

DOCKERIZING JENKINS AND ONE CLICK DEPLOYMENT

WITH CI/CD PIPELINE

Project report submitted in fulfillment of the requirement for the degree of

Bachelor of Technology

In

 Computer Science and Engineering

By

Rohit Garg (161297)

Under the supervision of

Dr. Ravindara Bhatt

To

Department of Computer Science & Engineering

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

i

CANDIDATE’S DECLARATION

This is to certify that the work which is being presented in the report entitled “Dockerizing

Jenkins and One click Deployment with CI/CD Pipeline” in partial fulfilment of the

requirements for the degree of Bachelor of Technology in Computer Science and

Engineering submitted in the department of Computer Science and Engineering, Jaypee

University of Information Technology, Waknaghat is an authentic record of my own work

matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature)

Rohit Garg, 161297

This is to certify that the above statement made by the candidates is true to the best of my

knowledge.

(Supervisor Signature) (Supervisor Signature)

Dr. Ravindara Bhatt Akash Hudge

 Solution Delivery Consultant

 ZS Associates Pvt. Ltd.

 Pune, Maharashtra

 India, 411014

Dated:

Associate Professor (Senior Grade)

Department of Computer Science & Engineering

carried out over a period from February 2020 to July 2020 under the supervision of Dr.
Ravindara Bhatt (Associate Professor, Senior Grade, Computer Science & Engineering
Department) and Akash Hudge (Solution Delivery Consultant, ZS Associates, Pune).The

ii

ACKNOWLEDGEMENT

I have put a lot of effort into this project. But this was not possible without the kind

support and help of many people. I thank all of them sincerely.

I am greatly indebted to my project supervisor at college, Ravindara Bhatt and project

supervisor at company, Akash Hudge for their guidance and constant supervision as

well as providing me with all the information regarding the project titled - Dockerizing

Jenkins and One click Deployment with CI/CD Pipeline.

I am also thankful to Jaypee University of Information Technology and ZS

Associates Pvt. Ltd. for providing me with all the latest technologies, thus, comforting

me with the project.

Again, I owe my profound gratitude to my project guide for his keen interest in the same

during its progress.

Rohit Garg, 161297

Dated:

iii

TABLE OF CONTENTS

CONTENT PAGE NO.

DECLARATION i

ACKNOWLEDGEMENT ii

LIST OF ABBREVIATIONS v

LIST OF FIGURES vi

ABSTRACT vii-viii

CHAPTER 1: INTRODUCTION 1-3

1.1 Introduction 1-3

1.1.1 Continuous Integration 1-2

1.1.2 Continuous Delivery 2

1.1.3 Continuous Deployment 2-3

CHAPTER 2: LITERATURE SURVEY 4-21

2.1 TITLE: What is DevOps by microfocus.com 4-15

2.2 TITLE: Continuous Integration in DevOps by C. Aaron Cois 16-21

CHAPTER 3: PREPARATION OF DOCKERIZED JENKINS IMAGE 22-25

3.1 High Level Architecture/Paper Design 22

3.2 Prerequisites 22

3.3 Description 23

3.4 Challenges and Workarounds 24

3.5 Deployment Guidelines 24-25

 3.5.1 Prerequisites 24-25

 3.5.2 Description 25

iv

CHAPTER 4: USER GUIDE 26-30

4.1 Prerequisites 26

4.2 Deployment 26-30

 4.2.1 Structure for the bitbucket repository 26-27

 4.2.2 To pull the image of dockerized Jenkins 27

 4.2.3 To launch container from Image 27

 4.2.4 Accessing Jenkins and SonarQube 28

 4.2.5 Configuration for running CI/CD Pipeline on Jenkins 28-30

4.3 Steps to access Jenkins Workspace 30

4.4 Description 30

CHAPTER 5: PERFORMANCE ANALYSIS 31-32

5.1 Performance 31-32

CHAPTER 6: CONCLUSION 33

6.1 Conclusion 33

REFRENCES 34

v

LIST OF ABBREVIATIONS

CI Continuous Integration

CD Continuous Deployment

DevOps Developer Operations

EC2 Amazon Elastic Compute Cloud

EKS Amazon Elastic Kubernetes Service

SQL Structured Query Language

OS Operating System

AWS Amazon Web Services

IAM AWS Identity and Access Management

ECR Amazon Elastic Container Registry

UI User Interface

URL Uniform Resource Locator

vi

LIST OF FIGURES

Figure No. Title Page No.

Figure 1.1 DevOps Overview 3

Figure 2.1 Architecture 4

Figure 3.1 Jenkins Configuration Snippet #1 11

Figure 3.2 Jenkins Configuration Snippet #2 11

Figure 3.3 Jenkins CI/CD Pipeline 12

vii

ABSTRACT

Automation is a need in ventures since it not just looks for improve the personal satisfaction

for people at both home and work, it permits the dissemination of both quality items and

administrations to be made accessible at quicker rates, and decreases down time and human

mistake. It is what is right now propping up our reality's dispersion chains.

The more prominent all ventures access to Automation, the more noteworthy our lives

become in general.

DevOps refers to the combinations of Development and Operational Skills. Basically, to

overcome the long, time consuming process of traditional waterfall models, DevOps are

preferred. Now-a-days many companies are interested to employ engineers who are skilled at

DevOps. DevOps integrates development and operation i.e. it takes both software developers

and IT sector. DevOps engineers must play nice as they have to collaborate, and handle an

automated infrastructure, workflow and continuously measuring application performance.

Phases of DevOps:

DevOps engineering consists of three phases:

1. Automated testing

2. Integration

3. Delivery

viii

Lifecycle of DevOps:

DevOps mainly focuses on planning, coding, building and testing as the development part.

Added is the operational part that includes releasing, deployment, operation, and monitoring.

The development and operational part makeup the life cycle.

Most popular DevOps tools:

Git is a version control system tool

Jenkins, Selenium are Continuous Integration Testing tools that uses predefined

frameworks.

Puppet, chef, Ansible are configuration management and deployment tools

Nagios is a Continuous monitoring tool

Docker is a container concept tool.

1

CHAPTER-1

INTRODUCTION

1.1 INTRODUCTION

The develop and take a look at section of software package development is

that the focus of continuous integration. As developer’s amendment software

package code, those changes at once checked into a central ASCII text

file system. once code is checked in, automatic build processes and

tests are triggered to create certain that the changes failed to break the

larger package being worked on. once shorter and additional frequent

develop-build-test cycles are used, committal to writing errors are caught

additional quickly, and also the risk related to large-scale code changes

is eased.

1.1.1 CONTINUOUS INTEGRATION

Using continuous integration, a product is constructed to incorporate

and integrate each code amendment on each commit (continuously),

by any and every one developer. an automatic build then verifies

every arrival, property groups sight issues early.

In advanced product, changes that appear straightforward and self-

contained will turn out fortuitous consequences. If multiple

developers square measure operating in parallel on multiple, isolated

code branches, merging changes to a typical master branch will have

unpredictable results. Unpredictable results usually result in multiple

rounds of regression testing and bug fixes. Continuous integration

2

(CI) could be an element of the continual delivery method that allows

developers to integrate their updates into the master branch on an

everyday basis. With CI, automatic tests run before and when every

amendment is incorporate, substantiating that no bugs are introduced.

1.1.2 CONTINUOUS DELIVERY

Continuous delivery implies that as new software package options and

fixes undergo the develop-build-test cycle, they become on the market

as apace as attainable. once smaller changes are delivered additional

ofttimes into production, the danger of large-scale changes breaking

the system goes down, and also the delay in emotional them to

customers is reduced.

1.1.3 CONTINUOUS DEPLOYMENT

Continuous Deployment is simple: simply ship your code to

customers as usually as attainable. perhaps nowadays that’s weekly

rather than monthly, however over time you’ll approach the best and

you’ll see the progressive advantages on the manner.

Continuous delivery and Deployment terms that square measure are

usually confused. In fact, they're virtually constant, as most of the

feature unleash method is additional or less identical. However, there's

one key distinction between the two: beneath continuous delivery,

somebody with comfortable privileges should approve every build to

be discharged to production, usually a product manager with simply

the push of a button. With continuous readying, though, the readying

method happens mechanically on a predefined unleash cadence, like

3

nightly, or maybe with every build. the sole thanks to eliminate this

manual step is for quality assurance and alternative testing to happen

mechanically.

 Fig 1.1: DevOps Overview

4

CHAPTER-2

LITERATURE SURVEY

2.1 TITLE: What is DevOps by microfocus.com

DevOps (a portmanteau of "improvement" and "tasks") is the mix

of practices and apparatuses intended to build an association's

capacity to convey applications and administrations quicker than

conventional programming advancement forms. This speed

empowers associations to all the more likely serve their clients and

contend all the more adequately in the market.

In basic terms, DevOps is tied in with expelling the obstructions

between generally siloed groups, advancement and activities.

Under a DevOps model, improvement and tasks groups cooperate

over the whole programming application life cycle, from

advancement and test through arrangement to activities.

DevOps security, all the more regularly alluded to as DevSecOps,

alludes to the control and practice of shielding the whole DevOps

condition through procedures, strategies, procedures, and

innovation. The DevSecOps reasoning is that security ought to be

incorporated with all aspects of the DevOps life cycle, including

5

commencement, structure, fabricate, test, discharge, backing,

support, and past.

Conventional security works from the position that once a

framework has been planned, its security imperfections would then

be able to be resolved and remedied before discharge. With the

change to a DevOps model, conventional security rehearses

happen past the point of no return in the improvement cycle and

are unreasonably delayed for the plan and arrival of programming

worked by emphasis. Along these lines, they can turn into a

significant barrier to conveying applications and administrations at

speed.

 Fig 2.1: DevOps Transformation

6

With DevSecOps, security turns into the attention of everybody on

a DevOps group. DevSecOps has the objective of executing

security choices at speed and scale without giving up wellbeing.

DevSecOps includes progressing, adaptable coordinated effort

between discharge designers and security groups. The ideas of

"speed of conveyance" and "building secure code" are converted

into one smoothed out procedure. Security testing is done in

emphases without hindering conveyance cycles. Basic security

issues are managed as they become evident, not after a danger or

bargain has happened.

DevOps is the immediate relative of light-footed programming

advancement, conceived from the need to stay aware of expanded

programming improvement speed and throughput spry strategies.

Progressions in light-footed advancement featured the requirement

for an increasingly all-encompassing way to deal with the product

conveyance life cycle, coming about in DevOps.

"Deft turn of events" is an umbrella term for a few iterative

programming improvement philosophies, a large number of which

have persisted to DevOps:

7

Scrum—a structure wherein individuals can address complex

versatile issues while conveying results of the most elevated

conceivable worth.

Kanban—a technique for dealing with the formation of items with

an accentuation on constant conveyance while not overburdening

the advancement group. Like Scrum, Kanban is a procedure

intended to assist groups with cooperating all the more

successfully.

 Fig 2.2: CI/CD Flow

8

Scaled Agile Framework (SAFe)— a lot of association and work

process designs expected to control undertakings in scaling lean

and dexterous practices. SAFe is one of a developing number of

systems that try to address the issues experienced when scaling

past a solitary group.

Lean turn of events—an interpretation of lean assembling

standards and practices to the product advancement space. Lean

offers a reasonable structure, qualities, and standards, just as best

practices got for a fact, that help spry associations.

Extraordinary programming (XP)— a product advancement

approach planned to improve programming quality and

responsiveness to changing client necessities. XP advocates visit

discharges in short advancement cycles, proposed to improve

efficiency and present checkpoints at which new client necessities

can be embraced. Different components of outrageous

programming remember programming for sets or doing broad code

audit, unit testing of all code, not programming of highlights until

they are required, a level administration structure, code

straightforwardness and lucidity, expecting changes in the client's

prerequisites over the long haul and the issue is better

comprehended, and regular correspondence with the client.

9

A few key practices can assist associations with enhancing quicker

through robotizing and smoothing out the product improvement the

executive’s procedure. One basic DevOps practice is to perform

exceptionally visit however little updates. These updates are

typically steadier than the updates performed under customary

discharge rehearses. Associations utilizing a DevOps model send

refreshes significantly more frequently than associations utilizing

customary programming advancement rehearses.

 Fig 2.3: CI/CD tools

10

Correspondence and coordinated effort are cornerstones of the

arrangement of DevOps rehearses. Computerization of the product

conveyance process builds up joint effort by genuinely uniting the

work processes and duties of improvement and activities.

Correspondence across designers, tasks, and much different

groups, for example, advertising and deals, permits all pieces of

the association to adjust all the more intently on objectives and

activities.

DevOps practices, for example, nonstop joining and consistent

conveyance let DevOps groups convey quickly, securely, and

dependably. Observing and logging help DevOps groups track the

presentation of utilizations so they can respond rapidly to issues.

Microservices

The microservices engineering is a plan way to deal with construct

a solitary application as a lot of little administrations. Each help

runs in its own procedure and speaks with different administrations

through a very much characterized interface utilizing a lightweight

system. You can utilize various systems or programming dialects

to compose microservices and send them autonomously, as a

solitary help, or as a gathering of administrations.

11

Associations may likewise utilize a microservices design to make

their applications progressively adaptable and empower faster

development. Ordinarily, each assistance is matched with a little,

nimble group who takes responsibility for administration.

Consistent coordination and nonstop conveyance

CI is a product improvement practice where engineers routinely

consolidate their code changes into a focal storehouse, trailed via

robotized manufactures and tests. The key objectives of CI are to

discover and fix bugs faster, improve programming quality, and

decrease the time it takes to approve and discharge new

programming refreshes. Compact disc develops CI by sending all

code changes to a testing or creation condition after the assemble

stage.

12

 Fig 2.4: DevOps Flow

Checking and logging

By catching and dissecting logs created by applications, DevOps

groups can more readily see how programming changes or updates

may influence clients.

Building a protected DevOps model

Moving to DevOps isn't a goal. It is an excursion. DevOps is

generally changing how improvement and tasks are done today.

You can utilize the DevOps rehearses, procedure, structures, and

13

work process, in view of the DevOps theory, to incorporate

security with your product improvement life cycle at speed and

scale without giving up wellbeing, while at the same time limiting

dangers, guaranteeing consistence, and lessening rubbing and

expenses. DevOps permit improvement, tasks, and security groups

to offset security and consistence with speed of conveyance, and to

incorporate security with the full SDLC.

DevOps was birthed by the training and proliferation of deft

programming improvement. Since the dexterous strategy

accelerates the improvement procedure and throughput speed,

there was a need to adjust the structure of undertaking groups to

oblige this new reality. As lithe culture flourished, it turned out to

be certain that having the product improvement and IT activities

groups working independently was counterproductive and

wasteful.

14

 Fig 2.5: Jenkins and DevOps

DevOps rehearses computerize arrangement pipelines and creates

quicker input to improve effectiveness, consistency, practicality,

and security. It carries engineers into the creation condition, gives

them more profound bits of knowledge into the framework and

gets them progressively associated with application lifecycle the

executives.

15

Associations that grasp DevOps may have all IT assets inside a

customary server farm, all assets in an offsite cloud, or disperse

their assets in a half and half condition.

The DevOps development isn't characterized, nor drove, by

customary IT programming, equipment, or the executive’s sellers.

What's more, there are right now no systematized rules or manuals

for DevOps, just by and large acknowledged rules. All things

considered, selection and execution of DevOps differ enormously

starting with one association then onto the next.

The learnings of DevOps are basically proselytized by an

enthusiastic grassroots network of IT professionals, spread over a

wide assortment of IT disciplines. Most individuals from the

DevOps people group include dynamic occupations inside

different associations, and they share their learnings in various on

the web and in-person discussions and social events. Contingent

upon the number and development of the professionals in an

association, the advantages of a DevOps usage can be critical

16

2.2 TITLE: Continuous Integration in DevOps by C. Aaron Cois

Similarly, as with all huge social activities or enormous ventures, DevOps

requires key partners who distinguish the requirement for DevOps,

champion the reason, and support the assets to investigate, execute, and

measure accomplishment in a top-down style. In the DevOps Handbook:

How to Create World-Class Agility, Reliability, and Security in Technology

Organizations, the writers suggest starting with thoughtful and imaginative

gatherings, scoring some quick successes, and afterward extending impact

from that point to construct a quiet dominant part to prevail upon the

holdouts. Littler associations can forego the majority of that structure by

permitting a base up way to deal with explore and receive DevOps benefits.

 Fig 2.6: SonarQube Report Demo

17

Yet, actions speak louder than words - objectives must be set, in a perfect

world with measurements, so an activity plan can be framed and estimated.

These activity plans will call for cross-group controls, coordination, and

needs to unblock clashes and advancement storehouses. Change is hard, so a

specially appointed methodology won't work. It must be organized to square

away the association's specialized and social obligation.

On the off chance that the entirety of this looks overwhelming, recollect that

the ROI is gigantic: quickened development, more noteworthy proficiency,

improved versatility and flexibility, expanded benefits, and better personal

satisfaction and work.

In the event that you are simply beginning with DevOps, fortunately there is

presently a flourishing, decentralized, and inviting DevOps people group for

you to take advantage of: new adopters should search out the closest

DevOps Days, DevOps Meetup gatherings, and related meetings to discover

neighbourhood professionals.

Another extraordinary wellspring of data is the Nutanix entryway, which

incorporates a variety of assets, going from labs, working contents and

model applications, official documentation for Nutanix APIs, engineer

network websites, occasions, and that's only the tip of the iceberg.

Make certain to likewise look at these assets to get familiar with how

Nutanix offers the perfect DevOps stage, crumbling framework storehouses

to help consistent development and tasks at scale!

18

Without this QA procedure, a designer may register broken code

with a focal storehouse. Different designers may make changes

that rely upon this messed up code, or endeavour to consolidate

new changes with it. At the point when this occurs, the group can

lose control of the framework's working state, and endure a

misfortune in energy when compelled to return changes from

various engineers to come back to a utilitarian state.

 Fig 2.7: CI Flow

CI servers (otherwise called manufacture servers) naturally gather,

fabricate, and test each new form of code focused on the focal

group store, guarantees that the whole group is alarmed whenever

19

the focal code archive contains broken code. This seriously

constrains the opportunity for cataclysmic consolidation issues and

loss of work based upon a messed-up codebase. In develop

activities, the CI server may likewise consequently convey the

tried application to a quality confirmation (QA) or organizing

condition, guaranteeing the Agile dream of a predictable working

rendition of programming.

All the activities portrayed above are performed dependent on

mechanized setup and arrangement contents composed

cooperatively by advancement and tasks engineers. The joint effort

is significant - it guarantees that tasks aptitude in sending needs

and best practices is spoken to in the improvement procedure, and

that all colleagues comprehend these computerized contents and

can utilize and upgrade them. This coordinated effort additionally

makes way for utilization of similar contents to inevitably convey

the framework into creation conditions with high certainty, a

procedure known as ceaseless arrangement, which is a point for a

later post.

As appeared in the realistic underneath, the construct server looks

at new code from source control, orders/manufactures it (if vital),

and tests the code (fundamentally unit tests, at this stage, however

20

static code investigation is likewise conceivable). When the code is

tried, the manufacture server sends it to QA. Now, the construct

server can likewise dispatch contents to perform joining testing, UI

testing, propelled security testing (more on this soon) and different

tests requiring a running adaptation of the product. Reliable with

Agile prerequisites that stress a persistently working rendition of

the product, our CI server naturally returns to the last fruitful

variant of the product, keeping a working QA framework

accessible regardless of whether mix tests fizzled.

 Fig 2.8: DevOps start to end

While CI is in no way, shape or form another marvel, the DevOps

development underscores its significance as a fundamental strategy

21

for programming process computerization and requirement. There

are numerous well-known CI frameworks, including Jenkins,

Bamboo, Team city, Cruise Control, Team Foundation Server, and

others. The assortment of frameworks implies that any group ought

to have the option to discover a device that the two addresses its

issues and incorporates well with the innovation stack(s) it utilizes.

For more data on this and different DevOps-related points, each

Thursday the SEI distributes another blog entry offering rules and

common-sense guidance to associations trying to embrace DevOps

practically speaking. We invite your criticism on this arrangement,

just as proposals for future substance.

22

CHAPTER-3

PREPARATION OF DOCKERIZED JENKINS IMAGE

3.1 HIGH LEVEL ARCHITECTURE/PAPER DESIGN

 Fig 3.1: Architecture

3.2 PREREQUISITES

- Fresh image of Debian 9

- Bitbucket repository for Jenkins pipeline

- EC2 instance

- Docker installed on EC2 instance

- EKS cluster

23

3.3 DESCRIPTION

Launching container from this image with everything up and running

Building an image from this dockerfile

Make a dockerfile using this image to start services automatically

Creation of image of this container

Jenkins configuration Settings and Plugins installation

Installation of Sonar Scanner

Installation of AWS IAM Authenticator

Installation of Kubernetes

Installation of necessarry Python Libraries

Installation of Jenkins

Installation of Docker

Installation of SonarQube

Installation of PostgreSQL 10

Installation of Java11

Installation of Python3

Install and upgrade basic OS packages

Make a container of the image

Debian 9 base Image

24

3.4 CHALLENGES AND WORKAROUNDS:

1. Exposing installations to a certain port and mounting of paths need to be

done in "docker run" command only, i.e. (at the time of building container

out of the image), it can't be done after the container is built.

2. We are running all the docker commands inside the container and hence, we

need to run them with the sudo access, but Jenkins docker plugins doesn’t

allow a way to execute commands with sudo access,

Workaround: We preferred shell commands for docker in Jenkinsfile.

3. Docker was required inside container for running our pipeline. Installing

docker inside our docker container doesn’t work directly due to system

privilege issue.

Workaround: We mounted the docker.sock paths of EC2 to docker.sock

paths of container. This allows us to use docker installed on our EC2

machine inside our container.

4. Docker in docker had difficulties in running on CentOS 7.

Workaround: We preferred Debian OS 9 over CentOS 7.

3.5 DEPLOYMENT GUIDELINES:

3.5.1 Prerequisites:

- Access to dockerized Jenkins image

- EKS Cluster

- EC2 instance

- Docker installed on EC2 instance

25

- Bitbucket Repository

- Commands mentioned in the description below

3.5.2 Description:

1. To create the container:

docker run -d -p 7777:8080 -p 9003:9000 --privileged --name

container_name -v /var/run/docker.sock:/var/run/docker.sock -it

image_name

Explanation: The above command will create a docker container

from our image with all services up and running. Since inside

docker container we are running Jenkins on port 8080 and

Sonarqube on port 9000, we are forwarding these ports to 7777 and

9003 ports of EC2 respectively. Also, we are mounting the docker

paths of EC2 to docker path of container.

Image name on ECR: automate-jenkinspp

2. To launch a bash terminal within the container:

docker exec -it container_name bash

Explanation: The above command will start the bash terminal

within a container.

To enter as root user, use /bin/bash.

3. If in case already launched container was stopped manually, you

can relaunch it by:

docker container start container_name

26

CHAPTER-4

USER GUIDE

4.1 PREREQUISITES:

1. EKS Cluster (Optional)

2. Bitbucket repository containing Jenkins files

3. Image of dockerized Jenkins

4. EC2 instance

5. Docker installed on EC2 instance

6. Host machine should have proper IAM role to be able to access ECR

repository

Image name (on AWS ECR): automated-jenkins

4.2 DEPLOYMENT

4.2.1 Structure for the bitbucket repository

The bitbucket repository should contain the DevOps folder containing the

following subdirectories and files (as shown below):

DevOps

|------------ Docker

| |-- Dockerfile

| `-- requirements.txt

|------------ Jenkins

| |-- Jenkinsfile

| |-- common_constant.py

| |-- copy_logs_from_ec2.sh

| |-- copy_logs_to_ec2.sh

| |-- merge_request.py

27

| |-- pylint.sh

| |-- scan_changes.py

| |-- secrets_config.json

| |-- truffle_hog_scan.sh

| `-- update_status_code_quality.py

|------------ Kubernetes

| |-- deployment.yaml

| |-- profiler-expose.yaml

| `-- unit_test_kubectl.sh

 `------------ unit_testing

 |-- common_constant.py

 |-- flask_dataprofiler.py

 `-- test_flask_dataprofiler.py

4.2.2 To pull the image of dockerized Jenkins (containing preinstalled

software and plugins e.g. SonarQube, trufflehog, blue ocean, etc.):

The image needs to be pulled from Amazon ECR to local environment

using the below command:

docker pull automated-jenkins

4.2.3 To launch the container from image:

Just after pulling the image from ECR, container from that image can be

launched by the below command with all services up and running:

docker run -d -p 7777:8080 -p 9003:9000 --privileged --name

container_name -v /var/run/docker.sock:/var/run/docker.sock -it

automated-jenkins

Here, we are exposing 8080 port of docker container (running Jenkins) to

7777 port of host machine and similarly, we are exposing 9000 port of

docker container (running SonarQube) to 9003 port of host machine.

Also, we are mounting the docker path of host machine to docker path of

container to make running of docker inside docker container possible.

28

4.2.4 Accessing Jenkins and SonarQube:

As soon as the container is launched with all services up and running,

Jenkins and SonarQube can be accessed as follows:

Link for accessing Jenkins UI:

URL: http://$$host_machine_ip:7777/

Username: admin

Password: admin

Link for accessing SonarQube UI:

URL: http:// $$host_machine_ip:9003/

Username: admin

Password: admin

4.2.5 Configurations for running the CI/CD Pipeline on Jenkins:

Once the Jenkins UI is launched, two Jenkins job CICD_pp and

scan_changes_ci_cd can be found at the home screen.

• Setting the Credentials:

Go to the credentials option of Jenkins and update the following

credentials according to your environment,

a. Bitbucket Credentials

b. Jenkins Credentials

c. Dockerhub Credentials

• Configurations for CICD_pp Job:

1. Click on configure link after going into CICD_pp job:

a. Update region_name, eks_cluster_name,

BITBUCKET_CREDS_ID, JENKINS_CREDS_ID,

DOCKERHUB_CREDS_ID in the Properties Content

section of Environment variables in General Tab. At the

same place, update your dockerhub repository in the

registry variable as shown in the snapshot below.

29

 Fig 4.1: Jenkins Configuration Snippet #1

b. Also, there are certain flag values (as shown in snapshot

above) for each stage of pipeline that are by default set to

1 and can be modified as per the requirement. In case you

want a stage to run in the pipeline, the flag value for that

stage needs to be 1, else make it 0.

c. Add the Repository URL and Git credentials in the

Pipeline Tab.

2. Setting the thresholds for code quality check:

Allowed bugs, vulnerabilities and code smells can be updated

in the common_constant file present in Jenkins subdirectory of

DevOps directory of git repository.

• Configurations for scan_changes_ci_cd Job:

Click on configure link after going into scan_changes_ci_cd

job:

a. Update GIT_URL, BRANCH_TO_WATCH in the

Properties Content section of Environment variables in

General Tab as shown in the snapshot below.

 Fig 4.2: Jenkins Configuration Snippet #2

30

b. Set your credentials for Git and Jenkins in the Bindings

section of Build Environment Tab.

4.3 Steps to access the Jenkins workspace:

1. Enter the container through interactive mode using the command:

docker exec -it container_name bash

2. Go to the path: /var/lib/jenkins/workspace/

4.4 Description:

1. Jenkins job scan_changes_ci_cd checks every five minutes if there is any

open pull request.

2. If scan_changes_ci_cd job finds any open pull request, it triggers

CICD_pp Jenkins job and merges the pull request after performing all the

necessary checks/tests.

31

CHAPTER-5

PERFORMANCE ANALYSIS

5.1 PERFORMANCE

The pipeline gives an appreciable performance in testing, building

and deploying the image of the utility. Also, it takes around 140s

for the complete pipeline to merge the pull request from the

source branch to the master branch.

The pipeline is able to well check the file for all the conditions

under the trufflehog scan. There are different secret configurations

that has been set which the truffle hog checks for wrapped in a json

file. If this trufflehog scan is successful and no credentials are

found then the code performs sonarqube scan to check for code

bugs, vulnerabilities and code smells.

If the bugs, vulnerabilities and code smells are lesser than set

thresholds in sonarqube scan, then the Pylint stage comes into play.

Pylint assigns each python file a score on the basis of standards

followed while writing the code. After this a final pylint score is

generated out of all the python files present in the repository.

32

The pipeline doesn’t run all the further stages if any of the stage

fails due to any reason in between.

If all of these checks are successful, then only docker image of the

utility is created which is then deployed to Kubernetes, finally

causing the pipeline to merge the pull request and generate the

Cobertura repor which are then published at the same page.

 Fig 5.1: Jenkins CI/CD Pipeline

33

CHAPTER-6

CONCLUSION

6.1 CONCLUSION

Jenkins, related dependencies and configurations have already been packed

into the image. Once the container is launched, Jenkins runs inside the

container successfully. Also, the pipeline runs end to end to perform all the

necessary checks, creation and deployment of the image of the utility.

The pipeline progress can be viewed in a better way using the Blue Ocean

Plugin which is already installed.

The final reports are well presented using the Cobertura Plugin after the

execution of the pipeline.

34

REFERENCES

• What is DevOps by microfocus.com

• Continuous Integration in DevOps by C. Aaron Cois

https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-

1.html

• Analytics India: https://analyticsindiamag.com/5-reasons-why-jenkins-is-the-

most-used-open-source-tool-by-developers/

• ZS Learning Material

• Some YouTube Videos

https://analyticsindiamag.com/5-reasons-why-jenkins-is-the-most-used-open-source-tool-by-developers/
https://analyticsindiamag.com/5-reasons-why-jenkins-is-the-most-used-open-source-tool-by-developers/

4%
SIMILARITY INDEX

3%
INTERNET SOURCES

2%
PUBLICATIONS

1%
STUDENT PAPERS

1 2%

2 1%

3 1%

Exclude quotes Off

Exclude bibliography On

Exclude matches < 14 words

rohit report 23 05 20 1
ORIGINALITY REPORT

PRIMARY SOURCES

www.heroku.com
Internet Source

codegist.net
Internet Source

Sathyajith Bhat. "Practical Docker with Python",
Springer Science and Business Media LLC,
2018
Publication

https://secure.in1.echosign.com/verifier?tx=CBJCHBCAABAAH_N1wFtsuBIaERaIsVjoK5WKvjj_kiYg

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

Checked by
Name & Signature Librarian

 ………

14/07/2020

Rohit Garg CSE 161297

9882985956/7018945195 rhtgarg253@gmail.com

Dr. Ravindara Bhatt

DOCKERIZING JENKINS AND ONE CLICK DEPLOYMENT WITH CI/CD PIPELINE

43

1
9

	Final Report_Rohit Garg (161297)
	rohit report 23 05 20 1
	ORIGINALITY REPORT
	PRIMARY SOURCES

	Plag Form_Rohit Garg (161297)

