.2) PROBLEM STATEMENT

Generating Images from Text is a very difficult problem that can be approached

by using Generative Adversarial Networks and will be extremely useful for

content creators wherein they can type a description and have the type of

content generated automatically saving them a lot of money and work. Imagine

Thinking about a Description and having to draw something that matches the

description in a meaningful way. It’s even a difficult task for humans. But Deep

Learning Can Understand the Underlying Structure of The Content and might be

able to generate that automatically. Thereby eliminating the need of domain

expertise.

GANs despite having all the upside for content generation are very difficult to

train and Take a lot of time to converge and are unstable doing the training

process and in this project, we also try to tackle these problems by modifying

the Underlying Structure of the GAN Model

Figure 4 Gan Model

13

1.3) OBJECTIVE

The main objective of this project is to develop a web app in which a text can be

inputted and it outputs an image matching the description of the text and in

doing so try to improve upon the generator architecture of the Generative

Adversarial Networks. By modifying the input to a generator and applying

conditions on the input we can create a model that generates images not from

noise but from a controlled input. In Our case the Controlled Input Being the

text that is Embedded after passing onto another Neural Network

Figure 6
Figure 5

14

15

1.4) METHODOLOGY

Figure 7Methodology

We first start by downloading the Oxford 102 Dataset which contains 102

different Categories of flowers and also contains annotation for each image in

the form of a text Description.

Figure 8

16

After this we download on more data set that is CUB dataset that contains 200

bird species with almost 11700 images.

Figure 9 bird dataset

Next, We Begin importing all the packages and the sub packages and splitting it

into the training, Validation and testing set. The following packages and

libraries are being used to process The Dataset and build the architectures:

 Numpy

 Pytorch

17

 OpenCV

 Flask

We first start by downloading and pre-processing the dataset. During the pre-

processing phase we convert text into embedding and normalize the images so

they are ready to be passed onto respective models We then start to build our

Customised Generator Model and use a standard Pre-trained Model as the

Discriminator After the model Creation we create a training script and take in

some best practices in the field of Deep Learning to train the model with

stability using our customised Pytorch Trainer. The Final task is to wrap up the

final trained model into a Flask Web App so that Testing becomes easy.

18

1.5 Organization

The steps required for the project is:

Chapter 1

In this we provide a brief introduction to all the work that we did in the project

and what the End result looks like. Apart from that we also describe what are

the exact steps followed to reach the results.

Chapter 2

In this chapter we did a literature survey of things already existing whether in

academia or in various conferences. We got to know our basic Understanding

from this.

Chapter 3

In this chapter we go through all the system development process that we did

and describe the algorithms used in detail. From LSTM models to generators

everything involved in the project has been described under this.

Chapter 4

In this chapter we presented the results of the working model with accuracy of

the discriminator and various screenshots of the working model.

Chapter 5

In this we present whatever conclusions that came out of the project and future

works that can be done.

19

Chapter 2: Literature survey

2.1 Books and publication

To understand how to generate content required an extensive study of Deep

Learning and Unsupervised learning and to do that we used various Books and

Publication along with Some Blogs, Talks and Conferences.

To finally be able to generate content we needed to study how to properly do the

following Steps.

 Pre-process the words into embedding. Taking in input as a word and do

proper tokenization

 Creating an LSTM Model and generating embedding using the model.

Using a LSTM model, we need to convert the long sentence description

into a word embedding to pass it into the generator.

 Pre-processing the image and using proper techniques to normalise them.

Normalising and augmenting the images using own methods in numpy.

 Studying various Deep Learning Architectures and pros and cons of each.

Studying about different architectures like auto encoders and GANs that

already exist.

 Studying various methods and already existing architectures like the

resnet.

20

Following books were studied to achieve the following:

1)Natural Language Processing with Python by Steven Bird

In this book I got familiarized with a lot of tools and techniques to process

words and the Overall field of Natural Language Processing and the best

practices to properly process my Input

2)Neural Networks and Deep Learning by Michael Nielsen

In this book I studied various architectures of Deep Learning that are

mostcommonly used today along with proper techniques to train the models and

steps to avoid overfitting and underfitting

3)Generative Adversarial Networks by Ian GoodFellow

Ian GoodFellow is the creator of Generative Adversarial Networks and this

publication helped me understand what GANs are, how they function and more

importantly how can they even do what they do. Also Introduced me to some

Problems like Mode Collapse

21

Chapter 3: System Development

3.1 Text Description to Embedding

The veryfirst step involved in training our model is to convert the text to an

embedding. Neural networks work on vectors and numbers and

cannotessentially doanything if the input format is a text. So the very first thing

we do is utilise a Long short Term Memory (LSTM) network which will take in

the input as a pre-processed text afterremoving unnecessary space and

improving semantics using standard text pre-processing libraries like spacy and

converting the text description into a vector of numbers which is then given as

an input to a pre-trained LSTM and the last layer is taken out which is

essentially the word embedding that we are looking for.

Figure 10Processing Sentences

22

Why Word Embedding

Why exactly do we need to convert our sentence into an Embedding and not just

a one hot Encoded vector.

To Understand that let us take a very simple Example where in once we

represent the Words as one hot encoded Vectors and in the other, we Use an

Embedding Matrix

Figure 11One Hot Encoded Vectors

The issue with representing words like this is:

1. Each word is a very high dimensional vector

2. Those Vectors do not have any kind of relation among them that a model can

Learn and it becomes very difficult for it to learn when it cannot even

understand the relation between words

Now let us Represent them in an Embedding

23

Figure 12Embedding

When Represented like this the embedding for each vector has a meaning. When

Representing these in Euclidean Space we will see that The Two Fruits are

closer to each other while the King and Queen are very similar to each other in

many respects except one which could be Gender.

It is not pre-decided on what features the model should learn but during the

process model Itself decides the best values that reduce the loss and in process it

learns the embedding That makes more sense to it.

24

Long Short-Term Memory Network or LSTM is a type of Recurrent Neural

Network that are very good for processing of long sentences because of its

ability to learn long term dependencies within the text by modifying the weight

of its gate cells.

RNN Typically suffer with a problem that they can’t remember the proper

dependencies When processing text whose length is long. To illustrate that

problem, we will demonstrate Using a very simple Series.Suppose you are being

provided with a series and you have to tell the next number

Example 1) 2->4->6->8

Figure 13LSTM

25

Example 2) 2->4->8

Now in both the series three numbers are common and we know the first series

is a Multiple of 2 while the second one is a power of 2. But when we pass the

numbers to A Model the last input that it gets in both cases is 8 so how should

the modeldistinguish

Between both the series. It should essentially have previous pattern

information combinedwith the current input to output the correct result. But

when the sequence gets longer in Length an RNN fails to factor the previous

information properly as with no proper mechanism to deal with degrading

gradients and at the end it is unable to do any kind of learning

This is the problem that LSTM were built to solve. An LSTM has additional

gates that help It properly retains the information throughout the input. However

Not all information is Important every time. As we go deeper into the sequence

the chances that the next output Depends on a very old input is very less and

that is where the forget gate of LSTM comes into action. At every Step of input

in a sequence an LSTM remodifies the weight of the gates using

backpropagation. In a very simple way, it helps it to determine what kind of

inputs are important at the current step to predict the next word/element in a

sequence. While the forget gate determines how much every input it has seen

earlier in the sequence is important, the input gate helps to decide and update

what information to keep and using combination of these it is able to retain

information even in a long sentence and able to overcome the problems that

arise with Recurrent Networks. The beauty of LSTM is that even a very shallow

LSTM model can understand the structure of a sentence very well due to the

large number of parameters that it has and its very uniqueconfiguration of the

three gates.

26

3.2 Pre-Processing the Images

Mean and Standard Deviation for Proper Normalisation of Data:

We need to properly process the data before passing to the model as this will

Determine the level of accuracy that we can reach Instead of Using the 0 mean

and standard Deviation of 1, we can compute the mean and standard deviation

for each channel easily. for the current dataset the mean comes out to be

[0.484,0.451,0.406] andthe standard deviation comes to be [0.231,0.244,0.412]

Data Augmentation

Data Augmentation will help us to create more data to feed in to the model and

help it to generalise well by letting it see the data in various orientations.we

create our own transformation using Numpy.Here are some of the Augmentation

that we will be implementing

 Random Flip (Horizontal and Vertical)

 Random 90-degree Rotations

 Adding Lightening to the visual channels

Combining the random flip and random rotation we have come up with the 8

dihedral transformations that could be applied to any number of channels and on

any kind of dataset as could be seen in the code snippet we first start by creating

a function which takes in an input x as a tensor(Matrix Representation of Our

Image) and a mode. We do not want to apply these image augmentations when

we are in validation mode and testing the entire thing out in training mode, we

need to randomly apply these transforms. We use the python’s default random

number generator to determine what kind of transformations would be randomly

applied to the image.

27

To flip the image horizontally we first convert our tensor into a numpy array

and then use the numpy fliplr function to flip the array horizontally and flipup to

flip the array vertically. To rotate the image, we generate a random number k

between 0 and 3 which determines how many 90-degree rotations of the array

we will do. The following dihedral transformations could be formed after this

step

 Horizontal Flip + Any of three 90-degree Rotations

 Horizontal Flip with No Rotations

 Vertical Flip + Any of three 90-degree Rotations

 Vertical Flip with No Rotations

28

3.3Creating Customised Generator Model

The way a standard Generator Model Works is that it takes in some input and by

a series of Up sampling or Deconvolution operations, it creates the Image. The

only issue with that is while generating the final output it takes into account is

the Information from the previous layer which are very ideal for tasks like

Classification and Bounding Box Regression. But when dealing with Image

Generation we should also keep into account the original input constraints

without much processing along with the Information in the last layer as it will

not only help the gradient flow better but also help converge the model faster

In the code snippet above we create our customisedgenerator model from

scratch using pytorch .We start off by declaring the class and then initialising

29

the architecture within it.to properly use of pytorch’s inbuilt neural network

layers we need to use super to inherit the properties of the base class we start

off by declaring a convtranspose2d which essentially takes in the input

embedding and starts by doubling along the height and width and reducing

along the channel direction we add a dropout to increase regularization which

not only deals with overfitting the model on the training but also helps the

model generalise on the input features well this is followed by two

convolutional blocks, one doubling along the channel dimension and the other

one taking in that input and again reducing it back to original channel

dimensions without any change in any other dimensions. This was done as inour

practical implementations this trick worked out well now comes the major step

of producing the final image. As we stated earlier that we also need to add in the

original embedding directly. But the issue with that is embedding has different

dimensions altogether. To resolve that we use a simple up sampling operation to

bring the embedding to proper dimension before adding it to the output of last

layer. In terms of equations we can see it aslet the input be x and desired output

be h(x)

Equation 3

where F(x)=Conv Blocks+Non Linearities

Instead of hoping the function to fit to a desired mapping we can specify a

residual mapping and let model reduce it and optimise it so as to bring it closer

to ourdesired output h(x)

As x0 F(x)H(x)

30

Figure 14 Generation process

3.4 Training the model
The training process of a Generative Adversarial Network is a bit complicated

than training a normal Neural Network as it involves training the discriminator

and the generator in an alternating fashion.

31

Step 1: Train the discriminator on original dataset and some random noise to get

the discriminator an edge in identifying real images from random noise. This

step is very important in the beginning as if the discriminator doesn’t already

know to some extentwhat the real dataset should look like.When we use the loss

function to the generator it will give essentially a lower loss than it should

which slows down the initial training. The training eventually stabilises if we do

not train the discriminator first properlybut that takes a lot of time. by doing this

we are decreasing the training time of the model.

Here is the algorithm:

Step 2:Afterthe discriminator has been initially trained for a while, we start by

making a forward pass through the modified generator model and get in a

random image initially and a high loss function, which is then backpropagated

throughout the entire network in order to update and fine tune its internal

parameters. The generated images are stored in a temporary variable and are

passed on to the discriminator in its next phase.

There might be a chance where our gan is not finding the equilibrium between

the discriminator and generator. This graph shows us the loss for the

discriminator in the blue colour and loss for the generator in the orange colour

32

that is both is heading towards zero in the initial phase of the training. It is

possible when gan is not stable.

Figure 15convergence failure loss

This graph shows us the accuracy by the discriminator:

Figure 16 convergence failure accuracy

Here the accuracy of discriminator is 100% which means our gan is perfectly

identifying that weather the image is real or fake. This is the most common

failure and it is called convergence failure.

33

We can further Optimise our Training By following Some Simple Steps

1) Proper Learning Rate Scheduler:

A constant learning rate isn’t ideal when training our model as after some

epochs we should decrease the learning rate by some amount to get closer

to ourdesired value and fine tune the model better. This can be done with

the help of a learning rate scheduler which takes in some input function

and varies the learning rate by that. now decreasing the learning rate is a

very common trend in machine learning. But initially we can increase the

learning rate for a few epochs before starting to reduce it since it allows

the model to jump high losses very quickly and then slowly fine tune as

we can see in the graph it starts with a low learning rate and rises for a

few iterations in an epoch and then it starts to fall down. We can set for

how many iterations in an epoch will the learning rate rise and for how

many iterations will it be decaying for

34

Figure 17Learning Rate Scheduler

2)Using Different Learning Rates for different Layers of the

Discriminator:

Training all the layers with same learning Rate can affect the Training since

theearlier Layers of The model(closer to the Input) are likely to have learned

moregeneral features which we might not want to change that much as

compared to later Layers so for earlier layers even a lower learning rate works

while higher learning rate are suitable for later Layers

3)Using Weight Decay and Dropout to deal with overfitting:

Weight decay and dropout can be used to deal with overfitting. For our sample

dataset a weight decay of 1e-4 and a dropout between 0.10 and 0.23 is working

the best.

 4)Finding an optimal Learning Rate for The Discriminator:

Instead of randomly starting with any learning rate we can train a subset of data

between a learning rate range say 1e-7 to 1e-2 and observe the effect of each

35

learning rate on the loss curve will help us determine the optimum rate. A graph

could be plotted for learning rate vs training loss which could be used to

determine the best learning rate to begin with. Going even further grouping up

few layers we can find out the optimal learning rate for each layer groups and

use that to further optimise the discriminator

36

3.5 Final Web-app Production

We Develop a Web App using flask that presents the user. The user with a web

app and an option to input the text and choose a model from various inference

Models thatwe have trained. On clicking generate Image, the request is

processed in the backend in python and a resultant image using the model is

created and we hit another flask endpoint where the generated Image is

displayed. The following end points have been created in our existing flask

application:

1)Home Route:

At the home endpoint or route, we redirect to the page where the user can

provide with an input if the model has been loaded successfully without any

error. If the chosen model cannot be loaded properly, we redirect to a route

describing the error.

2)Generate Route:

After the user successfully enters a text it is pre-processed into a vector and

passed on to our LSTM model that generates the word embedding. The

embedded vector is then passed to the loaded generator model and is saved onto

a location using timestamp as the file name.

3)Result Route:

After the Image has been successfully generated, we redirect the application to a

page which displays the generated image.

4)Error Route:

The default route in case any error exists.

37

Figure 18Flow graph for The Web App

38

A sample of the WebApp Could be seen in the Images Below:

Figure 19 sample of web app

39

Chapter4: Performance Analysis

4.1 Evaluation:

It is not easy to evaluate the performance of a generative model based on any

metric and mostly humans at the end have to decide whether the generated

content is good or not and whether or not it holds any particular meaning.

However, we can judge the discriminator model in its ability to distinguish real

images from fake ones. now compared to ordinary convolutional models where

high accuracy means better results it isn’t true in the case of generative models.

If the discriminator has very high accuracy in distinguishing real images from

fake ones then that implies generator hasn’t done a very good job in creating

images that represent the dataset well. In the situation of a perfect equilibrium

the discriminator should have an accuracy of 50% that is it has to take a random

guess to determine whether the generated image is fake or not implying the

generator has created images so good that are indistinguishable from the original

images. The closer an accuracy is to 50% the better task the generator has done

in creating images.

Loss graph:

Figure 20loss graph

40

The above graph shows us the loss that is the discriminator loss for the real

images in blue colour and discriminator loss for fake images in orange colour

and generator loss for the generated images in the green colour.

This is an expected loss during this training and it will stabilize after around 100

to 300 epochs. The discriminator loss for the real and the fake images is

approximately 50% and the generator loss for the generated images is between

to 50% to 70 %.

Accuracy graph:

Figure 21 accuracy graph

This graph shows us the accuracy by the discriminator for the real images that is

in blue color and for the fake images in orange color.

This GAN model will get stabilized in 100 to 300 epochs and after that it will

give us an accuracy approximately in between 70% to 80% and it will remain

stabilized after that.

41

4.2Training phase snapshots:

In the starting as we get those images that have more or less noise but without

any meaning.

Figure 22

After about 55 epochs the results starts improving a little bit and the noise starts

making some sense.

Figure 23

And slowly we start moving towards our final Model

Figure 24

Here are some text descriptions with our first data set and their results.

A flower that is yellow and white in colour:

42

Figure 25

A flower having pink petals:

Figure 26

A flower with white petals and purple and white anthers:

Figure 27

A flower with maroon petals and green leaves:

43

Figure 28

A flower having pink petals and they are curled upwards:

Figure 29

Finally, we stop the training and load up our Inference model and here are the

results after using the web app.

44

Figure 30 text to image

Now these are the results we get from our second data set that is of birds:

80 random pics of birds:

45

Figure 31

A bird with a red head:

Figure 32

A bird that is yellow in colour:

46

Figure 33

A bird which is flying and it has white wings:

Figure 34

47

Chapter5: CONCLUSIONS

5.1 Conclusion:

In this project we have created a web app that can take in text description of a

flower and bird and generate images based on that. And while doing that we

have modified the generator architecture in such a way that we have reduced the

training time of GAN.

52. Future Scopes:

For the Future Work we can take the 64*64 image that we have obtained

through our results and using Super Resolution convert it into a 256*256 image

which can again be accomplished with the help ofGAN. We can make two

stages of the GAN that is the first stage will give us image that is 64*64 and

second stage will give us 256*256 image.

48

References

[1] M. Arjovsky and L. Bottou. Towards principled methods for training

generative adversarial networks. In ICLR, 2017.

[2] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Neural photo editing with

introspective adversarial networks. In ICLR, 2017.

[3] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. Mode regularized

generative adversarial networks. In ICLR, 2017.

[4] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel.

Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. In NIPS, 2016.

[5] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image

models using a laplacian pyramid of adversarial networks. In NIPS, 2015.

[6] C. Doersch. Tutorial on variational autoencoders. arXiv:1606.05908, 2016.

[7] J. Gauthier. Conditional generative adversarial networks for convolutional

face generation. Technical report, 2015.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In NIPS,

2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In CVPR, 2016.

[10] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie. Stacked

generative adversarial networks. In CVPR, 2017.

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, 2015.

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation

with conditional adversarial networks. In CVPR, 2017.

[13] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR,

2014.

[14] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther.

Autoencoding beyond pixels using a learned similarity metric. In ICML, 2016.

49

[15] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz, Z.

Wang, and W. Shi. Photo-realistic single image super-resolution using a

generative adversarial network. In CVPR, 2017.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.

Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014.

[17] E. Mansimov, E. Parisotto, L. J. Ba, and R. Salakhutdinov. Generating

images from captions with attention. In ICLR, 2016.

[18] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative

adversarial networks. In ICLR, 2017.

[19] M. Mirza and S. Osindero. Conditional generative adversarial nets.

arXiv:1411.1784, 2014.

[20] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug &

play generative networks: Conditional iterative generation of images in latent

space. In CVPR, 2017.

[21] M.-E. Nilsback and A. Zisserman. Automated flower classification over a

large number of classes. In ICCVGIP, 2008.

[22] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with

auxiliary classifier gans. In ICML, 2017.

[23] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. In ICLR, 2016.

[24] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee. Learning

what and where to draw. In NIPS, 2016.

[25] S. Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep representations of

fine-grained visual descriptions. In CVPR, 2016.

[26] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee.

Generative adversarial text-to-image synthesis. In ICML, 2016.

[27] S. Reed, A. van den Oord, N. Kalchbrenner, V. Bapst, M. Botvinick, and

N. de Freitas. Generating interpretable images with controllable structure.

Technical report, 2016.

[28] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation

and approximate inference in deep generative models. In ICML, 2014.

50

[29] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X.

Chen. Improved techniques for training gans. In NIPS, 2016

.

	Candidate’s Declaration
	ACKNOWLEDGEMENT
	List of Figures
	List of Abbreviations
	ABSTRACT
	CHAPTER 1: INTRODUCTION
	1.1 Introduction
	Deep Learning and Content Generation
	Generative Adversarial Networks

	USES
	1.2) PROBLEM STATEMENT
	1.3) OBJECTIVE
	1.4) METHODOLOGY
	1.5 Organization

	Chapter 2: Literature survey
	2.1 Books and publication

	Chapter 3: System Development
	3.1 Text Description to Embedding
	Why Word Embedding

	3.2 Pre-Processing the Images
	Mean and Standard Deviation for Proper Normalisation of Data:
	Data Augmentation

	3.3Creating Customised Generator Model
	3.4 Training the model
	3.5 Final Web-app Production

	Chapter4: Performance Analysis
	4.1 Evaluation:
	4.2Training phase snapshots:

	Chapter5: CONCLUSIONS
	5.1 Conclusion:
	52. Future Scopes:

	References

