“BUG REPORT SUMMARIZATION”
A
PROJECT REPORT
Submitted in partial fulfilment of the requirements for the award of the
degree of
BACHELOR OF TECHNOLOGY
IN

Computer Science and Engineering

Under the supervision
of

Dr. Hemraj Saini
by
Varnita Sachdeva (151258)

Ayushi Mittal(151279)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN- 173234
HIMACHAL PRADESH, INDIA, MAY- 2019

Candidate’s Declaration

| hereby declare that the work presented in this report entitled “BUG REPORT
SUMMARIZATION” in partial fulfillment of the requirements for the award of the
degree of Bachelor of Technology in Computer Science and Engineering submitted in
the department of Computer Science & Engineering and Information Technology, Jaypee
University of Information Technology Waknaghat, is an authentic record of my own work
carried out over a period from August 2018 to May 2019 under the supervision of Dr.
Hemraj Saini, Associate Professor Computer Science.

The matter embodied in the report has not been submitted for the award of any other degree
or diploma.

Varnita Sachdeva, 151258
Ayushi Mittal, 151279

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Dr. Hemraj Saini

Associate Professor

Computer Science & Engineering
Dated:

ACKNOWLEDGEMENT

| take this opportunity to acknowledge all who have been a great sense of support and
inspiration throughout the project work. There are lot of people who inspired me and helped
me in every possible way to provide the detail about various related topics, thus, making
report work a success. | am very grateful to my supervisor Dr. Hemraj Saini for his
guidance, encouragement, and support.

I am also thankful for all his diligence, guidance, and encouragement and helped throughout
the period of this report, which has enabled me to complete project report work on time. |
also thank him for the time that he spared for me, from his extremely busy schedule. His

insight and creative ideas are always the inspiration for me during the dissertation work.

Thanking you,

Varnita Sachdeva (151258)
Ayushi Mittal (151279)

S No.

5

List of Figures

TABLE OF CONTENTS

Title
INTRODUCTION

1.1 INTRODUCTION

1.2 PROBLEM STATEMENT
1.3 OBJECTIVE

1.4 PROPOSED SYSTEM
METHODOLOGY

Literature Survey

System Development and Design
3.1 SOFTWARE REQUIREMENT
3.2 HARDWARE REQUIREMENT

3.3 PROPOSED MODEL
3.3.1 TECHNOLOGY USED
3.3.2 LIBRARIES USED
3.3.3 SYSTEM DESIGN

ALGORITHM

4.1 NAIVE BAYES MODEL
4.1.1 TRAINING PHASE
4.1.2 TESTING PHASE

4.2 NEURAL NETWORK MODEL

4.2.1 TRAINING PHASE
4.2.2 TESTING PHASE
TEST PLAN

List of ADDreviations ..o
A DS T AC . . ettt et e e e e e e e e e e e e ———

(vii)
(viii)

Page No

1

9

13

18

30

RESULT AND PERFORMANCE 34
ANALYSIS

6.1 RESULT AND PERFORMANCE
ANALYSIS FOR NAIVE BAYES MODEL

6.2 RESULT AND PERFORMANCE
ANALYSIS FOR NEURAL NETWORK
MODEL

CONCLUSION 45
REFERENCES 46

Figure no

O 00 N O uu A W N -

N N NN N N NN R B R R R B |2 B B g
N oo 1A WN R O W 00N OO WU DM W N R O

LIST OF FIGURES

Description

Supervised Model

Unsupervised Model

Artificial Neural Network Model
General working of Text summarizer
Flowchart of Training Phase of NB
Flowchart of Testing Phase of NB
Bayes Theorem

Flowchart of Training Phase of ANN
Flowchart of Testing Phase of ANN
Neural Attention Mechanism

POS Words

Word frequency of tokens in Class 1
Word frequency of tokens in Class 0
Model

Encoding Layer

Training Decoding Layer

Inference Decoding Layer

Decoding Layer

Seq2seq Model

Hyperparameters

Algorithm of Training Model
Algorithm of applying the model
Doc 1 for NB

Doc 2 for NB

Doc 1 for ANN

Sentence tokenization of Doc 1

Sentence tokenization of Doc 2

Page
no

co o1 b W

15
16
16
17
17
18
20
21
23
24
24
25
26
26
27
28
29
31
32
33
34
35

28
29
30
31
32
33
34
35
36
37

Sentence Score of Doc 1

Sentence Score of Doc 2

Confusion Matrix for precision, recall, f-score
Formulas for precision, recall, f-score
Summary generation of Docl

Summary generation of Doc2

Mathematical Analysis of data set

Epochs

Summary of Doc 1through ANN

Bar chart of F-score of both model

Vi

36
38
39
39
40
40
41
43
44
44

LIST OF ABBREVIATIONS

S No. Abbreviations Description

1 MMR Maximum Marginal Relevance

2 BRC Bug Report Corpus

3 EC Email Corpus

4 EMC Email Meeting Corpus

5 Tf-idf Term frequency, Inverse-document
frequency

6 NLP Natural Language Processing

7 POS Part of speech

8 ML Machine Learning

9 ANN Artificial Neural Network

10 NB Naive Bayes Model

11 RNN Recurrent Neural Network

12 LSTM Long short-term Memory

vii

ABSTRACT

Bug Report Summarization is one of the most necessary need for developers these days.
As developers come across many bugs while working on some project. It is very difficult
to undergo long documents to find the solution of their bug. That is why Bug Report
Summarization is done to generate summaries that are shorter and precise and can ease
the work of coders, testers and other people as well. This report depicts our fourth year
project "Bug Report Summarization", describing the method using which a summary can

be generated using an algorithm.

viii

CHAPTER -1
INTRODUCTION

1.1 Introduction

Natural Language Processing:

“Natural Language Processing is a field that does understanding and manipulation of
human language into a language understandable by computer, and it’s blooming with
possibilities for news-gathering”. “You usually hear about it in the context of analyzing
large pools of legislation or other document sets, attempting to discover patterns or root out
corruption.” With the use of NLP computer analyses, understands and derive the meaning
from human language into a summarized and useful, helpful way. By using NLP,
developers have organized and structured knowledge to implement tasks of ‘automatic
summarization.’

“Apart from common word processor operations that have been treating text like a sequence
of symbols, natural language processing takes into consideration the hierarchical structure
of this language, that means, many different words combine to form a phrase and several
phrases combine to form a sentences and, finally, these are the sentences that convey ideas,”
Natural Language Processing has been used since years to analyse text, and to make models
through which machines can understand human language and their emotions.

Such human-computer interaction encourages processing of real-world applications like:
sentiment analysis and automatic text summarization. NLP is most commonly used for text
mining, text summarization, semantic analysis, machine translation, question answering
and for many other applications. The main drawback while processing human language is
they are not just plain text. They contains different meaning for different arrangements of
words, also they carries emotions of speaker. Although, humans naturally learn their
respective languages without any difficulty but for processing because of ambiguity this is
a difficult task.

NLP algorithms are normally derived from machine learning algorithms itself. Instead of

coding manually large sets of rules, rules are learnt automatically using Machine learning.

In general, more the training is done, more accuracy can be achieved by the model. This
depends on following different features extraction:

Tokenization- Extracting main key words, reducing words to their root form, applying
stemming and lemmatization.

Pos tagging- Finding the noun using pos tags.

Score Generation- Generating score for each token to know the value of each word in a
document. And there are many more processing features.

Machine Learning:

Artificial Intelligence has many sub fields one of them is machine learning. In general,
ML’s goal is to understand the structure of data and then applying necessary model on it
that can be used to process to gain necessary output by different people.

In conventional computing, “algorithms are set of explicitly programmed instructions used
by computers for calculation and problem solving.” Whereas, ML is completely different
from conventional approach, it allows the computer to train on data-inputs and use
statistical-analysis to order data output values that fall within an anticipated specific range.
It’s because of this that ML helps computer to process taking help from data-inputs training
set.

Anyone using technology today has got the benefit of using ML. For example, technology
of Image Processing has helped to read data from images, technology of summarization
saves time of the user from reading large documents. Recommendation engines are based

on ML, suggesting latest, trending videos and shows.

Machine Learning Methods

Processing in machine learning is classified under two broad category based on how
learning is received by the system and how it is interpreted and developed into an output.
One method is supervised learning, which is based on a training algorithm having input-
output data sets using which further processing is done. Another method is unsupervised
algorithm which has algorithm where no pre data set is given. These models will be

explained in further pages.

Supervised Learning- For applying supervised learning, the computers are provided
with the set of inputs which have corresponding set of outputs. The main reason for
this method is that the algorithm should be “able to learn by comparing its actual
output with the taught outputs to find errors and then modify the model in the
required way.” This learning follows pattern to predict label values on the testing
data set. For example, when supervised learning is used, it is fed with input data of
shark image as fish and river image as water. So when user will input with shark
image it will give output as fish and similarly for river. A very often use of this
method is using earlier data to predict future events. It may be used for weather
forecast, like when tides, and previous temperature is processed it will be helpful to
predict weather for next few days of a place. It is also helpful for image reading,

when it will be fed with previous input-output set of images.

Supervised Learning Model
W Training o

Text,
Documents, Feature

Images, |:> Vectors
etc.

—— s

Learning

Algorithm

Feature :

New Text, Vector

Document, | > | > Predictive |:> Expected
Image, Model Label
etc.

Figure 1: Supervised Learning Model [1]

Unsupervised Learning - In case of unsupervised learning, data is not given pre
hand. So the model itself find common grounds between different information to
predict future data. As we all know learning by itself is more difficult than labelled
data, this machine learning method is quite difficult but also an important learning

method. The final goal of this learning is straight- forward to discover hidden

patterns within a data-set, it also have aim of feature learning as discussed above,
which allows the machine to automatically find the representations that are required
to classify raw-data. Unsupervised learning is generally used for data to be used as
transactional one. The most appropriate example for this will be a recommendation
engine. Suppose you being a service provider of latest movie, can’t make sense
from the data available of user that who prefer what. So in this case, unsupervised
learning is used to recommend you with which age group likes to watch what type
of genre of movies. Therefore, providing the users with their preferred information

earn the service provider more marketing and user’s interest.

Unsupervised Learning Model

o Training
= Feature
Documents,

|::> Vectors
Images,
etc.

I L ; Machine

Learning

Algorithm

Feature

Vector
New Text,

Document,
Image,

etc.

Likelihood
or Cluster ID
or Better
Representation

Figure 2: Unsupervised Learning Model [2]

Deep Learning

Deep learning is a field which reciprocate how human brain works and how it can process
any information in any form (like sound, light etc). It’s architecture by biological neural
network of human body and similarly consist of multiple layers in an artificial neural

network form.

Artificial Neural Network

A neural network is a three layer classifier operating in parallel. The first layer receives the
input information similar to optic nerves in human visual processing. Second layer is
hidden layer that works on some given algorithm to process the input information. The last
layer produces the output of the system. Advantage of using neural network is that they are
adaptive. They can modify themselves as they learn from initial training.

Input Hidden Layer Output

——

;

Figure 3: Artificial Neural Network Model

TSN

Text Summarization
Text Summarization is a process of making short, meaningful paragraphs from huge
documents to ease the working of researcher, developer, or user. Based on the method of
summary generation, text summarization systems are of two Kinds: extractive and
abstractive.
= |n extractive text summarization, at first each word is separated as tokens by
applying certain tokenization techniques. Noise words and stop are removed. After
that there is score calculation for each token by applying any given algorithm like
tf-idf etc. After that each score is compared and tokens with higher score are

selected to be inserted in summary.

= In abstractive text summarization, instead of extracting sentences from the original
document by applying a predefined algorithm and then using them as they are in
summary in this method sentence is generated by the system itself which uses
Natural Language Processing to do so. This type of summary generation is more

complex than extractive.

Programming Language

While choosing a language to code and create a model, we should choose a language in
which we have specialization and the one which has maximum libraries and modules to
ease the work.

Python has been the most used programming language for this work.

Other languages like Java, R and C++ can be kept as optional (this information is taken
from indeed.com December 2016).

Python is an object oriented programming language which is easy to interpret and learn
because of its simplicity of syntax. Python being a portable language can be used on various
operating systems such as Mac Os, UNIX, and various Windows version. Its popularity
has increased in the field of deep learning because of the availability of large number of
libraries including nltk kit, Tensor Flow, NumPy, Keras etc. The modules available are
easy to use and direct in implementation.

Java is an HLL. Its syntax is similar to C++ but is strictly an object oriented programming
language. Usually, it is not one of the favoured language by the developers who are new to
coding but it is surely preferred by those who already have a good hand in working in Java.
Also, Java is used more than Python for detection of false cases, cyber-attacks and security

related problems.

1.2 Problem Definition

The volume of electronic information available on Internet has increased rapidly. As a
result, dealing with such huge volume of data has lead to a problem and time consuming
task. Mostly research shows that summary extraction is a shortening of information which
means selecting only those words or sentences that feels to be logically correct. Humans

also extract summary whose efficiency is very low as they don’t perform any particular

algorithm to generate a summary. But there is a drawback of this approach. There is no
focus on particular text weight and its position in the document. So our focus is on
generating a summary that is generated by calculating tokens score and its uniqueness and

positioning in a document.

1.3 Objective

A software project’s bug repository provides an upscale source of data for
a developer operating on the project. For instance, a developer may need to consult few
bug reports reported in the past. Developer does so in order to find the bug he is dealing
with and to find how the bug was resolved. While scrolling the bug reports repository,
developer have to read several reports before he finds the correct solution. As information
is growing day by day, length of each bug report has also increased. Sometimes a developer
finds the required bug report by only reading the title or many times he has to read the
complete lengthy reports. Thus, developer has to invest a lot of time while reading tens or
hundreds of sentences of each bug report to find the solution. These searches are very
tedious and has become an issue.

One solution to reduce the time the developer spends getting to the right bug report to
perform their task is to provide them with summary of each report. This can be done by
using a software to generate a summary to help the developer to get the solution in optimal
time. This summary generation is known as Bug Report Summarization.

As till now, for performing extractive text summarization various models like Naive Bayes
Classifier have been proposed. Naive Bayes treats the summarization problem as
classification problem and calculates whether a sentence can be added to the summary or
not. They compare each sentence with other one and scores are given to each sentence is
given depending on the algorithm used. There is a threshold score which is dependent on
the length of the summary required, and every sentence which is higher than the score is
included in the summary.

The above method seems to be easy but only for some genre-specific summarization
(hospital reports, news articles etc). This means that article which are trained using data set
of same genre, gives great result but these techniques fails in case of general text

summarization.

To solve this issue, and for in general text summarization Neural Network Models are most
preferred model.

1.4 Proposed System Methodology

In our research, we have used two different algorithm to generate summaries of the bug
reports that are Naive Bayes Classifier and Artificial Neural Network.

Naive Bayes Model performs in a way where Bug Reports are taken as input files and after
performing the algorithm for Naive Bayes, bug report summary is generated. The overall
computation can be divided into two phase- Training Phase, Testing Phase. The corpus for
input consisted of 10 bug reports (taken from “Automatic Summarization of Bug Reports”,
Sarah Rastkar, Gail C Murphy [6]). We checked the effectiveness of the summary
generated by the classifier by comparing it with the human written summary. Effectiveness
measure taken into account were precision, recall and F-score.

Neural Network Model performs in a way where all the bug reports are taken in a single
.csv file. And after performing ANN algorithm, bug report’s summary is generated. The
overall computation can be divided into two phase- Training Phase, Testing Phase. The
corpus for input consisted of 36 bug reports (taken from “Automatic Summarization of Bug
Reports”, Sarah Rastkar, Gail C Murphy [6]).

Training Set
(unstructured text from blog entries)

I

Pre-processing
(stop-word elimination, stemming,
spell-error correction)

l

Feature Extraction
(using tf-idf and multi-word)

|

Construct classification model
(naive Bayesian model/ ANN model)

Train Classifier

l

‘ Test classifier accuracy ‘

Figure 4: General working of Text Summarizer [3]

CHAPTER -2
LITERATURE SURVEY

2.1 Authors: Senthil Mani, Rose Catherine, Vibha Singhal Sinha, Avinava Dubey
Title: Approach for Unsupervised Bug Report Summarization [2012] [4]

Work done on this paper was it used four unsupervised techniques (Cen-troid, MMR,
Divrank, Grasshopper) and compared their efficacy with supervised
approach(BRC,EC,EMC). The efficacy of the unsupervised techniques is enhanced by
noise removal technique and deducting the useless code. There were few significant
limitation observed that were- Observed results are particular results can’t be used for other
setups and they need reconfiguration depending on subject to which noise reduction is
applied .

2.2 Authors: Rafael Lotufo, Zeeshan Malik, Krzysztof Czarnecki

Title: Modelling the hurried bug reports reading process to summarize bug reports
[2012] [5]

This paper focused on unsupervised techniques for bug summarization and apply noise
reduction, two of the unsupervised technique became scalable for larger size bug reports.
Its algorithm resulted into following limitations- it don’t provide an evaluation showing
how user would choose two input parameter, which are summary percentage length and

minimum relevance threshold.

2.3 Authors: Sarah Rastkar, Gail C Murphy

Title: Automatic Summarization of Bug Reports [2014] [6]

They made a summarizer that produces summaries that are statistically better than
produced by existing conversation- based generators. In this paper, they have researched
the automatic generation of one sort of software skill, bug answers, to give designers the
advantages others encounter every day in different areas. They found that current
conversation based extractive summary generators can create summaries for bug reports
that are better than any random classifier. They likewise discovered that an extractive

summary generator prepared on bug reports delivers the best outcomes. It resulted into

following limitations that is Naive/non-experts can’t create summaries and more than one

annotator is required.

2.4 Authors: Elder Cirilo, Fernando Mourao

Title: Bug Report Summarization: An Evaluation of Ranking Technique [2016] [7]
They provided a solution using extractive summaries where summaries are based on
comments instead of one based on isolated sentences. In this paper, they propose a novel
methodology where summaries depend on remarks, rather than the ones dependent on
confined sentences, as proposed by past works. Exact outcomes prove with our arguments
that positioning the most relevant comments would enable developers to discover more
appropriate information. They could observe that summaries generated by conventional
ranking algorithms are precise concerning developers expected data, when contrasted with
reference summaries made manually, offers applicable summaries in general. Conclusion
lead to limitation like Size and amount of reports may be a threat to the conclusion of their
study and few bug reports contain different types of structured information which can’t be

treated in the algorithm.

2.5 Authors: Ha Nguyen Thi Thu

Title: An Optimization Text Summarization Method Based on Naive Bayes and topic
word for single syllable language [2014] [8].

A text summarization method based on Naive Bayes algorithm and topic word sets is

proposed. Processing time for word processing is long special when worked with more text.

2.6 Authors: HeJiang, Najam Narar, Tao Zhangi, Zhilai Ren

Title: A page rank based summarization technique for summarizing bug reports
with duplicates [9]
It’s a used page ranking which effectively utilized the textual information of duplicate bug
reports for generating extractive summaries of master bug reports. While comparing the
results they concluded that their algorithm outperformed the BRC algorithm in terms of

precision, recall, F-score measures. Limitation founded in this algorithm was their

10

algorithm cannot slice paragraph into sentences/words independently they took help of

external ling pipe toolkit.

2.7 Authors: Sarah Rastkar, Gail C Murphy, Gabriel Murphy

Title: Summarizing software Artifacts: A case study of bug reports [10]

They created an automatic generation technique for bug summarization and found out that
existing conversation based extractive summary generator can produce better summaries
for reports than a random classifier. Limitation concluded were they have used sufficient

data set but training set (experts) size was limited.

2.8 Authors: Khosrow Kaikah
Title: Text Summarization using Neural Network [2004] [11]

A new technique for summarizing new articles using a neural network is presented.

2.9 Authors: Aakash Sinha, Abhishek Yadav, Akshay Gahlot

Title: Extractive Text Summarizing using Neural Networks [2018] [12]

Work done here was it took a fully data driven approach using feedforward neural networks
for single document summarization. It is Limitation was that it assumed that their generated

summary length < page_len.

2.10 Authors: Aditya Jain, Divij Bhatia, Manish K Thakur

Title: Extractive Text Summarization using Word Vector Embedding [2017] [13]
They proposed an approach to extract a good set of features followed by neural network
for supervised extractive summarization. There was still a scope for performance

improvement, by also using abstractive summaries

2.11 Authors: Meetkumar Patel, Adwaita Chokshil , Satyadev Vyas, Khushbu
Maurya

Title: Machine Learning Approach for Automatic Text Summarization Using Neural
Networks[2018] [14]

11

In this research paper, summaries were generated by using RNN model. There was an
encoder that takes an input sequence and generates a vector output and there is a decoder
which produces the final output. It also discusses the implementation of encoder-decoder
model with respect to Keras using Tensor Flow. Their model still doesn’t work for multi

lingual and multi —documents

2.12 Authors: Ramesh Nallapati, Bowen Zhou, Cicero dos, Santos Caglar, Bing Xiang
Title: Abstractive Text Summarization using Sequence-to-sequence RNNs and
Beyond [2016] [15]

In this research paper, abstractive text summarization is done using Attentional Encoder-
Decoder Recurrent Neural Networks. They made a model for multi-sentence summary

generation. But still they need to prepare more robust model to increase their efficiency.

2.13 Authors: Sumit Chopra, Michael Auli, Alexander M. Rush

Title: Abstractive Sentence Summarization with Attentive Recurrent Neural
Networks[2016] [16]

They made a simplified model of encoder-decoder model. Their model is trained on
Gigaword corpus to generate headlines based on a particular approach. Their approach out-

performed other models that were built for Gigaword corpus

2.14 Authors: Mikael Kageb, Olof Mogren, Nina Tahmasebi, Devdatt Dubhashi
Title: Extractive Summarization using Continuous Vector Space Models [2014] [17]
They evaluated different composition for sentence representation using ROGUE. They
deduced the results which showed the advantages of using vector representation for
summary generation. They used phrase embedding and showed this method significantly
improved the performance. Their future aim will be to work on multiple kernels and to

increase the performance from the above mentioned methods only.

12

CHAPTER -3
SYSTEM DEVELOPMENT AND DESIGN

3.1 Software Requirements:

Python 3.6 /Anaconda3-5.2.0
Jupyter Notebook

3.2 Hardware Requirements:

CPU: 2.5 GHz Processor, above
RAM — 4 GB, and above
0OS: Windows 10

3.3 Proposed Model
3.3.1 Technology Used

Python is an object oriented programming language which is easy to interpret and
learn because of its simplicity of syntax. Python being a portable language can be
used on various operating systems such as Mac Os, UNIX, and various Windows
version. Its popularity has increased in the field of deep learning because of the
availability of large number of libraries including nltk kit, Tensor Flow, NumPy,
Keras etc. The modules available are easy to use and direct in implementation.
Anaconda is an open-source, free software used for the distribution of Python and
R programming languages for deep learning, machine learning applications etc.
This is a software which can be usable on many operating systems like Windows,
UNIX, and MacOs having many important packages like NumPy, Keras,
Tensorflow etc. Python development involves conda, which is a platform-
independent package manager.

Jupyter Notebook is an open-source, free web application that allows us to build
and share documents that contain equations, live code, narrative text and

visualization.

13

3.3.2 Libraries Used

= Natural Language Toolkit (NLTK) provides a platform to use Python to work it for
human language data-sets for applying NLP. It consist of libraries for text
processing like for finding stopwords, for tokenization, stemming etc.

= NumPy is a module of Python acronym for “Numeric Python”. It is based on data
strcutres, having large number of mathematical functions to operate arious
operations like matrices, arrays, multi-dimensional arrays. They help the developer
to run the model even with a small unit of code available.

= TensorFlow is an open source library used for faster numeric computations. It was
created by Google. Unlike other libraries, it can run on single CPU as well as like
GPU on other mobile devices and is designed to be used in both research and
development systems.

= Keras is a Python Library made to implement deep learning models as fast and as

easily as possible.

3.3.3 System Design
Naive Bayes Model
The algorithm is based on Naive Bayes Classifier in which Bug Reports are taken as input
files and after performing the algorithm bug report summary is generated. The overall

computation can be divided into two phase- Training Phase, Testing Phase.

Figure 5 depicts Training Phase. In training phase there are various levels that training set
document undergo to create a summary. Firstly, training set is selected. Training set is
basically set of documents which contain bug reports of various errors. On that training set
preprocessing is done. Preprocessing is a method of eliminating noise and stop words from
the sentences and separating the key words and storing them as tokens. Then POS tool is
used for extracting nouns. Then with the help of Human, a summary is generated. On
evaluating human generated summary sentences are divided into two classes. Sentences
selected in the summary are categorized as “class1” and sentences removed or not selected

are categorized as “class0”.After this, feature extraction is performed where score is given

14

to each token by calculating word frequency for both “class1” and “class0”. This score

shows the weight and uniqueness of each token in a sentence and in a document as whole.

Start

|

Collect and Load Data Set

4

Text Pre-processing (Tokenization, Noise Removal)

L

POS Tool usage

|

Human generated summary and Division of Class

:

Feature Extraction

|

Stop

Figure 5: Flowchart of Training Phase of NB

Figure 6, depicts testing phase. In this, various levels include selecting a document.
Sentence tokenization is done on the selected document. Then Naive Bayes Classifier is
applied. In this model, Bayes Theorem is applied to calculate, probability of each sentence
for both “class1” and “class0” is calculated by taking total sum of probability of each word
in a sentence. Then, both probabilities of a sentence are compared and if probability for

“class1” is greater than that for “class0”, that sentence is added to the final summary.

Start

4

Selecting a Document

4

Sentence Tokenization

2

Naive Bayes Classifier

!

Summary Generation

Stop

Figure 6: Flowchart of Testing Phase of NB

15

Figure 7, is the representation of basic Bayes Theorem on which Naive Bayes is based. In

this probability of “c” is calculated with respect to x which has already occur.

LI'kEll'hood Class Prior Probability

Posterior Probability Predm‘torPrl’orProbabiIity
P(c|X) = P(x [) x P(xy | €)x---x P(x, | ¢)x P(c)

Figure 7: Bayes Theorem [18]

Artificial Neural Network Model

Neural Network Model performs in a way where all the bug reports are taken in a single
.csv file. And after performing ANN algorithm, bug report’s summary is generated. The
overall computation can be divided into two phase- Training Phase, Testing Phase. The
corpus for input consisted of 32 bug reports.

In Figure 8, training phase is depicted, which follows steps like collecting and loading of
data set. Then test pre-processing on the document is applied. After that feature extraction
on sentences is performed by using GLOVE 100d. Then model is built and training for
model is done on it.

Start

Collect and Load Data Set

4

4

Feature Extraction

4

Building the model

4

Training the model

4

Stop

Figure 8, Flowchart of Training Phase of ANN

16

In figure 9, testing phase is depicted where text is prepared which needs to be applied on
the model. Then model is applied and summaries are generated

| Start |

S

Selecting a document

]

Preparing text for model

4

Apply the model

Generation of Summary

2

| Stop |

Figure 9: Flowchart of Testing Phase

Figure 10, is the general depiction of RNN model.

outo out1 outz out,
[Predlct] [Predlct] [Predlct]
[H H] [] Decoder
eTL
[H H l Encoder

[Embeddmgs [Embeddmgs [Embeddmgs Embeddings

I T

ing in, in,

I{j

Figure 10: Neural Attention mechanism [19]

17

CHAPTER -4
ALGORITHM

Text Summarization is the way toward making a short and sound adaptation of a more

drawn out archive.
4.1 Naive Bayes Model
4.1.1 Training Phase

In Training phase, algorithm is trained by using human generated summaries. Here humans

according to their knowledge and logic creates a summary on which various training phase

techniques are performed.

1. Collect and Load Data Set — A training data set is built of documents, D which is used

by the algorithm to perform calculations. D= {d1, d2...., d10}

2. Text Preprocessing — We clean the text by converting to lower, removing unwanted

characters, replacing contractions by their lower forms and tokenization.

3. Using POS — POS tool is used to create the sets of nouns.

is_noun = lambda pos: pos[:2] =='NN'

nouns = [word for (word, pos) in pos_tag(words) if is_noun(pos)]

[*i', 'i', 'rotate', 'gesture', 'gestures', 'landing', 'gesture',

', 'fit', 'gestures', 'problem', 'i', 'see', 'gesture', 'twist',
around', 'thing', 'trigger', '"zocom', 'tab', 'rotate', 'firefox',

h', 'causes', 'browser', 'gesture', 'twist', 'settings', 'tabs',
, 'gesture', 'quarter', 'turn', 'point', 'fingers', 'pinch', 'i‘",
", 'gesture",

'yup', 'default', 'value', 'twist', 'prefs', 'pref', 'browser',

, 'problem', 'eye', 'problems', 'issues', 'touchscreens', 'rob',

pinch', '"fingers', 'screen', 'please', 'bug', 'fwiw', 'i', ‘'bug',
nything', 'os', 'x', 'people', 'threshold', 'twist', 'something",

'mouse', 'move', 'finger', 'twist', '"i', 'heuristic', 'finger',

'id', 'windows', 'osx', 'update', 'id', 'r', 'beltzner', 'http',

onality', 'issues', 'people', 'session', 'restore', 'tab', 'mix",

Figure 11:Pos words

18

mings', "misreads', 'trackpad', 'osx', 'i', "i', 'tab', 'gesture',
hreshold', "tab', 'i', 'zoom', 'browse', 'prefs', 'sglite', 'sites"',
ttings', 'i', '=zcoom', 'effect', 'step', 'relative', 'distraction',

i', 'threshold"', 'conflict', 'purpose', "i', 'tabs',
te', 'change', 'tabs', 'i', 'technigue', 'i', 'position', 'index',
nger', 'right', 'i', 'time', "i', 'contact', 'gesture', 'tab', 'tab’',

'feels', 'i', 'way', 'code', 'gesture', 'flip', 'right', 'decision",

st', 'pref', 'gesture', 'twist', 'browser', 'prevtab', 'value', 'work',
ng', 'prefs', 'win7', 'screens', 'windows', 'win7', 'screens', 'windows',
bit', 'windows', 'users', 'problem', 'trackpads', 'hardware', 'drivers',
'touchscreen',
'swipe',
'decision', "
'gesture"',

'windows', 'gestures', 'deal', 'ie', 'bug', 'rotate', 'Jump', 'bottom',
'forward', 'default', 'gt', 'bug', 'rotate', 'pecple', 'gesture',
rotate', 'gesture', 'tabs', 'nothing', 'way', 'penalty', 'pinching',
'page', 'zoom', 'penalty', 'people', 'bug', 'multi', 'pinch', ‘'anything',
ds', 'rotate', 'pinchy', 'way', 'bug', 'rotate', 'gt', "Jump', 'bottom’,
, 'forward', ‘'default', 'pinch', 'win7', 'tracking', '=zoom', 'zoom',

ture', 'detection', 'hands', 'finger', 'place', 'bottom', 'finger',

e', 'rotate', 'pointer', ‘'edge', 'patch', 'rotate', 'gesture', 'windows',
"mozilla
"config",
'windows"',
'macinto

, 'rev', 'dl%424342b43', 'commands', 'gestures', 'nothing', 'prefs’,
'http', 'hg', 'mozilla', 'org', 'rev', 'trunk', 'builds', 'os', 'x',
"mozilla', 'macintosh', 'intel', 'mac', 'en', 'gecko', 'id', 'mozilla',
sh', 'intel', 'mac', 'en', 'gecko', 'shiretoko', 'id", 'back', 'chance',
e', 'swipe', 'shift', 'prevtab', 'browser', 'gesture', 'swipe', 'shift',
b', 'change', 'i', 'firefox', 'alien', 'machines', ‘'bugzilla', 'mozilla',
'show', 'bug', 'cgi', 'id', 'pref', 'extensions', 'session', ‘'restore',

‘gesture', 're
asoning', 'tab', 'page', 'left', 'tabs', 'page', 'i', 'rotate', 'gesture', 'tabs
'config', 'work

i, ved
'default', 't
‘zoom', 'se

"switc
"twist!'

'guess', 'part
‘cmd', 'rota
'finger"', '"fi
‘gesture"',
"mulling"',
'gesture', "twi
'somethi

i, o
'today"

"towar
'swipe"

'effect', '

'do', 'a
's1, 'ges
'registers",
'fingers', 'edg

'osx"',

'gestur
'nextta
‘org',
'functi
"bug',

4. Human Generated Summary and Division of Classes — Bug Report summaries are
generated by the help of humans. They will select most useful sentences to generate a
summary according to their intelligence, knowledge and information given to them and
save them in “class1”.Sentences that are not selected for summary are saved in “class0”.
5. Feature Extraction — Feature extraction is performed where score is given to each token
by calculating word frequency for both “class1” and “class0”.
Given below, is the algorithm to be applied on training data set. This algorithm performs
noun extraction and then calculating the score.
Input —
Class_1: tokens present in Human Generated Summary;
Class_0: tokens present in Human Generated not summary;
V: dictionary of nouns;
Output —
word_frequencies_insummary: list of words with their frequency in summary sentences;
word_frequencies_notinsummary: list of words with their frequency in not_summary
sentences
Initialization
for k=1 to length(Class_1) do
if (Class_1 [K] is noun) then
if(Class_1[K] not in word_frequencies_insummary.keys()) then
word_frequencies_insummary [word] =1
else
word_frequencies_insummary [word] += 1
else
word_frequencies_insummary[word] =0
for k=1 to length(Class_0) do
if (Class_0 [K] is noun) then
if(Class_O[K] not in word_frequencies_notinsummary.keys()) then
word_frequencies_notinsummary [word] = 1
else

word_frequencies_notinsummary [word] += 1

19

else

word_frequencies_notinsummary[word] =0

{"bugreport': 0, 'id': 10, '2': 0, 'title': B8, '44985%¢': 0, 'firefox': 18, 'remove': 0, 'the'
: 0, 'browser': 15, 'sessionstore': 7, 'enabledpref': 0, 'that': 0, 'pref': 1, 'was': 0, 'tho
ught': 0, 'to': 0, 'be': 0, 'for': 0, 'extensions': 4, 'which': 0, 'wanted': 0, 'completely':
0, 'replace': 0, 'our': 0, 'own': 0, 'session': 3, 'restore': 2, 'functionality': 2, 'i': 30,
'would': 0, 'much': 0, 'rather': 0, 'encourage': 0, 'authors': 1, 'override': 0, 'both': 0, '
nssessionstartup': 0, 'and': 0, 'nssessionstore': 0, 'provide': 0, 'same': 0, 'api': 2, 'with
': 0, 'their': 0, 'or': 0, 'implementing': 0, 'a': 0, 'dummy': 0, 'making': 0, 'sure': 7, 'th
emselves': 0, 'they': 0, 'have': 0, 'correctly': 0, 'replaced': 0, 'all': 0, 'known': 0, 'con
sumers': 1, 'is': 0, 'what': 0, 'max': 2, 'tabs': 8, 'undo': 2, 'setting': 0, 'it': 0, '0': O
, 'effectively': 0, 'disables': 0, 'feature': 1, 'gt': 22, 'others': 1, 'do': 10, 'not': 0, °
want': 0, ‘any': 0, 'tracks': 1, 'stored': 0, 'in': 0, 'memory': 2, ‘'at': 0, 'then': 0, 'agai
n': 0, 'we': 0, 'save': 0, 'data': 3, 'anyway': 0, 'so': 0, 'resume': 3, 'from': 0, 'crash':
2, 'false': 2, '"fine': 0, 'now': 0, 'until': 0, 'proper': 0, 'private': 0, 'browsing': 1, 'su
pported': 0, 'xxxzenikoshould': 0, 't': 0, 'Just': 0, 'disable': 0, 'this': 0, 'item': 1, 'as
' 0, 'tab': 3, 'multiple': 3, 'items': 1, 'abowe': 0, 'consistency': 1, 'mundoclosetabmenuit
em': 1, ‘'hidden': 0, 'cc': 1, 'mozilla': 18, 'org': 4, '1': 0, 'getservice': 1, 'ci': 1, 'nsi
sessionstore': 0, ‘'‘getclosedtabcount': 1, 'window': 17, 'r': 2, 'me': 0, 'bug': 14, '350731':
0, 'care': 1, 'convince': 0, 'mconnor': 1, 'he': 0, 'wrong': 0, 'pushed': 0, '17120': 0, 'e7l
2e%6d78e61': 1, '17121': 0, 'adblef78dd2l': 0, 'currently': 0, 'only': 0, 'one': 0, 'problem':
&, '"how': 0, 'after': 0, 'restart': 1, 'you': 0, 've': 0, 'got': 0, 'several': 0, 'options':
1, '"set': 0, 'prefsbrowser': 0, 'once': 0, 'early': 0, 'possible': 0, 'make': 0, 'startup': 1
, 'page': 14, '3': 0, 'delete': 0, 'file': 3, 'js': 2, 'e': &, 'g': 4, 'when': 0, 'profile':
1, 'change': 5, 'notification': 2, 'dispatched': 0, 'respond': 1, 'state': 1, 'read': 0, 'by'
0, 'subject': 0, 's': 5, 'member': 1, 'an': 0, 'empty': 0, 'string': 4, 'cf': 1, "44B8741":
0, 'comment': 2, 'é': 0, 'there': 0, 'use': 7, 'case': 3, 'am': 0, 'missing': 0, '491925': 0,
'multitouch': 0, 'rotate': 5, 'gesture': 10, 'cycling': 0, 'noticed': 0, 'freguently': 0, 'tr
igger': 2, 'accidentally': 0, 'usually': 0, 'while': 0, 'scrolling': 0, 'gestures': 3, 'impro
ved': 0, 'since': 0, ‘'original': 0, 'landing': 1, 'triggering': 0, 'really': 0, 'easy': 0, 'b
ut': 0, ‘articular': 0, 'still': 0, ‘'problematic': 0, 'given': 0, ‘'should': 0, '5': 0, 'also'
0, 'open': 0, 'tweaking': 0, 'harder': 0, 'dunno': 0, 'if': 0, 'see': 5, "461376': 0, 'find
': 0, 'over': 0, 'osx': 4, 'wonder': 0, 'of': 0, 'us': 0, 'ws': 0, 'odd': 0, 'timings': 1, 'c
ausing': 0, 'misreads': 1, 'trackpad': 1, 'probably': 0, 'because': 0, 'zoom': 5, 'subtle': 0
, 'effect': 2, 'step': 1, 'relative': 1, 'distraction': 1, 'accidental': 0, 'switch': 1, 'cau
ses': 1, 'playing': 0, 'different': 0, 'twist': 3, 'settings': 1, 'found': 0, 'twisting': 0,
'through': 0, 'often': 0, 'resulted': 0, 'wvery': 0, 'awkward': 0, ‘'especially': 0, 'more': 0O,
'than': 0, 'gquarter': 1, 'turn': 1, 'been': 0, 'using': 0, 'swipe': 5, 'left': 7, 'right': 7,
'emd': 1, 'go': 0, 'back': 5, 'forward': 2, 'well': 0, 'triggered': 0, 'maybe': 0, 'your': 0
'rotating': 0, 'technique': 1, 'nice': 0, 'leave': 0, 'prefs': 2, 'visible': 0, 'those': 0,
who': 0, 'them': 0, 'implemented': 0, 'on': 0, 'win7': 3, 'screens': 2, 'please': 2, 'windows
' 20, 'though': 0, 'bit': 1, 'wary': 0, 'having': 0, 'users': 3, 'hit': 0, 'trackpads': 1, '
7': 0, 'better': 0, 'discriminating': 0, 'between': 0, 'otoh': 0, 'big': 0, 'deal': 1, 'globa
1lly': 0, 'safari': 0, 'does': 0, 'rob': 1, 'confirmed': 0, 'ie': 1, 'pinching': 2, 'natural':
0, '"widely': 0, 'used': 0, '"low': 0, 'penalty': 1, "think': 0, 'most': 0, 'people': 1, 'consi
der': 0, 'claimed': 0, 'support': 2, "multi': 2, 'touch': 0, 'pinch': 2, 'did': 0, 'anything'

r
1

Figure 12: Word Frequency of tokens in Class 1

20

{'bugreport': 0, 'id': 12, '2': 0, 'title': &, "'449%5%6': 0, 'firefox': 11, 'remove': 0, 'the'
0, 'browser': 7, 'sessionstore': 6, 'enabledpref': 0, 'while': 0, 'this': 0, 'has': 0, 'wor
ked': 0, 'somehow': 0, 'for': 0, 'tab': 10, 'mix': 3, 'plus': 0, 'we': 0, 'have': 0, 'had': 0
, 'several': 0, 'issues': 4, 'with': 0, 'people': 4, ‘'ending': 0, 'up': 0, 'both': 0, 'sessio
n': 7, 'restore': 4, 'and': 0, 'disabled': 0, 'see': 3, 'bug': 9, '435055': 0, 'its': 0, 'dup
licates': 1, '"furthermore': 0, 'there': 0, 'are': 0, 'code': 3, 'points': 1, 'which': 0, 'wil
1': 0, 'also': 0, '"break': 0, 'when': 0, 'been': 0, 'such': 0, 'as': 0, 'list': 1, 'of': 0, °
recently': 0, 'closed': 0, 'tabs': 7, 'instead': 0, 'adding': 0, 'try': 3, 'catch': 1, 'block
s': 1, '"wherever': 0, 'use': 7, 'would': 0, 'make': 0, '"lives': 2, 'those': 0, 'other': 0, 'e
%xtension': 5, 'authors': 2, ‘'simpler': 0, 'who': 0, 'so': 0, 'far': 0, 'can': 0, 'not': 0, 'b
e': 0, '"too': 0, 'sure': 5, 'that': 0, 'store': 1, 'component': 5, 'actually': 0, 'works': 0O,
'through': 0, 'whatever': 0, 'implementation': 3, 'note': 3, 'privacy': 3, 'concerned': 0, 'u
sers': 6, 'still': 0, 'able': 0, 'to': 0, 'disable': 0, 'writing': 0, 'js': 1, 'resume': 1, '
from': 0, 'crash': 1, 'pref': 12, 'created': 0, 'an': 0, 'attachment': 0, '332726': 0, 'detail
1s': 10, '448725': 0, 'should': 0, 'wont': 0, 'fixed': 0, 'if': 0, 'is': 0, '333820': 0, 'bug
gy': 0, 'api': 6, 'comments': 1, 'update': 5, 'a': 0, 'problem': 5, 'patch': 7, 'data': 2, 's
tored': 0, 'in': 0, 'memory': 3, 'app': 1, 'running': 0, 'by': 0, 'removing': 0, 'no': 0, 'wa
y': 5, 'some': 0, 'do': 16, 'want': 0, 'menu': 3, 'others': 1, 'any': 0, 'tracks': 1, 'at': 0
'all': 0, 'gt': 11, 'i': 50, 'rather': 0, 'introduce': 0, 'different': 0, 'or': 0, 'means':
'cater': 0, 'sensitiwve': 0, 'than': 0, 'half': 2, 'baked': 0, 'cut': 0, 'it': 0, 'afaict':
'produced': 0, 'more': 0, 'solved': 0, 'then': 0, 'again': 0, 'save': 0, 'anyway': 0, 'fai
0, "point': 3, 'am': 0, 'yes': 0, 'agreed': 0, 'ideal': 0, 'purpose': 2, 'one': 0, 'men':
'significantly': 0, 'affects': 0, 'disabling': 0, 'you': 0, 'now': 0, 'replace': 0, 'shipp
': 0, 'implements': 2, 'same': 0, 'keep': 0, 'minimal': 0, 'though': 0, 'just': 0, 'call':
'your': 0, 'own': 0, 'whenever': 0, 'used': 0, 'using': 0, 'manager': 2, 'somewhat': 0, 't
0, 'without': 0, ‘'hawving': 0, 'worry': 0, 'much': 0, 'about': 0, 'behind': 0, 'offer':
, 'option': 4, 'switching': 0, 'between': 0, ‘'our': 0, 'e': 5, 'g': 1, 'ignore': 1, 'history
16, 'torbutton': 1, 'how': 0, 'overwrite': 0, ‘'original': 0, 'being': 0, 'available': 0, '
internally': 0, 'either': 0, 'pass': 1, 'calls': 0, 'forward': 2, 'handle': 0, 'them': 0, 'yo
urself': 0, 'sounds': 0, 'like': 0, '"impact': 1, 'documented': 0, 'on': 0, 'mdc': 1, 'current
tabmix': 0, 'dev': 1, 'build': 1, 'already': 0, 'currently': 0, ‘'only': 0, 'after': 0, 'resta
rt': 1, 'add': 0, "3': 0, '491925': 0, 'multitouch': 0, 'rotate': 10, 'gesture': 13, 'cycling
': 0, 'basic': 0, 'reasoning': 1, 'highly': 0, 'disruptive': 0, ‘'switched': 0, 'another': 0,
'expecting': 0, 'happens': 0, 'know': 0, 'what': 0, 'happened': 0, 'until': 0, 'notice': 0, °
entirely': 0, 'page': 5, 'randomly': 0, 'left': 4, 'right': &, 'l1': 0, 'thought': 0, 'were':
0, 'think': 0, 'nearly': 0, 'useful': 0, 'discoverable': 0, 'good': 0, 'fit': 1, 'gestures':
1, 'play': 0, 'around': 0, 'twist': &, 'config': 1, 'temporary': 0, 'workaround': 1, 'justin'
0, 'odd': 0, 'thing': 1, 'here': 0, '"find': 0, 'trigger': 4, 'zoom': 3, 'freguently': 0, 'n
ever': 0, 'accidentally': 0, 'because': 0, 'probably': 0, 'decrease': 0, 'default': 3, 'thres
hold': 3, 'triggered': 0, 'repeatedly': 0, 'usually': 0, 'fix': 2, 'away': 0, 'but': 0, 'gquic
k': 0, '"browse': 1, 'content': 1, 'prefs': 2, 'sglite': 1, 'shows': 0, '20': 0, 'sites': 1, '
settings': 1, 'did': 0, 'set': 0, 'my': 0, 'fingers': 3, 'spread': 0, 'Jjoin': 0, 'ends': 0, '

-

- - =

-

== S S I S S e B (S R
o 9] =]
< =]

Figure 13: Word frequency of tokens in Class 0

4.1.2 Testing Phase:

1. Selecting a document — We select a document from our dataset for which we have to
generate summary.

2. Sentence tokenization — It is done on the selected document.
test_sentences = sent_tokenize(wholedoc)

3. Naive Bayes Classifier — In this, Bayes Theorem is applied to calculate, probability of
each sentence for both “class1” and “class0” is calculated by taking total sum of probability
of each word in a sentence.

Input —

C: original text;

21

V: topic words (nouns);
word_frequencies_insummary: list of words with their frequency in summary sentences;
word_frequencies_notinsummary: list of words with their frequency
in not_summary sentences;
nl: Number of total words in summary
n2: Number of total words in not summary
Output —
w_classl: sentences score for classl
w_classO: sentences score for classO
Initialization
for each sentence si in C do
for j=1 to length(si) do
if w(j) in V then
if w(j) in word_frequencies_insummary then
counts_class1[word]«—word_frequencies_insummary[word]
if w(j) in word_frequencies_notinsummary then
counts_classO[word]«<—word frequencies notinsummary[word]
m=m+1
w_classl=w_classl+log((counts_classl[word]+1)/(n1+len(V)))
w_classO = w_classO+log((counts_classO[word]+1)/(n2+len(V)))
w_classl=w_classl+ log((len_class1/(len_classl+len_class0))) + log(m/len_classl)
+ log((1/i)/len_classl
w_classO=w_classO + log((len_classO/(len_classl+len_class0))) + log(m/len_class0)
+ log((1/i)/len_class0)
4. Summary Generation — Then, both probabilities of a sentence are compared and if

probability for “class1” is greater than that for “class0”, that sentence is added to the final
summary.

if(w_class1>w_class0):
summary_sentences.append(sentence)
print(len(summary_sentences))

summary ="' ".join(summary_sentences)

22

print(summary)

4.2 Artificial Neural Network Model
4.2.1 Training Phase

In Training phase, algorithm is trained by using human generated summaries. Here humans
according to their knowledge and logic creates a summary on which various training phase
techniques are performed.

1. Collect and Load Data Set — A training data set is built of documents, D stored in a .csv
file which is used by the algorithm to perform calculations. D= {d1, d2,..., d32}

2. Text Pre-processing —We clean the text and the human generated abstracted summaries
by converting to lower, removing unwanted characters and replacing contractions by their
lower forms.

3. Feature Extraction- In this vectorization is done. VVectorization is a process of converting
string representation of data into vector representation. For this, we have used Global
Vectors for Word representation (GLOVE) of 100d vector representation.

4. Building the Model-

def model inputs():
input_data = tf.placeholder(tf.int32, [None, None], name='input")
targets = tf.placeholder(tf.int32, [None, None], name='targets')
Ir = tf.placeholder(tf.float32, name='learning rate')
keep prob = tf.placeholder(tf.float32, name="keep prob")
summary length = tf.placeholder(tf.int32, (None,), name='summary length')
max_summary length = tf.reduce max(summary length, name='max_dec len')
text length = tf.placeholder(tf.int32, (None,), name="text length")
return input data, targets, lr, keep prob, summary length, max summary length, text length

Figure 14: Model [20]

Now, we used Bidirectional Recurrent Neural Network(RNN) with Long Short-term

Memory(LSTM) for building our encoding layer.

23

def encoding_layer(rnn_size, sequence_length, num_layers, rnn_inputs, keep_prob):
'''Create the encoding layer'"'
layer_input = rnn_inputs
for layer in range(num_layers):
with tf.variable scope('encoder_{}'.format(layer)): #for defining ops that creates variables
cell fw = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-€.1, 0.1, seed=2))
cell fw = tf.contrib.rnn.Dropoutrapper(cell fu,
input_keep_prob = keep_prob)

cell bw = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-€.1, 0.1, seed=2))
cell bw = tf.contrib.rnn.DropoutWrapper(cell _bw,

input_keep_prob = keep_prob)

enc_output, enc_state = tf.nn.bidirectional_dynamic_rnn(cell_fw,
cell bw,
layer_input,
sequence_length,
dtype=tf.float32)
layer_input = tf.concat(enc_output, 2)
Join outputs since we are using a bidirectional RNN
enc_output = tf.concat(enc_output,2)
return enc_output, enc_state

Figure 15: Encoding Layer [20]

Now, we built our training and inference decoding layers.

def training decoding_layer(dec_embed input, summary length, dec_cell, output_layer,
vocab_size, max_summary_length,batch_size):
training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input,
sequence_length=summary_length,
time_major=False)

training_decoder = tf.contrib.seq2seq.BasicDecoder(cell=dec_cell,
helper=training_helper,
initial_state=dec_cell.zero_state(dtype=tf.float32, batch_size=batch_size),
output_layer = output_layer)

training_logits = tf.contrib.seq2seq.dynamic_decode(training_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_summary_length)
return training_logits

Figure 16: Training Decoding Layer [20]

24

def inference_decoding_layer(embeddings, start_token, end_token, dec_cell, output_layer,
max_summary_length, batch_size):
''"Create the inference logits'''
start_tokens = tf.tile(tf.constant([start_token], dtype=tf.int32), [batch_size], name='start_tokens')
inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embeddings,
start_tokens,
end_token)
inference_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,
inference_helper,
dec_cell.zero_state(dtype=tf.float32, batch_size=batch_size),
output_layer)
inference_logits = tf.contrib.seq2seq.dynamic_decode(inference_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_summary_length)

return inference_logits

Figure 17: Inference Decoding Layer [20]

Although it may seem that decoding layer is a bit complex, so it is preferable to break it
down into 3 parts:

e Decoding cell — 2 layer LSTM with dropout

e Attention — It helps to train the model faster and to produce better results.

e Getting logits

25

def decoding_layer(dec_embed_input, embeddings, enc_output, enc_state, vocab_size, text_length, summary_length,
max_summary_length, rnn_size, vocab_to_int, keep_prob, batch_size, num_layers):
Create the decoding cell and attention for the training and inference decoding layers'''
dec_cell = tf.contrib.rnn.MultiRNNCell([1stm_cell(rnn_size, keep_prob) for _ in range(num_layers)])
output_layer = Dense(vocab_size,kernel_initializer=tf.truncated_normal_initializer(mean=e.e, stddev=0.1))
attn_mech = tf.contrib.seq2seq.BahdanauAttention(rnn_size,
enc_output,
text_length,
normalize=False,
name="'BahdanauAttention')
dec_cell = tf.contrib.seq2seq.Attentionlrapper(dec_cell,attn_mech,rnn_size)
with tf.variable_scope("decode"):
training_logits = training_decoding_layer(dec_embed_input,summary_length,dec_cell,
output_layer,
vocab_size,
max_summary_length,
batch_size)

(R

with tf.variable_scope("decode", reuse=True):
inference_logits = inference_decoding_layer(embeddings,

vocab_to_int['<G0>'],
vocab_to_int['<E0S>'],
dec_cell,
output_layer,
max_summary_length,
batch_size)

return training_logits, inference_logits

Figure 18: Decoding Layer [20]

Now, the previous functions are ready to be used to build the model.

def seq2seq_model(input_data, target_data, keep_prob, text_length, summary_length, max_summary_length,
vocab_size, rnn_size, num_layers, vocab_to_int, batch_size):
'"'Use the previous functions to create the training and inference logits'''
Use Glove's embeddings and the newly created ones as our embeddings
embeddings = word_embedding_matrix
enc_embed_input = tf.nn.embedding_lookup(embeddings, input_data)
print(enc_embed_input)
enc_output, enc_state = encoding_layer(rnn_size, text_length, num_layers, enc_embed_input, keep_prob)
dec_input = process_encoding input(target_data, vocab_to_int, batch_size) #shape=(batch_size, senquence length) each seq start with index of<G0>
dec_embed_input = tf.nn.embedding_lookup(embeddings, dec_input)
training_logits, inference_logits = decoding_layer(dec_embed_input,
embeddings,
enc_output,
enc_state,
vocab_size,
text_length,
summary_length,
max_summary_length,
rnn_size,
vocab_to_int,
keep_prob,
batch_size,
num_layers)
return training_logits, inference_logits

Figure 19: Seg2seq Model [20]

26

5. Training the model

The hyperparameters that we used to train our model.

Set the Hyperparameters
epochs = 5@

batch_size = 5

rnn_size = 256

num_layers = 2

learning _rate = ©.005
keep_probability = ©.95

Figure 20: Hyperparameters [20]

Train the Model

learning_rate_decay = 8.95

min_learning_rate = ©.eee5

display_step = 20 # Check training loss after every 20 batches

stop_early = @

stop = 10 # If the update loss does not decrease in 20 consecutive update checks, stop training
per_epoch = 1 # Make 1 update checks per epoch

update_check = (len(sorted_texts_short)//batch_size//per_epoch)-1

update_loss = @
batch_loss = @
summary_update_loss = [] # Record the update losses for saving improvements in the model

checkpoint = "./output/model.ckpt"
with tf.Session(graph=train_graph) as sess:
sess.run(tf.global_variables_initializer())

If we want to continue training a previous session
#loader = tf.train.import_meta_graph("./" + checkpoint + '.meta')
#loader.restore(sess, checkpoint)

for epoch_i in range(1, epochs+l):
update_loss = @
batch_loss = @
for batch_i, (summaries_batch, texts_batch, summaries_lengths, texts_lengths) in enumerate(
get_batches(sorted_summaries_short, sorted_texts_short, batch_size)):
start_time = time.time()
_, loss = sess.run(
[train_op, cost],
{input_data: texts_batch,
targets: summaries_batch,
1r: learning_rate,
summary_length: summaries_lengths,
text_length: texts_lengths,
keep_prob: keep_probability})

27

batch_loss += loss
update_loss += loss
end_time = time.time()
batch_time = end_time - start_time
if batch_i % display_step == @ and batch_i > e:
print(*Epoch {:>3}/{} Batch {:>4}/{} - Loss: {:>6.3f}, Seconds: {:>4.2f}'
.format(epoch_i,
epochs,
batch_i,
len(sorted_texts_short) // batch_size,
batch_loss / display_step,
batch_time*display_step))
batch_loss = ©

if batch_i % update_check == @ and batch_i > e:
print("Average loss for this update:", round(update_loss/update_check,3))
summary_update_loss.append(update_loss)

If the update loss is at a new minimum, save the model
if update_loss <= min(summary_update_loss):

print('New Record!')

stop_early = @

saver = tf.train.Saver()

saver.save(sess, checkpoint)

else:
print("No Improvement.")
stop_early +=1
if stop_early == stop:
break
update_loss = ©

Reduce learning rate, but not below its minimum value
learning_rate *= learning_rate_decay
if learning_rate < min_learning_rate:
learning_rate = min_learning_rate
if stop_early == stop:
print("Stopping Training.")
break

Figure 21: Algorithm of Training Model [20]

4.2.2 Testing Phase

1. Selecting a document — We select a document from our dataset for which we have to
generate summary.

2. Prepare the text for the model- We converted “string representation” to “integer
representation”.

3. Apply the model

28

Load saved model
loader = tf.train.import_meta_graph(checkpoint +
loader.restore(sess, checkpoint)

.meta')

input_data = loaded_graph.get_tensor_by_name('input:e")

logits = loaded_graph.get_tensor_by_name('predictions:8')
text_length = loaded_graph.get_tensor_by_name('text_length:@')
summary_length = loaded_graph.get_tensor_by_name('summary_length:e")
keep_prob = loaded_graph.get_tensor_by_name('keep_prob:e")

#Multiply by batch_size to match the model's input parameters
answer_logits = sess.run(logits, {input_data: [text]*batch_size,
summary_length: [np.random.randint(1e,158)],

text_length: [len(text)]*batch_size,
keep_prob: 1.8})[e] |

Figure 22: Algorithm of applying the model [20]

4. Generation of summary

29

CHAPTER -5
TEST PLAN

Testing is a process to check and evaluate whether the results obtained from any model are
accurate enough in comparison with the expected results. It also detects errors on running
the model with different number of test cases to check whether how stable a model is. It

also involves execution of system components to evaluate needed properties.

Software testing can be done in either of the two ways- White Box Testing or Black Box

Testing.
Different Levels of testing that can be applied are:

1. Unit Testing- During this phase, the program is assessed on specific units or
components involved in the system. In this white-box testing is usually applied to
do unit testing.

2. Integration Testing- In this phase, it allows the tester to group all the units together
and then test them as one. It is performed to find the interface/links defect between
the different functions. It is beneficial to calculate the effectiveness of all the units
when run together.

3. System Testing- In this phase, whole code is executed. Its aim is to check whether
the complete program is able to run all the requirements of the user without any
error or faults. It is very important as it checks all the functional, non-functional,
technical requirements of the user.

4. Acceptance Testing- This is this last phase of testing. Its main aim is to verify that
whether the software is ready to be released for the use of user or not. In this phase,
the user gets to check the model. At last validation is done, where all the test and

levels are performed.

Limitations-

30

e The main limitation of Naive Bayes classifier is that it assumes any two features are
independent of each other. But in real life, it is not possible.
e The main limitation of ANN is that it is hardware dependent which means it requires

processors with parallel processing power.

Test Data Set-

T={WI,1 W1,2 Wi,n}
{W2,1 W2.2........ W2,n}
{Wm,I Wm,2...... Wm,n}

This is the matrix of text representation. In this form sentences or words appear
after sentence tokenization is applied.

Bug Report ID=""1"
Title: ""(495584) Firefox - search suggestions passes wrong previous result to form history"

MattN noticed a problem with the WIP patch from bug 469443 applied.

When typing in the search box, sometimes search-suggestion entries would be displayed above
the divider (where entries for previous matching searches are).The problem here is that
nsSearchSuggestions.js is passing the wrong previousResult to form history. Instead of it being
the previous form history search result, it's the SuggestAutoCompleteResult result (which
contains the union of the form-history and search-suggest entries).

So, when form history refines its results as you time, it can actually add *more* entries as data
leaks from the suggestions result into form history result, and it thus looks like the divider is
being drawn in the wrong place. This bug wasn't visible before 469443, because
nsFormFillController::StartSearch tries to QI the provided result to a
nslAutoCompleteSimpleResult. The search-suggestion result is only implements
ns[AutoCompletResult (no ‘"Simple\"), so the QI fails, historyResult nee previousResult
becomes null, and thus Satchel was doing a new search every time. form history finds 1 entry
(\"blah\"), search-suggestions finds "baaa\", \"bloop\", "bzzz\", the autocompete menu shows
these in order with a divider between “"blah\" and ‘"baaa\". startHistorySearch()'s previous result
contains [\"blah", \"baaa\", \"bloop\", \"bzzz\"], Satchel filters this down to [\"blah‘", \"bloop\"]
to match the new ""'bl\" search string nsSearchSuggestions's onReadyState() change is called with
updated search suggestions, builds up a new list of results, but sees that the form history result
now has *two* entries. Created an attachment (id=380567) [details] Patch v.1 (WIP) this fixes
the problem, but isn't quite correct... If you type \"a<backspace>:b\", satchel trying to use
the results from the ‘"a\" search for the ‘"b\" search, and so nothing is found. I suspect
nsSearchSuggestions needs to throw away the old form history result when the search string
changes like this, but I'm not entirely sure it's responsible for doing so, maybe satchel should be
smarter about throwing away a previous result when the previous result's search string doesn't
have a common prefix. That seems to be handled somewhere else for normal form field entries,
oddly enough. Created an attachment (id=383211) [details] Patch v.2 Ah. So, there's a
._formHistoryResult in the SuggestAutoCompleteResult wrapper (used to combine form history
with search suggestions), and also a . formHistoryResult in SuggestAutoComplete (the service
itself, used to hold onto a form history result until a search suggestion is available).The simple
fix it to just discard the service's form history result copy when startSearch() is called with a null
previous result. Otherwise it's trying to use g old form history result that no longer applies for the
search string. (From update of attachment 383211 [details]). Perhaps we should rename one of
them to _thResult just to reduce confusion? (From update of attachment 383211 [details]
[details])| Perhaps we should rename one of them to fhResult just to reduce confusion? Good
point. I renamed the one in the wrapper to _formHistResult. fhResult seemed maybe a bit too
short.Pushed http://hg.mozilla.org/mozilla-central/rev/097598383614

Figure 23: Doc 1 for NB [6]

31

Bug Report ID="13"
Title: "(364852) GIMP - screenshot plug-in incomplete for Windows platform"

Please describe the problem: When going to File-&gf: Acquire-&gf; Screenshot in the Windows
port of the development build GIMP 2.3.11, firstly there are two different entries \"Screen Shot\"
and "Screenshot\" and secondly, functionality to grab only a portion of the sereen is broken.
There is no option to "Select a Region to Grab\" when the user chooses V"Screen Shot.\"
However, this option exists in the dialogue box that appears after the user selects: Screenshot.\”
However, the functionality does not work, even after selecting a long delay period. Instead, the
whole screen is captured each time. I was expecting the mouse cursor onscreen to change to
\"crosshairs\" or something simular to allow me to select the region I required. Steps to
reproduce:

1. Launch GIMP 2.3.11 Development for Windows on a Windows 2000 platform.

2. Go to File->: Acquire->t Screenshot. (Note the two different entries for \"Sereen Shot\”
and '"Screenshot\".)

3. Tick "Select a Region to Grab.\"

4. Set the delay.

5. Click \"Grab.\"

Actual results: The whole sereen is captured each time. Expected results: The ability to select a
portion of the screen would be available, probably via mouse click-and-drag functionality. Does
this happen every time? Yes. Other information: (I presume the two entries for screenshots
under the submenu are there in order to test old and new code, by the way but I just noted it in
case there was an issue.); D. Le Sage; APF; Hobart, Tasmania. We know that the port of the
screenshot plug-in for Windows is incomplete. What's this bug-report about? Do you want to
contribute the missing bits or do you want us to disable the plug-in for the Windows platform?
We are waiting for a volunteer to implement the missing functionality for more than a year now.
Perhaps it's about time to drop support for the Win32 platform completely. The bug report was to
alert you in case you did not know it was broken. You are obviously aware it is incomplete.
Perhaps you should disable it to prevent more questions from users. I am not a programmer so I
cannot implement the functionality. I am trying to do my part by reporting 1ssues for you. You
have complained before about how short of volunteers you are. If this is the case, perhaps it is a
very good idea to drop support for Win32 and consolidate on making sure the *Nix
implementation is as good as possible. Supporting Win32 is probably just draining more
resources away. [IRC Tor is working on this. Apt, you are using a development version. Of
course there are incomplete and even broken features in there. If you are just a user, you should
be using the stable release. Tor said that it is impossible to implement the look and feel of the
X11 screenshot plug-in on the Windows platform. He suggested that we stick with Win snap for
the Win32. 2006-10-27 Sven Neumann <:sven@gimp.org&et: * configure.in; * plug-
ins/common/plugin-defs.pl; * plug-ins/common/Makefile.am: reverted changes from 2006-04-06
and build sereenshot plug-in optionally again. Fixes bug #364852. * plug-ins/common/mkgen.pl:
reverted addition of 'extralibs' parameter that was introduced for the sereenshot plug-in only.

Figure 24: Doc 2 for NB [6]

32

Bug Report ID="17"
Title: "(514396) GTK - Add gtk_show_uri"

Currently apps use gnome help functions to show help files, but gnome help is part of the
deprecated gnome help. See also GNOME goal proposal http:/live.gnome.org
/action/show/Gnome Goals /RemoveGnomeOpenGnomeHelp Created an attachment
(id=105668) [details] Patch adding gtk show uri and gtk show help to GTK+, The
gtk show help function is missing |return ret;. You forgot to add the new funcs to
gtk/gtk.symbols.

+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.

There is no \"Lesser GPL version 2\". It's the Lesser GPL version 2.1 (or the Library GPL
version 2). Somehow I feel that gtk show_help () is too GNOME oriented to be included in this
form. I have been told that gtk show_uri () will work nicely on the major supported platforms.

This is however not the case for gtk show help (). Since the functionality of gtk show help ()
can be easily implemented on top of gtk show wuri(), it should be sufficient to provide
gtk show uri() for now. Created an attachment (id=105671) [details]. Updated patch. Adding ret
and gtk symbols. Christian, I copied the license from other files in GTK+. I opened about 5 to 6
files and they are the same. I guess it's a better idea to change all licenses in one go. What's the
consensus on this? Can I commit gtkshow.c to gtk+ when I remove gtk show help? Update your
patch to remove gtk show help() to start with. Created an attachment (id=106302) [details]
Patch removing gtk show help. Can one of the maintainers decided what to do with this patch?
Thanks, gtk show uri allows a NULL parent, but that is not multi-head safe. Why not take a
mandatory GdkScreen argument since the function couldn't care less about the parent widget
beyond its screen? I can make it such that the parent has to be set mandatory. Having a
GtkWidget *parent saves calling a gtk widget get screen everytime you do a gtk show uri
Whal's the opinion on this of others? I don't think the parent should be mandatory, because there
are situations, where they may not be a parent at all. A mandatory parent would be bad, as Ross
explained in comment #11. IMO the best solution is to change the function to take a GdkScreen

Figure 25: Doc 1 for ANN [6]

33

CHAPTER -6
RESULT AND PERFORMANCE ANALYSIS

6.1 Result and Performance Analysis for Naive Bayes Model

For analysis of results and performance we have taken 2 documents here for which we
will generate the summary.

Figure 26, Figure 27 are sentence tokenization are for Doc 1, Doc 2 respectively.

['MattN noticed a problem with the WIP patch from bug 469443 applied.When typing in the searc
h box, sometimes search-suggestion entries would be displayed above the divider (where entrie
s for previous matching searches are).The problem here is that nsSearchSuggestions.js is pass
ing the wrong previousResult to form history.', "Instead of it being the previous form histor
y search result, it's the SuggestAutoCompleteResult result (which contains the union of the f
orm-history and search-suggest entries).", 'So, when form history refines its rasults as you

time, it can actually add *more* entries as data leaks from the suggestions result into form

history result, and it thus looks like the divider is being drawn in the wrong place.', "This
bug wasn't visible before 469443, because nsFormFillController::StartSearch triss to QI the p
rovided result to a nsIAutoCompleteSimpleResult.", 'The search-suggestion result is only impl
ements nsIAutoCompletResult (no \\"Simple\\"), so the QI fails, historyBesult nee previousRes
ult becomes null, and thus Satchel was doing a new search every time.', 'form history finds 1
entry (\\"blah\\"), search-suggestions finds \\"baaa\\", “\"bloop\\", ‘\"bzzz\\", the autocom
pete menu shows these in order with a divider between \\"blah\\" and \\"baaa\\".', 'startHist
orySearch()\'s previous result contains [\\"blah\\", ‘\\"baaa\\", \\"bloop\\", ‘\\"bzzz\\"], 5a
tchel filters this down to [\\"blah‘\\", \\"bloop\\"] to match the new ‘\\"bl\\" ssarch string

nsSearchSuggestions\'s onReadyState() change is called with updated search suggestions, build
5 up a new list of results, but sees that the form history result now has *two* entries.', "C
reated an attachment (id=380567) [details] Patch v.1 (WIP) This fixes the problem, but isn't

quite correct...", 'If you type \\"a<backspacesgt;b\\", satchel trying to use the results

from the \\"a\\" search for the \\"b\\" search, and so nothing is found.', "I suspect nsSearc
hSuggestions needs to throw away the old form history result when the search string changes 1
ike this, but I'm not entirely sure it's responsible for doing so, maybe satchel should be sm
arter about throwing away a previous result when the previous result's search string doesn't

have a common prefix.", 'That seems to be handled somewhere else for normal form field entrie
5, oddly enough.', 'Created an attachment (id=383211) [details] Patch v.2 Bh.', "So, there's

a . formHistoryResult in the SuggestAutoCompleteResult wrapper (used to combine form history

with search suggestions), and also a . formHistoryResult in SuggesthutoComplete (the service
itself, used to hold onto a form history result until a search suggestion is available).The s
imple fix it to just discard the service's form history result copy when startSearch() is cal
led with a null previous result."]

Figure 26: Sentence Tokenization of Doc 1

34

['BugReport'\xalID="13"Title : "(364852) GIMP - screenshot plug-in incomplete for
Windows platform"Please describe the problem: When going to File->Roquire-&g
t;Screenshot in the Windows port of the development build GIMP 2.3.11, firstly t
here are two different entries \\"Screen Shot\\" and \\"Screenshot\\" and second
ly, functionality to grab only a portion of the screen is broken.', 'There is no
option to \\"Select a Region to Grab\\" when the user chooses \\"Screen Shot.\\
" However, this option exists in the dialogue box that appears after the user se
lects :Screenshot.\\" However, the functionality does not work, even after selec
ting a long delay period.', 'Instead, the whole screen is captured each time.',
'I was expecting the mouse cursor onscreen to change to \\"crosshairs\\" or some
thing similar to allow me to select the region I required.', 'Steps to reproduce
: 1.', 'Launch GIMP 2.3.11 Development for Windows on a Windows 2000 platform.2.
', 'Got o File-s>Acquire->Screenshot.', '(Note the two different entries fo
r \\"Screen Shot\\" and \\"Screenshot\\".)3.', 'Tick \\"Select a Region to Grab.
\W"4.', 'Set the delay.5.', 'Click \\"Grab.\\"Actual results: The whole screen i
s captured each time.', 'Expected results: The ability to select a portion of th
e screen would be available, probably via mouse click-and-drag functionality.',
'Does this happen every time?', 'Yes.', 'Other information: (I presume the two
entries for screenshots under the submenu are there in order to test old and new
code, by the way but I just noted it in case there was an issue.', '); D. Le Sa
ge; BPF; Hobart, Tasmania.', 'We know that the port of the screenshot plug-in fo
r Windows is incomplete.', "What's this bug-report about?", 'Do you want to cont
ribute the missing bits or do you want us to disable the plug-in for the Windows
platform?', 'We are waiting for a volunteer to implement the missing functional
ity for more than a year now.', "Perhaps it's about time to drop support for the
Win32 platform completely.", 'The bug report was to alert you in case you did n
ot know it was broken.', 'You are obviously aware it is incomplete.', 'Perhaps y
ou should disable it to prevent more questions from users.', 'I am not a program
mer so I cannot implement the functionality.', 'I am trying to do my part by rep
orting issues for you.', 'You have complained before about how short of voluntee
rs you are.', 'If this is the case, perhaps it is a very good idea to drop suppo
rt for Win32 and consolidate on making sure the *Nix implementation is as good a
5 possible.', 'Supporting Win32 is probably just draining more resources away.',
"IIRC Tor is working on this.', 'apf, you are using a development version.', 'O
f course there are incomplete and even broken features in there.', 'If you are j
ust a user, you should be using the stable release.', 'Tor said that it is impos
sible to implement the look and feel of the X11 screenshot plug-in on the Window
s platform.', 'He suggested that we stick with Winsnap for the win32.', '2006-10
-27 Sven Neumann &1t;svenfgimp.org> * configure.in; * plug-ins/common/plugin
-defs.pl; * plug-ins/common/Makefile.am: reverted changes from 2006-04-06 and bu
ild screenshot plug-in optionally again.', 'Fixes bug #364852.', "% plug-ins/com
mon/mkgen.pl: reverted addition of 'extralibs' parameter that was introduced for
the screenshot plug-in only."]

Figure 27: Sentence Tokenization of Doc 2

35

Figure 28, shows the sentence score for sentences of Doc 1, Doc 2.

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

1
1

10 Score for Classl:
10 Score for Class(:

11
11

12
12

13
13

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

for Classl:
for ClassO:

for Classl:
for Class0:

for Classl:
for Class0:

-65.71859111334032
-69.084053451658107

-40.61726646558207
-44.702683595%9095¢6

-69.41357765275335
-75.63504768604564

-17.7546468527877053
-19.113887508944018

-25.64658176055062
-25.787051429786002

-46.12458087532733
-44.17861314535356

-76.01012225540286
-84.527664016832607

-8.070906088787817
-8.070906088787817

-45.87921618795524
-44.83230145321255

-74.567657622815593
-51.28121739651249

-20.1230545242597753
-20.67140536419876

-8.13959896027477
-8.139896%96027477

-96.1329072927109
-103.48204062906382

Figure 28: Sentence Score of Doc 1

36

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

|sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

1 Score
1 Score

2 Score
2 Score

3 Score
3 Score

4 Score
4 Score

5 Score
5 Score

6 Score
6 Score

7 Score
7 Score

8 Score
8 Score

9 Score
9 Score

10 Score for
10 Score for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

11
11

1z

13
13

14
14

15

16
16

17
17

18
18

19

20
20

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

Classl:
Class0:

Classl:
ClassO:

Classl:
Class0:

Classl:
Class0:

Classl:
ClassO:

Classl:
Class0:

Classl:
Class0:

Classl:
ClassO:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

37

-74.
-B81.

-63.
-62.

-15.
-15.

-59.
-57.

87346228146015
23684335807908

379627642177
595146504551394

497862737888689
722124765532966

977342417056985
37573366100509

—9.356436724556655
-9.435574045155379

-9.5387582813%061
-9.617895601545332

-9.692908961217867
-9.772046281776593

-15.
-16.

839612031610544
B862381755472796

-9.906483061515926
-9.98562038207465

-10.011843577173753
-10.050980897732477

-1é
-16

—-44

-31

-10.
-10.

-10.
-10.

—-60.
-58.

-10.
-10.

—-23.
—-24.

-10.
-10.

—-23.
-22.

-32.

.409380191010385
.633642218654465

.564516865956942
.038605577347205

073537146175052
152674466737817

147645118332814
22678243889154

27233190884057
0968075480995553

068804618309881
167941%38868€03

06550%304813503
756651875526785

153779748597%6831
2369324810355557

561102432833157
405443720701065

932302751887576
.73669871351482¢

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

Sentence
Sentence

21
21

22
22

23
23

24
24

25
25

31
31

32
32

33
33

34
34

35
35

36

37
37

36
36

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

Score
Score

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

for
for

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

Classl:
Class0:

-30.
-29.

-29.
-27.

-10.
-10.

-15.
-17.

-15.
-17.

-30.
-2B8.

-18.
-17.

-44.
-45.

-17.
-15.

-10.
-10.

-16.
-18.

-32.
-31.

-10.
-10.

-30.
-31.

-10.
-10.

-29.
-31.

-15.
-15.

-32.
.q36108797616046

-31

146628790099143
526388896629953

04463585861247
71022941735925

170257652561064
249434973119788

32451868139894¢6
6733119716589124

346991537251007
£95754827541182

237100653263223
338780023314367

353748319713883
702541610004086

76175892591165
060377106035546

2297451659038004
370257928556234

231905461950553
31104278250928

9934869985954104
42172183092412

83602552145216
82274343587336

267496407053256
346633727€1188

656866351513578
90534656840857

2B3777292657394
362914613216118

4692295%6650734
63400131527648

58242012591685
238698115955082

46706972240089

Figure 29: Sentence Score of Doc 2

38

With the proposed method we built the Naive Bayes Classifier Model which when
performed on the different bug reports generated following results.

After summary is generate by our system, we have calculated precision, recall and f-score
for comparing system generated summary and human generated summary. This will tell

how accurate and precise our model is.

Predicted class

P N
True False
P | Positives Negatives
(TP) (FN)
Actual
Class
False True
N | Positives Negatives
(FP) (TX)

Figure 30: Confusion Matrix for Precision, Recall, F-Score [21]

_ _ TF
precision = ———0p
TP
ecall = —————
recd TP + FN
Fl = 2 = precision x recall

precision + recall

Figure 31: Formulas for Precision, Recall, F-score [22]

Figure 32, Figure 33 shows the summary generation and performance analysis

39

MattN noticed a problem with the WIP patch from bug 469443 applied.When typing i
n the search box, sometimes search-suggestion entries would be displayed above t
he diwvider (where entries for previous matching searches are) .The problem here i
s that nsSearchSuggestions.js is passing the wrong previousResult to form histor
v. Instead of it being the previocus form history search result, it's the Suggest
AutoCompleteResult result (which contains the union of the form-history and sear
ch-suggest entries). So, when form history refines its results as you time, it <
an actually add *more* entries as data leaks from the suggestions result into fo
rm history result, and it thus looks like the diwvider is being drawn in the wron
g place. This bug wasn't wisible before 469443, because nsFormFillcontroller::St
artSearch tries to QI the provided result to a nsIRAutoCompleteSimpleResult. The
search-suggestion result is only implements nsIfAutoCompletResult (no \"Simplei\™)
s 50 the QI fails, historyResult nee previousResult becomes null, and thus Satch
el was doing a new search every time. startHistorySearch()'s previous result con
tains [W"blah\", “"baaa\", “"bloopi\", \"bzzz\"], Satchel filters this down to [
"blah%", “"bloop“™] to match the new “Y"bl%" search string nsSearchSuggestions's
onReadyState () change is called with updated search suggestions, builds up a new
list of results, but sees that the form history result now has *two* entries. I
f you type \"asltrbackspacesgt;b\", satchel trying to use the results from the \
"a\" search for the \"b\"™ search, and so nothing is found. I suspect nsSearchSug
gestions needs to throw away the old form history result when the search string
changes 1like this, but I'm not entirely sure it's responsible for doing so, mayb
e satchel should be smarter about throwing away a previous result when the previ
ous result's search string doesn't have a common prefix. That seems to be handle
d somewhere else for normal form field entries, oddly enough. Created an attachm
ent (id=383211) [details] Patch v.2 Ah. So, there's a . formHistoryResult in the
SuggesthutoCompleteResult wrapper (used to combine form history with search sug
gestions), and also a . formHistoryResult in SuggesthutoComplete (the service i
tself, used to hold onto a form history result until a search suggestion is avai
lable) .The simple fix it to just discard the service's form history result copy
when startsSearch() is called with a null previous result.
Precision: 63.63636363636363
Recall: 70.0

F-score: 66.66666666666667

Figure 32: Summary Generation of Doc 1

Please describe the problem: When going to File->Acquire-&agt;Screenshot in th
e Windows port of the development build GIMP 2.3.11, firstly there are two diffe
rent entries \"Screen Shot\" and \"Screenshot\"™ and secondly, functionality to g
rab only a portion of the screen is broken. Instead, the whole screen is capture
d each time. Steps to reproduce: 1. Launch GIMP 2.3.11 Dewvelopment for Windows o
n a Windows 2000 platform.2. Got o File-agt;RAcguire->Screenshot. (Note the tw
o different entries for \"Screen Shot\" and \"Screenshoti\™.)3. Tick \"Select a R
egion to Grab.\"4. Set the delay.5. Click \"Grab.\"Actual results: The whole scr
een is captured each time. Expected results: The ability to select a portion of
the screen would be available, probably via mouse click-and-drag functionality.
Does this happen every time? Yes.); D. Le Sage; APF; Hobart, Tasmania. We know
that the port of the screenshot plug-in for Windows is incomplete. What's this b
ug-report about? You are obviously aware it is incomplete. If this is the case,
perhaps it is a very good idea to drop support for Win32 and consolidate on maki
ng sure the *Nix implementation is as good as possible. Supporting Win32 is prob
ably just draining more resources away. IIRC Tor is working on this. apf, you ar
e using a development wersion. If you are just a user, you should be using the s
table release. Tor said that it is impossible to implement the look and feel of
the ¥X11 screenshot plug-in on the Windows platform. He suggested that we stick w
ith Winsnap for the Win32. 2006-10-27 Sven Neumann <svenlgimp.orgsgt:; * confi
gure.in; * plug-ins/common/plugin-defs.pl; * plug-ins/common/Makefile.am: rever
ted changes from 2006-04-06 and build scresnshot plug-in optionally again.
Precision: 66.666666606666666

Recall: 94.11764705882352

F-score: 78.04878048780488

Figure 33: Summary Generation of Doc 2

40

6.2 Result and Performance Analysis for Neural Network Model
All the given below results and performance analysis are for a single document.

Word embeddings: 400000
Number of words missing from Glove: 10
Percent of words that are missing from vocabulary: 0.27%
Total number of unigue words: 3680
Number of words we will use: 3117
Percent of words we will use: B84.7%
Length of word embedding matrix 3117
Total number of words in summaries: 34640
Total number of UNKs in summaries: 1009
Percent of words that are UNE: 2.91%
Summaries:

counts
count 36.000000
mean 95.6594444

std 30.4112594
min 38.000000
25% 75.750000
50% 93.500000
15% 121.000000

max 166.000000

Texts:

counts
count 36.000000
mean 867.527778

std 425.052032
min 303.000000
25% 548.250000
50% 782.500000
15% 1060.750000

max 2125.000000

Figure 34: Mathematical Analysis of Data Set

41

Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for

Lverage loss for
No Improvement.
Lverage loss for
New BRecord!
Lverage loss for
New BRecord!
Lverage loss for
New BRecord!
Lverage loss for
New BRecord!
Lverage loss for
New BRecord!
Lverage loss for
New BRecord!
Lverage loss for
New Record!

Average loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Lverage loss for
New Record!
Average loss for
New Record!
Average loss for
New Record!

this update:
this update:
this update:
this update:
this update:
this update:
this update:

this update:

this update:
this update:
this update:
this update:
this update:
this update:
this update:

this update:

this update:
this update:
this update:
this update:
this update:
this update:
this update:

this update:

42

10.282

5.093

4.999

4.905

4.847

4.829

4.717

4.253

4.123

4.036

3.562

3.838

3.671

3.554

2.627

2.493

2.407

2.21¢

2.025

1.931

1.877

1.639

Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!

Lverage loss

Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Lverage loss
New Record!
Average loss

Average loss
New Record!

for

for

for

for

for

for

for

for

for

No Improvement.

for

for

for

for

for

for

No Improvement.

for

this

this

this

this

this

this

this

this

this

this

this

this

this

this

this

this

Average loss for this
No Improvement.
Average loss for

New Record!

Average loss for
No Improvement.
Average loss for
No Improvement.
Average loss for
No Improvement.
Lverage loss for
No Improvement.
Lverage loss for
No Improvement.
Lverage loss for
No Improvement.

update:
update:
update:
update:
update:
update:
update:

update:

update:
update:
update:
update:
update:
update:
update:

update:

update:

this update:

this update:

this update:

this update:

this update:

this update:

this update:

Figure 35: epochs

43

1.428

1.173

1.003

0.884

0.841

0.725

0.c09

0.474

0

0.

0

0.

.035

.038

.037

.034

.034

.032

033

.031

02e

.024

.02¢

.02¢

.03

.02

.024

.02

Response Words: the gnome help functions which are currently being used are de
precated so a patch is offered to switch to gtk show uri and gtk show help this
is missing updates to a symbol table has some licensing details wrong and gtk sh
ow help does not work on all platforms updates patches are given which fix these

it is pointed out that gtk show uri is not multi head safe due to null parent i
t is suggested that it be forced to take a parent but this is rejected instead a
version which takes <UNK> is suggested and then provided it is suggested that <
UNE> should be able to be null and that the documentation should be improved and
this is accepted auto mounting is also requested someone questions the utility

of catering to so

Figure 36: Summary of Doc 1 through ANN

Figure 37, represents the performance comparison i.e. F-score between both the models.
And it is clearly reflected that Neural Network gives better value and hence is a preferred

model for summary generation.

F-SCORE

74% 73%
72%
70%
68%
66%
64% 63%

62%

60%

58%
Naive Bayes Neural Network

Figure 37: Bar chart of F-score of both model

44

CHAPTER -7
CONCLUSION

In this report, we presented Naive Bayes Model and Artificial Neural Network Model for
generating summary for a document.

For Naive Bayes Model, we have compared the model’s summary with human generated
summary by using Precision, Recall and F-Score. For our model, F-Score ranges from 60%
to 75%.

The varying difference in the f-score was because of the reason that human generating the
summary was not an expertise on the topic chosen. If an expertise will be chosen f-score

will increase.

45

REFERENCES

[1] Amit Kumar (2018). Introduction to Machine Learning. Retrieved from:
https://www.allprogrammingtutorials.com/tutorials/introduction-to-machine-learning.php
Retrieved on: 7 May, 20109.

[2] Morgan Polotan (2015). What is Machine Learning? Retrieved from:
https://morganpolotan.files.wordpress.com/2015/04/unsupervised_learning.png

Retrieved on: 7May, 2019.

[3] Das, S., 2017. Sentiment Analysis for Web-based Big Data: A Survey. International
Journal of Advanced Research in Computer Science, 8(5).

[4] Mani, S., Catherine, R., Sinha, V.S. and Dubey, A., 2012, November. Ausum: approach
for unsupervised bug report summarization. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering (p. 11). ACM.

[5] Lotufo, R., Malik, Z. and Czarnecki, K., 2015. Modelling the ‘hurried’bug report
reading process to summarize bug reports. Empirical Software Engineering, 20(2), pp.516-
548.

[6] Rastkar, S., Murphy, G.C. and Murray, G., 2014. Automatic summarization of bug
reports. IEEE Transactions on Software Engineering, 40(4), pp.366-380.

[7] Ferreira, 1., Cirilo, E., Vieira, V. and Mourao, F., 2016, September. Bug report
summarization: an evaluation of ranking techniques. In 2016 X Brazilian Symposium on
Software Components, Architectures and Reuse (SBCARS)(pp. 101-110).

[8] Thu, H.N.T., 2014. An optimization text summarization method based on naive bayes
and topic word for single syllable language. Applied Mathematical Sciences, 8(3), pp.99-
115.

[9] Jiang, H., Nazar, N., Zhang, J., Zhang, T. and Ren, Z., 2017. PRST: a page rank-based
summarization technique for summarizing bug reports with duplicates. International
Journal of Software Engineering and Knowledge Engineering, 27(06), pp.869-896.

[10] Sinha, A., Yadav, A. and Gahlot, A., 2018. Extractive text summarization using neural
networks. arXiv preprint arXiv:1802.10137. [2018]

46

[11] Cheng, J. and Lapata, M., 2016. Neural summarization by extracting sentences and
words. arXiv preprint arXiv:1603.07252.Khosrow, Kaikkah. "Text summarization using
neural networks." (2004).

[12] Sarda, A.T. and Kulkarni, A.R., 2015. Text summarization using neural networks and
rhetorical structure theory. International Journal of Advanced Research in Computer and
Communication Engineering, 4(6), pp.49-52.

[13] Jain, A., Bhatia, D. and Thakur, M.K., 2017, December. Extractive text summarization
using word vector embedding. In 2017 International Conference on Machine Learning and
Data Science (MLDS) (pp. 51-55). IEEE.

[14] Patel, M., Chokshi, A., Vyas, S. and Maurya, K., 2018. Machine Learning Approach
for Automatic Text Summarization Using Neural Networksl. International Journal of
Advanced Research in Computer and Communication Engineering, 7(1).

[16] Nallapati, R., Zhou, B., Gulcehre, C. and Xiang, B., 2016. Abstractive text
summarization using sequence-to-sequence rnns and beyond. arXiv preprint
arXiv:1602.06023.

[15] Chopra, S., Auli, M. and Rush, A.M., 2016. Abstractive sentence summarization with
attentive recurrent neural networks. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies (pp. 93-98).

[17] Kagebéack, M., Mogren, O., Tahmasebi, N. and Dubhashi, D., 2014. Extractive
summarization using continuous vector space models. In Proceedings of the 2nd Workshop
on Continuous Vector Space Models and their Compositionality (CVSC) (pp. 31-39).

[18] Naive Bayesian. Retrieved from: https://www.saedsayad.com/naive_bayesian.htm
Retrieved on: 7 May, 2019

[19] Tal Baumel (2015). Sequence To Sequence Attention Models In DyNet. Retrieved
from: https://talbaumel.github.io/blog/attention/ Retrieved on: 7 May, 2019.

[20] David Currie (2017). Text Summarization with Amazon Reviews.

Retrieved from : https://towardsdatascience.com/text-summarization-with-amazon-
reviews-41801c2210b . Retrieved on: 3 April, 2019.

[21] Sebastian Raschka. = Machine Learning FAQ. Retrieved from:

https://sebastianraschka.com/fag/docs/multiclass-metric.html Retrieved on: 7 May, 2019.

47

[22] Tensorflow Precision/Recall/F1 Score and Confusion Matrix. Retrieved from:
https://stackoverflow.com/questions/35365007/tensorflow-precision-recall-f1-score-and-
confusion-matrix Retrieved on: 7 May, 2019

48

	BACHELOR OF TECHNOLOGY
	IN
	Under the supervision

	JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN– 173234

