
i

FICO® Decision Management Platform

Project report submitted in partial fulfillment of the requirement for the degree of Bachelor of

Technology

In

Computer Science and Engineering Department

By

Shikhar Goel (151357)

Under the supervision of

Dr Hemraj Saini

To

Department of Computer Science & Engineering

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

ii

INTERNSHIP CERTIFICATE

This is to certify that Shikhar Goel s/o Adv Parveen Goel, a student of B.TECH

Roll No. 151357, “Jaypee University Of Information Technology, Solan” is undergoing

his internship program at our company from 2ndFeburary 2019 to 30thJune 2019.

 During his internship, Shikhar has closely worked as a part of Decision

Management Platform (DMP)Developer team in FICO. In addition, has been

working under the guidance of his supervisor Mr Shaik Mujeeb to successfully

complete this project. The performance during this period of his internship program

with us was good. He was punctual, hardworking and inquisitive to learn new

technologies.

Shaik Mujeeb

Software Engineering-Lead Engineer,

DMS Development

Fair Isaac India Software Pvt. Ltd

Date-

iii

DECLARATION

I hereby declare that the work which is being presented in this project report entitled “FICO® Decision

Management Platform”, in partial fulfillment of the requirement for the award of the degree of

Bachelor of technology submitted to Department of Computer Science & Engineering and Information

Technology (CSE&IT) in JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, Solan is an authentic work

done by me during a period from 2nd Feburary, 2019 to 30th June, 2019 under the Guidance of Trupti

Vaishnav, Shaik Mujeeb, Santosh Kumar, Siddartha, Ritu Rani and Surbhi Jainin FICO.

The work presented in this project report has not been submitted by me for the award of any other

degree of this or any other Institute/University.

This is to certify that the above statement made by the candidate is correct to best of my knowledge

and belief.

Date : Signature

Place : Shaik Mujeeb

 Software Engineering-Lead Engineer

Signature

Shikhar Goel

151357

iv

ABSTRACT

In months of internship at Fair Isaac Corporation (FICO), I was hired as a Software Engineering

Intern for the Products and Technology Organization (PTO) team. I was assigned to Software

Engineering profile under Decision Management Platform. I was responsible for writing code for

setting up cluster; executing the code and managing all activities in the code base to ensure that

all the objectives are met and that the solution works as expected. The software should be tested

in terms of functionality, performance, reliability, stability, and compatibility with another

legacy- and/or external systems. We was required to dockerize and deploy various DMP

functionality. We wote many ansible scripts and helm charts to automate the process of cluster

set up.We deployed these functionality using software like Java, Kubernetes, Openshift, Jenkins.

Keywords:Deployment, Jenkins, Openshift, Kubernetes

v

LIST OF FIGURES

FIGURE 1. FICO CUSTOMERS 3
FIGURE 2. BIG DATA MODEL ERROR! BOOKMARK NOT DEFINED.
FIGURE 3. THE DECISION MANAGEMENT SUITE. 6
FIGURE 4 FICO APPLICATION STUDIO 7
FIGURE 5. PRODUCT MARKETING OVERVIEW 8
FIGURE 6. SYSTEM LANDSCAPE 9
FIGURE 7. PLATFORM FEATURES 10
FIGURE 8. COMPONENT ARCHETYPE AND INSTANCES 11
FIGURE 9. COMPONENT INSTANCE CONTAINER STRUCTURE 13
FIGURE 10. SOLUTION STRUCTURE 15
FIGURE 11. SOLUTION CREATION FLOW 15
FIGURE 12. COMPONENT LCM STATES 18
FIGURE 13. SOLUTION CREATION 19
FIGURE 14. ADD COMPONENT TO SOLUTION 20
FIGURE 15. SOLUTION-CENTRIC APPROACH 21
FIGURE 16. KUBERNETES 23
FIGURE 17 NAMESPACES 26
FIGURE 18 DEPLOYMENTS 26
FIGURE 19 PODS 27
FIGURE 20 SERVICES 27
FIGURE 21 INGRESSES 28
FIGURE 22 PERSISTENT VOLUMES 29
FIGURE 23 DMP MANAGER PAGE 30
FIGURE 24 SOLUTION CREATION 31
FIGURE 25 COMPONENT CREATION PAGE 32
FIGURE 26 POM FILE FOR FEC 34
FIGURE 27 BUILD FILE FOR FEC 35
FIGURE 28 DOCKERFILE FOR FEC 36
FIGURE 29 FEC ARCHETYPE 37
FIGURE 30 FEC ARCHETYPE IN CATALOG 38
FIGURE 31 FEC COMPONENT CREATION 38
FIGURE 32 FEC COMPONENT IN NEW STATE 39
FIGURE 33 CONFIGURING FEC 39
FIGURE 34 LANDING PAGE FOR FILE EXCHANGE COMPONENT 40
FIGURE 35 CONFIGURATION FORM PAGE 40
FIGURE 36 FILE EXCHANGE EVENT HISTORY PAGE 41
FIGURE 37 LISTING OF THE FILES WITH GENERATED KEYS 42
FIGURE 38 LOAN APPLICATION HOME PAGE 60
FIGURE 39 FORM TO SUBMIT APPLICATION 61
FIGURE 40 VIEW EXISTING APPLICATION 62
FIGURE 41 APPLICATION ARCHITECTURE 63
FIGURE 42 APPLICATION DATABASE 64

vi

LIST OF TABLES

Table No. Table Caption Page No.

Table 1 DMP Logical Overview 11

Table 2 DMP Manager Services

18

Table 3 AWS Services used in DMP

23

vii

TABLE OF CONTENTS

Front Page No number

here

Declaration ii.

Acknowledgement iii.

Abstract iv.

List of Figures v.

List of Tables vi.

Table of Contents

Chapter 1 INTRODUCTION ...Error! Bookmark not defined.

Chapter 2 PROJECT UNDERTAKEN ..3

Chapter 3 FICO DECISION MANAGEMENT SUITE ..6

3.1 Introduction: ... 6

3.1.1 Architecture of FICO Decision Management Suite: ... 7

3.2 FICO Analytic Cloud: .. 8

3.2.1 Architecture of FICO Analytic Cloud: .. 9

3.3 Decision Management Platform (DMP) .. 10

3.3.1 Platform Features .. 11

3.3.2 DMP Components ...Error! Bookmark not defined.

3.3.3 Component ArchetypesError! Bookmark not defined.

3.3.4 Component InstancesError! Bookmark not defined.

3.3.5 DMP Functions ...Error! Bookmark not defined.

3.3.6 Service Providers ..Error! Bookmark not defined.

3.3.7 Solutions ...Error! Bookmark not defined.

3.3.8 DMP Manager ..Error! Bookmark not defined.

3.3.9 Component LifecycleError! Bookmark not defined.

3.3.10 Solution Lifecycle ..Error! Bookmark not defined.

Chapter 4 DMP Laptop Deployment ...Error! Bookmark not defined.

Chapter 5 Dockerized Components ..Error! Bookmark not defined.

Chapter 6 Openshift k8s Cluster using FICO Web Services Error! Bookmark not defined.7

Chapter 7 LoanApprovalExample DemoError! Bookmark not defined.

viii

Chapter 8 Conclusion.. 67

1

Chapter 1

INTRODUCTION

This first chapter is mainly to introduce the reader to the FICO, as well as the basic structure of

this project report. In this chapter, the reader can get introduced to the organization, FICO, under

the heading 1.1. The reader would know about the major clients of the organization from the 1.2.

Under 1.3. Heading reader would get the structure of this thesis.

1.1.COMPANY PROFILE

FICO (NYSE: FICO) is main investigation programming organization, helping organizations in

90+ nations settle on better choices that drive more elevated amounts of development,

gainfulness, and consumer loyalty. The organization's historical utilization of Big Data and

numerical calculations to foresee purchaser conduct has changed whole commercial enterprises.

FICO gives examination programming and devices utilized over numerous commercial ventures

to oversee hazard, battle misrepresentation, manufacture more productive client connections,

advance operations and meet strict government regulations. A number of our items achieve

extensive appropriation —, for example, the FICO® Score, the standard measure of purchaser

credit hazard in the United States. FICO arrangements influence open-source guidelines and

distributed computing to expand adaptability, speed organization,and decrease costs. The

organization likewise offers a great many individuals some assistance with managing their own

credit wellbeing. FICO: Make each choice count™.

Established in 1956, FICO presented expository arrangements, for example, credit scoring that

has made credit all the more generally accessible in the United States as well as around the

globe. We have spearheaded the advancement and utilization of basic innovations behind the

choice administration. These incorporate prescient examination, business rules administration

and improvement. We utilize these advancements to offer organizations some assistance with

improving the accuracy, consistency, and spryness of their complex, high–volume choices.

2

1.2. FICO CLIENTS: FICO clients include more than half of the top 100 banks in the world,

more than 600 personal and commercial line insurers in North America and Europe including

the top

10 US personal lines insurers, 400+ retailers and general merchandisers, including one-third

of the top 100 U.S. retailers, 95 of the 100 largest financial institutions in the U.S., and all the

100 largest U.S. credit card.Issuers and more.

Figure 1. 1 Fico Customers

3

Chapter 2

PROJECT UNDERTAKEN

2.1 OBJECTIVE

This project is aimed at providing a set of cloud-based services for rapidly creating,

deploying, and operationalizing a wide range of decision and analytic services. This project

explainsa softwareapplication that uses decision services such as business rules, predictive

models, and optimization models to solve business problems. It handlessecurity, scalability,

lifecycle management, and data integration for your solutions and their components.

2.2 PROJECT MOTIVATION

 This decision is done by the company according to their needs but main aim of project is

to learn new technology and required functionalities with passion and get our hands on

the work required for the company.

 To know about theexisting software and Software Development lifecycle.

 To know how to design and develop software systems, using scientific analysis and

mathematical models to predict and measure outcome and consequences of design.

 To know how to analyze information to determine, recommend and plan installation of a

new system or modification of an existing system.

 To understand how to design new test cases.

 To learn about the various technology used like Kubernetes, docker etc.

 To learn about how to perform Unit testing and Functional testing.

2.3 INDUSTRY APPLICATION

Our organization Fair Isaac Corporation (FICO), will get help from this project in various

ways:

 Deliver best products to the customer in less time.

 Reduce the burden of the manager.

 Get a new talent.

 Reduced development time of the project.

 To work on different projects.

4

 Contribution towards revenue

 Attract more customers

 Help banks and other organization to make right decisions

5

Chapter 3

LITERATURE REVIEW: FICO DECISION MANAGEMENT SUITE

3.1 INTRODUCTION

The FICO® Decision Management Suite gives a simple approach to clients to assess, customize,

deploy and scale cutting edge investigation and choice administration arrangements. It permits

clients to rapidly coordinate FICO and FICO accomplice choice administration instruments and

segments with their own particular segments, offering associations of all sizes some assistance

with realizing the guarantee of cutting edge examination and choice administration by means of

savvy, adaptable cloud and on-premises arrangements.

FICO decision management suite follows the most recent technological four layered architecture

to solve problems. These layers are –Analytics, Rules, Optimization, and Rapid Application &

Workflow Development tool. Big data model is processed through all four layers and it helps us

in decision-making.

Figure 3.1 Big Data Model

To improve customer satisfaction and faster deeper relationships with FICO Decision

Management Suite, one can make real-time choices that impact one’s customers immediately.

Decision Management Tool allow to collect data from multiple sources and create analytic based

6

model to predict customer behavior. It helps one to engage with their customers with more

reliability and can create more opportunities. All those customers’ data one can actually prepare

his future strategies of his business and products. The various customers of FICO are-

Healthcare, Insurance, Banking, Retail, Banking and others. In healthcare, it reduces the cost

with the highest possible care for patients. It saves insurance companies from fraud, errors, abuse

and also helps to reduce the loss with customize conditions for each policy holder. It helps

banking sectors to identify correct decision through adopting the economic changes over the real

time analysis of market strategies. It helps the retail customers to identify their customer needs

and also helps in advanced marking of merchandises. It helps Govt. sectors to improve the

national security system or to secure the public interests. Decision management solution is an

automated, refine and connect high volume business decisions which can be identified by

analytical calculation or predictive analysis, or optimization.

3.1.1 Architecture of FICO Decision Management Suite:

The FICO Decision Management Suite, alongside the FICO Analytic Cloud, gives an exhaustive

domain that makes it brisk and simple to gather bits of knowledge from information, and create

systematic models and choice administrations that operationalize those bits of knowledge. It

flawlessly coordinates examination, decisioning, improvement, information perception and

investigation, quick application advancement and other FICO Decision Management Platform

capacities to give a complete and dexterous deaccessioning arrangement.

Figure 3.2Decision management suite

7

3.2 FICO ANALITCS CLOUD

The adaptability and availability of the cloud permits new business chances to be caught quicker

than any time in recent memory. Prescient investigation and bleeding edge applications that used

to take up to a year to create can now be in clients' grasp inside of months. That is the reason it is

added to the FICO® Analytic Cloud, to help rapidly unravel the most complex business

challenges without the weight of legacy limitations. FICO has taken demonstrated choice

administration arrangements and capable information science instruments and made them

accessible in a protected cloud environment so client can make and send cutting edge

examination speedier than at any other time.

Crosswise over numerous associations big data and data science are driving a quickly extending

pipeline of new application advancement ventures. Progressively, prescient examination are at

the focal point of these new, inventive use cases. All things considered, it's these examination

that give the capacity to decipher and suspect business needs. At the point when infused into

business work processes, progressed examination can significantly enhance the exactness of

strategic and vital choices.

That is the reason big data is a major ordeal. Not as a result of the volume of data being made,

but since of the prescient force that can now be refined and quickly connected. The FICO

Analytic Cloud organizes data science, business rationale and improvement methods in the cloud

so individuals can rapidly move examination out of the lab and into the applications that serve

bleeding edge choice making.

Figure 3.3 FICO Application Studio

8

3.2.1 Architecture of FICO Analytic Cloud:

It is an end-to-end infrastructure and ecosystem that includes on-demand hardware, tools, SaaS

applications, vertical solutions, community and market place for Analytics and Decision

Management.

It has four major parts and they work together to provide value:

 FICO Platform/Solution Stack

It helps FICO, its partners and its customers to build solution rapidly, build new solution,

solve new business problem.

 FICO Solutions

There are some products that are already built, helps companies to solve their business

problems.

 Market Place

An open place for customers, developers, partners to add, sell or customize components

or solutions and extension to existing FICO components.

 Community

Here people can interact with each other to collaborate or to understand the products and

components they have taken from FICO.

Figure 3.4Product Marketing Overview

9

3.3 DECISION MANAGEMENT PLATFORM (DMP)

The Decision Management Platform (DMP) provides secure, managed access to an extensible set

of components, services, and execution environments for automating business decisions. DMP is

designed to support a sequence of activities that can collectively be referred to as decision

management.

Applications for developing models, and business systems that call the decision services,

communicate with DMP through APIs. DMP provides lifecycle and administrative services, and

also acts as an intermediary layer between the applications and lower-level infrastructure

resources provided by the cloud.

Figure 3.5 System Landscape

10

DMP exposes APIs that allow external applications to create and manage solutions, which are

logical containers for components, which are packages of intellectual property (IP) that can be

deployed in software containers. Components can have dependencies on low-level infrastructure

services such as data stores. The infrastructure services and how to connect to them can be

discovered dynamically through service providers. A DMP installation maintains a catalog of

service providers that are configured for that installation. DMP also supports a variety of

execution fabrics that support packaging components and solutions as executable logic and

deploying them to appropriate runtime environments. This section provides definitions and

descriptions of solutions, components, and service providers, along with an introduction to the

primary DMP subsystems.

3.3.1 Platform Features

Figure 3.6 Platform Features

11

3.3.2 DMP Components

The platform must be able to support an extensive catalog of tools that are used by the end-users

and applications that rely on DMP. The catalog must be easily extensible, and the tools in the

catalog must have easy access to the lower-level services provided by the platform. Modeling

applications must be able to request tools from the catalog and be granted access to provisioned

instances of the tools. To address these requirements, DMP defines a Component Specification

for the interfaces and packaging standards that allow a tool to be added to the DMP catalog and

provisioned through the Container Manager. Tools that implement the interfaces and are

packaged according to the specification can be added to the DMP component catalog, and are

referred to as DMP components.

A component is packaged as a component archetype, which can be used to provision one or more

instances of the component.

Figure 3.7 Component Archetype and Instances

3.3.3 Component Archetypes

A component archetype contains:

 The libraries or other intellectual property required to implement the component.

 Any initial or default configuration.

12

 A component descriptor that describes what the component is, what it provides in terms

of user interfaces and business services, what sort of container it needs to run in (typically

a web server), and what services (such as databases, message queues, etc.) it depends on.

The component archetype is uploaded to the DMP, and added to the catalog. DMP Manager

APIs enable applications to browse the catalog and request that component instances be

provisioned from the archetype.

Component archetypes are separated into two pieces:

 A Docker image, which is stored in a Docker repository

 A package containing a descriptor file (component.json) and a public folder containing

other resources such as images and license files.

These files are stored on object storage so DMP Manager can reference them as raw

objects.

3.3.4 Component Instances

When DMP Manager receives a request for the component, it:

 Provisions an appropriate container to run the component instance (the container

management service is discussed later).

 Installs the libraries and initial configuration in the container.

 Starts the container and publishes the URLs to the requester.

The first instance of a component is considered the design instance. Any configuration

that is supported by the component is done in the design instance. The component descriptor

specifies the configuration interfaces that are available.

Components that support deploying configured instances as component web services can be

published to staging and production instances. When DMP Manager receives a publishing

request, it provisions a new container, with the component IP, but using the configuration from

design instance rather than the initial configuration provided with the archetype.

13

Note: While publishing multiple component instances for executing decision services is still

supported, it is being replaced by the more flexible notion of functional deployments.

Figure 3.1 Component Instance Container Structure

3.3.5 DMP Functions

DMP functions (referred to in this document simply as “functions”) are libraries of executable

code, along with any supporting artifacts required to execute the code. Functions are currently

packaged as Java JAR files, although alternative executables may be supported in the future.

Functions are generated by DMP component. Functions were introduced in DMP 2.0 to provide

a way to support a larger, more extensible, and more flexible set ofExecution Fabrics. Execution

fabrics based on Functional Deployments orchestrate functions from one or more function

factories into executable services that can be run in a variety of scenarios.

The only way to execute a service on DMP was to invoke over HTTP a web service endpoint

that was exposed by a component instance. While component web services continue to be

supported, and are suitable for some deployment scenarios, functional deployments support the

ability to run a decision service wherever it is needed.

14

The functions generated by all of the function factories declared by the components in a solution

can be managed as a versioned entity called a solution snapshot. Typically, a specific solution

snapshot is referenced by any given deployment. How solution snapshots are created and

managed is described in Solution Lifecycle.

3.3.6 Service Providers

DMP components can declare dependencies on infrastructure services such as databases,

message queues, map/reduce engines, etc. When a component instance is created, it must have a

way to dynamically discover and connect to the required services. Service providers are

applications that conform to the DMP Service Provider Specification, and which enable

components to establish connections to the infrastructure service. DMP Manager maintains a

catalog of service providers. When a component is instantiated, DMP Manager checks the

catalog for a service provider matching each of the component’s declared service dependencies.

When an appropriate service provider is found, it is invoked with the component ID. The service

provider interacts with the infrastructure service to perform any required actions such as creating

a database schema or object storage folder, and then returns applicable connection information.

DMP Manager then passes the connection information to the component instance, so it can

directly connect to the infrastructure service and interact with it, with no further dependency on

DMP Manager.

3.3.7 Solutions

A DMP solution is a named entity with a unique identifier. It is used as a logical container for a

set of users, Components and solution services that are managed as a unit. Operations on

solutions are performed through the DMP Manager Solution Management APIs

https://jive.fico.com/docs/DOC-48599

15

Figure 3.8 Solution structure

Authorized DMP users create and manage solutions, including instantiating and configuring the

components associated with the solution. Typically, the user logs into an application such as

Solution Builder or Decision Modeler, which manages the calls to the DMP Manager APIs.

Figure 3.9 Solution Creation Flow

16

1. The model developer logs into the application through a browser, and manipulates the

application interface.

2. The application initiates calls to the DMP Manager APIs for creating and managing

solutions, adding components to a solution, and accessing any configuration interfaces

exposed by the component.

3. DMP Manager coordinates the completion of the requested operation with the container

manager and/or other services.

4. If a component has a dependency on an infrastructure service, DMP Manager queries the

service providers catalog and passes the URL to the appropriate provider to the

component instance.

5. The operation and relevant data are recorded in the operational data store (ODS)

6. Component configuration interfaces are provided back to the application, so the model

developer can configure the component directly.

7. The component instance requests connection information from the provider, and uses it to

establish any needed connections to the infrastructure service. Once the connection is

established the component instance can interact directly with the service, with no further

dependency on DMP Manager.

Solution Components:

A component belongs to exactly one solution. A solution can have any number of components.

Solution Services:

A solution service is an entity that species connection information that can be used by

components belonging to a solution to interact with a lower-level infrastructure service. The

information is generated by a service provider.

3.3.8 DMP Manager

DMP Manager implements a set of core platform services. These services expose DMP

functionality to external applications through REST APIs and implement the interfaces with

lower-level subsystems.

17

TABLE 3.2 DMP Manager Services

DMP Manager Service Description

Component Instance Management Handles requests for creating and managing runnable

component instances.

Manages versioned snapshots of a component’s

configuration.

Component Catalog Management Handles requests for creating and managing

component archetypes.

Solutions Management Associates platform services with the components

that comprise a solution.

Manages versioned snapshots of functions and

artifacts provided by a solution’s components.

Service Provider Catalog Management Maintains and manages the available DMP Services.

Team Management Provides role-based user authorization for managing

components and solutions.

System Administration Provides access to system configuration and

monitoring features.

3.3.9 Component Lifecycle

DMP Manager exposes APIs for creating and managing components. A request for a new

component includes the ID of the component archetype.

DMP provides default functionality for migrating a component to multiple LCM environments.

APIs are also available to allow custom applications to implement their own lifecycle

management. By default, DMP supports the following LCM states:

 Development – The initial instance is considered the “development environment,” and is

used for component configuration and unit testing via its configuration and execution

endpoints. The DMP UI provides a menu that exposes configuration interfaces declared

18

in the component descriptor via an embedded iframe; e.g., the Rule Maintenance

Application for Blaze-based components.

Any configuration done in the development environment is deployed to any execution

environment; e.g., testing and production. For example, rules authored in the

development environment of a Blaze-based component are included in the deployments

to the execution environments.

 Staging – After the configuration process is completed, a user may choose to submit the

component to staging. This submission step snapshots the configuration of the component

and deploys an instance with the staging configuration. The snapshot is achieved by

issuing a REST command from DMP Manager that imports the development instance’s

data directory into the repository.

At this point, an independent auditor can approve or reject a component before it goes

into production.

 Production – After testing has been completed, a component can be promoted to a

production state. A snapshot is made of the staging configuration and a new instance is

created (or updated) in the Deployment environment.

State transitions are managed by a DMP workflow to provide oversight and traceability. The

default workflow can be programmatically customized via public REST APIs.

Figure 3.10 Component LCM States

19

3.3.10 Solution Lifecycle

DMP Manager provides APIs for creating a solution, associating components with the solution,

and managing the solution through its lifecycle.

1. Solution Creation

When a new solution is requested, DMP Manager creates a new entry in ODS, which includes a

unique identifier. The identifier is then used for subsequent operations on the solution.

DMP Manager also makes requests to the S3 service provider to create folders in the S3 bucket

for the tenant that will be used to store solution data and ADM event data.

Figure 3.11 Solution Creation

2. Adding Components

There are two patterns for adding a component to a solution:

 Select the component type from the component archetype catalog.

 Select a function factory from the factories catalog.

In this case the end-user or application knows the type of function, but may not know about the

component that implements the function factory. DMP Manager is responsible for identifying the

component that exposes the factory.

20

Figure 3.12 Add Component to Solution

3. Solution Commit

A solution has its own lifecycle. It can be published as a solution snapshot, which is a versioned

collection of all of the functions contributed by all of the components that belong to the solution,

plus any supporting dependencies or artifacts. Once published, a solution snapshot is immutable

until the snapshot is republished. Publishing a solution does not entail provisioning additional

component instances. Since the underlying components export their functions as jars, the

published solution snapshot consists of a packaged and versioned collection of those jars.

21

Figure 3.13 Solution-Centric Approach

Committing a solution entails getting all of the function artifacts exposed by all of the

components that belong to the solution, and packaging them to a dedicated folder.

22

Chapter 4

PROPOSED SOLUTION: DMP Laptop Deployment

To give us the understanding of the DMP environment and the technology used by DMP for

implementing and maintaining the DMP platform, I have assigned the task to deploy the DMP

environment locally on my laptop and then run all the DMP related function such as Solution

Creation, building archetypes, Component creation and then performs component lifecycle. This

give us the overview of the following technologies:

4.1 DOCKER

Docker could be a tool that's designed to profit each developers and system directors, creating it

a vicinity of the many DevOps (developers + operations) toolchains. laborer could be a tool

designed to create it easier to make, deploy, and run applications by mistreatment containers.

Containers enable a developer to package up Associate in Nursing application with all of the

elements it wants, like libraries and alternative dependencies, and ship it all out joined package.

By doing therefore, due to the instrumentality, the developer will rest assured that the appliance

can run on the other Linux machine despite any bespoke settings that machine might need that

would take issue from the machine used for writing and testing the code.

In a way, laborer could be a bit sort of a virtual machine. however not like a virtual machine,

instead of making an entire virtual software package, laborer permits applications to use a similar

Linux kernel because the system that they are running on and solely needs applications be

shipped with things not already running on the host pc. this provides a big performance boost

and reduces the scale of the appliance.

4.2 KUBERNETES

DMP laptop deployment can be done in two ways: one by using the openshift environment and

other by using Kubernetes (plain vanilla Kubernetes). Vanilla Kubernetes is the most basic

installation with all the features of a Kubernetes release. For DMP 3.1 release we are using

minikube.

23

Kubernetes is an open-source system for automating deployment, scaling, and management of

containerized applications.

Figure 4.1 Kubernetes

It groups containers that make up an application into logical units for easy management and

discovery.

DMP laptop deployment requires following Kubernetes features:

1. Pod: (Collection of Containers) A pod is a deployment unit in the K8S with a single IP

address. Inside it, the Pause container handles networking by holding a network’s

namespace, port and ip address, which in turn is used by all containers within the pod.

2. ReplicationController: A replication controller ensures that the desired number of

containers are up and running at any given time. Pod templates are used to define the

container image identifiers, ports, and labels. Using liveness probes, it auto-heals pods and

maintains the number of pods as per desired state. It can also be manually controlled by

manipulating the replica count using kubectl.

3. Storage Management: Pods are ephemeral in nature — any information stored in a pod or

container will be lost. In order to store data even after a pod is killed or rescheduled, a

persistent system like Amazon Elastic Block Storage (EBS), Google Compute Engine’s

Persistent Disks (GCE PD), or a distributed file system such as Network File System (NFS)

or Gluster File System (GFS) is needed.

4. Services: Kubernetes services are abstractions which route traffic to a set of pods to provide

a microservice. Kube-proxy runs on each node and manages services by setting up a bunch of

iptable rules. There are three modes of setting up services:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

24

a. ClusterIP (only provides access internally)

b. NodePort (needed to open firewall on a port; not recommended for public access)

c. LoadBalancer (owned by public cloud providers like AWS or GKE

5. ConfigMap and Secret: ConfigMap makes it possible to inject a configuration based on an

environment while keeping the container image identical across multiple environments.

These can be injected by mounting volumes or environment variables, and it stores these

values in the key/value format.Secrets are used to store sensitive data such as passwords,

OAuth tokens, etc

6. Rolling Deployment and Rollback:A deployment object holds one or more replica sets to

support the rollback mechanism. In other words, it creates a new replica set every time the

deployment configuration is changed and keeps the previous version in order to have the

option of rollback. Only one replica set will be in active state at a certain time.

7. Deployment:A readying controller provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a very readying object, and also the readying controller

changes the particular state to the required state at a controlled rate. you'll outline

Deployments to make new ReplicaSets, or to get rid of existing Deployments and adopt all

their resources with new Deployments.

8. Ingress: An API object that manages external access to the services in an exceedingly

cluster, generally communications protocol. Ingress will give load reconciliation, SSL

termination and name-based virtual hosting.

9. Configuration: To avoid having to unnecessarily construct your instrumentality pictures,

you ought to decouple your application’s configuration information from the code needed to

run it. There area unit a few ways in which of doing this, that you ought to select per your use

case:

Table 4.1 Configuration data

Approach Type of Data How it 's mounted Example

Using a manifest 's Non- Environment variable Command-line

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

25

Approach Type of Data How it 's mounted Example

container

definition

confidential flag

Using ConfigMaps
Non-

confidential

Environment variable OR

local file

nginx

configuration

Using Secrets Confidential
Environment variable OR

local file

Database

credentials

DMP is deployed (using above technologies) i.e it first create a namespace, creates The entire

process is then automated in the java class. So we need to run this class to run our test which

will deploy the DMP. Once the test runs successfully we are able to see the DMP environment

console on Kubernetes cluster. Now a namespace with name (dmpnew) given in the test is

created which looks like this:

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

26

Figure 4.2 Namespaces

The test create four deployments Manager, Container, Provider and Mysql-deployment.

Figure 4.3 Deployments

27

Corresponding to the above deployments four pods are created.

Figure 4.4 Pods

Once the deployment and pods are created services are created, so our tests creates four services:

Figure4.5 Services

28

Then ingress are created to manage the external(outside cluster) access to the services(that

you have created for the pod) in a cluster, typically HTTP(s). Ingress can provide load

balancing(external), SSL termination and name-based virtual hosting.

Figure 4.6 Ingresses

For storage at the cluster level generally a cluster operator defines the PersistentVolume objects

for the cluster, and cluster users (application developers) outline the PersistentVolumeClaim

objects that your application requires:

29

Figure 4.7 Persistent Volumes

After all this is done then by using the external name defined in the test class you are able to see

the Manager page which is destined for the component developers and other internal teams:

30

For users there is separate page which is known as Fusion page where users can create

component, performs LCM on the component and execute services etc.

Figure 4.8 DMP Manager Page

In the Fusion page a solution is created as defined in the introduction part:

31

Figure 4.9 Solution Creation

Once the solution is created then you can test component lifecycle in it:

32

Figure 4.10 Component Creation page

33

Chapter 5

DockerizedComponents

During internship period, a task to dockerize various components to move from openshift based

platform to Kubernetes based platform is given to me. Some of these components are:

File Exchange ComponentOverview

The File Exchange Component allows a solution user to have files created by the solution

automatically transferred to a target SFTP server based upon entered configuration information.

Configuration Form

The Configuration Form allows users to associate SFTP connection information with a DMP

solution. This information is used to download files from a target source location (per the Source

Path field) to the specified destination (per the Destination Path field) when a file creation event

is detected in the source location.

Once the SFTP configuration information is entered, the user generates a public/private key pair

via the Generate Key button. The user downloads the public key for installation in the target

SFTP server's SSH configuration file. It is used to authenticate/authorize subsequent download

requests.

Separate SFTP configuration information must be entered for each life-cycle state - i.e.,

Development, Staging, or Production - by selecting the appropriate tab.

Event History

Event History provides a tabular view of in-process or past file download attempts. The table

entries are partitioned by life-cycle state - i.e., Development, Staging, or Production - based upon

which tab is selected. The entries can be further filtered by operation status:

 READY

 IN_PROGRESS

 COMPLETED

 FAILED

 FAILED_RETRY

34

I helped in dockerizing the FEC component and deploying it on the DMP environment.To

dockerize the FEC component I followed the following steps:

Pom.xml: To dockerize any component usually three files are required pom.xml, build.sh, and

Dockerfile depending upon the requirement of application.These files are described in detail

below:

A POM.xml provides all the artifacts required for a project. This pom is required to pull all the

artifacts required for the application and which needs to be packaged with docker image. For

example, pom.xml file for FEC looks like this:

Figure 5.1 Pom File for FEC

Build.sh:- This is a shell script file which contains the logic that carries out your build steps and

builds the docker image for your application. A snapshot of FEC docker image is attached

below:

35

Figure 5.2 Build File For FEC

DockerFile: - A Dockerfile is a text document (with no extension) that contains all the

commands a user could call on the command line to assemble an image.

1. Provide the base image from which you want to create your image. Standard docker, Google

and Red Hat base image may beused, provided they do not require separate licensing.

2. Specify the user with which you want to setup your docker image i.e as root or as a different

user.

3. Specify all the environment variables used by your component like DMP_DATA_DIR,

DMP_REPO_DIR etc

4. ADD your application war to server webapps folder and DMP-INF to DMP_DATA_DIR.

5. Give access rights to files and folders if required using chmod command.

6. [optional] provide the GC_MAX_METASPACE_SIZE.

7. Expose PORTs that your application uses.

36

Figure 5.3DockerFileFor FEC

 Build the docker-image: Execute build.sh command to build the docker image

 Tag the image with the desired tag.

 Push the image to Docker Hub

 Create an archetype in DMP environment:

37

Figure 5.4 FEC Archetype

 Upload the archetype zip file in implementation "Choose File" button.

4. If Archetype is already present or want to upload new version of archetype

 click on the Edit button of that archetype

 import that zip file

 Approve the latest revision of the archetype

Now FEC prototype looks like this in DMP Catalog:

38

Figure 5.5 FEC Archetype in Catalog

Figure 5.6 FEC Component Creation

39

Figure 5.7 FEC component in New state

Figure 5.8 Configuring FEC

40

Landing Page (Overview)

Figure 5.9 Landing Page for File Exchange Component

Configuration Form Page

Figure 5.10 Configuration Form page

41

Event History:

Figure 5.11 File Exchange Event History page

FEC Life-Cycle Management (LCM)

The FEC component allows the user to be able to save the file exchange configuration data, to be

usable across all the 3 lifecycle environments. The FEC Configuration GUI is, however,

available only in design environment. File Exchange Event history GUI is available for all 3

lifecycle environments.

In a typical work-flow, the FEC user generates keys (public and private) and saves the

configuration data for each of the 3 life-cycle environments. The file feConfig.json (referred

above) will contain 3 JSON configuration objects - one for each of the 3 environments, and the

public and private key are also stored separated for each environment. See Fig. 5.4(a) below for

sample listing of the files.

42

Figure 5.12 Listing of the Files with Generated Keys for 3 life-cycle environments

Per DMP Component provider specification, the DMP manager moves all the files under DMP-

INF (along with the config folder, where feConfig.json and subscriptionDetails.json are saved)

during promotion to Staging and Production environments, to the respective component instance

gears for staging and production.

Each update to the FEC configuration for higher environments (Staging and Production),

requires promotion by the user to upgrade to such environment.

During File Exchange Event operation, the FEC engine under the hood makes use of

<code>DMPContext.getDmpEnivronment()</code>to determine the current environment, and

makes uses of the environment-specific S3 and NS service instances provisioned for the env-

specific FE component gear, to process file transfers.

FEC Retry Mechanism

The underlying design goal for Retry Scheduler is, to be able to efficiently address any network-

induced glitches, memory issues on the destination host, and other hard-ware configuration

changes (like switches used as part of scaling mechanism in the load-balancer that the destination

host is a member of, etc.,), causing File Transfer failures. The time-window allowed for the retry

mechanism should be optimal enough to ensure an acceptable trade-off between the production

support and FEC product team, is guaranteed, while the client SLA’s are at no risk.

A retry scheduler internal to FEC is configured to retry File exchange/transfer (Sometimes, the

word “transfer” is loosely used to mean “exchange” operations, for all the file exchange events,

that have STATUS_CODE corresponding to FAILURE or ERROR. A light-weight open-source

43

job scheduler, like, Guava Retrying (an extension to Google’s Guava library, with configurable

retrying strategies) can be considered.

Alternatively, proven open-source but relatively heavy-weight framework like Quartz Scheduler

can also be considered. Both are usable with annotation-based support within widely adopted

frameworks like Spring etc.

Considering Guava Retrying, as the retry scheduler adopted, the typical workflow of the retry

scheduler is follows.

The input to the Retry Operation is a failed file transfer execution. For the very first time, the file

transfer is initiated by the FEC code under the hood, using the config data and file metadata,

derived by parsing the JSON payload with notifications for events of type “s3:ObjectCreated*”

on S3, when the notifications are received through the POST rest api invocation by the NS

instance servicing the FEC.

On successful file transfer, the file exchange status is set to ‘COMPLETED’, and on failure of

file transfer, the status is initially set to FAILED, and on subsequent failures, status is set to

FAILED_RETRY, each time.

After the first failure, FEC retry mechanism kicks off. The retry scheduler will wait for unit of

time (in minutes) equal to 2 to the power of <attempt_no>, before trying to process file transfer

again. In FEC case, where, attempt_no = {1, 2, …., k, ….n}, where n = 11, and k >= 1 and k

<= n.

For first retry attempt, it’ll be 2 minutes, and for second retry attempt, it’ll be 4 minutes and so

on and so forth.

As briefly mentioned in section 2.1, FEC makes use of Exponential Backoff-strategy for it’s

retry operations. ‘Retry’ mechanism will end, when the kth file transfer attempt is successful,

with predefined ‘k’ no of attempts, or the MAX_ATTEMPT_NO is reached, regardless of

whether the file transfer has successfully finished or not.

Increasing the max number of retries attempts to 11 (MAX_ATTEMPT_NO) should potentially

give FEC a time window of 34 hours (i.e., last retry attempt will happen ~34 hours after the first

failure). If the retry mechanism should extend beyond this time window, it’s worth having a

https://github.com/rholder/guava-retrying
https://github.com/google/guava
https://en.wikipedia.org/wiki/Exponential_backoff

44

ticket raised by the Production Support folks and address the file transfer failure, by having

someone manually transfer the said file/s.

For each failed file transfer attempt, FEC engine throws Java exception and sends an appropriate

Java Object with stats of the current transfer attempt, wrapped inside the File exchange runtime

exception thus enabling retry mechanism to proceed with it’s mechanism, as ‘Retry’ code will be

listening to that.

In case of successful attempts, retry code doesn’t throw exception and sends back the Java

Object, listening to which Retry will stop, and normal execution resumes.

JSch framework used, will take care of RESUME operation during RETRY event, as discussed in

section 5.1.

FEC File Transfer

File exchange necessary involves both inbound and outbound transfer operations, between client

machines (external systems) and server machines (machines within the DMP ecosystem).

For NAB, only outbound file transfer is supported. NAB have their own way of doing inbound

file transfer, as of today.

For instance, if jsch is used as a tunneling proxy for this, a SOCKS proxy setting on jsch allows

the client code to connect to a running proxy server on the remote side. An sshd on the remote

side would not be considered a SOCKS proxy. This is done by establishing a local port forward

to the ssh port on the machine that’s we’re tunneling to, then establish a secondary ssh

connection to remove system using the api.

FEC File Transfer Status

When the file transfers have erred out or when the transfer is complete, FE table

FE_FILE_EXCH_EVENTS is updated with status of transfer corresponding the EXCH_ID, in

terms of STATUS_CODE and RETRY_COUNT. RETRY_COUNT is incremented for each

transfer event, in case of failure in file transfer.

45

When there’s no longer a need to increment RETRY_COUNT, the file transfer has either

succeeded, or the MAX_ATTEMPT_NO for retry operation has reached. In the latter case, the

file transfer can no longer be attempted, and the final status of the file is marked as FAILED.

Security View

FEC will be secured by DMP's security filter that prevents unauthorized access to provider

services.When external clients invoke the target URL, it will include an authorization token,

provided by the DMP IAM in the request header for target to authenticate the request.

AWS

It’s the responsibility of the File Exchange component implementation code to ensure, different

artifacts taking part in the File Exchange component workflow are made PCI-Compliant and

made secure applying DMP standard security policies.

46

Chapter 6

Openshift k8s Cluster using FICO Web Services

Overview

This chapter contains an overview of the installation guide for deploying kubernetes Openshift

clusterfor On-Premises on FICO web services (FWS). This cluster can be further used for

deploying DMP.

 Create Resources for cluster Deployment

 Login to FWS dashboard and ensure you are in the right project

 Login to the FWS dashboard

 Once logged in make sure you are in the right project by selecting Projects on the right

top corner like shown below :

Figure 6.1 FWS Dashboard

Create Master node instances using FWS UI

Based on the requirement, the k8s cluster could have 1 or more master nodes. For the demo

purpose we are building a cluster having 2 master nodes with the following configuration:

Master Node

(at least 2, recommended 3)

8-vCPU

32 GB RAM

40 GB HDD

400 GB Docker Storage (optional)

RHEL 7.5

Table 4 Master Instance Configuration

For creating the master node instances, follow the steps below:

47

Go to Compute->Instances and then click on “Launch Instance” button

Figure 6.2 Instance Creation Snapshot

1. Launch Instance Wizard – Screen 1 (Details)

 Enter an Instance name which is resolvable to corresponding instance IP address. For

verification execute the command $ echo HOSTNAME on host machine. The output

of the command and DNS entry should exactly match for all the nodes.

 Select Availability Zone as “nova”

 Enter Count as 1. Names of instances should be valid DNS. While creating the

instances, don’t use count/replication as this will append the replication count after

the hostname resulting in invalid domain name.

 Click “Next” to proceed

Figure 6.3 Instance Creation(Step-1)

2. Launch Instance Wizard – Screen 2 (Source)

 Select “Boot Source” as “Image”

 Enter “Volume Size” as “40”

 Select “Delete Volume on Instance Delete” as “Yes”

48

 Choose “RHEL-7.5” from the list of images

 Click on “Next” to proceed.

Figure 6.4 Instance Creation(Step-II)

3. Launch Instance Wizard – Screen 3 (Flavor)

 Filter & Select “8-vCPUx32GB-RAMx20GB-Disk.G” from the available list

 Click “Next” to proceed

Figure 6.5 Instance Creation(Step-III)

49

4. Launch Instance Wizard – Screen 4 (Networks)

 Filter & Select “provider_net3” as the network

 Click “Next” to proceed

Figure 6.6 Instance Creation(Step-IV)

5. Launch Instance Wizard – Screen 5 (Network Ports)

 Click “Next” to proceed on this screen.

Figure 6.7 Instance Creation(Step-V)

6. Launch Instance Wizard – Screen 4 (Security Groups)

 While creating the instances, create new security group if required else leave it as

default. For cluster installation you must create a Security group with port 8443 as

open port (Link). For testing purpose use dmp35-cluster-sg.

https://jive.fico.com/docs/DOC-88488

50

 Click “Next” to proceed

Figure 6.8 Instance Creation(Step-VI)

7. Launch Instance Wizard – Screen 6 (Key Pair)

Either create a new key pair or import existing key pair for ssh-ing into your instances.

 To create a new key use “Create Key Pair” button & create one.

 Filter & Select the newly created keypair from the available options.

 If you want to use the existing keypair then use “Import Key Pair” button on the

screen.

 Click “Next” to proceed.

51

Figure 6.9 Instance Creation(Step-VII)

8. Launch Instance Wizard – Screen 8 (Configuration)

 Click “Next” to proceed on this screen.

Figure 6.10 Instance Creation(Step-VIII)

9. Launch Instance Wizard – Screen 9 (Server Groups)

 Click “Next” to proceed on this screen.

52

Figure 6.11 Instance Creation(Step-IX)

10. Launch Instance Wizard – Screen 10 (Scheduler hints)

 Click “Launch Instance” to proceed on this screen.

Figure 6.12 Instance Creation(Step-X)

11. Launch Instance Wizard – Screen 11 (Metadata)

 Click “Next” to proceed on this screen.

53

Figure 6.13 Instance Creation(Step-XI)

Repeat steps 1)-12) for creating another instance of master node.

Create Infrastructure Node instances using FWS UI

We would be creating 2 infrastructure nodes in this cluster with the following configurations:

Infrastructure Node

(at least 2, recommended 3)

8-vCPU

32 GB RAM

40 GB HDD

400 GB Docker Storage (optional)

RHEL 7.5

Table 5

Repeat steps 1)-12) for creating each instance of infrastructure node.

Create Application Node instances using FWS UI

We would be creating 6 application nodes in this cluster with the following configurations:

Application Node

(at least 6)

8-vCPU

32 GB RAM

40 GB HDD

400 GB Docker Storage (optional)

54

RHEL 7.5

Table 6

Repeat steps 1)-12) for creating each instance of application node.

Create Load balancer Node instances using FWS UI

We would be creating 2 load balancer nodes (internal & external) in this cluster with the

following configurations:

Load-balancer Nodes

Internal and External

(one each)

4-vCPU

8 GB RAM

40 GB HDD

RHEL 7.5

Table 7

Repeat steps 1)-12) for creating each instance of load balancer node

Create and Attach Volume to instances

Create volumes of required size (For example: 400 GB) for storing docker images for master,

application and infrastructure nodes and attach it to the respective instances.

For example: Parameters to create volume for master node would be:

55

Figure 6.14 Volume Creation(Step-I)

Create NFS Share for the cluster

Click on Share-Shares tab and then user “Create Share” button to create the NFS share

Figure 6.15 NFS Creation(Step-I)

 Enter the “Share Name”

 Select “Share Protocol” as “NFS”

 Enter “Size” as “400”

 Select “Availability Zone” as “nova”

Figure 6.16 NFS Creation(Step-II)

DNS Entry for all instances in Route53

Add DNS entry in Route53 for all of the instances, resolving to instance IP address. Follow this

AWS guide for detailed steps:

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html

56

Remove any wildcard DNS if present from Route53 before running Ansible playbook. For

example remove this record set: *.<deployment-zone>.

Note: Sign in to the DMSCloud AWS Management Console and open the Route 53 console at

https://dmscloud.signin.aws.amazon.com/console

Prerequisites

Install Ansible

Ansible is easy open supply IT engine that automates application preparation, intra service

orchestration, cloud provisioning and lots of alternative IT tools

 brew install ansible (Mac)

 sudo easy_install pip | sudo pip install ansible (others)

 For Ansible installation in Windows 10, follow this link:

https://www.jeffgeerling.com/blog/2017/using-ansible-through-windows-10s-subsystem-

linux

Install certbot

Certbot is EFF's tool to get certs from Let's write in code and (optionally) auto-enable HTTPS on

your server.

 Install certbot for creating certificates using following commands:

 brew install certbot

 pip install certbot

Clone the on-prem installer repository

 git clone <url>

 git fetch all

 git checkout <branch-name>

 All the installation scripts for cluster setup are located in “playbook” directory.

Configuration of the Installer

 Add keys to the installer

 Fetch the private and public keys from FWS and place them in the cloned repo

 Configure inputs required by installer

Update the roles/common/vars/main.yml with the inputs required by the installer

INPUTS Description

DomainName Parent-domain name

RHEL_username Red Hat Enterprise Linux email

address

https://dmscloud.signin.aws.amazon.com/console
https://www.jeffgeerling.com/blog/2017/using-ansible-through-windows-10s-subsystem-linux
https://www.jeffgeerling.com/blog/2017/using-ansible-through-windows-10s-subsystem-linux

57

RHEL_password Red Hat Enterprise Linux

password

docker_storage 1. Internal- When no additional

volume used.

2. External - When additional

volume used

docker_volume Mount point of docker volumne

Eg. /dev/vdb

OPENSHIFT_MASTER_CLUSTER_PUBLIC_HOSTNAME External load balancer

hostname

Haproxy enabled – when using haproxy

disabled – when not using

haproxy

cluster_admin_user_name Openshift Dashboard login

user_name

cluster_admin_user_password Openshift Dashboard login

password

oc_insecureSkipTlsVerify true always

pvServerIP IP address of PV server. Use

10.106.32.5 or 10.106.32.6 IP

address to mount the shares.

defaultDirectory Directory in PV Server. This

can be fetched from Project –

Shares – Share Details: NFS

Share. defaultDirectory value

will be the path after the IP

mentioned above.

 Table 7

 Add certificates in the installer.

 Certs directory (Absolute path: <path>) should contain the following:

 cert-bundle.pem

 cert.pem

 key.pem

Execution of the installer

58

Note: The command execution will take around 1.5 hours.

Open Openshift dashboard

 After the setup is done open the url: <externallb-hostname>:8443/consoleto open the

Openshift dashboard.

 Login using the credentials.

ansible-playbook -i hosts main.yml --private-key=keys/id_rsa

59

Chapter 7

LoanApprovalExample Demo

Problem Statement: ABC Bank needs to get their Loan processing completely revamped. The

current process involves lot of human intervention and it takes considerably longer time to

process a new loan request. ABC Bank wants to completely automate the process. You have to

design and develop an end to end solution based on JEE framework and Score calculation

(model development).

UseCases:

UC001: Submit new application

1. User access the application

2. The application displays following links to the user

a. Submit new application

b. View existing applications

3. User clicks Submit new application

4. A form is displayed to the user with information related two name, address, loan amount

etc.

5. User fills the data and click on “Submit” button

6. Once the application is submitted, user gets a message that application is submitted

successfully.

60

Figure 7.1 Loan Application Home Page

UC002: Submit new application - Incomplete data flow

1. User does Step 1 to 5 mentioned in UC001

2. If user doesn’t supply the mandatory information, user will be displayed list of error

of which fields are missing

3. User corrects the errors and click Submit

61

4. Once the application is submitted, user gets a message that application is submitted

successfully.

Figure 7.2 Form to Submit Application

UC003: View existing applications

1. User access the application

2. The application displays following links to the user

a. Submit new application

b. View existing applications

3. User clicks View existing applications.

4. A grid will be displayed to the user which will have following information

62

a. Application ID (auto generated by system when application is submitted)

b. Applicant Name – First name + Middle Name + Last Name

c. Application Submitted date (Auto generated)

d. Application Status – (Following status are possible – Processing, Accept and

Decline)

UC004: View existing application

Parent Story UC003

1. User performs the operation of UC003

2. User clicks on the Application ID in the grid.

3. User gets the detail of the application in read only format along with Application ID,

Score, Status and Decline Reason. If the application is Approved, the decline reason

will not have any value.

Figure 7.3 View existing application

Score Calculation and Integration

Score calculation will be done on the model (see model Development Flow) that you develop

using the data (credit bureau) provided in database/file.

63

Instruction for Scoring

1. Combining with the bureau data based on the SSN (id)

2. Variable generation (combination of multiple fields), similar to the variable generation

 part during the modeling phase

3. Computing text fields (Text analytics) using the same process as in the modeling flow.

4. Computing the score using the model trained in Excel

Once the scoring is complete compare with a threshold to indicate Acceptance / Rejection of the

application. The threshold should be determined based on the default rate in the modeling data.

Application Architecture

Figure 7.4 Application Architecture

64

Technologies Used:

 User Interface – JSP, CSS, Java scripts

 Backend – Spring + Hibernate

 Database – Oracle

 Front end decline rule invocation – Web Services and XML parsers

 Scoring Models – Java

 Modeling - Excel

Front End Decline Rules The application should be declined if

 Applicant’s age is <18 or >65.

 Applicant’s work experience is < 6 months

 Applicants annual salary is < $10,000

Database Attached to the Application:

Figure 7.5 Application Database

65

Figure 7.6 Loan application in pending state

Steps for Kubernetes deployment of Loan Approval Applications using the following steps:

1. Build a WAR file of the Loan Approval application

2. Build the docker image of the application

3. Create a kubernetes cluster (no need if your minishift is already running)

4. Create deployment for the app

5. Create service for the app

6. Create route for the app

7. Resolve route DNS

8. Connect it with the MySQL database

66

Chapter 7

CONCLUSION

In these four months I have learned not only technical details but also the corporate policies and

formalities. It helped me to understand the responsibilities of several designated persons, as well

as mine as an intern. In this phase I was asked to concentrate on my learning. I learnt Kubernetes

container-orchestration system, openshift, Docker, Jenkins, ansible, helm, Java and spring

framework during this internship. Hopefully, with this organization I could get a better

opportunity to learn and grow.

67

REFERENCES

[1] https://www.wikihow.com/Run-Regression-Analysis-in-Microsoft-Excel

[2] https://dzone.com/articles/a-guide-to-mocking-with-mockito

[3] https://blog.knoldus.com/2017/how-to-integrate-your-maven-project-with-sonarqube/

[4] https://kubernetes.io/docs

[5] https://www.mkyong.com/spring/maven-spring-jdbc-example/

[6] https://www.mkyong.com/webservices/jax-rs/jersey-hello-world-example/

https://www.wikihow.com/Run-Regression-Analysis-in-Microsoft-Excel
https://dzone.com/articles/a-guide-to-mocking-with-mockito
https://blog.knoldus.com/2017/how-to-integrate-your-maven-project-with-sonarqube/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://www.mkyong.com/spring/maven-spring-jdbc-example/

	Chapter 1
	PROJECT UNDERTAKEN
	LITERATURE REVIEW: FICO DECISION MANAGEMENT SUITE
	3.1 INTRODUCTION
	3.1.1 Architecture of FICO Decision Management Suite:

	3.2 FICO ANALITCS CLOUD
	3.2.1 Architecture of FICO Analytic Cloud:

	3.3 DECISION MANAGEMENT PLATFORM (DMP)
	3.3.1 Platform Features
	3.3.2 DMP Components
	3.3.3 Component Archetypes
	3.3.4 Component Instances
	3.3.5 DMP Functions
	3.3.6 Service Providers
	3.3.7 Solutions
	3.3.8 DMP Manager
	3.3.9 Component Lifecycle
	3.3.10 Solution Lifecycle

	Chapter 4
	PROPOSED SOLUTION: DMP Laptop Deployment
	DockerizedComponents
	Chapter 7
	LoanApprovalExample Demo
	Chapter 7 (1)
	CONCLUSION

