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ABSTRACT 
 

 

Bug Report Summarization is one of the most necessary need for developers these days. 

As developers come across many bugs while working on some project. It is very difficult 

to undergo long documents to find the solution of their bug. That is why Bug Report 

Summarization is done to generate summaries that are shorter and precise and can ease 

the work of coders, testers and other people as well. This report depicts our fourth year 

project "Bug Report Summarization", describing the method using which a summary can 

be generated using an algorithm.  
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CHAPTER -1 

INTRODUCTION 

 

1.1 Introduction 

Natural Language Processing: 

“Natural Language Processing is a field that does understanding and manipulation of 

human language into a language understandable by computer, and it’s blooming with 

possibilities for news-gathering”. “You usually hear about it in the context of analyzing 

large pools of legislation or other document sets, attempting to discover patterns or root out 

corruption.” With the use of NLP computer analyses, understands and derive the meaning 

from human language into a summarized and useful, helpful way. By using NLP, 

developers have organized and structured knowledge to implement tasks of ‘automatic 

summarization.’ 

“Apart from common word processor operations that have been treating text like a sequence 

of symbols, natural language processing takes into consideration the hierarchical structure 

of this language, that means, many different words combine to form a phrase and several 

phrases combine to form a sentences and, finally, these are the sentences that convey ideas,” 

Natural Language Processing has been used since years to analyse text, and to make models 

through which machines can understand human language and their emotions. 

Such human-computer interaction encourages processing of real-world applications like: 

sentiment analysis and automatic text summarization. NLP is most commonly used for text 

mining, text summarization, semantic analysis, machine translation, question answering 

and for many other applications. The main drawback while processing human language is 

they are not just plain text. They contains different meaning for different arrangements of 

words, also they carries emotions of speaker. Although, humans naturally learn their 

respective languages without any difficulty but for processing because of ambiguity this is 

a difficult task. 

NLP algorithms are normally derived from machine learning algorithms itself. Instead of 

coding manually large sets of rules, rules are learnt automatically using Machine learning. 
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In general, more the training is done, more accuracy can be achieved by the model. This 

depends on following different features extraction: 

Tokenization- Extracting main key words, reducing words to their root form, applying 

stemming and lemmatization. 

Pos tagging- Finding the noun using pos tags. 

Score Generation- Generating score for each token to know the value of each word in a 

document. And there are many more processing features. 

 

Machine Learning: 

Artificial Intelligence has many sub fields one of them is machine learning. In general, 

ML’s goal is to understand the structure of data and then applying necessary model on it 

that can be used to process to gain necessary output by different people. 

In conventional computing, “algorithms are set of explicitly programmed instructions used 

by computers for calculation and problem solving.” Whereas, ML is completely different 

from conventional approach, it allows the computer to train on data-inputs and use 

statistical-analysis to order data output values that fall within an anticipated specific range. 

It’s because of this that ML helps computer to process taking help from data-inputs training 

set. 

Anyone using technology today has got the benefit of using ML. For example, technology 

of Image Processing has helped to read data from images, technology of summarization 

saves time of the user from reading large documents. Recommendation engines are based 

on ML, suggesting latest, trending videos and shows.  

 

Machine Learning Methods 

Processing in machine learning is classified under two broad category based on how 

learning is received by the system and how it is interpreted and developed into an output. 

One method is supervised learning, which is based on a training algorithm having input-

output data sets using which further processing is done. Another method is unsupervised 

algorithm which has algorithm where no pre data set is given. These models will be 

explained in further pages. 
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 Supervised Learning- For applying supervised learning, the computers are provided 

with the set of inputs which have corresponding set of outputs. The main reason for 

this method is that the algorithm should be “able to learn by comparing its actual 

output with the taught outputs to find errors and then modify the model in the 

required way.” This learning follows pattern to predict label values on the testing 

data set. For example, when supervised learning is used, it is fed with input data of 

shark image as fish and river image as water. So when user will input with shark 

image it will give output as fish and similarly for river. A very often use of this 

method is using earlier data to predict future events. It may be used for weather 

forecast, like when tides, and previous temperature is processed it will be helpful to 

predict weather for next few days of a place. It is also helpful for image reading, 

when it will be fed with previous input-output set of images. 

         

Figure 1: Supervised Learning Model [1] 

 

 Unsupervised Learning - In case of unsupervised learning, data is not given pre 

hand. So the model itself find common grounds between different information to 

predict future data. As we all know learning by itself is more difficult than labelled 

data, this machine learning method is quite difficult but also an important learning 

method. The final goal of this learning is straight- forward to discover hidden 
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patterns within a data-set, it also have aim of feature learning as discussed above, 

which allows the machine to automatically find the representations that are required 

to classify raw-data. Unsupervised learning is generally used for data to be used as 

transactional one. The most appropriate example for this will be a recommendation 

engine. Suppose you being a service provider of latest movie, can’t make sense 

from the data available of user that who prefer what. So in this case, unsupervised 

learning is used to recommend you with which age group likes to watch what type 

of genre of movies. Therefore, providing the users with their preferred information 

earn the service provider more marketing and user’s interest.  

       

Figure 2: Unsupervised Learning Model [2] 

 

Deep Learning 

Deep learning is a field which reciprocate how human brain works and how it can process 

any information in any form (like sound, light etc). It’s architecture by biological neural 

network of human body and similarly consist of multiple layers in an artificial neural 

network form. 

 

Artificial Neural Network 
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A neural network is a three layer classifier operating in parallel. The first layer receives the 

input information similar to optic nerves in human visual processing. Second layer is 

hidden layer that works on some given algorithm to process the input information. The last 

layer produces the output of the system. Advantage of using neural network is that they are 

adaptive. They can modify themselves as they learn from initial training.  

 

 

Figure 3: Artificial Neural Network Model 

 

Text Summarization 

Text Summarization is a process of making short, meaningful paragraphs from huge 

documents to ease the working of researcher, developer, or user. Based on the method of 

summary generation, text summarization systems are of two kinds: extractive and 

abstractive. 

 In extractive text summarization, at first each word is separated as tokens by 

applying certain tokenization techniques. Noise words and stop are removed. After 

that there is score calculation for each token by applying any given algorithm like 

tf-idf etc. After that each score is compared and tokens with higher score are 

selected to be inserted in summary. 
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 In abstractive text summarization, instead of extracting sentences from the original 

document by applying a predefined algorithm and then using them as they are in 

summary in this method sentence is generated by the system itself which uses 

Natural Language Processing to do so. This type of summary generation is more 

complex than extractive. 

 

Programming Language 

While choosing a language to code and create a model, we should choose a language in 

which we have specialization and the one which has maximum libraries and modules to 

ease the work. 

Python has been the most used programming language for this work. 

Other languages like Java, R and C++ can be kept as optional (this information is taken 

from indeed.com December 2016). 

Python is an object oriented programming language which is easy to interpret and learn 

because of its simplicity of syntax. Python being a portable language can be used on various 

operating systems such as Mac Os, UNIX, and various Windows version.  Its popularity 

has increased in the field of deep learning because of the availability of large number of 

libraries including nltk kit, Tensor Flow, NumPy, Keras etc. The modules available are 

easy to use and direct in implementation. 

Java is an HLL. Its syntax is similar to C++ but is strictly an object oriented programming 

language. Usually, it is not one of the favoured language by the developers who are new to 

coding but it is surely preferred by those who already have a good hand in working in Java. 

Also, Java is used more than Python for detection of false cases, cyber-attacks and security 

related problems. 

 

1.2 Problem Definition 

The volume of electronic information available on Internet has increased rapidly. As a 

result, dealing with such huge volume of data has lead to a problem and time consuming 

task. Mostly research shows that summary extraction is a shortening of information which 

means selecting only those words or sentences that feels to be logically correct. Humans 

also extract summary whose efficiency is very low as they don’t perform any particular 
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algorithm to generate a summary. But there is a drawback of this approach. There is no 

focus on particular text weight and its position in the document. So our focus is on 

generating a summary that is generated by calculating tokens score and its uniqueness and 

positioning in a document. 

 

1.3 Objective 

A software project’s bug repository provides an upscale source of data for 

a developer operating on the project. For instance, a developer may need to consult few 

bug reports reported in the past. Developer does so in order to find the bug he is dealing 

with and to find how the bug was resolved. While scrolling the bug reports repository, 

developer have to read several reports before he finds the correct solution. As information 

is growing day by day, length of each bug report has also increased. Sometimes a developer 

finds the required bug report by only reading the title or many times he has to read the 

complete lengthy reports. Thus, developer has to invest a lot of time while reading tens or 

hundreds of sentences of each bug report to find the solution. These searches are very 

tedious and has become an issue. 

One solution to reduce the time the developer spends getting to the right bug report to 

perform their task is to provide them with summary of each report. This can be done by 

using a software to generate a summary to help the developer to get the solution in optimal 

time. This summary generation is known as Bug Report Summarization.  

As till now, for performing extractive text summarization various models like Naïve Bayes 

Classifier have been proposed. Naïve Bayes treats the summarization problem as 

classification problem and calculates whether a sentence can be added to the summary or 

not. They compare each sentence with other one and scores are given to each sentence is 

given depending on the algorithm used. There is a threshold score which is dependent on 

the length of the summary required, and every sentence which is higher than the score is 

included in the summary.  

The above method seems to be easy but only for some genre-specific summarization 

(hospital reports, news articles etc). This means that article which are trained using data set 

of same genre, gives great result but these techniques fails in case of general text 

summarization. 



8 
 

To solve this issue, and for in general text summarization Neural Network Models are most 

preferred model. 

1.4 Proposed System Methodology 

In our research, we have used two different algorithm to generate summaries of the bug 

reports that are Naïve Bayes Classifier and Artificial Neural Network.  

Naïve Bayes Model performs in a way where Bug Reports are taken as input files and after 

performing the algorithm for Naïve Bayes, bug report summary is generated. The overall 

computation can be divided into two phase- Training Phase, Testing Phase. The corpus for 

input consisted of 10 bug reports (taken from “Automatic Summarization of Bug Reports”, 

Sarah Rastkar, Gail C Murphy [6]). We checked the effectiveness of the summary 

generated by the classifier by comparing it with the human written summary. Effectiveness 

measure taken into account were precision, recall and F-score. 

Neural Network Model performs in a way where all the bug reports are taken in a single 

.csv file. And after performing ANN algorithm, bug report’s summary is generated. The 

overall computation can be divided into two phase- Training Phase, Testing Phase. The 

corpus for input consisted of 36 bug reports (taken from “Automatic Summarization of Bug 

Reports”, Sarah Rastkar, Gail C Murphy [6]). 

 

                                   

Figure 4: General working of Text Summarizer [3] 
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CHAPTER -2 

LITERATURE SURVEY 

 
2.1 Authors: Senthil Mani, Rose Catherine, Vibha Singhal Sinha, Avinava Dubey 

Title: Approach for Unsupervised Bug Report Summarization [2012] [4] 

Work done on this paper was it used four unsupervised techniques (Cen-troid, MMR, 

Divrank, Grasshopper) and compared their efficacy with supervised 

approach(BRC,EC,EMC). The efficacy of the unsupervised techniques is enhanced by 

noise removal technique and deducting the useless code. There were few significant 

limitation observed that were- Observed results are particular results can’t be used for other 

setups and they need reconfiguration depending on subject to which noise reduction is 

applied . 

 

2.2 Authors: Rafael Lotufo, Zeeshan Malik, Krzysztof Czarnecki 

Title:  Modelling the hurried bug reports reading process to summarize bug reports 

[2012] [5] 

 This paper focused on unsupervised techniques for bug summarization and apply noise 

reduction, two of the unsupervised technique became scalable for larger size bug reports. 

Its algorithm resulted into following limitations-  it don’t provide an evaluation showing 

how user would choose two input parameter, which are summary percentage length and 

minimum relevance threshold. 

 

2.3 Authors: Sarah Rastkar, Gail C Murphy 

Title: Automatic Summarization of Bug Reports [2014] [6] 

 They made a summarizer that produces summaries that are statistically better than 

produced by existing conversation- based generators. In this paper, they have researched 

the automatic generation of one sort of software skill, bug answers, to give designers the 

advantages others encounter every day in different areas. They found that current 

conversation based extractive summary generators can create summaries for bug reports 

that are better than any random classifier. They likewise discovered that an extractive 

summary generator prepared on bug reports delivers the best outcomes. It resulted into 
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following limitations that is Naïve/non-experts can’t create summaries and more than one 

annotator is required. 

 

2.4 Authors: Elder Cirilo, Fernando Mourao 

Title: Bug Report Summarization: An Evaluation of Ranking Technique [2016] [7]  

They provided a solution using extractive summaries where summaries are based on 

comments instead of one based on isolated sentences. In this paper, they propose a novel 

methodology where summaries depend on remarks, rather than the ones dependent on 

confined sentences, as proposed by past works. Exact outcomes prove with our arguments 

that positioning the most relevant comments would enable developers to discover more 

appropriate information. They could observe that summaries generated by conventional 

ranking algorithms are precise concerning developers expected data, when contrasted with 

reference summaries made manually, offers applicable summaries in general. Conclusion 

lead to limitation like Size and amount of reports may be a threat to the conclusion of their 

study and few bug reports contain different types of structured information which can’t be 

treated in the algorithm.  

 

2.5 Authors: Ha Nguyen Thi Thu 

Title: An Optimization Text Summarization Method Based on Naïve Bayes and topic 

word for single syllable language [2014] [8]. 

A text summarization method based on Naïve Bayes algorithm and topic word sets is 

proposed. Processing time for word processing is long special when worked with more text.  

 

2.6 Authors: HeJiang, Najam Narar, Tao Zhangi, Zhilai Ren 

  Title: A page rank based summarization technique for summarizing bug reports 

with duplicates [9] 

It’s a used page ranking which effectively utilized the textual information of duplicate bug 

reports for generating extractive summaries of master bug reports. While comparing the 

results they concluded that their algorithm outperformed the BRC algorithm in terms of 

precision, recall, F-score measures. Limitation founded in this algorithm was their 
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algorithm cannot slice paragraph into sentences/words independently they took help of 

external ling pipe toolkit. 

 

2.7 Authors: Sarah Rastkar, Gail C Murphy, Gabriel Murphy 

Title: Summarizing software Artifacts: A case study of bug reports [10] 

They created an automatic generation technique for bug summarization and found out that 

existing conversation based extractive summary generator can produce better summaries 

for reports than a random classifier. Limitation concluded were they have used sufficient 

data set but training set (experts) size was limited. 

 

2.8 Authors: Khosrow Kaikah 

Title: Text Summarization using Neural Network [2004] [11] 

A new technique for summarizing new articles using a neural network is presented. 

 

2.9 Authors: Aakash Sinha, Abhishek Yadav, Akshay Gahlot 

Title: Extractive Text Summarizing using Neural Networks [2018] [12] 

Work done here was it took a fully data driven approach using feedforward neural networks 

for single document summarization. It is Limitation was that it assumed that their generated 

summary length < page_len. 

 

2.10 Authors: Aditya Jain, Divij Bhatia, Manish K Thakur 

Title: Extractive Text Summarization using Word Vector Embedding [2017] [13] 

They proposed an approach to extract a good set of features followed by neural network 

for supervised extractive summarization. There was still a scope for performance 

improvement, by also using abstractive summaries 

 

2.11 Authors: Meetkumar Patel, Adwaita Chokshi1 , Satyadev Vyas, Khushbu 

Maurya 

Title: Machine Learning Approach for Automatic Text Summarization Using Neural 

Networks[2018] [14] 
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In this research paper, summaries were generated by using RNN model. There was an 

encoder that takes an input sequence and generates a vector output and there is a decoder 

which produces the final output.   It also discusses the implementation of encoder-decoder 

model with respect to Keras using Tensor Flow. Their model still doesn’t work for multi 

lingual and multi –documents 

 

2.12 Authors:  Ramesh Nallapati, Bowen Zhou, Cicero dos, Santos Çaglar, Bing Xiang 

Title: Abstractive Text Summarization using Sequence-to-sequence RNNs and 

Beyond [2016] [15] 

In this research paper, abstractive text summarization is done using Attentional Encoder-

Decoder Recurrent Neural Networks. They made a model for multi-sentence summary 

generation. But still they need to prepare more robust model to increase their efficiency. 

 

2.13 Authors: Sumit Chopra, Michael Auli, Alexander M. Rush 

Title: Abstractive Sentence Summarization with Attentive Recurrent Neural 

Networks[2016] [16] 

They made a simplified model of encoder-decoder model. Their model is trained on 

Gigaword corpus to generate headlines based on a particular approach. Their approach out-

performed other models that were built for Gigaword corpus 

 

2.14 Authors: Mikael Kageb, Olof Mogren, Nina Tahmasebi, Devdatt Dubhashi 

Title: Extractive Summarization using Continuous Vector Space Models [2014] [17] 

They evaluated different composition for sentence representation using ROGUE. They 

deduced the results which showed the advantages of using vector representation for 

summary generation. They used phrase embedding and showed this method significantly 

improved the performance. Their future aim will be to work on multiple kernels and to 

increase the performance from the above mentioned methods only.  
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CHAPTER -3 

SYSTEM DEVELOPMENT AND DESIGN 

 
3.1 Software Requirements: 

 Python 3.6 /Anaconda3-5.2.0 

 Jupyter Notebook 

 

3.2 Hardware Requirements: 

 CPU: 2.5 GHz Processor, above 

 RAM – 4 GB, and above 

 OS: Windows 10 

   

3.3 Proposed Model 

 3.3.1 Technology Used 

 Python is an object oriented programming language which is easy to interpret and 

learn because of its simplicity of syntax. Python being a portable language can be 

used on various operating systems such as Mac Os, UNIX, and various Windows 

version.  Its popularity has increased in the field of deep learning because of the 

availability of large number of libraries including nltk kit, Tensor Flow, NumPy, 

Keras etc. The modules available are easy to use and direct in implementation. 

 Anaconda is an open-source, free software used for the distribution of Python and 

R programming languages for deep learning, machine learning applications etc. 

This is a software which can be usable on many operating systems like Windows, 

UNIX, and MacOs having many important packages like NumPy, Keras, 

Tensorflow etc. Python development involves conda, which is a platform-

independent package manager. 

 Jupyter Notebook is an open-source, free web application that allows us to build 

and share documents that contain equations, live code, narrative text and 

visualization.  
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3.3.2 Libraries Used 

 Natural Language Toolkit (NLTK) provides a platform to use Python to work it for 

human language data-sets for applying NLP. It consist of libraries for text 

processing like for finding stopwords, for tokenization, stemming etc.  

 NumPy is a module of Python acronym for “Numeric Python”. It is based on data 

strcutres, having large number of mathematical functions to operate arious 

operations like matrices, arrays, multi-dimensional arrays. They help the developer 

to run the model even with a small unit of code available. 

 TensorFlow is an open source library used for faster numeric computations. It was 

created by Google.  Unlike other libraries, it can run on single CPU as well as like 

GPU on other mobile devices and is designed to be used in both research and 

development systems. 

 Keras is a Python Library made to implement deep learning models as fast and as 

easily as possible.  

 

3.3.3 System Design 

Naïve Bayes Model 

The algorithm is based on Naïve Bayes Classifier in which Bug Reports are taken as input 

files and after performing the algorithm bug report summary is generated. The overall 

computation can be divided into two phase- Training Phase, Testing Phase. 

 

Figure 5 depicts Training Phase. In training phase there are various levels that training set 

document undergo to create a summary. Firstly, training set is selected.  Training set is 

basically set of documents which contain bug reports of various errors. On that training set 

preprocessing is done. Preprocessing is a method of eliminating noise and stop words from 

the sentences and separating the key words and storing them as tokens. Then POS tool is 

used for extracting nouns. Then with the help of Human, a summary is generated. On 

evaluating human generated summary sentences are divided into two classes. Sentences 

selected in the summary are categorized as “class1” and sentences removed or not selected 

are categorized as “class0”.After this, feature extraction is performed where score is given 
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to each token by calculating word frequency for both “class1” and “class0”. This score 

shows the weight and uniqueness of each token in a sentence and in a document as whole.   

 

Figure 5: Flowchart of Training Phase of NB 

 

Figure 6, depicts testing phase. In this, various levels include selecting a document. 

Sentence tokenization is done on the selected document. Then Naïve Bayes Classifier is 

applied. In this model, Bayes Theorem is applied to calculate, probability of each sentence 

for both “class1” and “class0” is calculated by taking total sum of probability of each word 

in a sentence. Then, both probabilities of a sentence are compared and if probability for 

“class1” is greater than that for “class0”, that sentence is added to the final summary. 

 

Figure 6: Flowchart of Testing Phase of NB 
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Figure 7, is the representation of basic Bayes Theorem on which Naïve Bayes is based. In 

this probability of “c” is calculated with respect to x which has already occur.   

 

Figure 7: Bayes Theorem [18] 

 

Artificial Neural Network Model 

Neural Network Model performs in a way where all the bug reports are taken in a single 

.csv file. And after performing ANN algorithm, bug report’s summary is generated. The 

overall computation can be divided into two phase- Training Phase, Testing Phase. The 

corpus for input consisted of 32 bug reports. 

In Figure 8, training phase is depicted, which follows steps like collecting and loading of 

data set. Then test pre-processing on the document is applied. After that feature extraction 

on sentences is performed by using GLOVE 100d. Then model is built and training for 

model is done on it. 

 

Figure 8, Flowchart of Training Phase of ANN  
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In figure 9, testing phase is depicted where text is prepared which needs to be applied on 

the model. Then model is applied and summaries are generated 

 

 

 

Figure 9: Flowchart of Testing Phase 

 

Figure 10, is the general depiction of RNN model. 

 

Figure 10: Neural Attention mechanism [19] 
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CHAPTER – 4 

ALGORITHM 

 

Text Summarization is the way toward making a short and sound adaptation of a more 

drawn out archive.  

4.1 Naïve Bayes Model 

4.1.1 Training Phase  

In Training phase, algorithm is trained by using human generated summaries. Here humans 

according to their knowledge and logic creates a summary on which various training phase 

techniques are performed. 

 1. Collect and Load Data Set – A training data set is built of documents, D which is used 

by the algorithm to perform calculations. D= {d1, d2,…, d10} 

 2. Text Preprocessing – We clean the text by converting to lower, removing unwanted 

characters, replacing contractions by their lower forms and tokenization. 

 3. Using POS – POS tool is used to create the sets of nouns. 

                is_noun = lambda pos: pos[:2] == 'NN' 

                nouns = [word for (word, pos) in pos_tag(words) if is_noun(pos)] 

 

Figure 11:Pos words 



19 
 

 4. Human Generated Summary and Division of Classes – Bug Report summaries are 

generated by the help of humans. They will select most useful sentences to generate a 

summary according to their intelligence, knowledge and information given to them and 

save them in “class1”.Sentences that are not selected for summary are saved in “class0”. 

 5. Feature Extraction – Feature extraction is performed where score is given to each token 

by calculating word frequency for both “class1” and “class0”. 

Given below, is the algorithm to be applied on training data set. This algorithm performs 

noun extraction and then calculating the score.  

Input –  

Class_1: tokens present in Human Generated Summary;  

Class_0: tokens present in Human Generated not summary; 

 V: dictionary of nouns; 

Output – 

word_frequencies_insummary: list of words with their frequency in summary sentences; 

word_frequencies_notinsummary: list of words with their frequency in not_summary 

sentences 

Initialization 

    for k=1 to length(Class_1) do 

        if (Class_1 [k] is noun) then 

            if(Class_1[k] not in word_frequencies_insummary.keys()) then 

                word_frequencies_insummary [word] = 1 

            else 

                word_frequencies_insummary [word] += 1 

        else 

            word_frequencies_insummary[word] =0 

    for k=1 to length(Class_0) do 

        if (Class_0 [k] is noun) then 

            if(Class_0[k] not in word_frequencies_notinsummary.keys()) then 

                word_frequencies_notinsummary [word] = 1 

            else 

                word_frequencies_notinsummary [word] += 1 



20 
 

        else 

            word_frequencies_notinsummary[word] =0 

 

 

Figure 12: Word Frequency of tokens in Class 1 
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Figure 13: Word frequency of tokens in Class 0 

 

4.1.2 Testing Phase: 

 1. Selecting a document – We select a document from our dataset for which we have to 

generate summary. 

 2. Sentence tokenization – It is done on the selected document.  

test_sentences = sent_tokenize(wholedoc) 

 3. Naïve Bayes Classifier – In  this, Bayes Theorem is applied to calculate, probability of 

each sentence for both “class1” and “class0” is calculated by taking total sum of probability 

of each word in a sentence.  

Input – 

C: original text; 
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V: topic words (nouns); 

word_frequencies_insummary: list of words with their frequency in summary sentences; 

word_frequencies_notinsummary: list of words with their frequency 

in not_summary sentences; 

n1: Number of total words in summary 

n2: Number of total words in not summary 

Output – 

w_class1: sentences score for class1 

w_class0: sentences score for class0 

Initialization 

    for each sentence si in C do 

        for j=1 to length(si) do 

            if w(j) in V then 

                if w(j) in word_frequencies_insummary then 

                    counts_class1[word]←word_frequencies_insummary[word]                 

                if w(j) in word_frequencies_notinsummary then 

                    counts_class0[word]←word_frequencies_notinsummary[word]                  

                m=m+1 

                w_class1=w_class1+log((counts_class1[word]+1)/(n1+len(V)))   

    w_class0 = w_class0+log((counts_class0[word]+1)/(n2+len(V)))   

        w_class1=w_class1+ log((len_class1/(len_class1+len_class0))) + log(m/len_class1)      

+ log((1/i)/len_class1  

         w_class0=w_class0 + log((len_class0/(len_class1+len_class0))) + log(m/len_class0) 

+ log((1/i)/len_class0)  

4. Summary Generation – Then, both probabilities of a sentence are compared and if 

probability for “class1” is greater than that for “class0”, that sentence is added to the final 

summary. 

if(w_class1>w_class0): 

        summary_sentences.append(sentence) 

print(len(summary_sentences)) 

summary = ' '.join(summary_sentences) 
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print(summary) 

 

4.2 Artificial Neural Network Model 

4.2.1 Training Phase 

In Training phase, algorithm is trained by using human generated summaries. Here humans 

according to their knowledge and logic creates a summary on which various training phase 

techniques are performed. 

 1. Collect and Load Data Set – A training data set is built of documents, D stored in a .csv 

file which is used by the algorithm to perform calculations. D= {d1, d2,…, d32} 

 2. Text Pre-processing –We clean the text and the human generated abstracted summaries 

by converting to lower, removing unwanted characters and replacing contractions by their 

lower forms. 

 3. Feature Extraction- In this vectorization is done. Vectorization is a process of converting 

string representation of data into vector representation. For this, we have used Global 

Vectors for Word representation (GLOVE) of 100d vector representation. 

4. Building the Model-  

 

Figure 14: Model [20] 

 

 Now, we used Bidirectional Recurrent Neural Network(RNN) with Long Short-term 

Memory(LSTM) for building our encoding layer. 
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Figure 15: Encoding Layer [20] 

 

Now, we built our training and inference decoding layers. 

 

Figure 16: Training Decoding Layer [20] 
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Figure 17: Inference Decoding Layer [20] 

 

Although it may seem that decoding layer is a bit complex, so it is preferable to break it 

down into 3 parts: 

 Decoding cell – 2 layer LSTM with dropout 

 Attention – It helps to train the model faster and to produce better results. 

 Getting logits 
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Figure 18: Decoding Layer [20] 

 

Now, the previous functions are ready to be used to build the model. 

 

Figure 19: Seq2seq Model [20] 
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5. Training the model 

The hyperparameters that we used to train our model. 

 

Figure 20: Hyperparameters [20] 

 

 



28 
 

 

Figure 21: Algorithm of Training Model [20] 

 

4.2.2 Testing Phase 

1. Selecting a document – We select a document from our dataset for which we have to 

generate summary. 

2. Prepare the text for the model- We converted “string representation” to “integer 

representation”. 

3. Apply the model  
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Figure 22: Algorithm of applying the model [20] 

 

4. Generation of summary 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER -5 

TEST PLAN 

Testing is a process to check and evaluate whether the results obtained from any model are 

accurate enough in comparison with the expected results. It also detects errors on running 

the model with different number of test cases to check whether how stable a model is. It 

also involves execution of system components to  evaluate needed properties. 

Software testing can be done in either of the two ways- White Box Testing or Black Box 

Testing. 

Different Levels of testing that can be applied are: 

1. Unit Testing- During this phase, the program is assessed on specific units or 

components involved in the system. In this white-box testing is usually applied to 

do unit testing.  

2. Integration Testing- In this phase, it allows the tester to group all the units together 

and then test them as one. It is performed to find the interface/links defect between 

the different functions. It is beneficial to calculate the effectiveness of all the units 

when run together. 

3. System Testing- In this phase, whole code is executed. Its aim is to check whether 

the complete program is able to run all the requirements of the user without any 

error or faults. It is very important as it checks all the functional, non-functional, 

technical requirements of the user. 

4. Acceptance Testing- This is this last phase of testing. Its main aim is to verify that 

whether the software is ready to be released for the use of user or not. In this phase, 

the user gets to check the model. At last validation is done, where all the test and 

levels are performed. 

Limitations-  
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 The main limitation of Naïve Bayes classifier is that it assumes any two features are 

independent of each other. But in real life, it is not possible. 

 The main limitation of ANN is that it is hardware dependent which means it requires 

processors with parallel processing power. 

Test Data Set- 

 T = { W1,1  W1,2 ……. W1,n} 

        { W2,1  W2,2…….. W2,n} 

        { Wm,1  Wm,2…… Wm,n} 

This is the matrix of text representation. In this form sentences or words appear 

after sentence tokenization is applied. 

 

Figure 23: Doc 1 for NB [6] 
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Figure 24: Doc 2 for NB [6] 
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Figure 25: Doc 1 for ANN [6] 
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CHAPTER -6 

RESULT AND PERFORMANCE ANALYSIS 

 

 

6.1 Result and Performance Analysis for Naïve Bayes Model 

 

For analysis of results and performance we have taken 2 documents here for which we 

will generate the summary. 

 

Figure 26, Figure 27 are sentence tokenization are for Doc 1, Doc 2 respectively. 

 

 

Figure 26: Sentence Tokenization of Doc 1 
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Figure 27: Sentence Tokenization of Doc 2 
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Figure 28, shows the sentence score for sentences of Doc 1, Doc 2. 

 

                        

Figure 28: Sentence Score of Doc 1 
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Figure 29: Sentence Score of Doc 2 
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With the proposed method we built the Naïve Bayes Classifier Model which when 

performed on the different bug reports generated following results. 

After summary is generate by our system, we have calculated precision, recall and f-score 

for comparing system generated summary and human generated summary. This will tell 

how accurate and precise our model is. 

 

Figure 30: Confusion Matrix for Precision, Recall, F-Score [21] 

 

 

Figure 31: Formulas for Precision, Recall, F-score [22] 

 

Figure 32, Figure 33 shows the summary generation and performance analysis 
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Figure 32: Summary Generation of Doc 1 

 

 

Figure 33: Summary Generation of Doc 2 
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6.2 Result and Performance Analysis for Neural Network Model 

All the given below results and performance analysis are for a single document. 

 

Figure 34: Mathematical Analysis of Data Set 
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Figure 35: epochs 
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Figure 36: Summary of Doc 1 through ANN 

 

Figure 37, represents the performance comparison i.e. F-score between both the models. 

And it is clearly reflected that Neural Network gives better value and hence is a preferred 

model for summary generation. 

 

 

Figure 37: Bar chart of F-score of both model 

 

 

 

 

 

 

 

63%

73%

58%

60%

62%

64%

66%

68%

70%

72%

74%

Naïve Bayes Neural Network

F-SCORE



45 
 

CHAPTER -7 

CONCLUSION 

 

In this report, we presented Naïve Bayes Model and Artificial Neural Network Model for 

generating summary for a document.  

For Naïve Bayes Model, we have compared the model’s summary with human generated 

summary by using Precision, Recall and F-Score. For our model, F-Score ranges from 60% 

to 75%. 

The varying difference in the f-score was because of the reason that human generating the 

summary was not an expertise on the topic chosen. If an expertise will be chosen f-score 

will increase. 
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