
Backbone Formation Algorithm for Wireless Sensor Networks 

Project report submitted in partial fulfilment of the requirement for 

the degree of Bachelor of Technology 

in 

Computer Science and Engineering 

By 

Modita Behl  (121276) 

Under the supervision of  

Dr. Ravindara Bhatt 

 

 

Department of Computer Science & Engineering and Information 

Technology 

Jaypee University of Information Technology Waknaghat, 

Solan-173234, Himachal Pradessh 



 

i 
 

CANDIDATE’S DECLARATION 

I hereby declare that the work presented in this report entitled “Backbone Formation 

Algorithm for Wireless Sensor Networks”   in partial fulfilment of  the requirements 

for the award of the degree of Bachelor of Technology in Computer Science and 

Engineering submitted in the department of Computer Science & Engineering and 

Information Technology,  Jaypee University of Information Technology, Waknaghat is an 

authentic record of my own work carried out over a period from August 2015 to 

December 2015 under the supervision of Dr. Ravindara Bhatt Assistant Professor, 

Department of Computer Science and Engineering. 

The matter embodied in the report has not been submitted for the award of any other 

degree or diploma. 

 

Modita Behl,  121276 

 

CERTIFICATE 

This is to certify that the above statement made by the candidate is true to the best of my 

knowledge. 

 

 

Dr. Ravindara Bhatt 

Assistant Professor 

Dept. of Computer Science and Engineering 

Dated: 

 



 

ii 
 

ACKNOWLEDGEMENT 

 

By the grace of God, I take this opportunity to express special thanks to all those who 

have been associated directly or indirectly with the accomplishment of my project work. 

First and foremost, I would like to express my profound gratitude to my respected 

guide Dr. Ravindara Bhatt, Assistant Professor, Department of Computer Science and 

Engineering, JUIT, Solan, for his valued guidance, supervision, and encouragement 

during the course of this study.  

I will fail in my duty if I do not acknowledge the efforts of my project partner for 

the 7
th

 semester Sanchit Kumar [121272] for his assistance, co-operation and 

encouragement for completion of this work. 

I also express my sincere regards and thanks to Prof. Dr. S.P Ghrera, Professor 

and Head of the Department, Computer Science and Engineering, JUIT, Solan, for his 

continuous inspiration regarding completion of project work in due time. 

The co-operation from the staff members of Department of Computer Science and 

Engineering and the staff in the computer lab, library, and office is also gratefully 

acknowledged. 

I cannot forget to recall with my heartiest feeling, the never ending heart felt 

stream of blessings and cooperation of my parents to support me with every thing for B. 

Tech. in the pioneer Department of Computer Science and Engineering in JUIT, Solan. 

I express my deep sense of gratitude towards, Brig. (Retd.) K.K Marwah, 

Registrar, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 

Prof. Dr. RMK Sinha Dean CSE&IT for continuous inspiration and blessings for time 

completion of this project.   

Place: - Waknaghat                                                       [MODITA BEHL]        

Date:-30
th

 May, 2015                                                    

 



 

iii 
 

CONTENTS 

           Page 

Certificate          i 

Acknowledgement         ii 

Contents          iii 

List of Abbreviations          v 

List of Figures          vi 

List of Tables          vii 

Abstract          viii 

          

Chapter 1: INTRODUCTION        1 

1.1 What is WSN?        1 

 1.2 Applications of WSN       1 

 1.3 2-D and 3-D WSN       4  

 1.4 Challenges with WSN       4  

 1.5 Deployment of nodes in WSN      5 

 1.6  What is backbone?       5 

 1.7  Problem Statement       6 

 1.8  Objective        6 

 1.9 Motivation        7 

 1.10  Methodology        7 

 1.11 Organization         7 

    

Chapter 2: LITERATURE SURVEY       8 
 2.1 Backbone formation Algorithms      8 

 2.2 Routing in WSN       14 

 2.3 Optimal Sink Placement       17 

 

Chapter 3: SYSTEM DEVELPOMENT      19 
   3.1 Two dimensional System Development     19  

  3.1.1 Delaunay Triangulations in 2D     19 

  3.1.2 Voronoi Diagram in 2-D     20 

  3.1.3 Minimum Spanning Tree in 2D     20 

  3.1.4 Connected Dominating Set in 2D    21 

  3.1.5 Steiner Tree Algorithm-I in 2D     22 

  3.1.6 Steiner Tree Algorithm-II in 2D     22 

  3.1.7 2D Greedy Routing      23 

  3.1.8 Voronoi Routing Algorithm in 2-D    23 

  3.1.9 Optimal Sink Placement in 2-D     24 

 3.2  Three  dimensional System Development    25 

  3.2.1 Delaunay Triangulations in 3D     25 

  3.2.2 Voronoi Diagram in 3-D     25 

  3.2.3 Minimum Spanning Tree in 3D     26 

  3.2.4 Connected Dominating Set in 3D    27 

  3.2.5 Steiner Tree Algorithm-I in 3D     27 

  3.2.7 3D Greedy Routing      28 

  3.2.8 Voronoi Routing Algorithm in 3D    29 

  3.2.9 Optimal Sink Placement in 3D     29 



 

iv 
 

Chapter 4: PERFORMANCE ANALYSIS      31 
 4.1 Simulation Environment      31 

4.2 Simulation results of backbone construction over 2-D   33 

4.3 Simulation results of backbone construction over 3-D   36 

4.4  Simulation results for Greedy and Voronoi routing in 2-D  39  

4.5 Simulation results for Greedy and Voronoi routing in 3-D  40  

4.6 Simulation results for optimal sink placement over 2-D   41 

4.7 Simulation results for optimal sink placement over 3-D   42  

  

Chapter 5: CONCLUSION        44 
 5.1 Conclusions        44 

 5.2 Future Work        45 

 

REFERENCES         46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

LIST OF ABBREBRIATIONS 

1. WSN     Wireless Sensor Networks 

2. CDS    Connected Dominating Set 

3. MST    Minimum Spanning Tree 

4. DT    Delaunay Triangulations 

5. MCDS    Minimum Connected Dominating Set 

6. VR    Voronoi Routing 

7. PUDT    3D partial unit Delaunay triangulation 

8. MDT    Multi Hop Delaunay Triangulations 

9. DTR    Delaunay Triangulations Routing 

10. CR    Compass Routing 

11. RCR    Randomized Compass Routing  

12. IS    Independent  Set 

13. MIS    Maximal Independent Set 

14. GR    Greedy Routing 

15. UDG    Unit Disk Graphs 

16. DBG    Disk Graphs with Bi directional  

17. LEACH    Low-energy adaptive clustering hierarchy LEACH 

18. UAVs    Unmanned Air Vehicles 

19. UGSN    Underground Sensor Networks 

20. UWSN    Underwater acoustic sensor network 

21. DS    Dominating  Set 

22. GC    Geographical Center 

23. ST    Steiner Tree 

 

 

 

 

 



 

vi 
 

LIST OF FIGURES 

Figure No. Caption                           Page No. 

 

1.1  Architecture of WSN       1 

1.2  Applications of WSN       2 

1.3  Challenges with WSN       5  

4.1(a)  Uniform random distribution in 2-D     32 

4.1(b)  Normal distribution in 2-D      32 

4.1(c)  Exponential  distribution in 2-D     32 

4.1(d)  Grid random distribution in 2-D     32 

4.2(a)  Uniform random distribution in 3-D     32 

4.2(b)  Normal distribution in 3-D      32 

4.2(c)  Exponential  distribution in 3-D     33 

4.2(d)  Grid random distribution in 3-D     33 

4.3  Percentage of Nodes in Backbone V/S node distribution in 2-D  34 

4.4  Percentage of Nodes in Backbone V/S No. of Nodes in 2D  35  

4.5  Cost of Tree V/S No. of Nodes in 2D     36 

4.6  Percentage of Nodes in Backbone V/S node distribution in 3-D 37 

4.7  Percentage of Nodes in Backbone V/S No. of Nodes in 3-D  38 

4.8  Cost of Tree V/S No. of Nodes in 3-D    39 

4.9  No. of hops V/S no. of nodes in 2-D     40 

4.10  No. of hops V/S no. of nodes in 3-D     41 

4.11  Energy Consumed V/S No. of Nodes in 2-D    42 

4.12  Energy Consumed V/S No. of Nodes in 3-D    43 

 



 

vii 
 

LIST OF TABLES 

Table No.            Caption                  Page No. 

 

4.1    Simulation Parameters   31 

4.2    Percentage Nodes in Backbone in 2-D 34 

4.3    Percentage Nodes in Backbone in 2-D 35 

4.4    Cost V/S no. of nodes in 2-D   36 

4.5    Percentage Nodes in Backbone in 2-D 37 

4.6    Percentage Nodes in Backbone in 2-D 37 

4.7    Cost V/S no. of nodes in 2-D   38 

4.8    No. of Hops V/S no. of nodes in 2-D  39 

4.9    No. of Hops V/S no. of nodes in 3-D  41  

4.10    Energy Consumed in 2-D   41 

4.11    Energy Consumed in 3-D   42 

 

 

 

 

 

 

 

 

 



 

viii 
 

ABSTRACT 

A wireless sensor network (WSNs) are the spatially distributed sensors which are used 

 to monitor the physical or environmental conditions.  Such nodes after collecting the data 

co-operatively pass the data from one node to another and finally to the sink node.  The 

wireless sensor network has a varied no. of applications from military applications such 

as battlefield surveillance, health care applications, the prevention of natural disasters, 

water pollution monitoring etc. Hence, WSN has now emerged to be a premier topic of 

research. In spite of the numerous applications of WSN they also face a number of 

challenges. A few challenges include energy constrained node deployment, lack of fixed 

topology, deployment in harsh environmental conditions etc. Hence, for an efficient and 

reliable design of such networks we require an architectural framework which counters 

the prevailing problems of WSN. The hierarchical framework formed for deployment of 

WSNs effectively overcomes the above discussed problem. In our work we have 

implemented the well known backbone formation algorithm which is a type of 

hierarchical framework for deployment of nodes. The backbone formation reduces the 

existing challenges of WSN deployment and has a number of advantages such as it 

reduces the communication overhead, increases the bandwidth efficiency, decreases the 

overall energy consumption, and, at last, increases network effective lifetime in a 

Wireless Sensor Network.  In addition to this we further implemented three types of 

backbone based networks over two-dimensional and three-dimensional. The major reason 

for implementation in three-dimension is because the varied applications of WSN’s are 

mostly in three dimensional scenarios. 

In our work we implemented  algorithms for backbone formation namely 

Connected Dominating Set, Minimum Spanning Tree, Steiner Tree in two-dimension as 

well as in three dimension. We also analyse the performances of the three algorithms in 

both two-dimensional and 3D systems. Simulations results indicate that CDS is better for 

a two-dimensional network, whereas for three-dimensional steiner tree based approach is 

beneficial.  



 

ix 
 

As far as sink placement is concerned we evaluate sink placement based on three 

metrics: geographical centre, minimum eccentricity node and sink placement based on 

maximum node weight. The two routing algorithms namely greedy and voronoi routing 

were also implemented in both 2-D and 3-D. The greedy routing proved to be better if we 

need to have delivery in minimum no, of hops and if packet delivery is to be ensured the 

voronoi routing proved to be better. 

 

 

 

 

 



 

1 
 

CHAPTER-1 

INTRODUCTION 

1.1.  What is WSN? 

Wireless Sensor Networks (WSNs), are spatially distributed autonomous sensors which 

are used to  monitor the physical or environmental conditions, such  as 

temperature, sound, pressure, etc. and to mutually pass their data through the network to 

the base station (BS) or the sink node.  Figure 1.1 illustrates the basic architecture of a 

WSN. 

 

 

 

 

 

 

 

 

Fig 1.1 

 
Figure No. 1.1 

 

1.2.  Applications of WSN 

Nowadays, the development of wireless sensor networks for various                                                                                                     

applications, such as environmental monitoring, health monitoring, industrial process 

automation, battlefields surveillance has become possible due to the rapid advances in 

both of wireless communications and sensor technology. Figures 1.2 illustrate some of the 

major applications of the wireless sensor networks. The following are a few applications 

of WSN. 

 

 

Gateway Node 

  Sensor Node 

 
Event 

USER 

https://en.wikipedia.org/wiki/Autonomous
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Pressure


 

2 
 

 

Area monitoring 

Area monitoring is a common application of WSNs. In area monitoring, the WSN is 

deployed over a region where some phenomenon is to be monitored. A military example 

is the use of sensors detects enemy presence; a civilian example is the geo-fencing of gas 

or oil pipelines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure No. 1.2 Application of WSN 

 

Health care monitoring 

The medical applications can be of two types: wearable and implanted. Wearable devices 

are used on the body surface of a human or just at close proximity of the user. The 

implantable medical devices are those that are inserted inside human body. There are 

many other applications too e.g. body position measurement and location of the person, 

overall monitoring of ill patients in hospitals and at homes. Body-area networks can 

collect information about an individual's health, fitness, and energy expenditure.  

 

https://en.wikipedia.org/wiki/Geo-fence


 

3 
 

 

Environmental/Earth sensing 

There are many applications in monitoring environmental parameters,
 
examples of which 

are given below. They share the extra challenges of harsh environments and reduced 

power supply. 

Air pollution monitoring 

Wireless sensor networks have been deployed in several cities (Stockholm, London, 

and Brisbane) to monitor the concentration of dangerous gases for citizens. These can 

take advantage of the ad hoc wireless links rather than wired installations, which also 

make them more mobile for testing readings in different areas.  

Forest fire detection 

A network of Sensor Nodes can be installed in a forest to detect when a fire has started. 

The nodes can be equipped with sensors to measure temperature, humidity and gases 

which are produced by fire in the trees or vegetation. The early detection is crucial for a 

successful action of the fire fighters; thanks to Wireless Sensor Networks, the fire brigade 

will be able to know when a fire is started and how it is spreading. 

Landslide detection 

A landslide detection system makes use of a wireless sensor network to detect the slight 

movements of soil and changes in various parameters that may occur before or during a 

landslide. Through the data gathered it may be possible to know the occurrence of 

landslides long before it actually happens. 

Water quality monitoring 

Water quality monitoring involves analyzing water properties in dams, rivers, lakes & 

oceans, as well as underground water reserves. The use of many wireless distributed 

sensors enables the creation of a more accurate map of the water status, and allows the 

https://en.wikipedia.org/wiki/Stockholm
https://en.wikipedia.org/wiki/London
https://en.wikipedia.org/wiki/Brisbane
https://en.wikipedia.org/wiki/Air_pollution
https://en.wikipedia.org/wiki/Forest_fire
https://en.wikipedia.org/wiki/Landslide
https://en.wikipedia.org/wiki/Water_quality


 

4 
 

permanent deployment of monitoring stations in locations of difficult access, without the 

need of manual data retrieval. 

Natural disaster prevention 

Wireless sensor networks can effectively act to prevent the consequences of natural 

disasters, like floods. Wireless nodes have successfully been deployed in rivers where 

changes of the water levels have to be monitored in real time. 

Hence, WSN has now emerged as a topic of great importance because of the wide 

application area this 

1.3.  2D and 3D WSN 

The 2D deployment of WSN includes only distances in xy plane and all the sensors are in 

the same height while 3D deployment xy distance plus sensor height is considered. For 

some sensor applications the 2D deployment is valid but if the transmission range of a 

sensor is more than the height of the network then this added third dimension is too large 

to be neglected. This paves a path for research of 3D WSN separately. The 3D WSN have 

attracted major attention in past few years since most of the sensor applications e.g 

underwater sensor Network, under ground Sensor Network and Air borne sensor network 

are all in 3D.  

1.4.  Challenges with WSN  

The major challenge in the design and development of wireless sensor networks is due to 

the constraints that are imposed on the sensing, storage, processing, and communication 

features of the sensors. The figure 1.3 illustrates a few of the major challenges imposed in 

implementation of WSNs are bandwidth and energy limitations, no physical backbone 

infrastructure in Wireless Sensor Networks, lack of the fixed topology, energy 

consumption constraints.  

https://en.wikipedia.org/wiki/Natural_disaster
https://en.wikipedia.org/wiki/Natural_disaster


 

5 
 

 

Figure No. 1.3 Major Challenges in WSN 

The above mentioned challenges have paved a way for research in formation of a 

hierarchical structure for WSNs. More specifically formation of backbone in wireless 

sensor networks which has been explained in the coming sub sections. 

1.5. Deployment of Nodes in WSN 

The WSN can be deployed in a certain number of ways namely: 

a.  Homogeneous: Such deployment consists of sensor nodes with same abilities in 

terms of  computing power and sensing range, transmission range, node lifetime  

b. Heterogeneous: Such deployment consists of sensor nodes with different abilities 

in terms of different computing power and sensing range, transmission range, 

node lifetime. 

c.  Hierarchical: In this type of deployment nodes in the network may have 

different types, abilities or assigned roles e.g., Backbone nodes  

d. Non-hierarchical: All nodes in the network have same types, abilities and 

assigned roles 

1.6. What is a Backbone? 

Backbone is a hierarchical network consists of a subset of nodes. The backbone nodes are 

more powerful as compared to normal nodes in terms of computation capabilities, range, 

energy etc.  



 

6 
 

The subset of nodes formed as a part of backbone is responsible for routing-related 

tasks. Further, the backbone also removes unnecessary transmission links through 

shutting down some of redundant nodes. The backbone also guarantees the network 

connectivity in order to deliver data efficiently in a WSN. Backbones are able to perform 

especial tasks and serve nodes which are not in backbone. With the help of an efficient 

and reliable backbone topology the routing of the network improves significantly. 

Further, backbone helps to improve the lifetime of the network, increases the throughput, 

ensures network connectivity and provides fixed topology to the WSN. 

1.7. Problem Statement  

WSN can be based on flat architecture which in turns leads to high energy consumption, 

inefficient design, lack of fixed topology, low throughput etc. In order to provide an 

efficient architecture WSN based networks can be arranged in a hierarchical manner. We 

have implemented WSN backbone based on well-known approaches as MST, CDS, and 

Steiner tree over 2-D and 3-D network design. Such arrangements help to improve the 

effective lifetime of the network, provide fixed topology, increases bandwidth efficiency 

etc. There is a need to have a backbone for a network which helps in designing the WSNs 

in 2-D and 3-D more effectively reducing the challenges otherwise faced in their 

deployment. 

 

1.8. Objective 

The main objectives of our work are summarised as follows: 

I. We implement a backbone based WSN for 2D terrains and 3D space with 

the help of well-known approaches such as MST, CDS, Steiner. We then 

placed the sink at optimal position with respect to the backbone formed. 

II. We also implement greedy and voronoi routing algorithms over the 2D 

and 3D networks. 

 

 

 



 

7 
 

1.9. Motivation 

WSN is widely used in applications such as health monitoring, military surveillance, 

water pollution monitoring, natural disaster prevention etc. However, these nodes are 

energy constrained nodes, lack fixed topology, face problems related to efficient use of 

bandwidth etc. Hence, for an efficient and reliable design of such networks we require a 

architectural framework which counters the prevailing problems of WSN. The 

hierarchical framework formed for deployment of WSNs effectively overcomes the above 

discussed problem. Hence, we have implemented the well known Backbone formation 

algorithms which have reduced the existing challenges of WSN deployment. 

Most of the most prevalent applications of WSN require them to be deployed in 3D 

environment. Thus these require framework architecture in 3D scenarios hence 

considering the major applications of WSN which are in 3-D than in 2-D we have 

implemented the backbone formation algorithms not only in 2-D but also in 3-D. 

1.10. Methodology 

The various backbone formation algorithms were designed and implemented. Further, 

they were executed for varying no. of nodes and various types of node distribution such 

as Random, Normal, Grid and exponential distribution. Then for performance analysis the 

various results were compared to find out which algorithm is best suited for which 

scenario. This whole procedure was done for both 2D distribution of nodes and 3D 

distribution of nodes. 

1.11. Organization 

The organization of our work is as follows: 

In chapter titled “Introduction” we provide a brief in sight of WSN networks, their 

applications and challenges related to them and how challenges have lead to importance 

of construction of Backbone. Chapter 2 give the brief references of the work done in 

related field by various researchers. Chapter 3 discusses the methodology and briefly 

describes the algorithms implemented. We analysed the performance of algorithms 

discussed in chapter 3 in chapter 4. We further investigate the results obtained. Finally, in 

our last chapter we discuss the conclusions and future Scope of our work.  



 

8 
 

 

CHAPTER-2 

LITERATURE SURVEY  

In this chapter we discuss the previous work that has been done on the backbone 

formation algorithms, routing algorithms and algorithms for optimal sink placement.  

 

2.1. Backbone Formation Algorithms 

In “A New Classification of Backbone Formation Algorithms for Wireless Sensor 

Networks” by Razieh Asgarnezhad and Javad Akbari Torkestani [8] classified the 

backbone formation algorithms. From varied aspects, backbone formation algorithms can 

be classified into different types. Keeping some classifications in view, they presented a 

few instances of these classifications and proposed new hybrid methods.  

A. Grid Partitioning-Based Backbone:   

In this type of backbone formation algorithm the area of the network is divided into grids 

and one node in each grid is selected as a backbone node.  Geographical adaptive fidelity 

(GAF) is a grid partitioning algorithm for backbone construction. In this method, each 

GAF node uses location information itself. The algorithm also divides the network into 

virtual grids so that nodes are distributed into small virtual grids. Any node in one grid 

can directly communicate with any node in the other grid. This is why that all nodes in 

the same grid are equivalent. Thus, one node from each grid is enough to construct a 

connected backbone. According to virtual grid, any node in adjacent grid can 

communicate with each other. The communication range is supposed deterministic. 

Assume r is the size of the virtual grid, and also R is the transmission range. Because any 

two nodes in adjacent grids can be communicate with each other, this equation can be 

used for grids. 

B. Clustering-Based Backbone:  

Clustering is method for partitioning nodes of the network into groups. CHs are used to 

dominate the other nodes within the clusters. Clustering can provide a hierarchical 



 

9 
 

architecture for efficient routing. At most existing solutions for clustering usually consists 

of two phases: construction and maintenance. In the first phase, nodes are chosen to act 

such as coordinators of the clusters. Then, clustering maintenance is required to 

reorganize the clusters due to mobility and failure of nodes. Low-energy adaptive 

clustering hierarchy (LEACH) is a protocol. According to this protocol randomly decide 

whether or not to become CHs. The parameter used in decision making is the percentage 

of desired CHs in the network. In this protocol, sensors that decide to become CHs 

broadcast their decision. Each node reports to the CH with the highest signal strength. 

Selection of CHs is periodically repeated to balance energy consumption of nodes. The 

structure of the clusters constructed through LEACH is inefficient because the sink may 

be very far from many CHs.  A clustering algorithm proved that only clustering schemes 

that position their resultant clusters within the isoclusters of the monitored phenomenon 

are guaranteed to reduce the nodes’ energy consumption and extend the network lifetime. 

This was the first clustering algorithm; it employs the similarity of the nodes’ readings as 

the main criterion in cluster formation. Another algorithm proposed a mechanism as no 

two CHs could be direct neighbours and any other node should be adjacent to at least one 

CH. Each node has a unique node key and also knows the keys of its one hop neighbours. 

The basic idea behind the CH algorithm is to use the node key as a priority indicator 

when selecting CH in each cluster. Each node compares its key with the keys of its 

neighbours. At first, all nodes are undecided. If a undecided node has the lowest key 

among its undecided neighbours, the node decides to create its own cluster and broadcasts 

the decision and its key as the cluster key. Upon receiving a message from a neighbour so 

that announces itself to be a CH, each undecided node will declare itself as a non-CH 

node and also will inform its neighbours through transmitting a message. 

C. Connected Dominating Set  (CDS)-Based Backbone: 

From various aspects, CDS construction algorithms can be classified into different types. 

Keeping some classifications in view, we exhibited a few instance of these classifications.   

 1) UDG and DGB: The CDS construction algorithms can classified into two types: Unit 

Disk Graph (UDG) based algorithms and Disk Graphs with Bidirectional (DGB) links. In 

UDG and DGB, the link between any pair of nodes is bidirectional. The nodes 



 

10 
 

transmission ranges in UDG are the same but in DGB are different. The MCDS in UDG 

and DGB has been shown to be NP-hard.  

2) MIS based and Non-MIS based Independent set (IS) of a graph G is a subset of 

vertices so that no two vertices are adjacent in the subset. Maximal Independent set (MIS) 

is an IS, so that it is not a subset of any other IS. Note that in an undirected graph, a MIS 

is also a Dominating Set (DS). The MIS based algorithms have two kinds of realization. 

The optimal node selection is based on some criteria such as node degree, rest energy of 

node, and node id.  

3) Centralized algorithm and Decentralized algorithm Algorithms that construct a CDS 

can be divided into two types: centralized and decentralized. The centralized algorithms 

in general result in a smaller CDS with a better performance ratio than that of 

decentralized algorithm. The decentralized algorithms also can be divided into two types: 

distributed and localized. In distributed algorithms, the decision process is decentralized. 

But in the localized algorithm, the decision process is not only distributed also requires 

only a constant number of communication rounds. Most of the distributed algorithms find 

a MIS and connect this set. 

Two CDS construction approaches were proposed. The first algorithm begins through 

marking all vertices white. It selects the node with the maximal number of white 

neighbours. The selected vertex is marked black and also its neighbours are marked grey. 

The algorithm iteratively seeks the gray nodes and their white neighbours and selects the 

gray node or the pair of nodes, whichever has the maximal number of white neighbours. 

The selected node or the selected pair of nodes is marked black, and also their white 

neighbours marked grey. Finally, the algorithm terminates, when all of the vertices are 

marked grey or black. All the black nodes form a CDS. This algorithm results in a CDS 

of size at most 2(1+H(∆)).│OPT│, where H is the harmonic function and OPT refers to 

an MCDS. 

The second algorithm also begins through colouring all nodes white. A piece is defined to 

be either a connected black component or a white node. The algorithm includes two 

phases. The first phase iteratively selects a node that yield the maximum reduction of the 

number of pieces. A node is marked black and its white neighbours are marked grey when 

it is selected. The first phase terminates when no white node left. There exists at most 



 

11 
 

│OPT│ number of connected black components. The second phase constructs a Steiner 

Tree until connects all the black nodes through colouring chains of two grey and black 

nodes. The size of the resulting CDS formed via all black nodes is at most 

(3+ln(∆)).│OPT│. 

A greedy algorithm was proposed for MCDS in UDGs. At first, all nodes are coloured 

white. The construction of a CDS includes four phases. The first phase is computing an 

MIS and colouring all its members red. In the second phase, a node selects that it can 

decrease the maximum number of pieces. This node is coloured black and all its non-

black neighbours are coloured grey. After the second phase, we still have some white 

nodes left. The third phase will compute a spanning tree for each connected component in 

the sub graph reduced through all white nodes. All non-leaf tree nodes are coloured black 

but leaf nodes are coloured grey. The last phase will scan chains of two gray nodes to 

connect disjoint black components. 

The conclusion of the research paper was that the backbone has proven to be an effective 

construct within which to solve a variety of problems that arise in WSNs. In this paper, 

we classified backbone formation algorithms and a few instances of these classifications 

and proposed hybrid approaches of these classifications. Also, we have surveyed some 

famous backbone formation algorithms in term of time and message complexity. 

Significant attention has been paid to backbone formation algorithms yielding a large 

number of publications. Backbone construction depends on the task to be carried. A 

backbone reduces the communication overhead, increases the bandwidth efficiency, 

decreases the overall energy consumption and at last increases network effective lifetime 

of a WSN. The important issue that we can be reached is selection algorithm according to 

our use. 

Connected Dominating set  

In “Approximation Algorithms for Connected Dominating Sets” by Sudipto Guhay [9] 
 

and Samir Khuller presented two approximation algorithms for CDS problem. The first 

algorithm develops a greedy algorithm for solving the problem.  

 

 

 



 

12 
 

Algorithm I 

An algorithm was introduced that calculates a connected dominating set, by growing a 

tree. 

The idea behind the algorithm is the following: 

We grow a tree T which is started from the vertex of maximum degree. At each step a v 

in T is picked and scanned. By Scanning a vertex, it adds edges to T from v to all its 

neighbours not in T. In the end we get a spanning tree T, and all the non leaf nodes are 

picked as the Connected Dominating set. Initially all vertices are unmarked. When we 

scan a vertex (colour node black), we mark all its neighbours that are not in T and add 

them to T (colour them grey). Thus marked nodes that have not been scanned are leaves 

in T (gray nodes). The algorithm continues scanning marked nodes, until all the vertices v 

are marked (gray or black). The set of scanned nodes (black nodes) will form the CDS in 

the end. 

The main question is what rule should we use for picking a vertex to be scanned? A 

natural choice is to pick the vertex that has the maximum number of unmarked (white) 

neighbours.  

Algorithm II 

An alternate approach to growing one connected tree is to grow separate components that 

form a dominating set and to then connect them together. One straightforward approach is 

to find a dominating set using a greedy heuristic, and to use a Steiner tree approximation 

to connect it. The algorithm runs in two phases. At the start of the first phase all nodes are 

coloured white. Each time we include a vertex in the dominating set, we colour it black. 

Nodes that are dominated are coloured grey (once they are adjacent to a black node). In 

the first phase the algorithm picks a node at each step and colours it black, colouring all 

adjacent white nodes gray. A piece is defined as a white node or a black connected 

component. At each step we pick a node to colour black that gives the maximum (non-

zero) reduction in the number of pieces. We show that at the end of this phase if no vertex 

gives a non-zero reduction to the number of pieces, then there are no white nodes left. 



 

13 
 

In the second phase, we have a collection of black connected components that we need to 

connect. Recursively connect pairs of black components by choosing a chain of two 

vertices, until there is one black connected component. Our final solution is the set of 

black vertices that form the connected component. 

Steiner Algorithm -1   

In “Spanning Trees and Optimization Problems,” by Bang Ye Wu and Kun-Mao Chao [1], they 

have explained Steiner Trees as while spanning tree spans all vertices of a given graph, a 

Steiner tree spans a given subset of vertices. In the Steiner minimal tree problem, the 

vertices are divided into two parts: terminals and non terminal vertices. The terminals are 

the given vertices which must be included in the solution. The cost of a Steiner tree is 

defined as the total edge weight. A Steiner tree may contain some non terminal vertices to 

reduce the cost. Let V be a set of vertices. In general, we are given a set L ⊂ V of 

terminals and a metric defining the distance between any two vertices in V . The objective 

is to find a connected sub-graph spanning all the terminals of minimal total cost. Since the 

distances are all nonnegative in a metric, the solution is a tree structure. Depending on the 

given metric, two versions of the Steiner tree problem have been studied. 

• (Graph) Steiner minimal trees (SMT): In this version, the vertex set and metric is 

given by a finite graph. 

• Euclidean Steiner minimal trees (Euclidean SMT): In this version, V is the entire 

Euclidean space and thus infinite. Usually the metric is given by the Euclidean distance 

(L2-norm). That is, for two points with coordinates (x1,y2) and (x2,y2), the distance is p 

(x1 − x2)
2 

+ (y1 − y2)
2
. 

A well-known method to approximate an SMT as has been discussed in [9] is to use a 

minimal spanning tree (MST). First we construct the metric closure on L, i.e., a complete 

graph with vertices L and edge weights equal to the shortest path lengths. Then we find an 

MST on the closure, in which each edge corresponds to one shortest path on the original 

graph. Finally the MST is transformed back to a Steiner tree by replacing each edge with 

the shortest path and some straightforward post processing to remove any possible cycle. 



 

14 
 

Steiner Algorithm-2  

In this algorithm described by Mohamed Younis and Rahul Waknis, in “Connectivity 

Restoration in WSN using Steiner Tree Approximations”[7], we draw the MST over the 

network in Phase I. Further, we introduce new Steiner Nodes by finding centre of the 

circle of radius r which spans some nodes in MST (at most 3). When such centre is found, 

remove the edges that link these nodes in spanning tree and connecting them to the centre 

of the disc yields a lower cost tree  

2.2. Routing in WSN 

Advances in wireless sensor networks (WSNs) technology have been undergoing a 

revolution that promises a significant impact on society. Most existing wire-less systems 

and protocols are based on two-dimensional design, where all wireless nodes are 

distributed in a two-dimensional (2D) plane. However, 2D assumption may no longer be 

valid if a wireless network is deployed in space, atmosphere, or ocean, where nodes of a 

network are distributed over a three-dimensional (3D) space and the differences in the 

third dimension are too large to be ignored. In fact, recent interest in wireless sensor 

networks hints at the strong need to design 3D wireless networks. The characteristics of 

3D wireless sensor networks require more effective methods to ensure routing and data 

dissemination protocols in these networks. [5] 
 

The following are the few Routing algorithms of WSN which have be taken from 

Prosenjit Bose and Pat Morin in “Online Routing in Triangulations” [2] 

Greedy Routing. The greedy routing (GR) algorithm always moves the packet to the 

neighbour gdy(vcur) of vcur that minimizes dist(gdy(vcur),vdst), where dist(p,q) denotes 

the Euclidean distance between p and q. In the case of ties, one of the vertices is chosen 

arbitrarily. The greedy routing algorithm can be defeated by a triangulation T in two 

ways: (1) the packet can get trapped moving back and forth on an edge of the 

triangulation (2) the packet can get trapped on a cycle of three or more vertices. 

Compass Routing:  The compass routing (CR) algorithm always moves the packet to the 

vertex cmp(vcur) that minimizes the angle vdst, vcur, cmp(vcur) over all vertices adjacent 

to vcur. Here the angle is taken to be the smaller of the two angles as measured in the 



 

15 
 

clockwise and counter clockwise directions. In the case of ties, one of the (at most 2) 

vertices is chosen using some arbitrary deterministic rule. 

Randomized Compass Routing: In this section, we consider a randomized routing 

algorithm that is not defeated by any triangulation. Let cw(v) be the vertex in N(v) that 

minimizes the clockwise angle vdst, v, cw(v) and let ccw(v) be the vertex in N(v) that 

minimizes the counter clockwise angle vdst, v, ccw(v). Then the randomized compass 

routing (RCR) algorithm moves the packet to one of {cw(vcur),ccw(vcur)} with equal 

probability. 

Right-Hand Routing: The folklore “right-hand rule” for exploring a maze states that if a 

player in a maze walks around never lifting her right-hand from the wall, then she will 

eventually visit every wall in the maze. More specifically, if the maze is the face of a 

connected planar straight line graph, the player will visit every edge and vertex of the 

face. 

Delaunay Triangulation Routing: The Delaunay triangulation approximates the 

complete Euclidean graph to within a constant factor in terms of shortest path length. In 

the following we will use the notation x(p) (resp. y(p)) to denote the x-coordinate (resp. 

y-coordinate) of the point p, and the notation |X| to denote the Euclidean length of the 

path X. Consider the directed line segment from vsrc to vdst. This segment intersects 

regions of the Voronoi diagram in some order, say R0 ... Rm−1, where R0 is the Voronoi 

region of vsrc and Rm−1 is the Voronoi region of vdst. The Voronoi routing (VR) 

algorithm for Delaunay triangulations moves the packet from vsrc to vdst along the path 

v0...vm−1 where vi is the site defining Ri. An example of a path obtained by the Voronoi 

routing algorithm is shown in Fig. 3.2. Since the Voronoi region of a vertex v can be 

computed given only the neighbours of v in the Delaunay triangulation, it follows that the 

Voronoi routing algorithm is an O(1) memory routing algorithm. We prove an even 

stronger result by giving an algorithm that finds a path whose cost is at most a constant 

times dist(vsrc,vdst). 

The results shown in this research paper included: 



 

16 
 

(1) Two deterministic memoryless routing algorithms, one that works for all Delaunay 

triangulations and the other that works for all regular triangulations 

(2) A randomized memoryless algorithm that works for all triangulations  

(3) An O(1) memory algorithm that works for all convex subdivisions 

(4) An O(1) memory algorithm that approximates the shortest path in Delaunay 

triangulations 

(5) Theoretical and experimental results on the competitiveness of these algorithms. 

 

3D Greedy Routing in Delaunay Triangulations 

In the “The Art of WSN” [2] a routing technique 3D Greedy Routing in Delaunay 

Triangulations is explained. Delaunay triangulation has been used as routing topology for 

wireless ad hoc networks since building the Delaunay triangulation needs global 

information and the length of a Delaunay edge could be longer than the maximum 

transmission range, several methods use local structures to approximate the Delaunay 

triangulation. This also break the delivery guarantee of 3D greedy routing over them. 

Recently, Lam and Qian proposed to use a virtual Delaunay triangulation to aid 

geographic routing. They called their routing method multi-hop Delaunay triangulation 

(MDT). The key idea is to relax the requirement that every node be able to communicate 

directly with its neighbour in Delaunay triangulation. In a MDT, the neighbour of a node 

may not be a physical neighbour. A virtual link represents a multi-hop path between 

them. When the current node u has a packet with destination t, it forwards to a physical 

neighbour closest to t if u is not a local minimum; otherwise the packet is forwarded via a 

virtual link to a multi-hop Delaunay neighbour closest to. Due to Theorem, MDT can 

guarantee the packet delivery using a finite number of hops. Simulations also show MDT 

has low routing stretch from efficient forwarding of packets out of local minimum. In S.S. 

Lam, C. Qian, Geographic routing in d-dimensional spaces with guaranteed delivery. 



 

17 
 

And low stretch, in Proceedings of the ACM SIGMETRICS joint international conference 

on Measurement and Modelling of Computer Systems, SIGMETRICS ’11, the authors 

provided detailed methods to construct and maintain the multi-hop Delaunay triangulation 

at each node. However, such construction and maintaining are not purely localized. MDT 

also works for 2D networks or networks with higher dimension. Liu and Wu also used a 

Delaunay structure to divide the 3D network into closed subspace and then proposed a 

greedy-hull-greedy (GHG) routing, which uses hull routing over the subspace to escape 

the local minimum and guarantee the delivery. It is a 3D analogue to face routing in 2D. 

First, a 3D partial unit Delaunay triangulation (PUDT) is constructed to define network 

hulls (structures corresponding to subspaces) in 3D networks. Here, PUDT construction 

basically removes intersecting triangles and edges. It can be proven that if there is no 

intersecting edge and triangle, then there is no overlapping tetrahedra. This is because 

when two tetrahedra overlap, one of the four triangles on the first tetrahedron must 

intersect a triangle on the second tetrahedron; moreover, if two triangles intersect, an edge 

of one of the triangles must intersect the other triangle. Notice that unlike in Delaunay 

triangulation 3D greedy can encounter a local minimum in PUDT. Once a packet travels 

to a local-minimum during 3Dgreedy forwarding in GHG, one of the adjacent hulls of the 

local-minimum is selected such that the message can recover from the local-minimum by 

searching the nodes on this hull. GHG selects the hull whose subspace contains the 

segment connecting the local-minimum and destination, and uses a depth-first-search to 

travel this hull. Eventually, it can send the message to the node where greedy can be 

recovered. This local search of possible recover node over the surface of the subspace is 

very similar to the one used in GRG. 

2.3. Optimal Sink Placement 

In “Optimal sink placement in backbone assisted wireless sensor networks” [9], by 

Snigdh said that by placing the sink at a specific position, energy scavenging and delay 

constraints can effectively be controlled in WSN. Typical WSN scenarios assume the 

message routed towards the sink that usually is the root of the tree. This strategy suffers 

from the problem of hot spots ending into communication disruption due to single node 

failure closest to the sink. Adopting a graph based topology offers us the choice of 



 

18 
 

variable routes and sink placement which usually turns out to be the geographical centre 

or the end of the region under observation. The argument biasing this structure is based 

on achieving maximal coverage under one sink. However, their research confirmed that 

graph centroid placement of the sink node is better in terms of network delay and energy 

consumption rather than having a sink rooted tree for a communication backbone. Also, 

our results show that the message forwarding to the sink (in terms of the hop count) is the 

least for either the graph theoretic centre or centroid. This ensures minimum delay and 

lesser energy consumption per node and hence a longer lifetime.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 
 

CHAPTER – 3 

SYSTEM DEVEOPMENT 

We implemented three well known algorithms for backbone formation for Wireless 

Sensor Network in 2-D and 3-D. We developed an experimental model for system 

development. The following three objectives were to be achieved: 

1. Backbone Formation in 2D and 3D using MST, CDS and Steiner Tree 

2. Optimal Sink placement 

3. Implementing routing algorithms in 2D and 3D i.e. Voronoi and Greedy routing 

 

3.1. Two Dimensional System Development 

The following steps were taken for the system development:  

1. Topology construction using random distribution of nodes 

2. Topology construction for different distribution of 100 nodes i.e uniform random, 

normal, grid and exponential distribution. 

3. Obtaining the adjacency matrix of the graph obtained in step 1. According to the 

constant range of each node, checking if any two neighbouring nodes are in each 

others range or not. 

4. Computing the Delaunay Triangulation of the obtained graph. 

5. Computing the Voronoi diagram of obtained graph. 

6. Computing the backbone of the network obtained. 

7. Implementing the routing algorithms i.e Greedy and Voronoi Routing. 

8. Optimal sink placement.  

 

3.1.1.  Delaunay Triangulations 

A Delaunay triangulation for a set P of points in a plane is a triangulation DT(P) such that 

no point in P is inside the circumcircle of any triangle in DT(P). there are numerous 

algorithms for computing triangulations, it is the favorable geometric properties of the 

Delaunay triangulation that make it so useful. The fundamental property is the Delaunay 

criterion. In the case of 2-D triangulations this is often called the empty circumcircle 



 

20 
 

criterion. For a set of points in 2-D, a Delaunay triangulation of these points ensures the 

circumcircle associated with each triangle contains no other point in its interior.  

1. We used dt = delaunay(X,Y) to create a 2-D Delaunay triangulation of the points 

(X,Y), where X and Y are column-vectors.  

2. The function triplot(tri, X(:,1), X(:,2)) was used to plot the hence obtained 

triangulations.  

 

3.1.2.  Voronoi Diagram 

 A Voronoi diagram is a partitioning of a plane into regions based on distance to points in 

a specific subset of the plane. That set of points (called seeds, sites, or generators) is 

specified beforehand, and for each seed there is a corresponding region consisting of all 

points closer to that seed than to any other. These regions are called Voronoi cells. The 

Voronoi diagram of a set of points is dual to its Delaunay triangulation. Put simply, it's a 

diagram created by taking pairs of points that are close together and drawing a line that is 

equidistant between them and perpendicular to the line connecting them. The Voronoi 

diagram of a discrete set of points X decomposes the space around each point X(i) into a 

region of influence R{i}. Locations within the region are closer to point i than any other 

point. The region of influence is called the Voronoi region. The collection of all the 

Voronoi regions is the Voronoi diagram. 

For constructing the Voronoi Diagram: 

1.  We first constructed the Delaunay Triangulations using dt = delaunay(X,Y). 

2. [V, C] = voronoiDiagram(dt) was used to construct the voronoi diagram. 

 

3.1.3. Minimum Spanning Tree 

A minimum spanning tree is a spanning tree of a connected, undirected graph. It connects 

all the vertices together with the minimal total weighting for its edges. A single graph can 

have many different spanning trees. There are different algorithms for construction of 



 

21 
 

Minimal Spanning Tree Construction such as Prims and Kruskals. The MST was 

constructed using the following algorithm: 

MST-PRIM (G,V,E,w) 

1. for each u € V[G] 

2.        do key[u]←∞ 

3.             Π[u]←NIL 

4. Key[r]←0 

5. Q←V[G] 

6. While Q≠Φ 
7.       do u ← EXTRACT-MIN(Q) 

8.          for each  v € Adj[u] 

9.              Do if v  Q and w(u,v) < key[v] 

10.                       Then π[v] ← u 

11.                             Key[u] ← w(u,v) 

 

Analysis of Algorithm: The total time for Prims algorithm is O(E log(V)). 

3.1.4. Connected Dominating Set 

In graph theory, a connected dominated set and  a maximum leaf spanning tree are two 

closely related structures defined on an undirected graph. A connected dominating set of a 

graph G is a set D of vertices with two properties: Any node in D can reach any other 

node in  D by a path that stays entirely within D. That is, D induces a connected subgraph 

of G. Every vertex in G either belongs to D or is adjacent to a vertex in D. We used the 

following algorithm for construction of CDS. 

 

CDS-G(V,E,w) 
1. W← 1 to no. of nodes, G ←Φ, B ← Φ 

2. B← Max_Deg_Node 

3. G← Neighbour(Max_Deg_Node) 

4. While (union(G,B)≠ W) 

5.          for each node € G 

6.                B←Find_Next_Black_Node  

7.                G←Neighbour(B) 

8.                Remove B from G 

 

The main question was how do we find the next node to be added in B array, for that we 

chose the node that we chose the node that had the maximum no. of unscanned or 

unmarked nodes i.e the nodes which have not earlier been entered in G or B array. 

Analysis of algorithm: The above algorithm can be implemented in O(m) time. 



 

22 
 

 

3.1.5. Steiner Tree Algorithm-1 

While a spanning tree spans all vertices of a given graph, a Steiner tree spans a given 

subset of vertices. In the Steiner minimal tree problem, the vertices are divided into two 

parts: terminals and non terminal vertices. The objective is to find a connected sub graph 

spanning all the terminals of minimal total cost. The cost of a Steiner tree is defined as the 

total edge weight.  

Cost = ∑ wtree         (1) 

Where wtree weight (Euclidean distance) of each respective edge in the tree. 

Steiner Ratio= Cost(MST)/Cost(Steiner Tree)    (2) 

Steiner ratio in general metric is 2. The following algorithm was used to construct the 

Steiner Tree Algorithm: 

Steiner Tree G(V,E,w) and Terminal set of vertices L ∈ V 
1.  Construct the metric closure GL on the terminal set L  

2.  Find an MST TL on GL.  

3.  T ← ∅.  

4.  for each edge e = (u,v) ∈ E(TL) in a depth-first-search order of TL do  

5.          Find a shortest path P from u to v  on G.  

6.          if Length(P) > 2 then  

7.              Add P to T;  

8.          else  Let pi and pj be the first and the last vertices already in T 

9.                 Add subpaths from u to pi and from pj to v to T.  

10. Output T. 

Analysis of the algorithm: The time complexity of the algorithm is O(|V ||L|2), 

dominated by the construction of the metric closure. 

3.1.6. Steiner Tree Algorithm-2 

Steiner Tree optimization to minimize overall cost by introducing a set of vertices called 

Steiner points. We aim at minimizing the total distance of transmission and hence the 

energy consumed in transmission. The following algorithm was used in constructing the 

Steiner Algorithm: 



 

23 
 

1. Form MST of Network 

2. Introduce new Steiner Nodes by finding center of the circle of radius r which 

spans some nodes in MST (at most 3) 

3. When such center is found, remove the edges that link these nodes in spanning 

tree and connecting them to the center of the disc yields a lower cost tree.  

3.1.7. Greedy Routing                                                                                  

  The greedy routing (GR) algorithm always moves the packet to the neighbour of current 

vertex that minimizes the distance between the neighbour and the final destination. This 

whole cycle is repeated until we reach the final destination. The pseudo algorithm is as 

follows:  

Greedy Routing- G(V,E,w) and scr, dest 

1. Curnode = scr, Path ← NIL 

2. While curnode ≠ dest 

3.           Nxtnode ← Minimze_Dist(Neighbour(curnode), dest) 

4.           Curnode = nxtnode 

5.           Add curnode to Path 

6.  Output Path 

Analysis of Algorithm: The complexity of this algorithm was O(n
2
) i.e for finding the 

next node from the set of neighbours of current node. 

3.1.8. Voronoi Routing  

In this algorithm we used the voronoi diagram previously constructed. The packet was 

transmitted based the constructed voronoi cells in following manner: 

Voronoi Routing- G(V,E,w) and src, dest 

1. Line ← Join(src,dest) 

2. Curnode=src, Path ← NIL 

3. While curnode ≠ dest 

4.           Find_Intersection(Line, R0 ... Rm−1 ) 

5.           Curnode ← Center(Ri) 

6.            Add curnode to Path 

7. Output Path 

 



 

24 
 

3.1.9. Optimal Sink Placement  

Once the backbone has been formed we need to decide on where the sink has to be 

placed. At fist the question what is a sink node? In wireless sensor networks (WSNs), 

all the data collected by the sensor nodes are forwarded to a sink node. Therefore, the 

placement of the sink node has a great impact on the energy consumption and lifetime 

of WSNs. Hence, we used three strategies for placing the sink node 

1. At the geographical center  

Assuming ‘N’ sensors placed in a field and represented as (xi,yi) coordinates in 

two dimensional plane, the ‘GC(X,Y)’ of any topology is calculated as:  

GC(X,Y) =∑xi/n,∑yi/n. 

2. At the node on backbone node with minimum eccentricity i.e called the center 

Eccentricity of vertex x is defined as distance from x to the vertex farthest from x 

in V(T). Thus, E(x) =max dT(x,V), for V €V(T). Therefore, the vertex with 

minimum eccentricity is the centre.  

3. At the node with maximum weight called the centroid 

In a tree T (V,E), the number of subtrees of any vertex v is equal to its degree and sum of 

branches (in a subtree) corresponds to the weight of the subtree at v. The weight of the 

heaviest subtree of vertex v is designated as weight of vertex v and the minimum 

weighted vertex is designated as Centroid of tree T. Once the sink is placed we need to 

compare which placement of sink is best suited in terms of Energy Consumption. 

Random Event Detection 

For comparing the performance of the optimal sink placement we generated a random 

event at any co-ordinate (x,y) and find which all nodes are in the vicinity of the event. 

The nodes in vicinity act as source nodes and start sending the sensed data to the sink. 

Meanwhile we measure the average energy used in transmitting the packet to the sink 

node. Hence,  we measure the performance of the optimal sink placement. 

 



 

25 
 

3.2. Three Dimensional System Development 

The following steps were taken for the system development: 

1. Topology construction using random distribution of nodes. 

2. Obtaining the adjacency matrix of the graph obtained in step 1. According to the 

constant range of each node, checking if any two neighbouring nodes are in each 

others range or not. 

3. Computing the Delaunay Triangulation of the obtained graph. 

4. Computing the Voronoi diagram of obtained graph. 

5. Computing the backbone of the network obtained. 

6. Implementing the routing algorithms i.e Greedy and Voronoi Routing. 

7. Optimal sink placement. 

3.2.1. Delaunay Triangulations 

In the case of 3-D triangulations this is often called the empty circumsphere criterion. For 

a set of points in 3-D, a Delaunay triangulation of these points ensures the circumsphere 

associated with each tetrahedron contains no other point in its interior. This property is 

important. The circumsphere associated with a certain point should be empty. It does not 

contain a point in its interior.  

For constructing the Delaunay triangulations: 

1.  dt=delaunay(x,y,z); function was used. 

2. tetramesh fuction of matlab was used to plot the triangulations in 3D. 

 

3.2.2.  Voronoi Diagram 

 A Voronoi diagram is a partitioning of  3D plane into regions based on distance to points 

in a specific subset of the plane. That set of points (called seeds, sites, or generators) is 

specified beforehand, and for each seed there is a corresponding region consisting of all 

points closer to that seed than to any other. These regions are called Voronoi cells in 3D. 

The Voronoi diagram of a set of points is dual to its 3D Delaunay triangulation. It's a 

diagram created by taking pairs of points that are close together and drawing a line that is 



 

26 
 

equidistant between them and perpendicular to the line connecting them. The Voronoi 

diagram of a discrete set of points X decomposes the space around each point X(i) into a 

region of influence R{i}. Locations within the region are closer to point i than any other 

point. The region of influence is called the Voronoi region. The collection of all the 

Voronoi regions is the Voronoi diagram. For constructing the Voronoi Diagram: 

1. We first constructed the Delaunay Triangulations using dt = DelaunayTri(X) 

2. [V, C] = voronoiDiagram(dt) was used to construct the voronoi diagram. 

 

3.2.3.  Minimal Spanning Tree 

A minimum spanning tree is a spanning tree of a connected, undirected graph. It connects 

all the vertices together with the minimal total weighting for its edges. A single graph can 

have many different spanning trees. There are different algorithms for construction of 

Minimal Spanning Tree Construction such as Prims and Kruskals. The weights w in the 

following algorithm refer to the Euclidean distance between two points in 3D. The MST 

was constructed using the following algorithm: 

MST-PRIM (G,V,E,w) 

1. Construct the metric closure GL on the terminal set L  

2.  Find an MST TL on GL.  

3.  T ← ∅.  

4.  for each edge e = (u,v) ∈ E(TL) in a depth-first-search order of TL do  

5.          Find a shortest path P from u to v  on G.  

6.          if Length(P) > 2 then  

7.              Add P to T;  

8.          else  Let pi and pj be the first and the last vertices already in T 

9.                 Add subpaths from u to pi and from pj to v to T.  

10. Output T. 

 

Analysis of Algorithm: The total time for Prims algorithm is O(E log(V)). 

 

 

3.2.4. Connected Dominating Set 

In graph theory, a connected dominated set and  a maximum leaf spanning tree are two 

closely related structures defined on an undirected graph. A connected dominating set of a 

graph G is a set D of vertices with two properties: Any node in D can reach any other 



 

27 
 

node in  D by a path that stays entirely within D. That is, D induces a connected subgraph 

of G. Every vertex in G either belongs to D or is adjacent to a vertex in D. We used the 

following algorithm for construction of CDS and the weight w refers to the Euclidean 

distance between two points in 3D 

CDS-G(V,E,w) 

1. W← 1 to no. of nodes, G ←Φ, B ← Φ 

2. B← Max_Deg_Node 

3. G← Neighbour(Max_Deg_Node) 

4. While (union(G,B)≠ W) 

5.          for each node € G 

6.                B←Find_Next_Black_Node  

7.                G←Neighbour(B) 

8.                Remove B from G 

 

 

The main question was how do we find the next node to be added in B array, for that we 

chose the node that we chose the node that had the maximum no. of unscanned or 

unmarked nodes i.e the nodes which have not earlier been entered in G or B array. 

Analysis of algorithm: The above algorithm can be implemented in O(m) time where m 

is the no. of edges in the graph.  

3.2.5. Steiner Tree Algorithm-1 

While a spanning tree spans all vertices of a given graph, a Steiner tree spans a given 

subset of vertices. In the Steiner minimal tree problem, the vertices are divided into two 

parts: terminals and non terminal vertices. The objective is to find a connected sub graph 

spanning all the terminals of minimal total cost. The cost of a Steiner tree is defined as the 

total edge weight.  

Cost = ∑ wtree         (1) 

where wtree weight (Euclidean distance) of each respective edge in the tree. 

Steiner Ratio= Cost(MST)/Cost(Steiner Tree)    (2) 



 

28 
 

Steiner ratio in general metric is 2.  The following algorithm was used to construct the 

Steiner Tree Algorithm wherein weight w refers to the Euclidean distance between two 

points in 3D. 

Steiner Tree G(V,E,w) and Terminal set of vertices L ∈ V 
1.  Construct the metric closure GL on the terminal set L  

2.  Find an MST TL on GL.  

3.  T ← ∅.  

4.  for each edge e = (u,v) ∈ E(TL) in a depth-first-search order of TL do  

5.          Find a shortest path P from u to v  on G.  

6.          if Length(P) > 2 then  

7.              Add P to T;  

8.          else  Let pi and pj be the first and the last vertices already in T 

9.                 Add subpaths from u to pi and from pj to v to T.  

10. Output T. 

Analysis of the algorithm: The time complexity of the algorithm is O(|V ||L|2), 

dominated by the construction of the metric closure. 

3.2.6.  Greedy Routing 

The greedy routing (GR) algorithm always moves the packet to the neighbour of current 

vertex that minimizes the distance between the neighbour and the final destination. This 

whole cycle is repeated until we reach the final destination. The pseudo algorithm is as 

follows where w refers to the weight i.e. Euclidean distance between two points in 3D.  

Greedy Routing-G(V,E,w) and scr, dest 
1. Curnode = scr, Path ← NIL 

2. While curnode ≠ dest 

3.           Nxtnode ← Minimze_Dist(Neighbour(curnode), dest) 

4.           Curnode = nxtnode 

5.           Add curnode to Path 

6.  Output Path 

Analysis of Algorithm: The complexity of this algorithm was O(n
2
) i.e for finding the 

next node from the set of neighbours of current node. 

 

 



 

29 
 

3.2.7. Voronoi Routing  

In this algorithm we used the voronoi diagram previously constructed. The packet was 

transmitted based the constructed voronoi cells in following manner: 

Voronoi Routing- G(V,E,w) and src, dest 

1. Line ← Join(src,dest) 

2. Curnode=src, Path ← NIL 

3. While curnode ≠ dest 

4.           Find_Intersection(Line, R0 ... Rm−1 ) 

5.           Curnode ← Center(Ri) 

6.            Add curnode to Path 

7. Output Path 

 

3.2.7. Optimal Sink Placement  

Once the backbone has been formed we need to decide on where the sink has to be 

placed. At fist the question what is a sink node? In wireless sensor networks (WSNs), all 

the data collected by the sensor nodes are forwarded to a sink node. Therefore, the 

placement of the sink node has a great impact on the energy consumption and lifetime of 

WSNs. Hence, we used three strategies for placing the sink node 

1. At the geographical center  

Assuming ‘N’ sensors placed in a field and represented as (xi,yi) coordinates in 

two dimensional plane, the ‘GC(X,Y)’ of any topology is calculated as:  

GC(X,Y) =∑xi/n,∑yi/n, ∑zi/n. 

2. At the node on backbone node with minimum eccentricity i.e called the center  

Eccentricity of vertex x is defined as distance from x to the vertex farthest from x 

in V(T). Thus, E(x) =max dT(x,V), for V €V(T). Therefore, the vertex with 

minimum eccentricity is the centre.  

3. At the node with maximum weight called the centroid 

In a tree T (V,E), the number of subtrees of any vertex v is equal to its degree and 

sum of branches (in a subtree) corresponds to the weight of the subtree at v. The 

weight of the heaviest subtree of vertex v is designated as weight of vertex v and 

the minimum weighted vertex is designated as Centroid of tree T. 

Once the sink is placed we need to compare which placement of sink is best suited in 

terms of Energy Consumption.  



 

30 
 

 

Random Event Detection 

For comparing the performance of the optimal sink placement we generated a random 

event at any co-ordinate (x,y,z) and find which all nodes are in the vicinity of the event. 

The nodes in vicinity act as source nodes and start sending the sensed data to the sink. 

Meanwhile we measure the average energy used in transmitting the packet to the sink 

node. Hence, we measure the performance of the optimal sink placement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

CHAPTER – 4 

PERFORMANCE ANALYSIS 

We now provide the simulation parameters and setting for the evaluation of the 

performance of various algorithms implemented for backbone formation.  In section 4.1 

we provide topological parameters for  evaluation of our network. 

4.1. Simulation Environment 

As shown in Table 4.1, four types of node distribution are considered in our work are 

uniform random distribution, normal distribution, exponential distribution and grid 

distribution.  

 

Table No. 4.1 Simulation Parameters 

Parameter Value 

Topology dimension 2-D, 3-D  

Node distribution random, normal, exponential, grid 

Network size (number of nodes) {25, 50, 75, 100} 

Network area 100X100 in 2D 

100X100X100 in 3D 

Range 50 m 

Tool Used MATLAB R2012A 

 

We also taken into account the different dimensions for simulation as 2-D and 3-D. 

Further, the transmission range of the sensor node is taken as 50 meters of range. The 

number of nodes varies from 25 to 100 in steps of 25 nodes. The network model is taken 

as 100 *100 for 2-D , and 100*100*100 for 3-D. 

Deployment of nodes: The deployment of nodes in 2D and 3D can be either known i.e 

deterministic and unknown i.e. un-deterministic. For deterministic deployment we have 

used grid distribution in 2D and 3D. For un-determinist deployment of nodes we have 

used uniform random, normal and exponential distribution of nodes.  Figure 4.1 (a) – (d) 

illustrates the four types of distribution considered in our work in 2D. 



 

32 
 

  

 

         Figure 4.1 (a): Uniform random in 2D             Figure 4.1 (b): Normal in 2D 

 

 

          Figure 4.1 (c): Exponential in 2D                Figure 4.1 (a): Grid in 2D 

       

                                                    

 

         Figure 4.2 (a): Uniform Random in 3-D  Figure 4.2 (b): Normal in 3-D 



 

33 
 

 

Figure 4.2 (c): Exponential in 3-D                            Figure 4.2 (d): Grid in 3-D 

The four distributions considered are as follows: 

a. Uniform Random: The 100 nodes are uniformly distributed over the 2-D or 

the 3-D space.  The figure no. 4.1(a) and 4.2(a) shows the uniform random 

distribution in 2D and 3D respectively. 

b. Normal Distribution: 100 nodes with range 50 m was deployed in 

100X100 and 100X100X100 space. Mean and standard deviation was 

taken out to be 50 and 25 respectively. The hence obtained distribution is 

shown in figure 4.1(b) and 4.2(b) respectively for 2D as well as for 3D. 

c. Exponential Distribution: 100 nodes with range 50 m was deployed in 

100X100 and 100X100X100 space. Mean was taken out to be 50. The 

figure 4.1(c) and 4.2(c) shows the distribution of nodes hence obtained. 

d. Grid Distribution: In this distribution the 100 nodes were distributed in 

100X100 space with transmission range of 50 m in form of a grid. This 

type of distribution is deterministic. The figure 4.1(d) and 4.2(d) shows the 

distribution of nodes hence obtained. 

We now construct backbone over these nodes with the help of well-known approaches 

available in the literature in our next section. 

4.2.  Simulation Results for Backbone construction of nodes over 2D 

The backbone formation algorithms specified in Chapter 3 were implemented over the 

distribution of nodes obtained in the previous sections. Metrics selected for measuring the 

performance of backbone nodes is percentage of the nodes in the backbone. 

 

 



 

34 
 

Table No. 4.2 Percentage Nodes in Backbone 

Distribution/Percentage of nodes in 

the backbone 

Uniform 

Random 

Distribution 

Grid 

distribution 

Normal 

distribution 

Exponential 

distribution 

%age of Nodes in CDS Backbone 11 9 12 19 

%age of nodes in Steiner Backbone 28 24 11 33 

%age of nodes in MST Backbone  100 100 100 100 

 

Table 4.2 illustrates the percentage nodes in the backbone for various distributions of 

nodes, the number of nodes were taken to be 100, dimension was  taken as 100* 100 for 

2D. 

 

Figure No. 4.3: Percentage of Nodes in Backbone V/S Distribution of Nodes in 2D 

As it is clear from the figure no. 4.3 that CDS backbone consisted for lesser no. of nodes 

for all the distribution of nodes than that in steiner tree. Lesser no. of backbone directly 

imply lesser active nodes which further imply lesser energy consumption. Hence, CDS 

proved to be better for backbone construction than Steiner Tree for different node 

distribution. Further, the algorithms for backbone formation as have been described in 

Chapter – 3 were implemented for variable no. of nodes i.e 25, 50, 75, 100 with 

transmission range of 50 m in the area of 100X100. The following figure no. 4.3 shows 

the plot between the percentages of nodes in backbone with the total no. of nodes. 



 

35 
 

Table No. 4.3 Percentage Nodes in Backbone 

N/Percentage of Nodes in Backbone 25 50 75 100 

%age of Nodes in CDS Backbone 40 24 12 11 

%age of nodes in Steiner Backbone 32 32 29.3 28 

%age of nodes in MST Backbone  100 100 100 100 

 

When 25, 50, 75 and 100 nodes were deployed in 100 X 100 area as the no. of nodes 

increased with constant transmission range the percentage of nodes in CDS backbone 

showed a decreasing trend. The increased node density can be one of the reasons. As the 

node density increases the no. of neighbours of each node increase and a single node has 

a greater reach to rest of the nodes. 

 

 

Figure No. 4.4: Percentage of Nodes in Backbone V/S No. of Nodes in 2D 

 

While for 25 nodes 18 nodes comprised of the backbone it reduced to 12 nodes for 50 

nodes and further for 75 and 100 nodes too it showed a decreasing trend. For no. of nodes 

in Steiner tree also the percentage of nodes in backbone slightly reduced as the no. of 

nodes increased. The reason behind this trend is that as the density of nodes increase the 

no. of terminal nodes decrease this leads to slight lesser percentage of nodes in the 

backbone. The following table and graph shows the variation of Steiner Cost and MST 



 

36 
 

Cost as the no. of nodes increase. The Steiner Cost has been described in Chapter 3 as 

formula no. 1. And Steiner Cost has also been described in Chapter 3 as formula no. 2.  

Table No. 4.4 Cost  

N/Cost 25 50 75 100 

Steiner Tree Cost 295 370 380 505 

MST Cost 650 705 986 1344 

Steiner Ratio 2.2 1.9 2.95 2.6 

  

The graph show as figure no. 4.5 the plot of comparison of Steiner Cost and MST Cost 

with varying no. of nodes. As it us evident the Cost increases as the no. of nodes increase. 

 

Figure No. 4.5: Cost of Tree V/S No. of Nodes in 2D 

Moreover, when we calculated the steiner ratio i.e MST Cost / Steiner Cost it came out to 

be approximately 2 which verifies it with the original ratio value of the Steiner 

Algorithm.  

4.3.  Simulation Results for Backbone construction of nodes over 3D 

The algorithms for backbone formation as have been described in Chapter – 3 were 

implemented for variable distributions as has been shown in figure no. 4.2(a)-(d) with 

transmission range of 50 m in the area of 100X100X100.  The following graph shows the plot 

between the percentages of nodes in backbone with the total no. of nodes. 

 

 



 

37 
 

Table No. 4.5 Percentage Nodes in Backbone 

Distribution/Percentage of 

Nodes in Backbone  

Random 

distribution  

Grid 

distribution 

Normal 

distribution 

Exponential 

distribution 

%age of nodes in CDS 

Backbone 20 61 29 83 

%age of nodes in Steiner Tree 

Backbone 47 25 39 63 

%age of nodes in MST 

Backbone 100 100 100 100 

 

 

Figure 4.6: Percentage Nodes in Backbone V/S Distribution of nodes in 3D  

As it is evident from the bar plot shown in figure no. 4.6 for random distribution and 

normal distribution CD S Backbone consisted of lesser no. of nodes than in Steiner Tree 

Backbone.  While in Grid distribution and Exponential distribution the scenario was 

opposite. 

Table No. 4.6 Percentage Nodes in Backbone 

N/Percentage of Nodes in Backbone   
25 50 75 100 

%age of Nodes in CDS Backbone 
80 76 54.6 20 

%age of nodes in Steiner Backbone 
64 56 42.6 47 

%age of nodes in MST Backbone  
100 100 100 100 

 

 

 



 

38 
 

 

Figure No. 4.7: Percentage of nodes in backbone V/S No. of Nodes 

The above graph shown in figure no. 4.7 depicts the comparison of no. of nodes in 

backbone for different no. of nodes. As it is quite evident from the graph that the 

percentage of nodes in the CDS backbone decreases as the no. of nodes increases but the 

transmission range and volume for deployment stays constant. This decreasing trend can 

be because of the fact that the density of node distribution increases hence, each node 

now has increases no. of neighbours and lesser no. of nodes are able to suffice the  task of 

backbone formation. In case of Steiner Tree backbone also the trend is decreasing 

percentage of nodes in backbone as the no. of nodes increased the lesser no. of nodes 

were present in the backbone. 

Further, The Steiner Cost and MST Cost (formula 1 Chapter-3) were plotted against the 

no. of nodes and we got the following results: 

Table No. 4.7 Percentage Nodes in Backbone 

N/Cost 25 50 75 100 

MST cost 1250 1993 2250 2474 

Steiner cost 5.26 890 1005 1459 

Steiner Ratio 2.3 2.3 1.69 2.23 

 



 

39 
 

 

Figure No. 4.8: Cost V/S No. of Nodes  

As, it is evident from the graph shown as figure No. 4.8 that as the no. of nodes increase 

the cost also increases. Also the steiner ratio also was calculated to be approximately 2 as 

it was supposed to be. We now present the routing algorithm used on our work in the next 

subsection. 

4.4.  Simulation Results for Greedy and Voronoi routing over 2D 

For the same simulation parameters that have been discussed in the beginning of this chapter 

as table no. 4.1 we have implemented the routing algorithm for 2D WSN scenario. We took a 

varying no. of nodes, chose the source and destination of packet and hence plotted the no. of 

hops V/S the no. of nodes.   

The no. of hops taken to reach the destination were plotted against the no. of nodes for 

Greedy routing and Voronoi routing and we got the following results: 

 

Table No. 4.8 No. of Hops 

N/No. of Hops 10 15 20 25 50 75 100 

Voronoi 2D 2 2 2 5 5 7 8 

Greedy Routing 2 2 0 1 2 4 4 

 



 

40 
 

 

 

Figure No. 4.9: No. of Hops V/S No. of Nodes in 2D 

The above graph in figure no. 4.9 shows the comparison of the two routing algorithms i.e 

Voronoi and Greedy. As it can be seen that the greedy algorithm reduces the no. of hops 

it transmits the packet in lesser hops while voronoi routing takes slight more no. of hops. 

But Greedy Routing doesn’t ensure packet delivery and sometimes it can loop infinitely. 

The above table and graph the zero no. of hops in case of Greedy routing symbolize this 

looping condition. So, voronoi routing should be preferred if packet delivery is must e.g. 

in critical system application.   

 

4.5. Simulation Results for Greedy and Vornoi routing over 3D 

For the same simulation parameters that have been discussed in the beginning of this 

chapter as table no. 4.1 we have implemented the routing algorithm for 3D WSN 

scenario. We took a varying no. of nodes, chose the source and destination of packet and 

hence plotted the no. of hops V/S the no. of nodes.   

The no. of hops taken to reach the destination were plotted against the no. of nodes for 

Greedy routing and Voronoi routing  and we got the following results: 

 

 

 



 

41 
 

 
Table No. 4.9 Number of hops 

N/No. of Hops 10 15 20 25 50 75 100 

Greedy Routing 

  2 2 4 2 4 4 0 

Voronoi Routing 

  2 2 3 2 6 4 4 

 

 

Figure No. 4.10: No. Hops V/S No. of Nodes in 3D 

When the routing algorithms were implemented for varying no. of nodes the no. of hops 

taken by each algorithm came out to be same in most of the cases. Hence, both algorithms 

are efficient in case of 3D WSN. But, greedy still has the looping problem wherein the 

packet gets stuck in loop infinitely and is not delivered to the destination. 

4.6. Simulation Results for Optimal Sink Placement over 2D 

After constructing the backbone one needs to decide on where to locate the sink node. Hence 

for this purpose we located the sink in three different locations as have been explained in 

Chapter 3. The three locations were namely geographical centre, node with minimum 

eccentricity and node with maximum weight i,e the  centroid. Ater implementing it on 

varying no. of nodes i.e 25, 50, 75, 100 over 100X100 area we got the following results.  

 

Table No. 4.10 Energy Consumed 

N/Energy Consumed  25 50 75 100 

sink gc 0.0238 0.0119 0.0119 0.0119 

sink center 0.0118 0.008 0.008 0.0118 

sink centroid 0.0118 0.008 0.008 0.0118 

 



 

42 
 

 

Figure No. 4.11: Energy Consumed V/S No. of Nodes 

 

This shows that when sink is placed on node with minimum eccentricity i.e the center or 

the centroid lesser amount of energy is consumed rather than when it is placed at the 

geographical centre. But as the no. of nodes keep on increasing the nodes get uniformly 

distributed over the space and for 100 nodes the energy consumed is almost same for 

geographical centre as well. 

4.7. Simulation Results for Optimal Sink Placement over 3D 

After constructing the backbone one needs to decide on where to locate the sink node. Hence 

for this purpose we located the sink in three different locations as have been explained in 

Chapter 3. The three locations were namely geographical centre, node with minimum 

eccentricity and node with maximum weight i,e the  centroid. Ater implementing it on 

varying no. of nodes i.e 25, 50, 75, 100 over 100X100X100 space we got the following 

results.  

Table No. 4.11 Energy Consumed 

N/Energy Consumed 25 50 75 100 

sink gc 0.0079 0.0118 0.0118 0.008 

sink ecc 0.0077 0.0077 0.0077 0.0079 

sink centroid 0.0078 0.0118 0.008 0.0078 

 



 

43 
 

 

Figure No. 4.12: Energy Consumed V/S No. of Nodes 

 

This shows that when sink is placed on node with minimum eccentricity i.e the center or 

the centroid lesser amount of energy is consumed rather than when it is placed at the 

geographical centre. But as the no. of nodes keep on increasing the nodes get uniformly 

distributed over the space and for 100 nodes the energy consumed is almost same for 

geographical centre as well. 

 

 

 

 

 

 

 

 

 



 

44 
 

CHAPTER – 5 

CONCLUSION 

1.1. Conclusions 

As in past few years the wireless sensor networks have attracted great attention because 

of their varied applications in health care, military, environmental applications. The 

Wireless Sensor Networks face loads of challenges such as no fixed topology, limited 

energy source, no physical connection between the nodes. Hence, the formation of 

backbone in WSN is of great importance as it switches off the redundant nodes, acts as 

the master for routing activities, increases the effective lifetime of network, increases 

effective use of bandwidth by reducing the overhead of transmission using flooding (in 

case of WSN without backbone). Most of the work in WSN have been done in 2D but in 

real time applications the sensors are deployed in 3D rather than in 2D. Hence, we have 

proposed our work for 2D as well as for 3D scenario.  

 In this project we implemented a three algorithms for backbone formation 

Connected Dominating Set, Steiner Tree and Minimal Spanning Tree for 2D as well as 

for 3D WSN. We have also compared the efficiency of the proposed algorithms in terms 

for percentage of nodes in backbone. Hence, found CDS and Steiner Tree backbone came 

out to better than MST.  

 After proposing the backbone algorithm we also need to set up a sink node which 

acts as a collector of information sensed. Hence, Optimal Sink placement was also one of 

the objectives. We located the sink node at different locations such as geographical 

centre, center (node with minimum eccentricity), centroid and compared which sink is 

best located in terms of the energy consumed in delivering the packets to the sink. The 

sink placed at the center and centroid proved to be best for placing the sink.  

The routing algorithms namely Greedy Routing and Voronoi Routing were also 

implemented for both 2D and 3D WSN. While Greedy Routing reduced the no. of hops 

the voronoi algorithm ensured packet delivery. Hence, both can be used depending on the 

application.  



 

45 
 

1.2. Future Work  

The work done in this project can be extended to other algorithms for backbone formation 

and hence their performance can be analysed.  

 Rather than using CDS we can also implement MCDS i.e. Minimum Connected 

Dominating set. To improve the quality of CDS, we can introduce routing cost 

constraints and obtain a sequence of results about MCDS under some routing cost 

constraint.   

 The other algorithms which can be implemented Compass Routing or Random 

Compass Routing where in the algorithm always moves the packet to the vertex 

that minimizes the angle from neighbour of current node to destination over all 

vertices adjacent to current node.  

 3D Greedy Routing can be implemented on Delaunay Triangulations which 

guarantees packet delivery to overcome the biggest drawback of Greedy Routing.  

 The recently proposed virtual Delaunay triangulation to aid geographic routing 

can also be implemented. This is also called multi-hop Delaunay triangulation 

(MDT). The key idea is to relax the requirement that every node be able to 

communicate directly with its neighbour in Delaunay triangulation.  

Further to extend the research a new Hybrid approach using the above mentioned 

algorithms can be proposed which uses the best of each algorithm to provide  guaranteed 

delivery, energy efficient  routing and  backbone formation. 

 

 

 

 

 



 

46 
 

REFERENCES 

[1] Bang Ye Wu and Kun-Mao Chao (2004), “Spanning Trees and Optimization Problems,”, 

Chapman & Hall/CRC Press, USA. 

[2] Bose P, Morin P. Online routing in triangulations. Algorithms and Computation. Springer, 

1999; 113–122. 

[3] Delaunay Triangulations and Voronoi in Matlab Retrived from 

http://in.mathworks.com/help/matlab/ref/delaunay.html 

[4] E. Kranakis, H. Singh, and J. Urrutia, Compass routing on geometric networks, in Proc. 

of the 11th Canadian Conference on Computational Geometry (CCCG’99), 1999.  

[5] H. M. Ammari (ed.), “The Art of Wireless Sensor Networks, Signals and Communication 

Technology”, DOI: 10.1007/978-3-642-40066-7_10, Springer-Verlag Berlin Heidelberg, 

2014. 

[6] Joseph O’ Rourke, “Computational Geometry”, Cambridge University Press, 1998. 

[BERG97]. 

[7] Mohamed Younis and Rahul Waknis, “Connectivity Restoration in WSN using Steiner 

Tree Approximations”, IEEE Globecom 2010 proceedings. 

[8] Razieh Asgarnezhad and Javad Akbari Torkestani, “A New Classification of Backbone 

Formation Algorithms for Wireless Sensor Networks” proceedings of The Sixth 

International Conference on Systems and Networks Communication, 2011 

[9] Snigdh I et al., “Optimal sink placement in backbone assisted wireless sensor networks”, 

Egyptian Informatics J (2016), http://dx.doi. org/10.1016/j.eij.2015.09.004 

[10] Sudipto Guha and Samir Khuller “Approximation Algorithms for Connected Dominating 

Sets”, published in Algorithmica, Pages 374-387, 4, April 1998  

[11] S. Durocher, D. Kirkpatrick, L. Narayanan, On routing with guaranteed delivery in three- 

dimensional ad hoc wireless networks, in Proceedings of the 9th International Conference on 

Distributed Computing and Networking (ICDCN) (2008) 

[12] T. Acharya, S. Chattopadhyay, and R. Roy, “Energy-Aware Virtual Backbone                   

Tree for Efficient Routing in Wireless Sensor Networks,”  in Proc. of Int. Conf. on 

Networking and Services, (ICNS '07), IEEE, pp. 96-102, Athens, Greece, June 19, 2007. 

[13] Wireless Sensor Networks Deployments (29
th
 Oct, 15) Retrieved from  

http://theory.utdallas.edu/WebPageLink3.html#NFAR 

 

http://theory.utdallas.edu/WebPageLink3.html#NFAR

