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ABSTRACT

User’s interface for software apps come in a variety of format, ranging from command-line, web
application, and even voice. The popular user interface include graphical and web-based
application, the need arise for an alternative interface. Whether due to multi-threaded
complexity, or surrounding execution of the service, a chatbot is the need.

Chatbot provide a text-based User Interface, thus allowing the user to type command and
receive text as well as text to speech response. Chatbots are usually a stateful service,
remembering previous commands in order to provide functionality. When chatbot is integrated

with web services it can be used by an even larger audience.



1. INTRODUCTION

A Chat-Bot is a man made person, animal holding talks with humans. Chat-Bot can be a text
based, spoken or can be a non-flask communication. Chat bot can work both on PCs and smart
phones, but mostly works on the internet. Chat-bot can be understood a machine which can
communicate with humans. They can converse in almost every language. Their (Natural
Language Processing, NLP) skill can varies from exceedingly idle to clever, needy and plumb.
Sometime it can feel like a cartoon made by a kid and other side it can be realistic. They all are

“chat-bots”.
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Fig.1 Application of ChatBot

1.1.1 Growth of the ChatBot

Over few year, message apps become popular than Social networking. People are using
applications these days such as FB Messenger, Kik, etc.This is making other business available
on message platform leads to proactive communication with user about their things. To interact
on these apps with many users, the business can write a computer program that can communicate

like men which is called a chatbot.



1.1.2 Natural Language Understanding Engine

The chatbot system (engine) is one of the most critical part of a chatbot, alias “Natural
Language Understanding (NLU) engine” ( Kar, R and Haldar, R. 2016). The NLU holds
responsibility for the translation of dialogs to actions which are understood by the machine. NLU
engines use of artificial intelligence methods to understand the natural language used in
interfaces such as chatbots. These concepts are used to develop the behavior of the chatbot and
how coherently it interacts with the user. Intents are used to establish a connection between the

user and the action to be executed by the chatbot in order for the user to achieve their goal.

1.1.3 Challenges

The CBot system is unknown to those who are not familiar to tech. Chatbots are not much
accurate in providing the answers or solutions, though there are many chatbots. Student are
required to put in physical work by visiting the colleges to get their requesting information
replied by institute help desk. Overall process takes a lot of money as well as time because

creators can be very far from institute..



1.2 Problem Statement

Implementation of Chatbot using Tensor flow and Python.

1.3 Methodology

Plan of Attack

Here's what we will learn:

* Types of Natural Language Processing
» Classical vs Deep Learning Models

+ End-to-end Deep Learning Models

+ Bag-Of-Words

+ Seq2Seq Architecture

*+ Seq2Seq Training

» Beam Search Decoding

» Attention Mechanisms

Fig.1.2 Plan of Attack

We've got quite a diverse and involved intuition session coming up. Lots of concept to grasp so it
will be good for us too. At the start have a bird's eye view of the things that we're going to
discuss. Here's what we will learn in this section on intuition. First of all we'll discuss about the
types of natural language processing this will lay the foundation and we will discuss a Venn
diagram which demonstrates this deep learning which is deep in our and shows us where the
sequence to sequence what lies in that diagram will keep coming up because it will be very
helpful for us to keep track of how we're progressing into the world of world of natural language
processing. Then we'll talk about classical versus deep learning models. Look at some actual
examples of applications of a.p. And there's also been useful just to show us that natural
language processing is not limited simply to chat bots. It's actually covers a huge range of
different applications and we'll see a couple of them here. There will discuss about entry into

deep learning models and how they're different to enter in deep learning models and what they're



advantages and then we'll talk about the bag of words and our model. We'll see two of its
variations and this will help us gradually progress to the most advanced model. The sequence
which will start discussing ahead in the secrecy was architecture. This is the model that
we're actually after. This is what we're implementing in our chat. Then we'll talk about the
sequence of sequence training. So it's intentionally placed in this order. That first bit of
architecture and we'll actually see it in action as if it was trained because that will help us better
understand what is desired from the training and then it will be easier to cover all the training
afterwards. And that's why they're in that order. Then we'll talk about search decoding which is
the way that the sequence secrecy secret architecture actually comes up. Wherefore the model
comes up with the outputs that we want to see you know put the different. Very subtle very
interesting conceptual approach here for research decoding. And finally we'll talk about at
mechanisms. So this is an additional augmentation of the seq2seq model which helps with a

longer term memory for the algorithm.

1.4  Design Fundamentals of Bot

1.4.1 Types of Natural Language Processing

Types of NLP

Natural
Language
Processing

Deep
Learning

\

Sen?Sen
Fig.1.3 Types of NLP
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So we've got two Venn diagrams here or we got a Venn diagram of two circles in it and we're
going to look at the different areas of natural language processing that are going to come up in
this course. So on the left of natural language processing overall and this refers to the whole
circle on the left. So the reason why we've called in just this great part is because that's not
overlapping part. So we know that anything here is just natural language processing. We evolved
with disregard to the second circle. But natural language processing is indeed everything that is
in this circle. Then we've got on the right deep learning. So these are all algorithms that have
something to do with neural networks deep learning. Basically anything that's called a deeper or
an algorithm falls in here. They don't have to be natural language processing. They can be
classification they can be anything so they can be that's deeper here and natural language
processing is any algorithm any mortal that has something to do with processing of natural
language into machine terms. And then finally in the overlap we have deep and all. So these are
models which have to do with natural language processing but also which are deep learning more
which are neural networks. And so that's the part that we're going to be aiming for but it's also
very good to have visibility of all three. We will be talking about some models that fall just in
here and then we'll be talking about those here and it'll be good to compare and see how the
world has changed over time and why these models are often better than these models. And the
other thing to note here is that the size of these diagrams is not reflective of the importance or the
volumes of these different fields so I just said circles on the same size simply because we want a
visual representation of all the overlap and that these fields exist but don't take size into account.
It's not to scale at all. And finally there is a another part another part of this event diagram which
is very important to us and it is this part over here a sub section of the deep and Piccolo sequence
to sequence so sequences sequence models of the most cutting edge the most powerful models
that exist right now for natural language processing. We think we can apply them in a natural
neuro machine translation we can apply them in image captioning we can apply them in speech
recognition questions and answers summarization lots and lots of models so we will be looking
at different ones and they will be of different types. So this map will come in handy as we go
through the course and it will be popping up here and there. So I think it was very important for

us to set the foundation right so that now we're ready to proceed.
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1.4.2 Bags of Words

Bag-Of-Words

Hello Kirill. Checking if you are back to Oz. Let me know if you are around .. Cheers, V

(1.1.0.0.1,0.2.0.1.0.0.0.0.0.1,2.0,.0.0.1,0.0.1,0.0, ., 3] ==t Yes / No ?
20.000 elements long
Training Data:
(1.1.0.0 0.0.1.0.1.0.1,0.0.1.0.0 | — No
(1.1.0.0 B 0,0,2.0,0,0.1,0,0,1.0.0 ] — Yes
[1.1.0. 07+ 0.0.1.0,0,0.1.0.0.0,0.1....1] === Yes
[1.1.0.0) 557 0.0,1.1,0,1,0,0.0,0,0,0,..,1] == No
(1.1.0.0 . 0.0,1.0,0,1.1,0.0,0.1.0 ] — Yes
Image Source: www helloacm.com —_—

Fig.1.4 Bags of Words Model

Today we're looking at a bag of words model. First thing I'd like us to look at is an email an
email I received just a few days ago. So here we go. The e-mail is about to catch up and my
friend is asking. Hello Carol. Checking if you're back in Oz hands for Australia let me know if
you're around and keen to see on how things are going. I definitely could use some of your
creative thinking to help of mine. Cheers B. And so what I'd like us to pay attention to. First of
all of course you can see that I sent this email to myself but that is because I wanted to keep my
friend. Actually it is because I read your reply to the email and then I wanted to send it and also
wanted to keep my friend keep his privacy but this is a real email. This is the exact text that I got
literally a couple of days ago and the title was different but I just called a change to catch up and
so on. What is interesting about this we're going to be looking at how we can apply natural
language processing to this email in the next couple tutorials and it will help us work with a real
life example and then the other thing is that it is here you can see in Google the Gmail app for

phone you can see that is give me some suggestions. Very interesting it's saying I was requiring
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some quick replies that I can use it can be yes I'm around. I'm back so I am not very interesting
so let's keep that in mind and we will come back to this later. In the meantime text of the email is
here. What can we do with it. So first things were going to start off simple. We're going to create
a model. We're going to look at how we can create a model that will give us a yes no response
because that's one of those questions. The question is are you back in Australia. Let me know if
you're around and keen to say so. Yes. No of course it's better to have a long response. And that's
the social norm and it's the etiquette to converse with people and they just say you know what
even Let's try to get a yes no response and see how would you go about that because that's a first
step into an LP and then further on we will see how we can expand that and more. so we're
going to start off with we're vector a vector or a just like an hour a full of zeros let's call it
vectors. These are like that. So just 0 0 0 0. How many zeros. Well a lot of zeros. Twenty
thousand elements in total twenty thousand. Why is that? Well it's because of the way that we're
building a small 20000 is the number of words that are commonly used by the average native
English language speakers. So here's a quick search on Google. How many words in the English.
That's the search I took I came up with how many words are there in English language. Hundred
seventy one thousand pardons seventy six words. That's how many entries in our tradition plus
some obsolete words plus derivative words and so on. But also people also you can see Google's
giving a suggestion that more subtle adult native test takers range from 20 to 30 trade thirty five
thousand words average native test takers of age eight or ten thousand words average age of test
takers or you know 5000 or that it's an adult native test takers low almost white whatever this is
going to is what's. But the interesting thing here is that Harmy like what I wanted to point out.
First of all 20000 and we will see why exactly resisted a lot more. What I wanted to point out is
how many words are there in the English language. Even this in its own is actually Google's
applying natural language processing. It's looking at what we wrote and then it's also checking
other similar answers. How many words in the English language does that other person the
average person know? So that's a question I ask but it came up with that. Then you came up with
many other questions. So you can see that the irony is that even in this search on its own We're
really falling victim of natural language processing even though that wasn't our intention and
that's not what we're going to be talking about. But it's just funny that it came up anyway. So
20000 words and fun fact is that we actually use about 3000 words out of those hundred seventy

one thousand four is only six words we only use 3000 words not just in conversational language
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but you can see here vocabulary of just 3000 words provides coverage for around 95 percent of
common texts 95 percent of common text that I like I'm assuming that's including books and
stuff like that. So if you do the math it's I only use one point seventy five percent of the total
number of words in English language. So as you can see even that 3000 like our 20000 is more

than even the 3000 that covers any facts of the situation so we're pretty good.

14



2. LITERATURE SURVEY

A literature review means to evaluate and interpret available research related to a particular
research question, or area. Its main aim is to present a fair research by conducting a rigorous and

auditable methodology

2.1) Title:* Emassnuela Haaller and Traiian Raebedea, “Designing a Chat-bot that
Simulates an Historical Figure”, IEEE Conference Publications, July 2013.

There may be applications that are incorporating man-like appearance and intending to imitate
human, but in most of the scenarios the information of the conversational bot is stored in a db
created by someone who has prolonged knowledge in that field. However, few experts may have
investigated the idea of creating a Chat Bot using an artificial character and personality
beginning from web-pages or plain-text of a certain person. The paper elaborates the idea of
pointing out the important facts in texts explaining the life of a ancient figure for creating an

agent that is used in school scenarios.
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2.2 Title: Maja Pantic, Reinier Zwitserloot, and Robbert Jan Grootjans, “Teaching
Introductory Artificial Intelligence Using Asimple Agent Framework”, IEEE Transactions
On Education, Vol. 48, No. 3, August 2005.

The paper explain a way of teaching artificial intelligence (Al) using a genuine, naive agent
frameworks only for this course. Though many agent frameworks has been proposed in the
literature, none of the available structures was easy or simple to be used by to be graduates of
CSE. The main objective of using such a study was to keep busy the students into which they
found very interesting. A constructive approach and a traditional approach was used so that

students learn very effectively.
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3.SYSTEM DEVELOPMENT

3.1) SOFTWARE REQUIREMENTS:

e Anaconda
e Spyder
e Python

3.2) HARDWARE REQUIREMENTS:

e System Requirements:

v CPU: 2.3 GHz Processor and above
v RAM: 4 GB or above
v OS: Windows 7 or above

The purpose is to model chatbot which is extremely intelligent to answer your questions and can

use in any field.

[2] The assumption is that in a Chatbot
®  The chatbot will be used by many users
® [t should be extremely simple

®  (Can be used in any field i.e. it can be a Multi tasking Chatbot

17



4. ALGORITHMS

Chat Bot Algorithm which is been used in this project has been created by Machael Maudllin in
1994 and was first published in Julia. He had used this algorithm for the development of verbot
which was first Al based ChatBot.

e We store our question that is asked by user in a var "queue"

e After this we fetch the main keywords from query table in database.

e Check if "queue" had any of main words.

e Ifthere is no word, we will say no answer found.

e If there is match found all the keywords with matching keyword is fetched.
e Then we pass "queue" through 4 word process of keyword checking.

o We take its response and then submit it to the user if there is match found.
e If not match then it passes "queue" via 3-kedyword match algo

e Ifitis so for 2 and 1 word match.

18



4.1) ARCHITECTURAL FLOW:

Fig.4.1 Architectural Flow

We'll build the chat but from scratch. And of course following a step by step approach. We will
build a super powerful Chatbot by implementing a state of the art deep and LP model which will
be the seq2seq and we will implement that with one of the best API is to build deep ideations or
art of her own talents which will be tensorflow. We will get into the details and the high level
techniques of tense of flow to build our childhood. So this implementation will be done in five
parts which are the common five parts when implementing a deeper application or an Al. So here
we go. First part: part zero. Installing Anaconda and getting the data set. Anaconda is the idea we
will use to build our chat but we will actually use more precisely spider inside and We can it
because it’s like a studio. But and then we will get the data set which is the Cornell movie
corpus. They said basically it's a data set of more than 600 movies containing thousands of
conversations between lots of characters. And we wanted to train our Chad. But on this day he
said because we wanted to build a general chat but that can have general conversation with us
like a friend instead of you know specified chat but there is use for some specific purpose. That
being said the model we will use can be trained on other datasets for some other purposes you
know for example you will be able to train the same chat but on a more specific dataset like a
calendar assistant or a navigation assistant. These are some more specific applications but this is
not what we do in this course. We will try in a general chat but to talk about everyday

conversations and that is why movies are because in movies you have a lot of random
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conversations general conversations between friends. And so this will actually be pretty fun.
Then part one. So that was part zero and part one will be data processing data processing is
inevitable whenever you build an Al or whenever you build a machinery model you have to
make the data set compatible with the model you're going to build. We're going to build a neural
network based model and therefore the data will have to have a special format especially for the
inputs. Besides we'll have to clean the text because the less we clean it and simplify it the more
difficult it will be for a model to train itself to talk like a human. So we will have to do a lot of
data processing this will not be the funniest part but we will try to do it the most efficiently so
that we can get to the exciting parts which are actually part 2.3 and part four when we get into
the heart of the model. And speaking of these parts part two will be building the seq to seq
morrow the sequence to sequence model which is a state of the art deep an LP model. So we will
build it. We will actually build a brain composed of an encoder and then a decoder and we will
assemble all of them to build the final brain which be careful will not be trained yet. And
speaking of training that leads us to part three part three will be about training this set to
segmental that is training this brain that we would have just made in part two. So we will train it.
We will set up a last function get the optimizer and then apply some to get a grade in the center
to update the weight of the neurons of the brain so that it improves its ability to talk with us. And
finally part for the last part of this implementation we will test our Chad. But that is we will test
the SEC to Sec. All that is will make some kind of a code to you know once we executed have an
interface where we can ask some questions and then the Chatbot will answer and we will just test
the Chatbot. But by observing its answers and see how it’s capable of conversing with us. So this
will be pretty exciting. And here we go. That’s the plan of attack of this implementation. And
without waiting we are going to start with part zero directly in the next tutorial. We will install
efficiently and. And then in the next tutorial after that we'll get the data set and then it will be

good to go. We will start part 1 day of pre-processing and the next parts after that.
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4.3 Part 1: Data Preprocessing.

})
S
>

Name Type  Size Value ~
= Snsuer o 1 so far only their scouts but we have had reports
= of a small impi farth ...
e List op1e1s ['Well, T thought we'd start with pronunciation,
R el 3 ; i ; % : 5 s if that's okay with y ...
5 lines = open(‘movie lines.txt', encoding = 'utf-3', errors = ‘ignore’).read().split(‘\n’) e e e e e
19 conversations = open('movie conversations.txt’, encoding = 'utf-8, errors = 'ignore’).read() answers_into_int list 221616 s e iogl (Lo a D
= F T bl [ e b
: e T st sms L8N ", 2imake', 3:'this’, 4:'auick’,
id2line = {} s A e
23 for line in lines: answerswords2int aicy (mspy  [SASEDESSiRei L NRSE RS D St LSS
24 _line = line.split(’ +++3+++ ') bt St -
25 if len(_line) == 5: clean_answers b5 Olb ered Liecl L (L thouRE sc would Stalt with
e TS denere e pronunciation if that is okay wit ...
= id2tingl Hnefal].=: lincla) et 1ist 221616 L'€an we make this quick roxanne korrine and
- = andreu barrett are havin ...
23 conversations_ids = [] conversation list 3 ['L666528", 'L666521", 'L666522']
30 for conversation in conversations[:-1]:
: ; : . ‘u8 2 e ‘L19a",
31 _conversation = conversation.split(’ +++$+++ ')[-1][1:-1].replace(”'", "").replace(” ", " conversations list 83098 EL;QST"?H;; ’[Ig;’; S
32 conversations_ids.append(_conversation.split(',')) 2 2 = v
33 Variable explorer  File explorer  Help
34
35 questions = [] IPython console 8 x
. ingaie ) . [ Console 7/A B TS
B or ;c'""?r?an”” ’"1“"""5“1“"?1”5‘ -t conversations = open( movie_conversations Txt, encoding = UiT-§, errors =
i o 1 fn congpilenlcniviscation) - 31 “ignore').read().split('\n’JERROR: execution aborted
39 questions.append(idzline[conversation[i]])
10 answers.append (id21ine[conversation[i1]]) In 3]
41 K
ge “ 20y oA In [2]: runfile(’C:/Users/Ayush/Desktop/Deep NLP A-Z/chatbot.py”, wdir='C:/Users/Ayush/
- : Desktop/Deep NLP A-Z')
44 text = text.lower()
45 text = re.sub(rti's TR
46 text = re.sub(r
47 text = re.sub(r"
48 text = re.sub(r"t
49 text = re.sub(r"s
50 text = re.sub(r"
51 text = re.sub(r"\'1l"

Fig.4.3 Data Pre-Processing

Libraries Imported-numpy,tensorflow,re,time
These libraries will be used to clean the text and especially to replace some characters by some
more simple characters to simplify the conversation as simple as possible .Time library is

imported to calculate the training time.

What we want to think in the end is a data set that contains basically two columns the input and
the output because inputs will be the inputs that will be fed into the neural network and the

outputs will be the target. Following steps will be performed to do so-

I.Importing the dataset-We start the data pre-processing journey by importing the data set and
we are going to use open function to import our data set. We will load both the conversations and

the lines using the open function.

2. Creating a dictionary that maps each line and its id-So where we want to go is the two words
dataset composed of inputs and the outputs and the easiest way to do this is with dictionaries
because we will have to keep track of the conversations to make a correct mapping between the

inputs and the output.

3.Creating the list of all the conversations-We already have a list of conversations but we have a

lot of meta data and we want to only keep what is interesting for us and what we will use for the
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training and what we will only use for the training. In this we will keep ID’s part of the

conversation.

4. Getting separately the question and the answers-As we explained earlier we will create two
columns the input and the output and so the questions will serve as the inputs and the answers
will be the target. So we are going to get them separately before cleaning all the questions and

the answers.

5. Cleaning of texts-This is the part where we will clean all the test of the questions and answers.
Everything will be put in lowercase and we are going to remove all the apostrophes and then we
will do some more cleaning by removing the non important words. We are going to make
function that we are going to call clean text and that will be applied on a text like a specific
question or specific answer and that will do multiple cleaning at the same time. The function will

take only one argument and that will be the text.

6. Cleaning the questions and answers-We are going to apply clean text function on all the
questions and the answers to effectively clean their attacks. We are going to make a new list that
will contain all the clean questions, clean answers and therefore clean text function will be called

on those core questions, core answers and the result will be stored in the new list.

7. Creating the dictionary that maps each words to its number of occurrence-We are going to
start the whole process of removing the non so much frequent word of our corpus and we want to
do that because we want to optimize the training and to optimize the training we need the
essential words of the vocabulary. So we are going to remove the words that appear from time to
time less than 5 percent actually of the whole corpus. The best way to do this is to create a
dictionary that is going to map each word to its number of occupancies. We first need to get all
the words separately and for each of these words we get the number and so that is number of

times they appear in the corpus.

8. Creating two dictionaries that map the questions words and the answers words to a unique
integer-In this step we are going to perform two essential tasks whisch are tokenization and
filtering the non frequent words. We are going to do that at the same time by creating two
dictionaries. One that is going to map each word of all the questions to a unique integer and one

other dictionary that is going to map all the words of all the answers to a unique integer and
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while creating this dictionary we will add an if condition that will check if the number of
arguments is of the word. We will be dealing that if the number of arguments of the words will
be higher than a certain threshold that we will choose and if that is the case we will include that
word in this dictionary and if the number of arguments of the words is below the threshold we
will not include this word in the dictionary so that at the same time we proceed to the process of
tokenization by getting separately all the different words of all the questions and all the answers
and attributing a unique integer to each of this word and at the same time we filter out the words
that don't appear frequently in the dictionary that is there or below the threshold that we're going

to choose.

9. Adding the last tokens to these two dictionaries-In this we are going to add the last tokens to
our two previous dictionaries that we just created. And these last tokens are the ones that are
useful for the encoder and the decoder in the sector like model which are you know the start of
string that we're going to encode by as so as the end of string that we're going to encode by the
OS the iPad which is very important for our model because the process turning data and the
sequences in the batches should all have the same length and therefore we have to input this
token in an empty position. And eventually we will create a last token which will call out and
that corresponds to all the words that were filtered out by our two previous dictionaries. We will

use these dictionaries to replace all the words all these five percent less frequent words.

10. Creating the inverse dictionary-In this one we are going to create the inverse dictionary of
the answerswords2int in dictionary. That's because we will need inverse mapping from the
integers to the answers words in the implementation of the sectors like model. And we actually

just need for the answers words in dictionary and not the questions word.

11. Adding the end of String token to end of every answer-In this we are going to add the token
end of string to the end of every answer . We are going to loop over all the answers in our clean
answers. We are going to get back to the original clean answers list which is the list of all the
answers that we have cleaned. One by one and to each of these answers we're going to add this as

string. So we're going to simply loop over all the indexes of the clean answers list.

12. Translating all the questions and the answers into integers and replacing all the words that
were filtered out by <out>-Basically we just need to translate all this into this new language of

integers according to how our previous dictionary was made. And therefore we're going to have
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to make some for loops to loop not only over all the questions here and then all the answers and

then for each of these questions here we will loop over again all the words of the question and

applying the previous dictionary to translate each of these words into their unique associated

integers.

13. Sorting questions and answers by the length of questions -Basically we want to sort the

questions and the answers by the length of the questions because this will speed up the training

and help to reduce the loss. And the reason for this is that because it will reduce the amount of

padding during the training. So it's pretty technical but it's important to know why we're doing

this. And so right now we want to go what we want to do is to sort the questions and the answers

by the likes of the questions to speed up the training and optimize it.

52 text = re.sub(r"\'ve”, " have®, text)

53 text = re.sub(r”\ " are”, text)

54 text = re.sub( ould”, text)

s5 text = re.sub( will not”, text)
s6 text = re.sub( text)
57 text = re.sub( iy
58 return text

59

60

&1 clean_questions = []

52 for question in questions:
53 clean questions.append(clean_text(question))
64

B3

56 clean_answers = []

57 for answer in answers:

55 clean_answers.append(clean_text(answer))

71 werdzcount = {}
72 for question in clean_guestions:
73 for word in question.split():

74 if word not in word2count:
75 word2count[word] = 1

76 else:

77 wordzcount[word] += 1
78 for answer in clean_answers:

79 for word in answer.split():

g0
81
82
83
84
8s
&6 threshold questions = 28

87 questionswords2int = {}

88 word_number = @

89 for word, count in word2count.items():
reshold_questions:

wrds3int Tunedl = wned nimher

if word not in word2count:
word2count [word] = 1
else:
word2count [word] += 1

99
a1

if count

Fig.4.4 Data Pre-Processing
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4.3 Part 2: Building the Seq2Seq Model.
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Fig.4.5 Building the Seq2Seq Model

Eventually we're getting there and that is in this part that we're going to start using tensor flow to
build the architecture of the. But it is the architecture of the sectors like model which is at the
heart at the core of the chatbot. So in the previous part we made a lot of for loops. We're going to
make a lot of functions in this part because these are going to be the functions that will define the
architecture of the sector PSEC model. So actually we're going to make one function purgatorial
and the function we're going to start with right now is going to be a function that will create
placeholders for the inputs and the target. So what is a placeholder and why do we need to create
it. That's the first question we will answer right now. So intense a flow all variables are used in
tensors. Tensors are like an advanced array more advanced than an empire array which is of a
single type and that allows fastest computations in the deep neural networks. So we need to go
from the number of arrays the class Signum by race to tensors. But that's not all because then in
terms of flow all the variables used in tensors must be defined as what we call tensor flow
placeholders. So basically that's an even more advanced data structure that can contain tensors
and also other features. So that's always the first thing we must do when starting to build a deep

neural network with tons of flow we need to create some placeholders for the inputs. And that's
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exactly what we're going to do right now but we're going to do it through a function that we'll
call model inputs. And so inside this function we will create a placeholder for the inputs a
placeholder for the targets and then we will add a learning rate and even more hybrid parameters.
So in short we are creating these placeholders to be able to use these variables in the future
training. We need to start with them. Then we need to give a name to that function and we're
going to call it model underscore inputs and this function is not going to take any arguments
because it will just directly take the input and output. And for each of them convert them into
placeholders into tensor flow placeholders so that's all good. so we're going to start by creating
some new variable that we're going to call inputs and that will be this tensor flow placeholder
containing the inputs. And so to create a sense of placeholder we’ll first we need to call our sense
of library which we can get things to the shortcut we made which is T.F. So we called sense of
flow and from sense of flow we're going to get the place holder function that is a function that
can create placeholders for the input. so now in this placeholder function we need to enter three
parameters. The first one is going to be the type of the data there are the inputs and remember
that we converted our input into unique integers and part 1 data preprocessing. So the type that
will choose here is going to be T.F. we need to call it from tensor of flow that int 32. Then next
argument is going to be the dimensions of the matrix of the input data. And since the inputs are
the lists of the questions encoded into unique integers we can have a look at it again sorting
questions which you must understand are the inputs. So before we start creating the encoding
layer and the decoding layer we have to prepare a set of targets. Why is that? That's because the
decoder will only accept a certain format of the targets. You know the decoder gets to target and
in order for the targets to be accepted into the neural network of the Dakota which is an LACMA
record a new network. Well the targets need to have a special format. So first of all what is
exactly this format this format is twofold. First the targets must be in two batches. The record
renewal network of the decoder will not accept single targets that are single answers. Remember
the targets are the answers. So that’s the first important thing of this special structure that we will
create in this. So the targets must be in two batches. So for example if we take our sort of clean
answers which are the targets Well you know the neural network will not accept them one by one
like that they will only accept them into batches so instead of feeding them it will that work with
single answers we will feed the neural network with batches of for example 10 answers at a time

and that’s the first important thing we need to understand. We need to choose a better size and
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then create batches of size the bedside that we choose and these batches for example of 10
answers will go into the record renewal network of the doctor. So we'll have this first one here
and then the next one after that containing the 10 next answers. And that’s the first important
element of the special format we want to create and then the second important element is that
each of the answers in the batch of Target must start with the S O S tokens. And as you can see
here the answer is start with the first word of the answer that is the first unique integer encoding
the first word of the answer and not the S.O.S. So what we need to do besides creating batches of
answers we need to put the S.O.S token or at least a unique integer encoding so as to go in at the
beginning of each of these answers inside each batch. And that's two things we will do in this.
Create the batches and then adding the S.O.S token. Hello and welcome to this new very exciting
and this one we're going to start creating the architecture eventually of our set to take model.
This architecture is twofold. We'll first create the encoder RNN layer because this is what comes
first in the architecture of the seq2seq model and then we'll create the decoder RNN layer. So
you got this right. We have the neural network for both the anchor and the decoder will be an
RNN. It will not be a simple iron and rest assured it will be stacked episteme which reply drop
out to improve as much as we can the accuracy and we'll create all this in the next. And today
we're going to start with the encoder RNN there. And so we're going to make a function that will
define in some way the architecture of this anchor RNA layer. But in this one with tensorflow we
are going to include an LSM instead of a jar. And for this we're going to use the basic LACMA
Cell class by tens of flow. Hello and welcome to this new and the previous to toile we took care
of the encoder and layer and then this one we're going to take care of the decoder RNN layer and
we're going to have to do it in three steps. First step will be to decode the training set and that's
what we'll do in the Statoil. Second step will be to decode the validation set. And that's what
we'll do in the next. And then eventually we'll be ready to create the decoder RNN there. So let's
take the first step in today’s decoding the training set. So again we're going to make another
function. This architecture is all about making functions and this function we're going to make is
going to be called the decode. And those cores training on this core set that way we clearly
understand what's going on. The coach training set and it is going to take a lot of arguments. So
let's add them one by one. The first argument is going to be the encoder underscore state because
our decoder is getting the encoded state as input as part of the inputs to proceed to the decoding.

And therefore we will need the anchor to state that was returned by the previous function and
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current RNA layer to proceed to the decoding. So go to state then the next argument is going to
be the decoder cell. And that's basically the cell in the record neural network of the decoder.
Then the next argument is going to be the decoder embedded on this core input and that's
basically the inputs on which were applied embedding and I'm going to explain to you right now
what this means. We made to decode training said function that decoded the observations of the
training set. And at the same time we turned the output of the decoder but that was for the
observations of the training said that is some observations there are going back into the neural
network to update the weights and improve the ability of the chatbot to talk like a human. But
now we're going to make kind of the same function. But for a new kind of observations these
observations are actually the observations of the test set and the validation set. And basically
these are new observations that won't be used for the training and that's why as you can see here [
called this code section decoding the test validation set because the function we're about to make
will be used not only to predict the observations of the test in the end that is the answers of the
questions we'll be asking to the chat but in the test phase part 4 remember. But then also the
validation set. And where does the validation set that the set we will make during the training
also. But we will do some cross-validation technique to keep separately 10 percent of the train
set for cross-validation which is a technique that keeps a small part of the training data to test the
predictive power on new observations. That's a very useful technique to not only reduce
overfilling but also to improve the accuracy on your observations. And so the function we were
about to make right now will be very similar to the one we just made only there is going to be

one fundamental change.
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Fig.4.6 Building the Seq2Seq Model

We will create the decoder RNN as opposed to what we did before when we created the encoder
RNN. Remember in this code section here we made the encoder RNN function by the way I just
replaced the previous name encoder RNN layer by anchor RNN at the end of the previous toile.
And so in today's Statoil we're going to make another record a new work which will be this time
to record a new network of the decoder and therefore let's scroll down back. We're going to make
a new function here that we're going to call decoder underscore our. And then record a neural
network of the decoder. So if you're ready let's begin. So this day go to RNN function is going to
take several arguments. Actually lots of them. So we're going to put them one by one quite
quickly. Now that we are starting to get comfortable with all these different objects. . So the first
argument is going to be the decoder underscore and underscore inputs. We already covered that.
Let's move on to the next one then the next one is going to be the decoder embeddings matrix.
Then the next one is going to be the and coater underscore state which I remind that a very
important thing to keep in mind is that it's the output of the encoder but that becomes the input of
the decoder. So in current state we will definitely need it for our decoder RNN then we're going
to take again the total number of words in our corpus of answers then sequence lengths. Again
we've already seen that sequence length. Then the RNN underscore size which is another one of

our previous arguments then the number of layers that we called Number layers so that this time
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the number of layers we want to have inside the record of a neural network of our decoder layers
than what else we're going to need our word to in a dictionary. But that can actually be any
dictionary it's just an argument. But that will of course be our answers words to any dictionary
that we made in the previous part but one data pre-processing then we're going to apply some
drop out again because there are going to be some training in the implementation of these RNN
and therefore we are going to use to keep underscore prob parameter to control the dropout rate.
And finally one last one. Try to guess what it is. It's very important. You know it's at the heart of
any neural network it is the batch size because the inputs of neural networks whether it is in
terms of flow or by torch are in two batches and we need to specify a batch size to choose the
size of these batches. . So that's it for our arguments. So we're going to start with actually with
the with syntax of Python supersized that we're making this decode RNN in a decoding scope.
Remember the decoding scope I explain that. And we think s ago it's a more advanced terms of
the variable that will contain several data entities and therefore what we need to start here is
introduce this code. And we're going to do it this way with a sense of flow and then from
Tensorflow we're going to get that variable underscore scope. And now inside the scope we're
going to make everything happen. So the first thing we need to start with is create our LSD layer.
And so as for my encoder I'm going to call it L S T M equals and then exactly the same as our
encoder we're going to get our sense of the library then from this library we're going to get the
module then from the country model we're going to get the RNN sub module and from this RNN
sub module we're going to get the basic LSD and sell the basic LACMA cell class that takes as
inputs on you one argument which is the RNN size. Remember that's exactly what we did here
for the encoder we created as a layer which was same an object of the basic LACMA cell class
that takes us and put the r in incise. So we now have our Alice GM and so now that we have
Arliss GM What do we do. Well it's time to apply some drop out regularization to reduce
overfilling and improve the accuracy. And so we're going to introduce the same variable name
and underscore dropout meaning an LACMA layer on which dropout is applied. And that again
will be an object of another class that we used for our encoder. There it is. And so we can
basically copy this because it's going to be exactly the same it is going to be an object of the drop
out wrapper that needs to take the previous LACMA that we created as an object of the basic
himself last and that uses the key probe parameter controlling the dropout rate. So let's do this

let's that here T.F. RNN dropout rapper LACMA and put riprap equals keep. So now we have
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our LACMA there with our applied but that gives us one LS gem there. RNN we're building a
stacked Ellis GM and therefore now we're going to use to multiply RNN sell to stack several
LACMA layers with drop out applied. And again that's exactly what we did for our encoder. So
we’re going to simply well copy this line and just below for our decoder RNN. Well we’re going
to introduce this new variable here that will be our decoder cell. I remind that the decoder cell is
what contains the stacked LACMA layers with about applied. So that's basically a cell LACMA
layers and therefore this occurs there is going to be the taste of what I just copied that is an object
of the multi RNN cell taken from the RNN module of the country module from the tents of the
library which takes as input the previews LACMA layer in which drug was applied times the
number of layers we want to have in this stacked LSD layer inside the Dakota cell. Then next
step the next step is actually something new something we haven't done before. We need to
initialize some weights that will be associated to the neurons of the fully connected layers inside
our decoder. That is the last layer and to initialize them well first we need to introduce a new
variable that I'm calling waits and we're going to initialize them by using an initializer. That is
the T.F. that truncated normal initializer. And that will generate a truncated normal distribution
of the weights. This function takes only one argument. We're going to choose a standard
deviation which will be 0.1. The standard deviation and that is equal to point 1. So now we have
our fully connected the weights initialized then next step naturally after the weights the next step
is to get the biases. We now have all the tools that we just need to assemble to build this final set
to set moral. And that's exactly what we're going to do. And this is oil we will just use the
previous tools we made like first of all of course the encoder RNN which is the first main part of
the SEC to sec then the decoder RNN which is the second main part of the SEC to Sec. And as
we made things to these two functions here deco turning set and Dakota set which we want to
have to use again because these were just used to make the decoder RNN the decoder record
new in that work. So basically we will just assemble these two and could RNN and decoder RNN
and that will be our final round for this part to building the same model. So let's do it let's make
this final function that we're going to call sec 2 sec underscore morrow. . It's the final ultimatum
model that we will chat with during our testing phase in part 4. Basically you got it. That's the

brain of our chatbot.
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4.4 Part 3: Training the Seq2Seq Model.
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Welcome to part three training the sequence to sequence model we just built a brain in the
previous part to building the sequence to sequence model Model and now it's time to train this
brain and this part three to make it smart or at least able to talk able to chat with us. So for this
everything's going to be fine. We're going to set some values for the hyper parameters that will
be used during the training obviously and that you will be able to change if you want to
experiment more and try to improve the results. So to open a session intensive flow we're going
to create an object of the interactive session class and that object will be our session. But before
we create this object we need to reset the dense flow graphs to ensure that the graph is ready for
the training. So in general when you open intense a closed session to do some training you have
to reset the graph first. So we're going to start by doing this resetting the graph and to do this we
need to take the tenths of the library and then applied the reset default graph function which is a
function by sense of flow that resets the tens of FaludWefor graph. That's basically the questions
that will feed into our set to SEC Network. Then we also have the targets which are the target
answers the answers to the questions target. Then the third element returned by this function is
the learning rate L R and finally the fourth and last elements returned by this function is the keep
prob parameter keep probability and all of these four elements are the four elements returned by
our model inputs function. We're going to be setting the sequence length to a maximum length
which will be 25 if you remember we already did that previously and actually Part 1 of pre-
processing at the end. In this sorting questions and answers by the length of the questions here
we chose to go up to a certain sequence length which was 25 and this plus one wishes to include
the twenty five or be bound but already by doing that we set a maximum sequence length and we
have to do it again here to specify this on our sequence slings variable which is one of the
arguments used by the functions of part 2. If we go to part two you see the encoder RNN takes as
the argument the sequence length as well as the decode RNN right here sequence lengths. Right
now our inputs are in the tensor attentively tensor but we need to get the shape of these input
because again this will be one of the arguments of one specific function we'll use for the training.
This basic function is actually the ones that function by tens of flow that basically creates a
tensor of ones and the dimensions of this tensor is going to be exactly the shape that's why we
need to get it now is because it's going to become the argument of this future ones function will
use just like what we did for this sequence length which is going to be the argument of the SEC

the SEC moral function. Targets which were already loaded here by calling our modeling
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function target. Then the next argument we have to input is to keep probability which is the
probability of keeping the neuron activated during each iteration of the training .And we got this
key parameter at line. Two hundred and ninety seven that we will later connect to the keep
probability variable that we created at line two hundred and ninety and that is a specific entity of
the tensor flow APIL. So we will connect that later. But what we have to input here in this sector
signal function is make sure to understand the key variable returns by the model input function
and that's it. The key probability tens of loc we will actually connect them later when running the
session with the run method of our session object and that will be in the big for loop over the
epochs of the training. So keep it up. Then the next one is the batch size always working with
batches when doing deep learning. And we get our batch size here 64 meaning that there are
going to be 64 inputs and targets in each batch size then the next one is the sequence length
which we just got here. And then the next argument is going to be the length of our answers.
Words 2 and dictionary. Then we are going to copy this because the next argument is going to be
the land of the questions words in the dictionary. So then the next argument is going to be the
encoding embedding size which we remind is the number of columns in the embeddings matrix.
Each of these columns corresponding to an embedding value. And then again we are going to
copy this because the next argument after that is going to be the embedding size. This time the
decoding matrix the decoding embedding size. Then the next argument is going to be the RNN
size which we also got here and the hyper parameters the size of 512.. And then two more
arguments to go the next one is the number of layers. And that again we got when setting the
hyper parameters number of layers equal 3.Meaning that there are going to be three layers in the
cells of our record neural networks both the one of the encoder and the one of the decoder to
numb layers .And finally the last one which is our dictionary questions words to it. So basically
now we are ready to execute this code section execute to get our training protections in our test
predictions. . So now we're getting closer and closer to the big loop of the training. But we're not
there yet. We have a few remaining steps to do. We're going to get very close to the training
because we're going to set up the lust for the optimizer and we're going to apply some great
unclipping great tipping for those of you who don't know what that is. This is a technique
actually some operations that will cap the gradient in the graph between a minimum value and a
maximum value and that's to avoid some exploding or vanishing gradient issues. And so we're

going to make sure to avoid these issues by applying gradient tipping to our optimizer. And so
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we are going to define a new scope here which will contain two elements to final ultimate
elements that we'll use for the training which are going to be the last error and the optimizer with
grading tipping. The last error is going to be based on a weighted cross entropy loss error which
is the most relevant loss to use when dealing with sequences as we are doing right now and in
general when dealing with deep and LP and the optimizer that we're going to use will be first an
atom optimizer which is one of the best optimizers for us to cast a great descent. And then we
will apply gradiently to that optimizer to avoid exploding or vanishing great issues. And so let's
do this let's define the scope. You already know how to define a scope. We did that for the
decoding scope. So we need to take our sense of library and then the name scope function to

which we need to input the name of this scope in quotes.
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Fig.4.9 Training the Seq2Seq Model
Now we're going to finally apply the padding to the sequences with the pad token. So first we’ll
answer two questions first why do we have to do that? And second what are we going to do
exactly with our questions and our answers. So the answer to why we have to do this is that all
the sentences in a batch whether they are questions or answers must have the same length. And
now the second question what we are going to do exactly. Well as you can see we have prepared
here two sentences one question and one answer. And as you can see the question who are you.
And the answer WE are about where WE don't have the same length. And after we apply the
padding this question and answer will become this. Who are you? Bad bad bad bad. And WE are
about as know. So basically the bad tokens are added so that the length of the question sequence
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is equal to the length of the answer sequence. That's the purpose of padding and that's a must do
in deep in LP. The two remaining steps that we have to do is first split the data into batches of
questions and answers. And then the second step is to split again the questions and answers into
training and validation data because we will do some cross validation during the training to keep
track of the predictive power on new predictions which will be 10 or 15 percent of the data. So
let's take care of this first step in this battle which is to split the data in two batches of questions
and answers. That's a fundamental thing to do in deep learning to work with batches. And
basically we're going to make the batches. so we're going to do that into a new function that will
use the previous function because of course inside each of these batches we will pad the
questions with the pad tokens so we will make a new function and then of course in the training
we will apply that function to create the batches and feed the neural network with these batches
of inputs and targets. That is before the big training for loop. So this final step is to split the
questions and answers into the training and validation sets. So we are saying sets because we're
going to make basically a set for the training questions a set for the training answers then a set
for the validation questions and the set for the validation answers. And for those of you who see
Krust edition for the first time well we remind that it is a technique that consists of during the
training keeping 10 or 15 percent of the training data aside which won't be used to train the
neural network that is which would be basically back propagate it. And just to keep track of the
predictive power of the model on these observations are like new observations. So basically
we're just testing the model on the side. But during the training just to keep track of what it's
capable to do on new observations. And so this validation set that we have to make for both the
questions and answers is exactly this 10 or 15 percent of the data on the site. So let's apply cross-
validation and that consist exactly of splitting the questions and answers into four sets the
training and validation sets. So we're going to start by introducing the Bache index check
training class that we're going to say equal to 100.And that's because we will check the training
class every 100 badges so you'll see how we'll use it later. Then We are going to keep it as viable
because the second variable we will introduce is going to read a batch index check validation lots
and that the validation nurse who will check it halfway and at the end of an epoch. And therefore
since the middle of an epoch corresponds to half of the numbers of batches .We are going to get
this half of the number of batches by taking all our questions. That is the total number of our

questions. So Len training questions that We are going to divide by the batch size to get the total
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number of batches and then We are going to divide by 2 to get half of this number of batches and
then we need to use a minus one just around the down then We are going to introduce the
training last error and We are going to initialize it to zero and that will be used to compute the
sum of the training losses on 100 batches because we chose to check the last every 100 batches.
And then we are going to copy this because the next variable that we are going to introduce is
first not a total less error but a list of fewer errors and not at the training but the validation that's
going to be the least of the validation plus errors. So we made some good progress here and the
next step is to apply some decay to the learning rates and that will be thanks to our learning okay
and therefore to do that. We are taking my learning rate and since the decay consists of
multiplying the learning rate by doing red decay to reduce it by the decay rate. Well We are
going to multiply this learning rate by our learning rate DK and so now remember that we want
to have a minimum learning rate and therefore to make sure that we're going to add here that if
condition to check if our learning rate that was reduced by the K is lower than this minimum
learning rates and if that's the case if it was decayed reduced too much. Well we want to set this
learning rate equal to this minimum learning rate. And that was given in the hyper parameters.
Good so that's a good thing checked. Now we have to take care of early stopping. So to take care
of this we're going to get first our list of validation fewer errors and to this list we're going to
spend the last average validation last error that we just got. And then we're going to check if this
average validation last error is lower than the minimum of all old validation plus errors that we
append in the list and basically that means that if we manage to get an average validation error

that is lower than all the ones in the list that means that there is improvement.
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Indeed we built a brain we trained the brain and now you're about to chat with a chat .we did the
most difficult part. And as you can see we've reached already the third book and we already got
some weight that we can see here in File Explorer. So these are the first weights and therefore
these are not the weights of some very smart brain. Or should we say of some brain with high
abilities to speak with us. So we're going to have to wait some more for some better weight.. But
no we will get them._ We're going to make a function that will convert the questions that are right
now in strings to list of encoding integers and why are we doing this. That's because we will
need that function for this final step right after this to toile to set up the chat between a chat but
and us. So let's make this function. We start with def. We're going to call that function converts
Well let's say string to int and that function is going to take two arguments the first one is the
question and the second one is word to int which is a dictionary. So it can either be the questions
word in Dictionary or the answers words to any dictionary. So these two arguments. And now
let's define what it has to do first before making that conversion we're going to clean everything
in the question and we have a nice function for that that we made which is the clean text
function. So that's why we are going to take my question which is one of my argument and We
are going to clean it. Thanks to the context function. And of course this context function takes
the question as input and now we can make the conversion. And to make that conversion we'll
first we will return directly what we want to return. That is the question as a list of encoding
integers. And therefore since we want to return a list we are going to introduce here some square
brackets and we are going to use this for loop inside the list trick that you know we've done
several times in this course. So there we go for. And we're going to loop over of course the word
in the question. So for word in question and then remember we need to add that split with some
parenthesis to get the words separately. And so what are we going to do for each of the words in
the question. Well we are going to convert them and for that we're going to use our word to ant
dictionary but we're going to use a trick which is to get function because the problem is that we
filtered out some words that were not frequent. You know among the least frequent words we
filter them out and therefore they do not exist in the dictionary but they might exist in the
question and we're using just get here to make sure that if this nonfiction word is not found in the
dictionary whether out token ID will be returned remember we made an out token for each of
these non-African words and that's why in this get function we are going to input first the word

that we're dealing with right now. And if this word doesn't exist in the dictionary. Well we'll
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return the word to int dictionary of the key which is the out token. So that it returns the unique
integer encoding outspoken otherwise it will get the unique integer idea including this word
based on the mapping of this dictionary. And that's it. That's just a function we had to make here.
We are ready to set up the chat so we'll do that in the next tutorial. And until then Id been on the.
Let’s set up the chat between us and the Chatbot. So we're going to start with a while. True
which will set the interaction between the Chatbot and us until we apply the break? So we're
going to start by getting the question we'll be asking to our chat and this question will get it by
using the input function which will take as inputs what we want to enter in the console when we
ask a question to the Chatbot and therefore We are adding quote here you which will be you
yourself with a colon and a space to separate you and your question. So that's the first step. We
get the question then we're directly going to make that break to stop the interaction when we
want to. And we are going to start the interaction when we say goodbye to Richard but that is
when our question is goodbye and therefore We are going to say now that if our question is
equally equal to Goodbye like that. Well in that case we are going to break and this will stop this
while loop. Then now that we take care of this we are going to take care of the real conversation
between the jackboot and us. So the first thing we need to do is now that we got our question that
we're entering the console we're going to do all the process of getting the question in the right
format so that it can go into the neural network and so that we can get the predicted answer and
therefore the first thing we need to do is well first update our question this way by using the
convert string to and function that takes as we define here the question and the questions word to
the dictionary. That will convert the string of that question into the list of encoding integers.
Great. So that's the first thing we must do then we need to apply the padding. We need to make
sure that this question has the same length as the questions that were used for the training and the
questions that were used for the training remember have a length of 20 and therefore now we
must complete the length of that question with enough tokens and more precisely Petro China
IDs so that this question has an length of 20. And to do this we'll first thing the question and
updated this way by taking it again and then adding since. Now our question is we're going to do
a list addition. We're going to add to our question list the following list. That is the list of the pet
tokens that need to be added so that our question has a length of. And to give this you know the
trick. We first take our questions words to the dictionary to get the unique integer encoding the

token. And therefore here are mentoring the key which is the bad token and then we are going to
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multiply this list by the difference of 20 and the length of our question. And that will complete it
exactly by the number of better ideas that will make the question have a length of 20. Then next
step now that we have the single question in the right format. Well remember the essential thing
we need to do when working with neural networks it's the fact that this question must be into a
batch the neural networks only accept batches of inputs they only accept input batches and since
now this question is by itself we need to put it into a batch and we're actually going to create a
fake batch which will contain this question and then some empty questions that will only get
zeros. And that's why now We are introducing this fake batch variable that We are going to
initialize as a number array of zeros and then zeros function we need to specify the dimensions
of this vague batch and that's the only argument that has to be a couple of two elements. These
two elements being the number of lines of this array and the number of columns of this array. So
the number of lines is going to be of course the batch size because each line corresponds to a
question and the number of columns is going to be. Well of course 20 because our new one was
trained with questions of length 20 you can actually change that if you want. So that initializes
this big batch but then now we need to include our question in this fake batch and to do this we
will simply include it in the first row of this fake batch and therefore we are setting this first row
this big batch of index 0 to be called to that question. And now that we have our batch of input in
the right format Well we're ready to feed that into the new network to get the predicted answer
the chat but that is the output of the neural network and this predictive answer to get it we're
going to use our session. Then the run method which will take two arguments the first one is our
test predictions variable that we made in part to building the second PSEC model and then
remember the second argument is a dictionary of two sets of keys and values. The first one is the
inputs which are of course our batch of inputs which we called fake that and then keep
probability that remember we set it equal to 0.5 50 percent. So that's exactly we'll return a list of
several elements. And the one that we're interested in that is the predicted answer is actually the
first element of that list and therefore we need to add here some square brackets and then inside
the index 0 to get that first element. And now that we get the predicted answer Well we are ready
to prepare the output will get in the council so we could directly get this predicted answer but we
need to post process it if we may say you know we have to predict the answer but we must turn it
into a clean format meaning that will replace for example all the lower case Webuy capital eyes.

You know when the Chatbot is saying for example WE are WE are not WE are not. Wherever
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we will also replace all the US tokens by Dud's because that corresponds to the end of a sentence
and therefore it should be a dead. Will replace all that out tokens that correspond to the filtered
out words by simply ours and for the rest of the elements in that particular answer which We
remind are the unique integers in the dictionary mapping the tokens to the integer IDs. Well we'll
simply return the token associated to that unique integer Plus a space so that in the answer we
can separate the different words by spaces. So let's do this let's introduce the final answer with
an empty string like that. And then we're going to do a for loop to loop over. So here we are
going to use trick non-pay tricks and get a number here and then we are going to use the ARG
max function that is going to take as arguments are predicted answer and the axes which is 1.
And basically what this will do is get the token IDs in the predicted answer. So I'll provide the
documentation for the MAX function by name by. But what you need to understand here is that
we are going to take the values of the different token IDs in the predicted answer. And so now
we're going to make the replacements we mentioned starting with the lower case that we're going
to replace by a capital 1. So if the answer is its two word dictionary of key that is key the unique
integer idea in the predicted answer is equal to lower. We won that case. We're going to replace
that by capital and therefore we are going to introduce a new variable token that will be equal to
capital. We then next thing we can catch and replaced by something nicer. Well first we have to
use I live same we're going to take our answers in two word dictionary. And so if the token we're
dealing with right now is the end of string. So can well in that case we're going to replace that by
a dot incorrupt then we are just going to copy this because this is going to be the same. . So this
time what do we want to take care of. Well we said that out to Ken outspoken and in that case
well we said that the term is going to be out and that's it. That's the main things that we're going
to replace. And we're going to finalize this with an else meaning that if we get any other token
well in that case we will simply replace that token by a space plus that token we just got which is
answers in two words of key I which will return the token. So we got all the conditions and now
we need to increment our answer which so far is an empty string by the token and therefore We
are getting here my answer incrementally by the token I sew the different tokens in the predicted
answer. Clean the by everything we did here will be added one by one to the final answer we'll
get in the council. Great. And finally we need to add the very important last condition which will
end this follow up and we will end it by a break it's that if the token is an adult Well that means

that we've reached the end of the sequence because of this condition here. You know the end is
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marked by the end of string and replace that by that. Therefore if we get that then that means that
it's the end of the chat. But answer. And in that case are shut but is done talking. And finally let's
not forget to print the checkbook answer and to do this will specify for us that it's to chat but
speaking so we are adding Chatbot here then a column and then a space to separate this Jack but
string by the answer of the Chatbot. And speaking of the answer of the Chatbot. That's exactly
what we're at here with plus answer which is the answer we formed here by adding each of these
different tokens we can get by going through the different tokens of the predicted answer. So
we're done with this code that will hopefully allow us to interact with a chaplain. And now guys
congratulations not only you reached the end of the whole implementation but also you were
ready to interact with a job. So now we are just going to get a little less excited because
remember Archibald's was poorly trained. We just trained it while sleeping for a few hours. So
Chatbot what needs to be much more trained than that and therefore what we're about to get here
will be a very poor conversation. We will actually just say one thing you'll be convinced of the
answer and you'll be convinced that of course we need to train the chat. But more and not only

that we will also try to improve them all. We will tweak the parameters.
4.6 ChatBot Resources

ChatBot prototyping:

BotSociety and BotUI Kit are the most common apps for creating your prototypes for your bots.

Platforms: Facebook Messenger

ChatBot Analytics
Botanalytics and Bot Metrics are a conversational analytics for bots that provide fine analytics of
your bot with training.

Platforms: Kik, Facebook, Slack.

ChatBot Developer Platforms

Api. Al ,Wit.ai and Microsoft Bot Framework are user experience platform to build brand-

unique bots, and for devices and applications it process NLP i.e Natural Language Processing.
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Platforms:  Facebook, Slack, Kik, LINE, Spark, Alexa, Cortana, Twitter .etc.

ChatBot Marketing

bCRM is a crm for marketing the chatbots and grow your business.

Platforms: Facebook Messenger, Slack

ChatBot Translators

Cyrano is a kind of translator that translates every language to bot to understand,thus making

your bot multilingual and can be use in different languages.

ChatBot Customer service engines

Reply.ai and Agent.ai makes your chatbot really scalable and replies just in seconds to maintain
the scalablity.

Platforms: Facebook Messenger, Kik, Telegram,Slack, WE Chat, Skype, Android, 10S.
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3. RESULT

The result of the chatbot that we have implemented is shown below.The Chatbot has been

trained using seq2seq architecture and has been tested.
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CONCLUSION

The main objectives of the project were to develop an algorithm that will be used to identify
answers related to user submitted questions. To develop a database were all the related data will
be stored and to develop a web interface. The web interface developed had two parts, one for
simple users and one for the administrator. A background research took place, which included an
overview of the conversation procedure and any relevant chat bots available. A database was
developed, which stores information about questions, answers, keywords, logs and feedback
messages. A usable system was designed, developed and deployed to the web server on two
occasions. An evaluation took place from data collected by potential students of the University.
Also after received feedback from the first deployment, extra requirements were introduced and

implemented
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