
Development of Chatbot Using
 Deep NLP and Python

Project report submitted in partial fulfillment of the requirement for the
degree of Bachelor of Technology

In

Computer Science and Engineering

By

Gokaran (151270)

Ayush (151263)

Under the supervision of

Dr. Jagpreet Sidhu

To

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

CERTIFICATE

Candidate’s Declaration

This is to certify that the work which is being presented in the report entitled

“Development of Chatbot using Deep NLP and Python” in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer

Science and Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of our own work carried out

over a period from August 2018 to May 2019 under the supervision of Dr. Jagpreet

Sidhu (Assistant Professor, Senior Grade, Computer Science & Engineering

Department).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

This is to certify that the above statement made by the candidates is true to the best of my

knowledge.

Dr. Jagpreet Sidhu
Assistant Professor (Senior Grade)
Computer Science & Engineering Department
Dated:

 i

ACKNOWLEDGEMENT

We owe our profound gratitude to our project supervisor Dr. Jagpreet Sidhu, who took

keen interest and guided us all along in my project work titled ― Development of

Chatbot using Deep NLP and Python, till the completion of our project by providing

all the necessary information for developing the project. The project development helped

us in research and we got to know a lot of new things in our domain. We are really

thankful to him.

ii

 TABLE OF CONTENTS

CERTIFICATE... i I

ACKNOWLEDGEMENT .. ii I

ABSTRACT ..5

1)INTRODUCTION………………………………..………………………………...6

1.1)THE CHATBOT……………...……………..……....……..……………………7

1.2)PROBLEM STATEMENT…….……..…………………….……...……………9

1.3)METHODOLOGY………………………………………………..……………..9

1.4) DESIGN FUNDAMENTALS OF… BOT….. ………………………………..10

2)LITEATURE SURVEY

2.1) RESEARCH PAPER-1…………….…………………………..…………….15

2.2) RESEARCH PAPER-2……………..………………………………………..16

3) SYSTEM DEVLOPMENT

3.1)SOFTWARE REQUIREMENTS…….…………………………………………17

3.2)HARDWARE REQUIREMENTS……………………………………………...17

4)ALGORITHMS…………………………………………………..…………...18-44

5)RESULT…………………………………………….…………………..…….......45

6)CONCLUSION………………………………………….……………..……........46

7) REFERENCES………………………………………………………….…..........47

iii

5

ABSTRACT

User’s interface for software apps come in a variety of format, ranging from command-line, web

application, and even voice. The popular user interface include graphical and web-based

application, the need arise for an alternative interface. Whether due to multi-threaded

complexity, or surrounding execution of the service, a chatbot is the need.

 Chatbot provide a text-based User Interface, thus allowing the user to type command and

receive text as well as text to speech response. Chatbots are usually a stateful service,

remembering previous commands in order to provide functionality. When chatbot is integrated

with web services it can be used by an even larger audience.

6

1. INTRODUCTION

A Chat-Bot is a man made person, animal holding talks with humans. Chat-Bot can be a text

based, spoken or can be a non-flask communication. Chat bot can work both on PCs and smart

phones, but mostly works on the internet. Chat-bot can be understood a machine which can

communicate with humans. They can converse in almost every language. Their (Natural

Language Processing, NLP) skill can varies from exceedingly idle to clever, needy and plumb.

Sometime it can feel like a cartoon made by a kid and other side it can be realistic. They all are

“chat-bots”.

7

Fig.1 Application of ChatBot

1.1.1 Growth of the ChatBot

Over few year, message apps become popular than Social networking. People are using

applications these days such as FB Messenger, Kik, etc.This is making other business available

on message platform leads to proactive communication with user about their things. To interact

on these apps with many users, the business can write a computer program that can communicate

like men which is called a chatbot.

8

1.1.2 Natural Language Understanding Engine

The chatbot system (engine) is one of the most critical part of a chatbot, alias “Natural

Language Understanding (NLU) engine” (Kar, R and Haldar, R. 2016). The NLU holds

responsibility for the translation of dialogs to actions which are understood by the machine.NLU

engines use of artificial intelligence methods to understand the natural language used in

interfaces such as chatbots. These concepts are used to develop the behavior of the chatbot and

how coherently it interacts with the user. Intents are used to establish a connection between the

user and the action to be executed by the chatbot in order for the user to achieve their goal.

1.1.3 Challenges

The CBot system is unknown to those who are not familiar to tech. Chatbots are not much

accurate in providing the answers or solutions, though there are many chatbots. Student are

required to put in physical work by visiting the colleges to get their requesting information

replied by institute help desk. Overall process takes a lot of money as well as time because

creators can be very far from institute..

1.2 Problem Statement

Implementation of Chatbot using

1.3 Methodology

We've got quite a diverse and involved intuition session coming up. Lots of concept to grasp so it

will be good for us too. At the start have a bird's eye view of the thin

discuss. Here's what we will learn in this section on intuition. First of all we'll discuss about the

types of natural language processing this will lay the foundation and we will discuss a Venn

diagram which demonstrates this deep learning which is deep in our and shows us where the

sequence to sequence what lies in that diagram will keep coming up because it will be very

helpful for us to keep track of how we're progressing into the world of world of natural language

processing. Then we'll talk about classical

examples of applications of a.p. And there's also

language processing is not limited simply to chat bot

different applications and we'll see a couple

deep learning models and how they're different to enter in deep learning models and what they're

Implementation of Chatbot using Tensor flow and Python.

 Fig.1.2 Plan of Attack

We've got quite a diverse and involved intuition session coming up. Lots of concept to grasp so it

will be good for us too. At the start have a bird's eye view of the things that we're going to

learn in this section on intuition. First of all we'll discuss about the

types of natural language processing this will lay the foundation and we will discuss a Venn

diagram which demonstrates this deep learning which is deep in our and shows us where the

sequence to sequence what lies in that diagram will keep coming up because it will be very

helpful for us to keep track of how we're progressing into the world of world of natural language

processing. Then we'll talk about classical versus deep learning models. Look at some actual

examples of applications of a.p. And there's also been useful just to show us that natural

not limited simply to chat bots. It's actually covers a huge range of

different applications and we'll see a couple of them here. There will discuss about entry into

deep learning models and how they're different to enter in deep learning models and what they're

9

We've got quite a diverse and involved intuition session coming up. Lots of concept to grasp so it

gs that we're going to

learn in this section on intuition. First of all we'll discuss about the

types of natural language processing this will lay the foundation and we will discuss a Venn

diagram which demonstrates this deep learning which is deep in our and shows us where the

sequence to sequence what lies in that diagram will keep coming up because it will be very

helpful for us to keep track of how we're progressing into the world of world of natural language

. Look at some actual

useful just to show us that natural

s. It's actually covers a huge range of

of them here. There will discuss about entry into

deep learning models and how they're different to enter in deep learning models and what they're

advantages and then we'll talk about the bag of words and our model. We'll see two of its

variations and this will help us gradually progress to the most advanced model.

which will start discussing ahead in the secrecy was architecture

we're actually after. This is what we're implementing in our chat

sequence of sequence training. So it's intentionally placed in this order. That first bit of

architecture and we'll actually see it in action as if it was trained because that will help us better

understand what is desired from the training and then it wi

afterwards. And that's why they're in that order. Then we'll talk about search decoding which is

the way that the sequence secrecy secret

comes up with the outputs that we want to see you know put the different. Very subtle very

interesting conceptual approach here for research decoding. And finally we'll talk about at

mechanisms. So this is an additional augmentation of the

longer term memory for the algorithm.

1.4 Design Fundamentals of Bot

1.4.1 Types of Natural Language Processing

then we'll talk about the bag of words and our model. We'll see two of its

will help us gradually progress to the most advanced model.

which will start discussing ahead in the secrecy was architecture. This is the model that

we're actually after. This is what we're implementing in our chat. Then we'll talk about the

sequence of sequence training. So it's intentionally placed in this order. That first bit of

architecture and we'll actually see it in action as if it was trained because that will help us better

understand what is desired from the training and then it will be easier to cover all the training

afterwards. And that's why they're in that order. Then we'll talk about search decoding which is

the way that the sequence secrecy secret architecture actually comes up. Wherefore

hat we want to see you know put the different. Very subtle very

interesting conceptual approach here for research decoding. And finally we'll talk about at

mechanisms. So this is an additional augmentation of the seq2seq model which helps with a

for the algorithm.

Fundamentals of Bot

Types of Natural Language Processing

 Fig.1.3 Types of NLP

10

then we'll talk about the bag of words and our model. We'll see two of its

will help us gradually progress to the most advanced model. The sequence

This is the model that

. Then we'll talk about the

sequence of sequence training. So it's intentionally placed in this order. That first bit of

architecture and we'll actually see it in action as if it was trained because that will help us better

ll be easier to cover all the training

afterwards. And that's why they're in that order. Then we'll talk about search decoding which is

up. Wherefore the model

hat we want to see you know put the different. Very subtle very

interesting conceptual approach here for research decoding. And finally we'll talk about at

model which helps with a

11

So we've got two Venn diagrams here or we got a Venn diagram of two circles in it and we're

going to look at the different areas of natural language processing that are going to come up in

this course. So on the left of natural language processing overall and this refers to the whole

circle on the left. So the reason why we've called in just this great part is because that's not

overlapping part. So we know that anything here is just natural language processing. We evolved

with disregard to the second circle. But natural language processing is indeed everything that is

in this circle. Then we've got on the right deep learning. So these are all algorithms that have

something to do with neural networks deep learning. Basically anything that's called a deeper or

an algorithm falls in here. They don't have to be natural language processing. They can be

classification they can be anything so they can be that's deeper here and natural language

processing is any algorithm any mortal that has something to do with processing of natural

language into machine terms. And then finally in the overlap we have deep and all. So these are

models which have to do with natural language processing but also which are deep learning more

which are neural networks. And so that's the part that we're going to be aiming for but it's also

very good to have visibility of all three. We will be talking about some models that fall just in

here and then we'll be talking about those here and it'll be good to compare and see how the

world has changed over time and why these models are often better than these models. And the

other thing to note here is that the size of these diagrams is not reflective of the importance or the

volumes of these different fields so I just said circles on the same size simply because we want a

visual representation of all the overlap and that these fields exist but don't take size into account.

It's not to scale at all. And finally there is a another part another part of this event diagram which

is very important to us and it is this part over here a sub section of the deep and Piccolo sequence

to sequence so sequences sequence models of the most cutting edge the most powerful models

that exist right now for natural language processing. We think we can apply them in a natural

neuro machine translation we can apply them in image captioning we can apply them in speech

recognition questions and answers summarization lots and lots of models so we will be looking

at different ones and they will be of different types. So this map will come in handy as we go

through the course and it will be popping up here and there. So I think it was very important for

us to set the foundation right so that now we're ready to proceed.

1.4.2 Bags of Words

Today we're looking at a bag of words model. First thing I'd like us to look at is an email an

email I received just a few days ago. So here we go. The e

friend is asking. Hello Carol. Checking if you're back in Oz hands fo

you're around and keen to see on how things are going. I definitely could use some of your

creative thinking to help of mine. Cheers B. And so what I'd like us to pay attention to. First of

all of course you can see that I sent t

friend. Actually it is because I read your reply to the email and then I wanted to send it and also

wanted to keep my friend keep his privacy but this is a real email. This is the exact text that

literally a couple of days ago and the title was different but I just called a change to catch up and

so on. What is interesting about this we're going to be looking at how we can apply natural

language processing to this email in the next couple tut

life example and then the other thing is that it is here you can see in Google the

phone you can see that is give me some suggestions. Very interesting it's saying I was requiring

Fig.1.4 Bags of Words Model

Today we're looking at a bag of words model. First thing I'd like us to look at is an email an

email I received just a few days ago. So here we go. The e-mail is about to catch up and my

friend is asking. Hello Carol. Checking if you're back in Oz hands for Australia let me know if

you're around and keen to see on how things are going. I definitely could use some of your

creative thinking to help of mine. Cheers B. And so what I'd like us to pay attention to. First of

all of course you can see that I sent this email to myself but that is because I wanted to keep my

friend. Actually it is because I read your reply to the email and then I wanted to send it and also

wanted to keep my friend keep his privacy but this is a real email. This is the exact text that

literally a couple of days ago and the title was different but I just called a change to catch up and

so on. What is interesting about this we're going to be looking at how we can apply natural

language processing to this email in the next couple tutorials and it will help us work with a real

life example and then the other thing is that it is here you can see in Google the

you can see that is give me some suggestions. Very interesting it's saying I was requiring

12

Today we're looking at a bag of words model. First thing I'd like us to look at is an email an

mail is about to catch up and my

r Australia let me know if

you're around and keen to see on how things are going. I definitely could use some of your

creative thinking to help of mine. Cheers B. And so what I'd like us to pay attention to. First of

his email to myself but that is because I wanted to keep my

friend. Actually it is because I read your reply to the email and then I wanted to send it and also

wanted to keep my friend keep his privacy but this is a real email. This is the exact text that I got

literally a couple of days ago and the title was different but I just called a change to catch up and

so on. What is interesting about this we're going to be looking at how we can apply natural

orials and it will help us work with a real

life example and then the other thing is that it is here you can see in Google the Gmail app for

you can see that is give me some suggestions. Very interesting it's saying I was requiring

13

some quick replies that I can use it can be yes I'm around. I'm back so I am not very interesting

so let's keep that in mind and we will come back to this later. In the meantime text of the email is

here. What can we do with it. So first things were going to start off simple. We're going to create

a model. We're going to look at how we can create a model that will give us a yes no response

because that's one of those questions. The question is are you back in Australia. Let me know if

you're around and keen to say so. Yes. No of course it's better to have a long response. And that's

the social norm and it's the etiquette to converse with people and they just say you know what

even Let's try to get a yes no response and see how would you go about that because that's a first

step into an LP and then further on we will see how we can expand that and more. so we're

going to start off with we're vector a vector or a just like an hour a full of zeros let's call it

vectors. These are like that. So just 0 0 0 0. How many zeros. Well a lot of zeros. Twenty

thousand elements in total twenty thousand. Why is that? Well it's because of the way that we're

building a small 20000 is the number of words that are commonly used by the average native

English language speakers. So here's a quick search on Google. How many words in the English.

That's the search I took I came up with how many words are there in English language. Hundred

seventy one thousand pardons seventy six words. That's how many entries in our tradition plus

some obsolete words plus derivative words and so on. But also people also you can see Google's

giving a suggestion that more subtle adult native test takers range from 20 to 30 trade thirty five

thousand words average native test takers of age eight or ten thousand words average age of test

takers or you know 5000 or that it's an adult native test takers low almost white whatever this is

going to is what's. But the interesting thing here is that Harmy like what I wanted to point out.

First of all 20000 and we will see why exactly resisted a lot more. What I wanted to point out is

how many words are there in the English language. Even this in its own is actually Google's

applying natural language processing. It's looking at what we wrote and then it's also checking

other similar answers. How many words in the English language does that other person the

average person know? So that's a question I ask but it came up with that. Then you came up with

many other questions. So you can see that the irony is that even in this search on its own We're

really falling victim of natural language processing even though that wasn't our intention and

that's not what we're going to be talking about. But it's just funny that it came up anyway. So

20000 words and fun fact is that we actually use about 3000 words out of those hundred seventy

one thousand four is only six words we only use 3000 words not just in conversational language

14

but you can see here vocabulary of just 3000 words provides coverage for around 95 percent of

common texts 95 percent of common text that I like I'm assuming that's including books and

stuff like that. So if you do the math it's I only use one point seventy five percent of the total

number of words in English language. So as you can see even that 3000 like our 20000 is more

than even the 3000 that covers any facts of the situation so we're pretty good.

2. LITERATURE SURVEY

A literature review means to

research question, or area. Its main aim is to present a fair research by conducting a

auditable methodology

2.1) Title:“ Emassnuela Ha

Simulates an Historical Figure”, IEEE Conference Publications, July 2013.

There may be applications that are

human, but in most of the scenarios the information of the conversational bot is stored in a db

created by someone who has prolonged knowledge in that field. However, few experts may have

investigated the idea of creating

beginning from web-pages or

pointing out the important facts in texts explaining the life of a ancient figure for creating an

agent that is used in school scenarios

LITERATURE SURVEY

A literature review means to evaluate and interpret available research

research question, or area. Its main aim is to present a fair research by conducting a

 .

nuela Haaller and Traiian Raebedea, “Designing a Chat

Figure”, IEEE Conference Publications, July 2013.

that are incorporating man-like appearance and

, but in most of the scenarios the information of the conversational bot is stored in a db

one who has prolonged knowledge in that field. However, few experts may have

creating a Chat Bot using an artificial character and

or plain-text of a certain person. The paper elaborates the idea of

pointing out the important facts in texts explaining the life of a ancient figure for creating an

scenarios.

15

 related to a particular

research question, or area. Its main aim is to present a fair research by conducting a rigorous and

ebedea, “Designing a Chat-bot that

Figure”, IEEE Conference Publications, July 2013.

and intending to imitate

, but in most of the scenarios the information of the conversational bot is stored in a db

one who has prolonged knowledge in that field. However, few experts may have

character and personality

text of a certain person. The paper elaborates the idea of

pointing out the important facts in texts explaining the life of a ancient figure for creating an

16

2.2 Title: Maja Pantic, Reinier Zwitserloot, and Robbert Jan Grootjans, “Teaching
Introductory Artificial Intelligence Using Asimple Agent Framework”, IEEE Transactions
On Education, Vol. 48, No. 3, August 2005.

The paper explain a way of teaching artificial intelligence (AI) using a genuine, naive agent

frameworks only for this course. Though many agent frameworks has been proposed in the

literature, none of the available structures was easy or simple to be used by to be graduates of

CSE. The main objective of using such a study was to keep busy the students into which they

found very interesting. A constructive approach and a traditional approach was used so that

students learn very effectively.

17

3.SYSTEM DEVELOPMENT

3.1) SOFTWARE REQUIREMENTS:

 Anaconda

 Spyder

 Python

3.2) HARDWARE REQUIREMENTS:

 System Requirements:

 CPU: 2.3 GHz Processor and above

 RAM: 4 GB or above

 OS: Windows 7 or above

The purpose is to model chatbot which is extremely intelligent to answer your questions and can

use in any field.

 The assumption is that in a Chatbot

 The chatbot will be used by many users

 It should be extremely simple

 Can be used in any field i.e. it can be a Multi tasking Chatbot

18

4. ALGORITHMS

Chat Bot Algorithm which is been used in this project has been created by Machael Maudllin in

1994 and was first published in Julia. He had used this algorithm for the development of verbot

which was first AI based ChatBot.

 We store our question that is asked by user in a var "queue"

 After this we fetch the main keywords from query table in database.

 Check if "queue" had any of main words.

 If there is no word, we will say no answer found.

 If there is match found all the keywords with matching keyword is fetched.

 Then we pass "queue" through 4 word process of keyword checking.

 We take its response and then submit it to the user if there is match found.

 If not match then it passes "queue" via 3-kedyword match algo

 If it is so for 2 and 1 word match.

4.1) ARCHITECTURAL FLOW:

We'll build the chat but from scratch. And

build a super powerful Chatbot by implementing a state of the art deep and LP model which will

be the seq2seq and we will implement that with one of the best API is to build deep ideations or

art of her own talents which will be tensorflow. We will get into the details and the high level

techniques of tense of flow to build our childhood. So this implementation will be done in five

parts which are the common five parts when implementing a deeper applicat

we go. First part: part zero. Installing Anaconda and getting the data set. Anaconda is the idea we

will use to build our chat but we will actually use more precisely spider inside and We can it

because it’s like a studio. But and the

corpus. They said basically it's a data set of more than 600 movies containing thousands of

conversations between lots of characters. And we wanted to train our Chad. But on this day he

said because we wanted to build a general chat but that can have general conversation with us

like a friend instead of you know specified chat but there is use for some specific purpose. That

being said the model we will use can be trained on other datasets for some other

know for example you will be able to train the same chat but on a more specific dataset like a

calendar assistant or a navigation assistant. These are some more specific applications but this is

not what we do in this course. We will try in a

conversations and that is why movies

ARCHITECTURAL FLOW:

 Fig.4.1 Architectural Flow

uild the chat but from scratch. And of course following a step by step approach. We will

build a super powerful Chatbot by implementing a state of the art deep and LP model which will

be the seq2seq and we will implement that with one of the best API is to build deep ideations or

own talents which will be tensorflow. We will get into the details and the high level

techniques of tense of flow to build our childhood. So this implementation will be done in five

parts which are the common five parts when implementing a deeper applicat

part zero. Installing Anaconda and getting the data set. Anaconda is the idea we

will use to build our chat but we will actually use more precisely spider inside and We can it

like a studio. But and then we will get the data set which is the Cornell movie

corpus. They said basically it's a data set of more than 600 movies containing thousands of

conversations between lots of characters. And we wanted to train our Chad. But on this day he

wanted to build a general chat but that can have general conversation with us

like a friend instead of you know specified chat but there is use for some specific purpose. That

being said the model we will use can be trained on other datasets for some other

know for example you will be able to train the same chat but on a more specific dataset like a

calendar assistant or a navigation assistant. These are some more specific applications but this is

not what we do in this course. We will try in a general chat but to talk about everyday

conversations and that is why movies are because in movies you have a lot of random

19

of course following a step by step approach. We will

build a super powerful Chatbot by implementing a state of the art deep and LP model which will

be the seq2seq and we will implement that with one of the best API is to build deep ideations or

own talents which will be tensorflow. We will get into the details and the high level

techniques of tense of flow to build our childhood. So this implementation will be done in five

parts which are the common five parts when implementing a deeper application or an AI. So here

part zero. Installing Anaconda and getting the data set. Anaconda is the idea we

will use to build our chat but we will actually use more precisely spider inside and We can it

n we will get the data set which is the Cornell movie

corpus. They said basically it's a data set of more than 600 movies containing thousands of

conversations between lots of characters. And we wanted to train our Chad. But on this day he

wanted to build a general chat but that can have general conversation with us

like a friend instead of you know specified chat but there is use for some specific purpose. That

being said the model we will use can be trained on other datasets for some other purposes you

know for example you will be able to train the same chat but on a more specific dataset like a

calendar assistant or a navigation assistant. These are some more specific applications but this is

general chat but to talk about everyday

in movies you have a lot of random

20

conversations general conversations between friends. And so this will actually be pretty fun.

Then part one. So that was part zero and part one will be data processing data processing is

inevitable whenever you build an AI or whenever you build a machinery model you have to

make the data set compatible with the model you're going to build. We're going to build a neural

network based model and therefore the data will have to have a special format especially for the

inputs. Besides we'll have to clean the text because the less we clean it and simplify it the more

difficult it will be for a model to train itself to talk like a human. So we will have to do a lot of

data processing this will not be the funniest part but we will try to do it the most efficiently so

that we can get to the exciting parts which are actually part 2.3 and part four when we get into

the heart of the model. And speaking of these parts part two will be building the seq to seq

morrow the sequence to sequence model which is a state of the art deep an LP model. So we will

build it. We will actually build a brain composed of an encoder and then a decoder and we will

assemble all of them to build the final brain which be careful will not be trained yet. And

speaking of training that leads us to part three part three will be about training this set to

segmental that is training this brain that we would have just made in part two. So we will train it.

We will set up a last function get the optimizer and then apply some to get a grade in the center

to update the weight of the neurons of the brain so that it improves its ability to talk with us. And

finally part for the last part of this implementation we will test our Chad. But that is we will test

the SEC to Sec. All that is will make some kind of a code to you know once we executed have an

interface where we can ask some questions and then the Chatbot will answer and we will just test

the Chatbot. But by observing its answers and see how it’s capable of conversing with us. So this

will be pretty exciting. And here we go. That’s the plan of attack of this implementation. And

without waiting we are going to start with part zero directly in the next tutorial. We will install

efficiently and. And then in the next tutorial after that we'll get the data set and then it will be

good to go. We will start part 1 day of pre-processing and the next parts after that.

21

4.3 Part 1: Data Preprocessing.

Fig.4.3 Data Pre-Processing

Libraries Imported-numpy,tensorflow,re,time

 These libraries will be used to clean the text and especially to replace some characters by some

more simple characters to simplify the conversation as simple as possible .Time library is

imported to calculate the training time.

What we want to think in the end is a data set that contains basically two columns the input and

the output because inputs will be the inputs that will be fed into the neural network and the

outputs will be the target. Following steps will be performed to do so-

1.Importing the dataset-We start the data pre-processing journey by importing the data set and

we are going to use open function to import our data set. We will load both the conversations and

the lines using the open function.

2. Creating a dictionary that maps each line and its id-So where we want to go is the two words

dataset composed of inputs and the outputs and the easiest way to do this is with dictionaries

because we will have to keep track of the conversations to make a correct mapping between the

inputs and the output.

3.Creating the list of all the conversations-We already have a list of conversations but we have a

lot of meta data and we want to only keep what is interesting for us and what we will use for the

22

training and what we will only use for the training. In this we will keep ID’s part of the

conversation.

4. Getting separately the question and the answers-As we explained earlier we will create two

columns the input and the output and so the questions will serve as the inputs and the answers

will be the target. So we are going to get them separately before cleaning all the questions and

the answers.

5. Cleaning of texts-This is the part where we will clean all the test of the questions and answers.

Everything will be put in lowercase and we are going to remove all the apostrophes and then we

will do some more cleaning by removing the non important words. We are going to make

function that we are going to call clean text and that will be applied on a text like a specific

question or specific answer and that will do multiple cleaning at the same time. The function will

take only one argument and that will be the text.

6. Cleaning the questions and answers-We are going to apply clean text function on all the

questions and the answers to effectively clean their attacks. We are going to make a new list that

will contain all the clean questions, clean answers and therefore clean text function will be called

on those core questions, core answers and the result will be stored in the new list.

7. Creating the dictionary that maps each words to its number of occurrence-We are going to

start the whole process of removing the non so much frequent word of our corpus and we want to

do that because we want to optimize the training and to optimize the training we need the

essential words of the vocabulary. So we are going to remove the words that appear from time to

time less than 5 percent actually of the whole corpus. The best way to do this is to create a

dictionary that is going to map each word to its number of occupancies. We first need to get all

the words separately and for each of these words we get the number and so that is number of

times they appear in the corpus.

8. Creating two dictionaries that map the questions words and the answers words to a unique

integer-In this step we are going to perform two essential tasks whisch are tokenization and

filtering the non frequent words. We are going to do that at the same time by creating two

dictionaries. One that is going to map each word of all the questions to a unique integer and one

other dictionary that is going to map all the words of all the answers to a unique integer and

23

while creating this dictionary we will add an if condition that will check if the number of

arguments is of the word. We will be dealing that if the number of arguments of the words will

be higher than a certain threshold that we will choose and if that is the case we will include that

word in this dictionary and if the number of arguments of the words is below the threshold we

will not include this word in the dictionary so that at the same time we proceed to the process of

tokenization by getting separately all the different words of all the questions and all the answers

and attributing a unique integer to each of this word and at the same time we filter out the words

that don't appear frequently in the dictionary that is there or below the threshold that we're going

to choose.

9. Adding the last tokens to these two dictionaries-In this we are going to add the last tokens to

our two previous dictionaries that we just created. And these last tokens are the ones that are

useful for the encoder and the decoder in the sector like model which are you know the start of

string that we're going to encode by as so as the end of string that we're going to encode by the

OS the iPad which is very important for our model because the process turning data and the

sequences in the batches should all have the same length and therefore we have to input this

token in an empty position. And eventually we will create a last token which will call out and

that corresponds to all the words that were filtered out by our two previous dictionaries. We will

use these dictionaries to replace all the words all these five percent less frequent words.

10. Creating the inverse dictionary-In this one we are going to create the inverse dictionary of

the answerswords2int in dictionary. That's because we will need inverse mapping from the

integers to the answers words in the implementation of the sectors like model. And we actually

just need for the answers words in dictionary and not the questions word.

11. Adding the end of String token to end of every answer-In this we are going to add the token

end of string to the end of every answer . We are going to loop over all the answers in our clean

answers. We are going to get back to the original clean answers list which is the list of all the

answers that we have cleaned. One by one and to each of these answers we're going to add this as

string. So we're going to simply loop over all the indexes of the clean answers list.

12. Translating all the questions and the answers into integers and replacing all the words that

were filtered out by <out>-Basically we just need to translate all this into this new language of

integers according to how our previous dictionary was made. And therefore we're going to have

24

to make some for loops to loop not only over all the questions here and then all the answers and

then for each of these questions here we will loop over again all the words of the question and

applying the previous dictionary to translate each of these words into their unique associated

integers.

13. Sorting questions and answers by the length of questions -Basically we want to sort the

questions and the answers by the length of the questions because this will speed up the training

and help to reduce the loss. And the reason for this is that because it will reduce the amount of

padding during the training. So it's pretty technical but it's important to know why we're doing

this. And so right now we want to go what we want to do is to sort the questions and the answers

by the likes of the questions to speed up the training and optimize it.

Fig.4.4 Data Pre-Processing

25

4.3 Part 2: Building the Seq2Seq Model.

Fig.4.5 Building the Seq2Seq Model

Eventually we're getting there and that is in this part that we're going to start using tensor flow to

build the architecture of the. But it is the architecture of the sectors like model which is at the

heart at the core of the chatbot. So in the previous part we made a lot of for loops. We're going to

make a lot of functions in this part because these are going to be the functions that will define the

architecture of the sector PSEC model. So actually we're going to make one function purgatorial

and the function we're going to start with right now is going to be a function that will create

placeholders for the inputs and the target. So what is a placeholder and why do we need to create

it. That's the first question we will answer right now. So intense a flow all variables are used in

tensors. Tensors are like an advanced array more advanced than an empire array which is of a

single type and that allows fastest computations in the deep neural networks. So we need to go

from the number of arrays the class Signum by race to tensors. But that's not all because then in

terms of flow all the variables used in tensors must be defined as what we call tensor flow

placeholders. So basically that's an even more advanced data structure that can contain tensors

and also other features. So that's always the first thing we must do when starting to build a deep

neural network with tons of flow we need to create some placeholders for the inputs. And that's

26

exactly what we're going to do right now but we're going to do it through a function that we'll

call model inputs. And so inside this function we will create a placeholder for the inputs a

placeholder for the targets and then we will add a learning rate and even more hybrid parameters.

So in short we are creating these placeholders to be able to use these variables in the future

training. We need to start with them. Then we need to give a name to that function and we're

going to call it model underscore inputs and this function is not going to take any arguments

because it will just directly take the input and output. And for each of them convert them into

placeholders into tensor flow placeholders so that's all good. so we're going to start by creating

some new variable that we're going to call inputs and that will be this tensor flow placeholder

containing the inputs. And so to create a sense of placeholder we’ll first we need to call our sense

of library which we can get things to the shortcut we made which is T.F. So we called sense of

flow and from sense of flow we're going to get the place holder function that is a function that

can create placeholders for the input. so now in this placeholder function we need to enter three

parameters. The first one is going to be the type of the data there are the inputs and remember

that we converted our input into unique integers and part 1 data preprocessing. So the type that

will choose here is going to be T.F. we need to call it from tensor of flow that int 32. Then next

argument is going to be the dimensions of the matrix of the input data. And since the inputs are

the lists of the questions encoded into unique integers we can have a look at it again sorting

questions which you must understand are the inputs. So before we start creating the encoding

layer and the decoding layer we have to prepare a set of targets. Why is that? That's because the

decoder will only accept a certain format of the targets. You know the decoder gets to target and

in order for the targets to be accepted into the neural network of the Dakota which is an LACMA

record a new network. Well the targets need to have a special format. So first of all what is

exactly this format this format is twofold. First the targets must be in two batches. The record

renewal network of the decoder will not accept single targets that are single answers. Remember

the targets are the answers. So that’s the first important thing of this special structure that we will

create in this. So the targets must be in two batches. So for example if we take our sort of clean

answers which are the targets Well you know the neural network will not accept them one by one

like that they will only accept them into batches so instead of feeding them it will that work with

single answers we will feed the neural network with batches of for example 10 answers at a time

and that’s the first important thing we need to understand. We need to choose a better size and

27

then create batches of size the bedside that we choose and these batches for example of 10

answers will go into the record renewal network of the doctor. So we'll have this first one here

and then the next one after that containing the 10 next answers. And that’s the first important

element of the special format we want to create and then the second important element is that

each of the answers in the batch of Target must start with the S O S tokens. And as you can see

here the answer is start with the first word of the answer that is the first unique integer encoding

the first word of the answer and not the S.O.S. So what we need to do besides creating batches of

answers we need to put the S.O.S token or at least a unique integer encoding so as to go in at the

beginning of each of these answers inside each batch. And that's two things we will do in this.

Create the batches and then adding the S.O.S token. Hello and welcome to this new very exciting

and this one we're going to start creating the architecture eventually of our set to take model.

This architecture is twofold. We'll first create the encoder RNN layer because this is what comes

first in the architecture of the seq2seq model and then we'll create the decoder RNN layer. So

you got this right. We have the neural network for both the anchor and the decoder will be an

RNN. It will not be a simple iron and rest assured it will be stacked episteme which reply drop

out to improve as much as we can the accuracy and we'll create all this in the next. And today

we're going to start with the encoder RNN there. And so we're going to make a function that will

define in some way the architecture of this anchor RNA layer. But in this one with tensorflow we

are going to include an LSM instead of a jar. And for this we're going to use the basic LACMA

Cell class by tens of flow. Hello and welcome to this new and the previous to toile we took care

of the encoder and layer and then this one we're going to take care of the decoder RNN layer and

we're going to have to do it in three steps. First step will be to decode the training set and that's

what we'll do in the Statoil. Second step will be to decode the validation set. And that's what

we'll do in the next. And then eventually we'll be ready to create the decoder RNN there. So let's

take the first step in today’s decoding the training set. So again we're going to make another

function. This architecture is all about making functions and this function we're going to make is

going to be called the decode. And those cores training on this core set that way we clearly

understand what's going on. The coach training set and it is going to take a lot of arguments. So

let's add them one by one. The first argument is going to be the encoder underscore state because

our decoder is getting the encoded state as input as part of the inputs to proceed to the decoding.

And therefore we will need the anchor to state that was returned by the previous function and

28

current RNA layer to proceed to the decoding. So go to state then the next argument is going to

be the decoder cell. And that's basically the cell in the record neural network of the decoder.

Then the next argument is going to be the decoder embedded on this core input and that's

basically the inputs on which were applied embedding and I'm going to explain to you right now

what this means. We made to decode training said function that decoded the observations of the

training set. And at the same time we turned the output of the decoder but that was for the

observations of the training said that is some observations there are going back into the neural

network to update the weights and improve the ability of the chatbot to talk like a human. But

now we're going to make kind of the same function. But for a new kind of observations these

observations are actually the observations of the test set and the validation set. And basically

these are new observations that won't be used for the training and that's why as you can see here I

called this code section decoding the test validation set because the function we're about to make

will be used not only to predict the observations of the test in the end that is the answers of the

questions we'll be asking to the chat but in the test phase part 4 remember. But then also the

validation set. And where does the validation set that the set we will make during the training

also. But we will do some cross-validation technique to keep separately 10 percent of the train

set for cross-validation which is a technique that keeps a small part of the training data to test the

predictive power on new observations. That's a very useful technique to not only reduce

overfilling but also to improve the accuracy on your observations. And so the function we were

about to make right now will be very similar to the one we just made only there is going to be

one fundamental change.

29

Fig.4.6 Building the Seq2Seq Model

We will create the decoder RNN as opposed to what we did before when we created the encoder

RNN. Remember in this code section here we made the encoder RNN function by the way I just

replaced the previous name encoder RNN layer by anchor RNN at the end of the previous toile.

And so in today's Statoil we're going to make another record a new work which will be this time

to record a new network of the decoder and therefore let's scroll down back. We're going to make

a new function here that we're going to call decoder underscore our. And then record a neural

network of the decoder. So if you're ready let's begin. So this day go to RNN function is going to

take several arguments. Actually lots of them. So we're going to put them one by one quite

quickly. Now that we are starting to get comfortable with all these different objects. . So the first

argument is going to be the decoder underscore and underscore inputs. We already covered that.

Let's move on to the next one then the next one is going to be the decoder embeddings matrix.

Then the next one is going to be the and coater underscore state which I remind that a very

important thing to keep in mind is that it's the output of the encoder but that becomes the input of

the decoder. So in current state we will definitely need it for our decoder RNN then we're going

to take again the total number of words in our corpus of answers then sequence lengths. Again

we've already seen that sequence length. Then the RNN underscore size which is another one of

our previous arguments then the number of layers that we called Number layers so that this time

30

the number of layers we want to have inside the record of a neural network of our decoder layers

than what else we're going to need our word to in a dictionary. But that can actually be any

dictionary it's just an argument. But that will of course be our answers words to any dictionary

that we made in the previous part but one data pre-processing then we're going to apply some

drop out again because there are going to be some training in the implementation of these RNN

and therefore we are going to use to keep underscore prob parameter to control the dropout rate.

And finally one last one. Try to guess what it is. It's very important. You know it's at the heart of

any neural network it is the batch size because the inputs of neural networks whether it is in

terms of flow or by torch are in two batches and we need to specify a batch size to choose the

size of these batches. . So that's it for our arguments. So we're going to start with actually with

the with syntax of Python supersized that we're making this decode RNN in a decoding scope.

Remember the decoding scope I explain that. And we think s ago it's a more advanced terms of

the variable that will contain several data entities and therefore what we need to start here is

introduce this code. And we're going to do it this way with a sense of flow and then from

Tensorflow we're going to get that variable underscore scope. And now inside the scope we're

going to make everything happen. So the first thing we need to start with is create our LSD layer.

And so as for my encoder I'm going to call it L S T M equals and then exactly the same as our

encoder we're going to get our sense of the library then from this library we're going to get the

module then from the country model we're going to get the RNN sub module and from this RNN

sub module we're going to get the basic LSD and sell the basic LACMA cell class that takes as

inputs on you one argument which is the RNN size. Remember that's exactly what we did here

for the encoder we created as a layer which was same an object of the basic LACMA cell class

that takes us and put the r in incise. So we now have our Alice GM and so now that we have

Arliss GM What do we do. Well it's time to apply some drop out regularization to reduce

overfilling and improve the accuracy. And so we're going to introduce the same variable name

and underscore dropout meaning an LACMA layer on which dropout is applied. And that again

will be an object of another class that we used for our encoder. There it is. And so we can

basically copy this because it's going to be exactly the same it is going to be an object of the drop

out wrapper that needs to take the previous LACMA that we created as an object of the basic

himself last and that uses the key probe parameter controlling the dropout rate. So let's do this

let's that here T.F. RNN dropout rapper LACMA and put riprap equals keep. So now we have

31

our LACMA there with our applied but that gives us one LS gem there. RNN we're building a

stacked Ellis GM and therefore now we're going to use to multiply RNN sell to stack several

LACMA layers with drop out applied. And again that's exactly what we did for our encoder. So

we’re going to simply well copy this line and just below for our decoder RNN. Well we’re going

to introduce this new variable here that will be our decoder cell. I remind that the decoder cell is

what contains the stacked LACMA layers with about applied. So that's basically a cell LACMA

layers and therefore this occurs there is going to be the taste of what I just copied that is an object

of the multi RNN cell taken from the RNN module of the country module from the tents of the

library which takes as input the previews LACMA layer in which drug was applied times the

number of layers we want to have in this stacked LSD layer inside the Dakota cell. Then next

step the next step is actually something new something we haven't done before. We need to

initialize some weights that will be associated to the neurons of the fully connected layers inside

our decoder. That is the last layer and to initialize them well first we need to introduce a new

variable that I'm calling waits and we're going to initialize them by using an initializer. That is

the T.F. that truncated normal initializer. And that will generate a truncated normal distribution

of the weights. This function takes only one argument. We're going to choose a standard

deviation which will be 0.1. The standard deviation and that is equal to point 1. So now we have

our fully connected the weights initialized then next step naturally after the weights the next step

is to get the biases. We now have all the tools that we just need to assemble to build this final set

to set moral. And that's exactly what we're going to do. And this is oil we will just use the

previous tools we made like first of all of course the encoder RNN which is the first main part of

the SEC to sec then the decoder RNN which is the second main part of the SEC to Sec. And as

we made things to these two functions here deco turning set and Dakota set which we want to

have to use again because these were just used to make the decoder RNN the decoder record

new in that work. So basically we will just assemble these two and could RNN and decoder RNN

and that will be our final round for this part to building the same model. So let's do it let's make

this final function that we're going to call sec 2 sec underscore morrow. . It's the final ultimatum

model that we will chat with during our testing phase in part 4. Basically you got it. That's the

brain of our chatbot.

32

Fig.4.7 Building the Seq2Seq Model

4.4 Part 3: Training the Seq2Seq Model.

Fig.4.8 Training the Seq2Seq Model

33

Welcome to part three training the sequence to sequence model we just built a brain in the

previous part to building the sequence to sequence model Model and now it's time to train this

brain and this part three to make it smart or at least able to talk able to chat with us. So for this

everything's going to be fine. We're going to set some values for the hyper parameters that will

be used during the training obviously and that you will be able to change if you want to

experiment more and try to improve the results. So to open a session intensive flow we're going

to create an object of the interactive session class and that object will be our session. But before

we create this object we need to reset the dense flow graphs to ensure that the graph is ready for

the training. So in general when you open intense a closed session to do some training you have

to reset the graph first. So we're going to start by doing this resetting the graph and to do this we

need to take the tenths of the library and then applied the reset default graph function which is a

function by sense of flow that resets the tens of FaludWefor graph. That's basically the questions

that will feed into our set to SEC Network. Then we also have the targets which are the target

answers the answers to the questions target. Then the third element returned by this function is

the learning rate L R and finally the fourth and last elements returned by this function is the keep

prob parameter keep probability and all of these four elements are the four elements returned by

our model inputs function. We're going to be setting the sequence length to a maximum length

which will be 25 if you remember we already did that previously and actually Part 1 of pre-

processing at the end. In this sorting questions and answers by the length of the questions here

we chose to go up to a certain sequence length which was 25 and this plus one wishes to include

the twenty five or be bound but already by doing that we set a maximum sequence length and we

have to do it again here to specify this on our sequence slings variable which is one of the

arguments used by the functions of part 2. If we go to part two you see the encoder RNN takes as

the argument the sequence length as well as the decode RNN right here sequence lengths. Right

now our inputs are in the tensor attentively tensor but we need to get the shape of these input

because again this will be one of the arguments of one specific function we'll use for the training.

This basic function is actually the ones that function by tens of flow that basically creates a

tensor of ones and the dimensions of this tensor is going to be exactly the shape that's why we

need to get it now is because it's going to become the argument of this future ones function will

use just like what we did for this sequence length which is going to be the argument of the SEC

the SEC moral function. Targets which were already loaded here by calling our modeling

34

function target. Then the next argument we have to input is to keep probability which is the

probability of keeping the neuron activated during each iteration of the training .And we got this

key parameter at line. Two hundred and ninety seven that we will later connect to the keep

probability variable that we created at line two hundred and ninety and that is a specific entity of

the tensor flow API. So we will connect that later. But what we have to input here in this sector

signal function is make sure to understand the key variable returns by the model input function

and that's it. The key probability tens of loc we will actually connect them later when running the

session with the run method of our session object and that will be in the big for loop over the

epochs of the training. So keep it up. Then the next one is the batch size always working with

batches when doing deep learning. And we get our batch size here 64 meaning that there are

going to be 64 inputs and targets in each batch size then the next one is the sequence length

which we just got here. And then the next argument is going to be the length of our answers.

Words 2 and dictionary. Then we are going to copy this because the next argument is going to be

the land of the questions words in the dictionary. So then the next argument is going to be the

encoding embedding size which we remind is the number of columns in the embeddings matrix.

Each of these columns corresponding to an embedding value. And then again we are going to

copy this because the next argument after that is going to be the embedding size. This time the

decoding matrix the decoding embedding size. Then the next argument is going to be the RNN

size which we also got here and the hyper parameters the size of 512.. And then two more

arguments to go the next one is the number of layers. And that again we got when setting the

hyper parameters number of layers equal 3.Meaning that there are going to be three layers in the

cells of our record neural networks both the one of the encoder and the one of the decoder to

numb layers .And finally the last one which is our dictionary questions words to it. So basically

now we are ready to execute this code section execute to get our training protections in our test

predictions. . So now we're getting closer and closer to the big loop of the training. But we're not

there yet. We have a few remaining steps to do. We're going to get very close to the training

because we're going to set up the lust for the optimizer and we're going to apply some great

unclipping great tipping for those of you who don't know what that is. This is a technique

actually some operations that will cap the gradient in the graph between a minimum value and a

maximum value and that's to avoid some exploding or vanishing gradient issues. And so we're

going to make sure to avoid these issues by applying gradient tipping to our optimizer. And so

35

we are going to define a new scope here which will contain two elements to final ultimate

elements that we'll use for the training which are going to be the last error and the optimizer with

grading tipping. The last error is going to be based on a weighted cross entropy loss error which

is the most relevant loss to use when dealing with sequences as we are doing right now and in

general when dealing with deep and LP and the optimizer that we're going to use will be first an

atom optimizer which is one of the best optimizers for us to cast a great descent. And then we

will apply gradiently to that optimizer to avoid exploding or vanishing great issues. And so let's

do this let's define the scope. You already know how to define a scope. We did that for the

decoding scope. So we need to take our sense of library and then the name scope function to

which we need to input the name of this scope in quotes.

Fig.4.9 Training the Seq2Seq Model

Now we're going to finally apply the padding to the sequences with the pad token. So first we’ll

answer two questions first why do we have to do that? And second what are we going to do

exactly with our questions and our answers. So the answer to why we have to do this is that all

the sentences in a batch whether they are questions or answers must have the same length. And

now the second question what we are going to do exactly. Well as you can see we have prepared

here two sentences one question and one answer. And as you can see the question who are you.

And the answer WE are about where WE don't have the same length. And after we apply the

padding this question and answer will become this. Who are you? Bad bad bad bad. And WE are

about as know. So basically the bad tokens are added so that the length of the question sequence

36

is equal to the length of the answer sequence. That's the purpose of padding and that's a must do

in deep in LP. The two remaining steps that we have to do is first split the data into batches of

questions and answers. And then the second step is to split again the questions and answers into

training and validation data because we will do some cross validation during the training to keep

track of the predictive power on new predictions which will be 10 or 15 percent of the data. So

let's take care of this first step in this battle which is to split the data in two batches of questions

and answers. That's a fundamental thing to do in deep learning to work with batches. And

basically we're going to make the batches. so we're going to do that into a new function that will

use the previous function because of course inside each of these batches we will pad the

questions with the pad tokens so we will make a new function and then of course in the training

we will apply that function to create the batches and feed the neural network with these batches

of inputs and targets. That is before the big training for loop. So this final step is to split the

questions and answers into the training and validation sets. So we are saying sets because we're

going to make basically a set for the training questions a set for the training answers then a set

for the validation questions and the set for the validation answers. And for those of you who see

Krust edition for the first time well we remind that it is a technique that consists of during the

training keeping 10 or 15 percent of the training data aside which won't be used to train the

neural network that is which would be basically back propagate it. And just to keep track of the

predictive power of the model on these observations are like new observations. So basically

we're just testing the model on the side. But during the training just to keep track of what it's

capable to do on new observations. And so this validation set that we have to make for both the

questions and answers is exactly this 10 or 15 percent of the data on the site. So let's apply cross-

validation and that consist exactly of splitting the questions and answers into four sets the

training and validation sets. So we're going to start by introducing the Bache index check

training class that we're going to say equal to 100.And that's because we will check the training

class every 100 badges so you'll see how we'll use it later. Then We are going to keep it as viable

because the second variable we will introduce is going to read a batch index check validation lots

and that the validation nurse who will check it halfway and at the end of an epoch. And therefore

since the middle of an epoch corresponds to half of the numbers of batches .We are going to get

this half of the number of batches by taking all our questions. That is the total number of our

questions. So Len training questions that We are going to divide by the batch size to get the total

37

number of batches and then We are going to divide by 2 to get half of this number of batches and

then we need to use a minus one just around the down then We are going to introduce the

training last error and We are going to initialize it to zero and that will be used to compute the

sum of the training losses on 100 batches because we chose to check the last every 100 batches.

And then we are going to copy this because the next variable that we are going to introduce is

first not a total less error but a list of fewer errors and not at the training but the validation that's

going to be the least of the validation plus errors. So we made some good progress here and the

next step is to apply some decay to the learning rates and that will be thanks to our learning okay

and therefore to do that. We are taking my learning rate and since the decay consists of

multiplying the learning rate by doing red decay to reduce it by the decay rate. Well We are

going to multiply this learning rate by our learning rate DK and so now remember that we want

to have a minimum learning rate and therefore to make sure that we're going to add here that if

condition to check if our learning rate that was reduced by the K is lower than this minimum

learning rates and if that's the case if it was decayed reduced too much. Well we want to set this

learning rate equal to this minimum learning rate. And that was given in the hyper parameters.

Good so that's a good thing checked. Now we have to take care of early stopping. So to take care

of this we're going to get first our list of validation fewer errors and to this list we're going to

spend the last average validation last error that we just got. And then we're going to check if this

average validation last error is lower than the minimum of all old validation plus errors that we

append in the list and basically that means that if we manage to get an average validation error

that is lower than all the ones in the list that means that there is improvement.

38

 Fig.4.10 Training the Seq2Seq Model

4.5 Part 4: Testing the Seq2Seq Model.

Fig.4.11 Testing the Seq2Seq Model

39

Indeed we built a brain we trained the brain and now you're about to chat with a chat .we did the

most difficult part. And as you can see we've reached already the third book and we already got

some weight that we can see here in File Explorer. So these are the first weights and therefore

these are not the weights of some very smart brain. Or should we say of some brain with high

abilities to speak with us. So we're going to have to wait some more for some better weight.. But

no we will get them. We're going to make a function that will convert the questions that are right

now in strings to list of encoding integers and why are we doing this. That's because we will

need that function for this final step right after this to toile to set up the chat between a chat but

and us. So let's make this function. We start with def. We're going to call that function converts

Well let's say string to int and that function is going to take two arguments the first one is the

question and the second one is word to int which is a dictionary. So it can either be the questions

word in Dictionary or the answers words to any dictionary. So these two arguments. And now

let's define what it has to do first before making that conversion we're going to clean everything

in the question and we have a nice function for that that we made which is the clean text

function. So that's why we are going to take my question which is one of my argument and We

are going to clean it. Thanks to the context function. And of course this context function takes

the question as input and now we can make the conversion. And to make that conversion we'll

first we will return directly what we want to return. That is the question as a list of encoding

integers. And therefore since we want to return a list we are going to introduce here some square

brackets and we are going to use this for loop inside the list trick that you know we've done

several times in this course. So there we go for. And we're going to loop over of course the word

in the question. So for word in question and then remember we need to add that split with some

parenthesis to get the words separately. And so what are we going to do for each of the words in

the question. Well we are going to convert them and for that we're going to use our word to ant

dictionary but we're going to use a trick which is to get function because the problem is that we

filtered out some words that were not frequent. You know among the least frequent words we

filter them out and therefore they do not exist in the dictionary but they might exist in the

question and we're using just get here to make sure that if this nonfiction word is not found in the

dictionary whether out token ID will be returned remember we made an out token for each of

these non-African words and that's why in this get function we are going to input first the word

that we're dealing with right now. And if this word doesn't exist in the dictionary. Well we'll

40

return the word to int dictionary of the key which is the out token. So that it returns the unique

integer encoding outspoken otherwise it will get the unique integer idea including this word

based on the mapping of this dictionary. And that's it. That's just a function we had to make here.

We are ready to set up the chat so we'll do that in the next tutorial. And until then Id been on the.

Let’s set up the chat between us and the Chatbot. So we're going to start with a while. True

which will set the interaction between the Chatbot and us until we apply the break? So we're

going to start by getting the question we'll be asking to our chat and this question will get it by

using the input function which will take as inputs what we want to enter in the console when we

ask a question to the Chatbot and therefore We are adding quote here you which will be you

yourself with a colon and a space to separate you and your question. So that's the first step. We

get the question then we're directly going to make that break to stop the interaction when we

want to. And we are going to start the interaction when we say goodbye to Richard but that is

when our question is goodbye and therefore We are going to say now that if our question is

equally equal to Goodbye like that. Well in that case we are going to break and this will stop this

while loop. Then now that we take care of this we are going to take care of the real conversation

between the jackboot and us. So the first thing we need to do is now that we got our question that

we're entering the console we're going to do all the process of getting the question in the right

format so that it can go into the neural network and so that we can get the predicted answer and

therefore the first thing we need to do is well first update our question this way by using the

convert string to and function that takes as we define here the question and the questions word to

the dictionary. That will convert the string of that question into the list of encoding integers.

Great. So that's the first thing we must do then we need to apply the padding. We need to make

sure that this question has the same length as the questions that were used for the training and the

questions that were used for the training remember have a length of 20 and therefore now we

must complete the length of that question with enough tokens and more precisely Petro China

IDs so that this question has an length of 20. And to do this we'll first thing the question and

updated this way by taking it again and then adding since. Now our question is we're going to do

a list addition. We're going to add to our question list the following list. That is the list of the pet

tokens that need to be added so that our question has a length of. And to give this you know the

trick. We first take our questions words to the dictionary to get the unique integer encoding the

token. And therefore here are mentoring the key which is the bad token and then we are going to

41

multiply this list by the difference of 20 and the length of our question. And that will complete it

exactly by the number of better ideas that will make the question have a length of 20. Then next

step now that we have the single question in the right format. Well remember the essential thing

we need to do when working with neural networks it's the fact that this question must be into a

batch the neural networks only accept batches of inputs they only accept input batches and since

now this question is by itself we need to put it into a batch and we're actually going to create a

fake batch which will contain this question and then some empty questions that will only get

zeros. And that's why now We are introducing this fake batch variable that We are going to

initialize as a number array of zeros and then zeros function we need to specify the dimensions

of this vague batch and that's the only argument that has to be a couple of two elements. These

two elements being the number of lines of this array and the number of columns of this array. So

the number of lines is going to be of course the batch size because each line corresponds to a

question and the number of columns is going to be. Well of course 20 because our new one was

trained with questions of length 20 you can actually change that if you want. So that initializes

this big batch but then now we need to include our question in this fake batch and to do this we

will simply include it in the first row of this fake batch and therefore we are setting this first row

this big batch of index 0 to be called to that question. And now that we have our batch of input in

the right format Well we're ready to feed that into the new network to get the predicted answer

the chat but that is the output of the neural network and this predictive answer to get it we're

going to use our session. Then the run method which will take two arguments the first one is our

test predictions variable that we made in part to building the second PSEC model and then

remember the second argument is a dictionary of two sets of keys and values. The first one is the

inputs which are of course our batch of inputs which we called fake that and then keep

probability that remember we set it equal to 0.5 50 percent. So that's exactly we'll return a list of

several elements. And the one that we're interested in that is the predicted answer is actually the

first element of that list and therefore we need to add here some square brackets and then inside

the index 0 to get that first element. And now that we get the predicted answer Well we are ready

to prepare the output will get in the council so we could directly get this predicted answer but we

need to post process it if we may say you know we have to predict the answer but we must turn it

into a clean format meaning that will replace for example all the lower case Webuy capital eyes.

You know when the Chatbot is saying for example WE are WE are not WE are not. Wherever

42

we will also replace all the US tokens by Dud's because that corresponds to the end of a sentence

and therefore it should be a dead. Will replace all that out tokens that correspond to the filtered

out words by simply ours and for the rest of the elements in that particular answer which We

remind are the unique integers in the dictionary mapping the tokens to the integer IDs. Well we'll

simply return the token associated to that unique integer Plus a space so that in the answer we

can separate the different words by spaces. So let's do this let's introduce the final answer with

an empty string like that. And then we're going to do a for loop to loop over. So here we are

going to use trick non-pay tricks and get a number here and then we are going to use the ARG

max function that is going to take as arguments are predicted answer and the axes which is 1.

And basically what this will do is get the token IDs in the predicted answer. So I'll provide the

documentation for the MAX function by name by. But what you need to understand here is that

we are going to take the values of the different token IDs in the predicted answer. And so now

we're going to make the replacements we mentioned starting with the lower case that we're going

to replace by a capital I. So if the answer is its two word dictionary of key that is key the unique

integer idea in the predicted answer is equal to lower. We won that case. We're going to replace

that by capital and therefore we are going to introduce a new variable token that will be equal to

capital. We then next thing we can catch and replaced by something nicer. Well first we have to

use I live same we're going to take our answers in two word dictionary. And so if the token we're

dealing with right now is the end of string. So can well in that case we're going to replace that by

a dot incorrupt then we are just going to copy this because this is going to be the same. . So this

time what do we want to take care of. Well we said that out to Ken outspoken and in that case

well we said that the term is going to be out and that's it. That's the main things that we're going

to replace. And we're going to finalize this with an else meaning that if we get any other token

well in that case we will simply replace that token by a space plus that token we just got which is

answers in two words of key I which will return the token. So we got all the conditions and now

we need to increment our answer which so far is an empty string by the token and therefore We

are getting here my answer incrementally by the token I sew the different tokens in the predicted

answer. Clean the by everything we did here will be added one by one to the final answer we'll

get in the council. Great. And finally we need to add the very important last condition which will

end this follow up and we will end it by a break it's that if the token is an adult Well that means

that we've reached the end of the sequence because of this condition here. You know the end is

43

marked by the end of string and replace that by that. Therefore if we get that then that means that

it's the end of the chat. But answer. And in that case are shut but is done talking. And finally let's

not forget to print the checkbook answer and to do this will specify for us that it's to chat but

speaking so we are adding Chatbot here then a column and then a space to separate this Jack but

string by the answer of the Chatbot. And speaking of the answer of the Chatbot. That's exactly

what we're at here with plus answer which is the answer we formed here by adding each of these

different tokens we can get by going through the different tokens of the predicted answer. So

we're done with this code that will hopefully allow us to interact with a chaplain. And now guys

congratulations not only you reached the end of the whole implementation but also you were

ready to interact with a job. So now we are just going to get a little less excited because

remember Archibald's was poorly trained. We just trained it while sleeping for a few hours. So

Chatbot what needs to be much more trained than that and therefore what we're about to get here

will be a very poor conversation. We will actually just say one thing you'll be convinced of the

answer and you'll be convinced that of course we need to train the chat. But more and not only

that we will also try to improve them all. We will tweak the parameters.

4.6 ChatBot Resources

ChatBot prototyping:

BotSociety and BotUI Kit are the most common apps for creating your prototypes for your bots.

Platforms: Facebook Messenger

ChatBot Analytics

Botanalytics and Bot Metrics are a conversational analytics for bots that provide fine analytics of

your bot with training.

Platforms: Kik, Facebook, Slack.

ChatBot Developer Platforms

Api.AI ,Wit.ai and Microsoft Bot Framework are user experience platform to build brand-

unique bots, and for devices and applications it process NLP i.e Natural Language Processing.

44

Platforms: Facebook, Slack, Kik, LINE, Spark, Alexa, Cortana, Twitter .etc.

ChatBot Marketing

bCRM is a crm for marketing the chatbots and grow your business.

Platforms: Facebook Messenger, Slack

ChatBot Translators

Cyrano is a kind of translator that translates every language to bot to understand,thus making

your bot multilingual and can be use in different languages.

ChatBot Customer service engines

Reply.ai and Agent.ai makes your chatbot really scalable and replies just in seconds to maintain
the scalablity.

Platforms: Facebook Messenger, Kik, Telegram,Slack,WE Chat, Skype, Android, IOS.

45

5. RESULT

The result of the chatbot that we have implemented is shown below.The Chatbot has been

trained using seq2seq architecture and has been tested.

46

CONCLUSION

The main objectives of the project were to develop an algorithm that will be used to identify

answers related to user submitted questions. To develop a database were all the related data will

be stored and to develop a web interface. The web interface developed had two parts, one for

simple users and one for the administrator. A background research took place, which included an

overview of the conversation procedure and any relevant chat bots available. A database was

developed, which stores information about questions, answers, keywords, logs and feedback

messages. A usable system was designed, developed and deployed to the web server on two

occasions. An evaluation took place from data collected by potential students of the University.

Also after received feedback from the first deployment, extra requirements were introduced and

implemented

.

47

REFERENCES

[1] Chi-Tsun Cheng, Member, IEEE, Chi K. Tse, Fellow, IEEE, and Francis C. M. Lau, Senior

Member, IEEE, “A Delay-Aware Data Collection Network Structure for Wireless Sensor

Networks”(2011)- IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011

[2] Chi-Tsun Cheng, Member, IEEE, Nuwan Ganganath, Student Member, IEEE, and Kai-Yin

Fok, Student Member, IEEE, “Concurrent Data Collection Trees for IoT

Applications”

[3] Sushruta Mishra, Dept. of CSE, GEC, BBSR, India, Lambodar Jena, Dept. of CSE, GEC,

BBSR, India, AArti Pradhan, Dept. of CSE, GEC,BBSR, India, “Fault Tolerance in Wireless

Sensor Networks”(2012) – International Journal of Advanced Research in Computer Science and

Software Engineering. Available at: http://www.ijarcsse.com

[4] Michael K. Reiter, Asad Samar, Chenxi Wang, “Distributed Construction of a Fault-

Tolerant Network from a Tree” - Proceedings of the 2005 24th IEEE Symposium on Reliable

Distributed Systems (SRDS’05)

