WEB APP FOR EXTRACTIVE TEXT SUMMARIZATION FOR
NEWS ARTICLES

Project report submitted in partial fulfilment of the requirement for the
degree of Bachelor of Technology

In

Computer Science and Engineering/Information Technology
By

(Bhaskar Sen, 171247)

Under the supervision of

(Dr. Amit Kumar)

To
¢ \NFOR
@)) M,q >
SNV RO,
Q! !," ,-.l'. __)\

e I

S f?%éﬁaféj , ﬁt}:
35 ' &=
4 s
by W’ S

'T.

°
I

e

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234.

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Web App Extractive

Text Summarization of News Articles” in partial fulfillment of the requirements for the
award of the degree of Bachelor of Technology in Computer Science and
Engineering/Information Technology submitted in the department of Computer Science

& Engineering and Information Technology, Jaypee University of Information
Technology Waknaghat is an authentic record of my own work carried out over a period

from August 2020 to December 2020 under the supervision of (Dr Amit Kumar)
(Assistant Proffesor(Senior Grade), Departmentt of CSE).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

)

(Student Signature)

Bhaskar Sen, 171247

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

—Z Ak)

(Supervisor Signature)

Supervisor Name: Dr Amit Kumar

Designation: Assistant Proffesor(Senior Grade)
Department name: Computer Science and Engineering
Dated:

ACKNOWLEDGEMENT

I would like to take the opportunity to thank and express my deep sense of gratitude to

my mentor and project guide Dr Pradeep Kumar Gupta for his immense support and

valuable guidance without which it would not have been possible to reach at this stage of

our final year project. I am also obliged to all my faculty members for their valuable

support in their respective fields which helped me in reaching at this stage of my
project.My thanks and appreciations also go to my colleagues who have helped me out

with their abilities in developing the project.

)

16 June 2021

Date: Bhaskar Sen

Table of Contents

Chapter | Topics Page Number
Number
Certificate i
Acknowledgement ii
List of Abbreviations v
List of Figures Vi
List of Graphs vii
List of Tables viii
Abstract ix
1 Introduction 1

1.1 Introduction 1
1.2 Problem Statement 1
1.3 Objectives 2
1.4 Methodology 2
1.5 Organization 3
2 Literature Survey 5
3 System Development 20
3.1 Analysis of various algorithms 20
3.2 Various computational approaches 23
3.3 Experimental Trials 24
3.4 Mathematical aspect of the approach 27
3.5 NetworkX 31
3.6 Matplotlib 32
3.7 Python 33
3.8 Spyder IDE 33
3.9 Jupyter Notebook 34

4 Performance Analysis 35

il

4.1 Analysis for GloVe word Embeddings 35
4.2 Analysis WF method 36
4.3 Results at various stages 37
4.4 Comparison between two methods 41
Conclusions 42
5.1 Conclusions 42
5.2 Future Scope 42
References 43
Appendicies 44

v

List Of Abbreviations

AggSim Aggregate-Similarity
BushyP Bushy

PathCueP Cue-Phrase

LexicalS Lexical-Similarity
NumData Numerical-Data
PropNoun Proper-Noun
SCentral Sentence Centrality
SenLength Sentence Length
SPosition Sentence-Position
ResTitle Resemblance-Title
TextRankS TextRank-Score
TFIDF TF/IDF

UpCase Upper-Case
WCOcurrency Word Co-Occurrence
WF Word Frequency

List of Figures

Figure Number Chapter Number
Figure 1 1
Figure 2 3
Figure 3 3
Figure 4 3

vi

List of Graphs

Figure Number Chapter Number
Graph 1 3
Graph 2 3

vil

List of Tables

Figure Number Chapter Number
Table 1 3
Table 2 3
Table 3 3
Table 4 3

vil

Abstract

Text summarization is the process of creating a shorter version of the text with only vital
information and thus, helps the user to understand the text in a shorter amount of time.
The main advantage of text summarization lies in the fact that it reduces user’s time in

searching the important details in the document.

There are two main approaches to summarizing text documents —

Extractive Method: It involves selecting phrases and sentences from the original text and

including it in the final summary.
Example:

Original Text : Python is a high-level, interpreted, interactive and object-oriented

scripting language.Python is a great language for the beginner-level programmers.

Extractive Summary : Python is a high-level scripting language is great language

for beginner-level programmers.

Abstractive Method: The Abstractive method involves generating entirely new phrases

and sentences to capture the meaning of source document.
Example:

Original Text : Python is a high-level, interpreted, interactive and object-oriented

scripting language.Python is a great language for the beginner-level programmers

Abstractive Summary : Python is interpreted and interactive language and it is easy

to learn.

Abstract

Text summarization is the process of creating a shorter version of the text
with only vital information and thus, helps the user to understand the text

in a shorter a nt of ime.The main advantage of text summarization lies
in the fact that it reduces user’s time in searching the important details in

the document.There are two main approaches to summarizing text
documents —

Extractive Method: It involves selecting phrases and sentences from the
original text and including it in the final summary. Example:
Original Text : Pythonis a high-level, interpreted, interactive and
object-oriented

scripting language.Python is a great language for the beginner-level
programmers.

Extractive Summary : Python is a high-level ipting language is

great language for beginner-level programmers.

Abstractive Method: The Abstractive method involves generating
entirely new phrases and sentences to capture the meaning of source
document. Example:

Original Text : Python is a high-level, interpreted, interactive and
object-oriented scripting language.Python is a great language for the
beginner-level programmers

Abstractive Summary : Python is interpreted and interactive
language and it is easy to learn.

Chapter 1 Introduction

1.1 Introdugtion:
The quantity of information on the internet is massively increasing and gigantic
volume of data with numerous compositions accessible openly online become
more widespread. It is challenging nowadays for a user to extract the information
efficiently and smoothly. As one of the methods to tackle this challenge, text
summarization process diminishes the redundant information and retrieveg the
useful and relevant information from a text document or any news article to form
a compressed and shorter version which is easy to understand and time-saving
while reflecting the main idea of the discussed topic within the document. The
approaches of automatic text summarization earn a keen interest within the Text
Mining and NLP (Natural Language Processing) communities because itis a
laborious job to manually summarize a text document. Mainly there are two types
of text summarization, namely extractive based and abstractive based. We have
used .”Text-Rank” algorithm which is derived originally from the “Page-Rank”
algorithm, to generate an extractive summary of the text. We have used text from

different news articles as the input.

1.2 Problem Statement:

We need to summarize the text of any given article which is used as input to our
model. The text should be in English language only. The summary generated is an

extract of the actual text and uses the Text-Rank algorithm.

1.3 ObiECtiéif s):

1. Import all necessary libraries.
2. Generate clean sentences.

3. Generate Similarity matrix

4. Generate Summary Method

1.4 Methodology:

We have used the TextRank algorithm for our model. TextRank is an extractive

and unsupervised text summarization technique. Let’s take a look at the flow of

the TextRank algorithm that we will be following:

combine split

- Text # Sentences - Vectors

{

Sentence — Similarity
Rankings - el Matrix

Fig 1

1. The first step would be to concatenate all the text contained in the articles

2. Then split the text into individual sentences

3. In the next step, we will find vector representation (word embeddings) for
each and every sentence

4. Similarities between sentence vectors are then calculated and stored in a
matrix

5. The similarity matrix is then converted into a graph, with sentences as
vertices and similarity scores as edges, for sentence rank calculation

6. Finally, a certain number of top-ranked sentences form the final summary

Chapter 2 Literature Survey

|1] Rada Mihalcea, Department of Computer Science and Engineering University of

North Texas. In her paper, “Language Independent Extractive Summarization”

quotes:
TextRank is a kind of unsupervised class of algorithms that is used for
extractive summarization. It uses method of iterative network-ranking
methods to encode the n'Ey connected nature of texts. Another vital
nature is that it dependent on any prior language-specific knowledge or any
training data, and hence this makes it highly portable across various

languages.

Living in an age of large data intensive articles and images, on the Web and
elsewhere, methods for efficient summarizing the text database is essential

to broaden the reach of such intensive information. Methods for extractive
summarization are typically based on sentence scoring, and try to weigh the
sentences that are most important for the interpretation of a given article.

The more efficient and better methods of extractive summarization use
supervised algorithms that learn what makes a better summary from
training set of summaries built om a relatively large number of training
documents,However, the cost of the of such supervised algorithms lies in
their limitaion adapt to other languages and domains,. TextRank is
addresses this problem, by employing an extractive summarization method
that does not require any training data or any language oriented deductions.
TextRank can be used for summarizing texts in various languages without
making any changes in the methods and without any additional knowledge.

Extractive Summarization:

Ranking processes, such as Kleinberg’s HITS algorithm or Google’s
PageRank are being generally used in link articulation, i.e, a network-
based ranking algorithm , considering all the present data constantly ranked
from the enﬁ network, rather rather than always using a local node-
specific point. Ranking model is for voting or recommendation. When 1node

ints to another one, it is adding a vote for that other node. Greater
number of votes that are cast for a node, more is the rank(importance) of

the node.

These network ranking algorithms are based on a random walk model,
wherein a crawler takes shifts over the network, such walk is known as a
Markov process — i.e, the decision on what relation to choose is completely
based upon the node where the crawler is currently at. Mostly, This model
rests to a constant distribution of probabilities associated with nodes in the
network, i.e the probability of locating the crawler at a certain node in the
network. Based on the theorem for Markov chains, the are guaranteed to
rest if the network is not any further reducible and does not show any
periodic properties. The first is find any network that is a non-bipartite
network, while the 2™ holds for any well connected network. Both these are
achieved in the networks for the extractive summarization application

implemented in TextRank.

Given a directed network S =(V, E) with In (Vi) denoting the set of nodes
that point towards a node Vi, and Out(Vi) denoting the set of nodes
that node Vi points outwards ,the textrank score associated with each
node defined as:

PR(V;)
PR(Vi)=(1—d) +d» § |“'”-‘.-] (1)
'}]

V;eln(V;)

where d is a damping factor that is set between 0 and 1 ,includes random

probing into the random walking model. Arbitrary values are assigned to
each node in the network, the method iterates until reaches below a given
threshold. Afterwards a score is given to each node, which is weightage of
that node within the network. The final scores are not changed by the
choice of starting node, only the number of iterations may be different.

When the networks is built using natural language texts, it is always

profitable to add into the network model the associated inter-weights of the

relation between two nodes V;and V;_ such as a weight w; in the relation in

between nodes . The scoring process is hence :

!Ii)ﬂll'J
PRV (V) = (1—d)+dx Y w Ll L

Jh ~
S Wi 4
v

V;eln(V; Vi€Out(V;)

For case of a singular text extractive summarization, the motive is to rank

the sentences in a given article wrt. Their contribution for the overall
meaning of the text. A network is therefore made by considering node for

each sentence in the article, and relations between nodes are formed using
sentence contextual-relations. These relations are formed using a similarity
relation, “similarity” can be called as a function of contextual overlay.
Relation between two sentences can considered as a voting process: a

sentence delivers some meaning to reader, gives the reader a vote for other
sentences in the text that have the same meaning, and hence similarity can

be found between those two sentences.

The similarity inbetween two sentences can be found by looking at the
number of common lexical tokens between grammatical representations of
sentences, it can be also be passed through other functions that remove
stopwords, count only words of a certain category, etc. Also, to not to

include long sentences, we can use ormalization, and divide the
meaningful sentences with their span. The resulting network is highly

bonded, with a mass associated with each relation, indicating the strength
of the relation between various sentence pairs in the text.

TextRank Algorithm:

The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is

the size of input text file) to generate a more comprehensive summary of the document.

The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is

the size of input text file) to generate a more comprehensive summary of the document.

The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is

the size of input text file) to generate a more comprehensive summary of the document.

PR T wg :wr € S; ANwy €5

Sim(S;,S;) = [{wn A' ’ . : i}
' log(|Si|) + log(]|S;])

|3] Chirantana Mallick, A jit Kumar Das, Madhurima Dutta, Asit Kumar Das and

Apurba Sarkar in their paper,“Graph-Based Text Summarization Using Modified
TextRank”, quote:

Since, the amount of data that is present on the internet is rapidly increasing day by day,
we need some good algorithms to find and extract the useful piece of information from

this huge amount data.

Data can be anything from photos, videos. Music. Spreadhsheets. Etc. This paper
primarily focuses on an Algorithm that uses ‘Graphs’ to summarize ‘Text’ form of data.
A graph is generated between the sentences using,

Node: The sentence itself.

Edge: The similarity between two sentences.

Text summarization, reatins the origanl essence of the text while ingoring the least

significant words in the original text.

They’re two major summarization techniques. Known as:
Abstractive

Extractie.

Abstractive as the name suggests, is summarization in which we add our own grammar in
the summarized text. Summarized text may or may not conatin the orignal phrases from
the input text, wherears Extractive summarization uses only the original components in
the text.

Abstractive is always preffered because of the face that it creates more huma-readable
summaries.

Abstractive text summarization also retains the emotions of the author.

The other form of classifications is:

Indicative.

Informative.
Indicative Summary uses the main topics of the whole text as the summarized output
where as Informative Summary emphasis on [Emeaning, and paraphrase of the text.
Informative summaries are generic in nautre. Query-oriented summaries generate a query

set that reflects user’s interest.

Intermediate Representation:
Even for the simplest summarizer, intermediate representation is necessary.

It involves the TF-IDF appraoch and topic word apporach.

TF stands for Term Frequency.

F stands for Inverse Document Fregency.
The topic representation of topic-word approaches consists of a simple list of words and
their corresponding weights where higher weighted words are considered as indicative
topic words. There are garph based dels in which the whole set of setences are
represented by a graph. Eg: LexRank, In indicator representation approaches, the input
text document is represented as a list of indicators of such as sentence length, presence of

certain phrases pertaining to the theme of the document, location in the document.

Score Sentences:

After the sentences are converted, they're given a special score usng the algorithms
priority.

Algo such Text-Rank are used in this case.

Selecting Summary Sentences:
A matrix is thus created in which all the sentences are used in order of the score.

Then top N sentences are used to generate the summary.

|[4]Rahim Khan, Yurong Qian, Sajid Naeem School obgoftware, Xinjiang
University, Urumgqi 830008, China, in their paper , “Extractive based Text

Summarization Using K-Means and TF-IDF” quote:

Since, the amount of data that is present on the internet is rapidly increasing day by day,
we need some good algorithms to find and extract the useful piece of information from

this huge amount data.

It is moving these days for a client to extricate the data productively and easily. As one of

the strategies to handle this test, text outline measure decreases the repetitive data and
recovers the helpful and applicable data from a book report to shape a packed and more
limited variant which is straightforward and efficient while mirra’ing the principle thought

of the talked about subject inside the record. The approaches of automatic text
summarization earn a keen interest within the Text Mining and NLP (Natural Language
Processing) communities because it is a laborious job to manually summarize a text

document.

The huge amount of data is rapidly increasing because of the availbility of cheap internet

and free copy-right free text, audio and video files.

HLT(Human Language Technology) enables users/humans to interct with the machine.
But since the size of data is rapidly incerasing, It becomes very difficult to cope with this

huge amount of data.

They’re major two algorithms which deal with summariazation. One of them being with
the use of TF-IDF and K-means clustering.

The approach has been discussed in the paper with great detail.

[5] “What is a simple but detailed explanation of Textrank?” answered by, Luis

Argerich, Professor of Data Science at the University of Buenos Aires. (UBA).

A non-numerical way to deal with TextRank (or construct your own content summarizer

without networks)

Disclaimer: I will give an extremely basic yet exact portrayal of the calculation in light of

the fact that the client mentioned it.

In light of that, here we go:

The fundamental ght of TextRank is to give a score to each sentence in a content, at
that point you can take the top-n sentences and sort them as they show up in the content to

assemble a programmed outline.

In the event that you apply it to the rundown of Star Wars 7, the power stirs and confine it

to only one sentence it makes:

"Kylo Ren faces Finn and Rey in the cold timberland."

Which is quite great. So how about we perceive how to do that.

The initial step is obviously to separate all the sentences from the content. This can be as
basic as parting the content at "." or newlines or more intricate in the event that you need
to refine precisely what a sentence is. Parsers are rarely ended, they are simply
surrendered. When you have all the sentences in the content you need to fabricate a
diagram, in the chart each sentence is a hub and you put joins from each sentence to all
others or to the k-most comparative sentences weighted by likeness. This is the place
where I will allow you to utilize your imagination since you need to characterize a
closeness score between two sentences, it tends to be a such thing as number of words in
ike manner over the all out number of words or a perplexing equation, this is the place
where you will invest the greater part of your energy to "tune" textrank to function

admirably for whatever you are attempting to sum up. Be careful: Different similitude

scoring capacities will drastically change the consequence of TextRank.

When you have the weighted chart you need to run PageRank on it, since you are
disclosing to us you are confounded by the mathematical 1 will give a straightforward

estimation to PageRank.

Execute irregular strolls over the chart, in every arbitrary walk you start from an arbitrary
hub, from that hub dependent on the loads you select an arbitrary neighbor, etc. For
instance on the off chance that you are in hub "A" (recall every hub speaks to a sentence)
and your neighbors and loads are "B"(0.65) "C"(0.04) "D"(0.27) at that point you can

process the likelihood of going from A to every one of those hubs as:

So you roll an arbitrary number from 0 to 1 and relying upon the likelihood of each
connection you go to B, C or D. For this situation you are probably going to visit B from

A.

A=B= 0.65
0.65+.0 .04+.027

Ao 004
0.65+.0 .04+.027

A=D 0.27

T 0.65+.0.04 +.027

10

One issue with this methodology is that you need to choose the length of each walk and
the quantity of strolls to execute. There's a rich answer for this issue. Simply do a solitary
huge irregular walk , at each progression with likelihood beta you visit a neighbor and
with likelihood 1-beta you arbitrarily leap to any arbitrary hub, which is an approach to

reenact the beginning another walk. Beta is ordinarily around 0.85.

As you execute your irregular walk add 1 to the score of a sentence each time you visit it.

Toward the end you can sort the sentences by the occasions you visited them and you
have your sentences positioned. Simply take the top-n sentences as per the pattern in

which as they show up in the content and you have a rundown.

With this methodology you have an approach to program TextRank without doing any
math and without utilizing frameworks, you simply need your chart and a capacity to

process the closeness between sentences.

What is behind:

What TextRank does is exceptionally basic: it discovers how comparative each sentence

is to any remaining sentences in the content. The main sentence is the one that is
generally like all the others, in light of this the closeness capacity should be arranged to

the semantic of the sentence, cosine comparability dependent on a sack of words
approach can function admirably and BM25/BM25+ work actually pleasantly for
TextRank.

In the event that you separate words rather than sentences and follow a similar
calculation, utilizing a comparability work between words then you can utilize TextRank

to remove watchwords from the content, the thought is that the word that is generally like

the wide range of various words is the main one. Separating stop-words is significant

here.

Boundaries:

11

. The content you are summing up.

. The number of sentences to use in the outline,

. Which closeness work use to think about sentences.

. The length of your irregular walk.

. Beta.

. Best of luck!

12

Chapter 3

SYSTEM DEVELOPMENT

3.1 Analysis of various algorithms available:

Text Summarization focuses on a more concise representation of the document in text
format with loosing minimal possible information .On a broad spectrum of various TS
algo. , most of them are either Extractive or Abstractive in nature.

Extractive methods, try to produce the summary using the sentences that are already
present in the document. The summary includes the sentences that found represent the
most of the information and puts them together. Here some method to rank or weigh the

importance of the sentences are implicit to every Exte. Method.

Abstractive methods attempt to improve the semantic between the sentences, or it may

even produce SOmMe new ones.

The Abst. Methods are still a hot topic of research and new algo. of such class are bound
to come up in future.

Our project aims to produce an extractive summary of the given source text

tractive methods are usually performed in three stps:

(i) Create an intermediate representation of the original text;

(ii) Sentence scoring

(iii) Selecting a summary consisting of several sentences.

Diverse setting of the wellspring of text a few procedures may yield preferable outcome
over different techniques, subsequently it is astute to characterize a couple of classes of
text sources to address this issue. Extensively a content source can be arranged either as a

news story, research article or a blog.

Out of these the wellsprings of writings our task would be more one-sided to deliver a

more effective synopsis for news stories and websites than research papers.

13

3.2 Various computational approaches towards extractive text summarization:
This part is partitioned into:

(I) sentence scoring techniques depiction and how we execute it

(ii) the instrument that gives a simple mix of these techniques

(iii) the framework stream of exercises.

. Scentence scoring strategies:
Fifteen of the most well known sentence scoring strategies are utilized here.
A short review of every one of them and their usage subtleties are introduced here. By
d large, sentence scoring techniques are arranged by three classifications:
Word-based Scoring, Sentence-based Scoring and Graph-based Scoring. Notice that all
administrations give as a yiel:ﬁl score somewhere in the range of 0 and 1 for each

sentence. A few usage utilize a score standardization step.

1)Word-based Scoring: The primary strategies utilized for sentence scoring depended on
word scoring. In such methodologies, each word gets a score and the heaviness of each
sentence is the amount of all scores of itﬁconstituent words. The main word-based
scoring strategies are recorded beneath. Lexical Similarity: It depends on the presumption
that the significant sentences are recognized by solid chains; Upper Caseéhjs strategy
allots higher scores to words that contain at least one capitalized letters; Proper Noun:
This technique guesses that sentences that contain a higher number of formal people,
places or things are potentially more significant than others. Word Frequency: As the
name of the technique sug-gests, the more every now and again a words happens in the
content, the higher its score; TF/IDF: It utilizes TF/IDF recipe [4] to score sentences;
Word Co-event: gauges the likelihood of two terms in a content to show up close by each

otherin a specific request;

1

2)Sentence-based Scoring: This methodology examines the highlights of the sentence
itself, for example, the presenﬁ of sign articulations. It was utilized without precedent for
1968 [5]. The main strategies that follow this thought are depicted below.Cue-Phrases: by

L e L} 1"

and large, the sentences began by '"in", "taking everything into account", "our

14

examination", "the paper portrays" and underlines, for example, "thebest", "the most
significant", "as per the investigation", "essentially", "significant", "specifically",
"scarcely", "outlandish" just as space explicit eﬁtra expressions terms can be acceptable
pointers of critical substance of a book report; Sentence Position: The situation of the
sentence all in all effects on its signiﬁcance.ﬁor instance, the main sentences will in
general come toward the start of an archive; Sentence Resemblance to the Title: Sentence
resemblanceto the title is the jargon cover between this sentence and the report title;
Sentence Centrality: Sentence centrality is the jargon cover between a sentence and
different sentences in the record; Sentence Length: This element is utilized to punish
sentences that are either excessively short or long; Sentence Inclusion of Numerical Data:

Usually the sentence that contains mathematical information is a significant one and it is

probably going to be remembered for the report synopsis.

3) Graph-based Scoring: In chart based strategies the score is produced by the
relationship among sentences. At the point when a sentence alludes to another it produces

a connection with a related

weight between them. The heaps are used to create the scores of a sentence. Text Rank: It
removes the critical watchwords from a book chronicle and morecover chooses the
substantialness of the "noteworthiness" of words inside the entire report by using an

outline based model ;Bushy Path of the Node: The tough method of a center (sentence) on

a guide is portrayed as the amount of associations interfacing it to various center points
(sentences) on the guide; Aggregate Similarity: Instead of counting the amount of
associations partner a center point (sentence) to various centers (Bushy Path), complete
comparability sums the heaps (resemblances) of the associations. B.Combining Sentence
Scoring Methods Two better methodologies for combining the sentence scoring

techniques are proposed:

(i)By Ranking: Every assistance Hlooses the fundamental sentences and the client
consolidates it by one way or another; and By Punctuation: The administration scores

each sentence and returns one sentence with refreshed scores. To improve reusability and

to ease administration launchtheTemplate Method configuration design was executed.

Al lthe strategies actualized in this module broaden the sentence scoring unique class.

There are four techniques in this class:

15

(i)sentence Scoring Ranking: A theoretical strategy to execute the sentence scoring
technique. The yield is a string list with sentences proposed to be remembered for the
synopsis;

(ii)sentence Scoring Punctuation:An dynamic strategy to execute the sentence scoring
technique. The yield is a rundown of sentences with the technique scoring set;
(iii)template Sentence Scoring Ranking: The solid strategies which play out some pre

and post preparing prior to calling the sentenceScoringRanking dynamic technique;
(iv)template Sentence Scoring Punctuation: The solid strategies which play out ome

pre and post preparing prior to calling the sentenceScoringPuntiation dynamic strategy.

The initial two techniques typify the principle part of the administration. Subsequently, all
administrations must execute them. The layout SentenceScoringRanking and
tempﬁteSentenceScoringPunmation techniques execute the Template Method. Moreover,

the Factory Method plan pattern[6] is utilized to make cases of sentence scoring
administrations. In the current case such method is utilized to start up any assistance. The
client doesn't have to realize which class executes the administration. A casa's made in
response to popular demand to the industrial facility utilizing the technique name. For

instance, to make an occurrence of the WordFrequency class, it is important to demand it

to the processing plant by utilizing the string "word recurrence".

3.3 Experimental trials:

1.Implementing textrank calculation on GloVe word embeddings:

GloVe word embeddings are vector portrayal of words. These word embeddings will be
utilized to make vectors for our sentences. We might have additionally utilized the Bag-
of-Words or TF-IDF ways to deal witlunake highlights for our sentences, yet these
strategies overlook the request for the words (and the quantity of highlights is generally
beautiful large).We will utilize the pre-prepared Wikipedia 2014 + Gigaword 5 GloVe

vectors
The subsequent stage is to discover similitudes between the sentences, and we will uﬂize

the cosine closeness approach for this test. We should make a vacant similitude grid for

this undertaking and populate it with cosine likenesses of the sentences.

16

We should initially characterize a zero network of measurements (n * n). We will instate

this grid with cosine likeness scores of the sentences. Here,n is the quantity of sentences.

élmp]ementing Textrank algoritm on Word frequency vectors:

This approach weights the important part of sentences and uses the same to form the
summary. Different algorithm and techniques are used to define weights for the sentences
and further rank them based on importance and similarity among each other.

Input document — sentences similarity — weight sentences — select sentences with
higher rank.

The limited study is available for abstractive summarization as it requires a deeper
understanding of the text as compared to the extractive approach.

Purely extractive summaries often times give better results compared to automatic
abstractive summaries. This is because of the fact that abstractive summarization methods
cope with problems such as semantic representation,

inference and natural language generation which is relatively harder than data-driven
approaches such as sentence extraction.

There are many techniques available to generate extractive summarization. To keep it
simple, I will be using an unsupervised learning approach to find the sentences similarity
and rank them. One benefit of this will be, you don’t need to train and build a model prior
start using it for your project.

It’s good to understand Cosine similarity to make the best use of code you are going to
see. Cosine similarity is a measure of similarity between two non-zero vectors of an inner
product space that measures the cosine of the angle between them. Since we will be
representing our sentences as the bunch of vectors, we can use it to find the similarity
among sentences. Its measures cosine of the angle between vectors. Angle will be 0 if

sentences are similar.

3.The Textrank anrithm:

Prior to beginning with the TextRank calculation, there's another calculation which we

should get comfortable with — the PageRank calculation. Truth be told, this really
propelled TextRank! PageRank is utilized essentially for positioning website pages in

online indexed lists. We should rapidly comprehend the rudiments of this calculation with

the assistance of a model.

17

1
> |\
o+ N
1 —
Tl T w9 T _
2 2 | 10
6
6 |\ N
N _?———* AL
‘ A
6
gerank algorithm:A visual representation
Assume we have 4 site pages — w, w2, w3, and w4. These pages confain joins

highlighting each other. A few pages may have no connection — these are called hanging

pages.
webpage links
w1l (w4, w2]
w2 (w3, wi] Fig 3
w3 []
w4 (wi]

Site page wl has joins coordinating to w2&nd w4 w2 has joins for w3 and wl
w4 has interfaces just for the page wl w3 has no connections and henceforth it will be
known as a hanging page In request to rank these pages, we would need to register a score

called the PageRank score. This score is the likelihood of a client visiting that page.

To catch the probabilities of clients exploring starting with one page then onto the next,

we will make a square grid M, having n lines and n sections, where n is the quantity of

pages.

18

wil w2 w3 w4

wl

w3

w4

Fig 4 |

Every component of this framework signifies the likelihood of a client changing starting

with one site page then onto the next. For instance, the featured cell beneath contains the

likelihood of progress from w1 to w2.

wl w2 w3 wd

wl
M= w2 P(w1l to w2)
w3

w4

The initialization of the probabilities is explained in the steps below:

Probability of going from page i to j, i.e., M[i][]], is initialized with 1/(number of
unique links in web page wi)

If there is no link between the page i and j, then the probability will be initialized with 0
If a user has landed on a dangling page, then it is assumed that he is equally likely to

transition to any page. Hence, M[i][j] will be initialized with 1/(number of web pages)
wl w2 w3 wa
wil 0 0.5 0 0.5
w2 0.5 0 0.5 0
w3 | 0.25 | 0.25 | 0.25 | 0.25
w4 1 0 0 0

=
n

Fig 6

Hence, in our case, the matrix M will be initialized as follows
At last, the qualities in this network will be refreshed in an iterative design to show up at
the site page rankings. TextRank Algorithm Let's comprehend the TextRank calculation,
since we have a grip on PageRank. I have recorded the likenesses between these two
calculations underneath: instead of pages, we use sentences Similarity between any two

sentences is utilized as a comparable to the website page progress likelihood The

19

comparability scores are put away in a square lattice, like the network M utilized for
PageRank TextRank is an extractive and unaided content outline strategy. We should
investigate the progression of the TextRank calculation that we will be after: The initial
step is link all the content contained in the articles Then split the content into singular
sentences In the following stage, we will discover vector portrayal (word embeddings) for

every single sentence

Similitudes between sentence vectors are then determined and put away in a lattice. The
closeness network is then changed over into a diagram, with sentences as vertices and
likeness scores as edges, for sentence rank calculation.Finally, a specific number of

highest level sentences structure the last synopsis.

3.4 Mathematical aspe&of the approach:
Cosine closeness is a measurement used to gauge how comparative the archives are
regardless of their size. Numerically, it quantifies the cosine of the point between two
vectors extended in a multi-dimensional space. The cosine closeness is beneficial in
light of the fact that regardless of whether the two comparative reports are far separated

by the Euclidean distance (because of the size of the archive), odds are they may in any

case be situated nearer together. The more modest the point, higher the cosine

comparability.

A normally utilized way to deal with coordinate comparative archives depends on
tallying the greatest number of regular words between the reports. In any case, this
methodology has a natural imperfection. That is, as the size of the archive builds, the
quantity of basic words will in general increment regardless of wheaer the reports talk
about various points. The cosine likeness beats this central blemish in the 'tally the-

normal words' or Euclidean distance approach.

Cosine likeness is a measurement used to decide how comparative the reports are
independent of their size. Numerically, it gauges the cosine of the point between two
vectors extended in a multi-dimensional space. In this unique situation, the two vectors

I am discussing are exhibits containing the word tallies of two records.

20

As a likeness metric, how does cosine closeness contrast from the quantity of basic
words? At the point when plotted on a multi-dimensional space, where each
measurement relates to a word in the report, the cosine closeness catches the direction
(the point) of the records and not the extent. On the off chance that you need the size,
process the Euclidegn distance all things considered. The cosine closeness is invaluable
on the grounds that regardless of whether the two comparative archives are far
separated by the Euclidean distance in light of the size (like, the word 'cricket' seemed
multiple times in a single report and multiple times in another) they could in any case
have a more modest point between thcm.glorc modest the point, higher the similitude.
Illustration of cosine vector computation Let's guess you have 3 archives dependent on
a few star cricket players — Sachin Tendulkar and Dhoni. Two of the records (A) and
(B) are from the wikipedia pages on the particular players and the third report. (C) is a
more modest piece from Dhoni's wikipedia page.

As should be obvious, each of the three archives are associated by a typical topic — the

sport of Cricket. Our goal is to quantitatively gauge the comparability between the

archives.

-

Qb Yhab
lall Il /3 a? /352

where, @ - b = Yiab;=aby +ayby + -+ +a,b, is the dot product of the two vectors.

Cosf) =

Dhor

Dac Sachin: Wiki page o Sachin Tendulkar Do Dhoni: Wiki page on Dhoni ‘ ‘ow Ohoni_Smail: Subsection of wiki on Drml‘
Dhoni - 10 Dhe 400 o

Document - Term Matrix (Word Counts) Simitarity Metrics
Word G | Dhanr oo . el '.' i il i
" 0 200 “ i e s
400 w0 L 0 s e [E)
w s 1 ke anns arr

For ease of understanding, let’s consider only the top 3 common words between the

21

records: 'Dhoni', 'Sachin' and 'Cricket’. You would anticipate Doc An and Doc C, that is
the two reports on Dhoni would have a higher likeness over Doc An and Doc B, since,
oc C is basically a bit from Doc An itself. Be that as it may, in the event that we pass
by the quantity of normal words, the two bigger records will have the most well-known
words and consequently will be decided as generally comparable, which is actually

what we need to stay away from.

The outcomes would be more consistent when we utilize the cosine closeness score to

evaluate the comparability.

Projection of the archives in a 3-dimensional space, where each measurement is a
recurrence tally of either: 'Sachin', 'Dhoni' or 'Cricket'. At the point when plotted on this

space, the 3 archives would show up something like this.

Projection of Documents in 3D Space

'Cricket' Axis
(Y)

Doc Dhoni

Doc Dhoni_Small Fig 8

Euclidean
Distance

-

- = Ll
\Muslanm -~ '‘Dhoni' Axis
Cos®) .)

‘Sachin’ Axis
()
The X, Y and Z axes represent the word
counts of the words ‘Dhoni’, *Sachin’ and
‘Cricket’ respectively.

Doc Sachin

Au can see, Doc Dhoni Small and the fundamental Doc Dhoni are situated nearer
together in 3-D space, despite the fact that they are far separated by magnitiude. It ends

up, the closer the records are by point, the higher is the Cosine Similarity (Cos theta).

22

As we include more words from the document, it’'s harder to visualize a higher
dimensional space. But you can directly compute the cosine similarity using this math
formula. 3.4 Statistical analysis and method of choice:

The two of above mentioned mehod in 3.3 only differ by the methodof calculating the

B T e e T

Fig 9

vectors. We chose the second method (word frequency)method since it is more suitable
for news article and less demanding in terms of resources as compared to GloVe word
embeddings.

We have utilized python to execute the bit for tis venture.

1.Using GloVe word embeddings in python to make the vectors:

2.NLTK Libraries:

NLTK is a main stage for building Python projects to work with human language
information. It gives simple to-utilize interfaces to more than 50 corpora and lexical

assets, for example, WordNet, alongside a set-up of text handling libraries for
characterization, tokenization, stemming, labeling, parsing, and semantic thinking,
coverings for mechanical strength NLP libraries, and a functioning conversation
gathering.

NLTK has been classified "an awesome instrument for instructing, and working in,
computational etymology utilizing Python," and "an astonishing library to play with

characteristic language."
Normal Language Processing with Python gives a handy prologue to programming for

language handling. Composed by the makers of NLTK, it directs the peruser through the

basics of composing Python programs, working with corpora, sorting text, breaking down

23

phonetic structure, and that's just the beginning. The online variant of the book has been

refreshed for Python 3 and NLTK 3.

A couple of essential elements of nltk include:

a.Tokenize and label some content :

»>> import mltk
»>»>» sentence = """At eight o'clock on Thursday morning

. Arthur didn't el very good.™""

»»>> tokens = nltk.word_tokenize(sentence)

=>> tokens

['At*, 'eight', "o'clock®, ‘on’, ‘Thursday', 'morning",
‘Arthur®, 'did', "n't®, ‘feel', 'very', 'good", '.'l
»>> tagged = nltk.pos_tag(tokens)

=>> tagged([8:6]

[(*At', 'IN'), (‘eight', 'CD'}, (*o'clock*, *2J'), ('on', 'IN'),
{'Thursday®, 'NNWP'], (‘morning‘, ‘NN'}]
>>> from nltk.corpus import treebank Fig 10

>»> t = treebank.parsed_sents('wsj_0661.nrg')[0]

>>> t.drawl()

b.Display a parse tree :

8
I —— T —— —
w
NP w0 [
f”"\. — ‘___ e —

NNP NNP (] NP PP-CLR NP-TMP
| A P N
in OT NN N NP NNP CD

| | | T |
(1] i or W NN
'
5 NetworkX :

We have utilized python to execute the bit for tis venture.

1.Using GloVe word embeddings in python to make the vectors:

2.NLTK Libraries:

NLTK is a main stage for building Python projects to work with human language
information. It gives simple to-utilize interfaces to more than 50 corpora and lexical

assets, for example, WordNet, alongside a set-up of text handling libraries for

characterization, tokenization, stemming, labeling, parsing, and semantic thinking,

24

coverings for mechanical strength NLP libraries, and a functioning conversation
gathering.
NLTK has been classified "an awesome instrument for instructing, and working in,
computational etymology utilizing Python," and "an astonishing library to play with
characteristic language."
Normal Language Processing with Python gives a handy prologue to programming for
language handling. Composed by the makers of NLTK, it directs the peruser through the
basics of composing Python programs, working with corpora, sortilﬁ text, breaking down
phonetic structure, and that's just the beginning. The online variant of the book has been
refreshed for Python 3 and NLTK 3.
A couple of essential elements of nltk include:
a.Tokenize and label some content :
3.6 Matplotlib :

Matplotlib is a Python 2D plotting library which produces distribution quality figures in

an assortment of printed version designs and intelligent conditions across stages.

Matplotlib can be utilized in Python contents, the Python and IPython shells, the

Jupyter journal, web application workers, and four graphical Ul toolboxs.

Matplotlib attempts to make simple things simple and hard things conceivable. You can
produce plots, histograms, power spectra, bar graphs, errorcharts, scatterplots, and so
on, with only a couple lines of code. For models, see the example plots and thumbnail

display.

For basic plotting the pyplot module gives a MATLAB-like interface, especially when

joined with IPython. For the force client, you haye full control of line styles, text style

properties, tomahawks properties, and so forth, through an item situated interface or by
means of a bunch of capacities natural to MATLAB clients

6.Language and Environment :

Conda:

25

Bundle, reliance and climate the executives for any language—Python, R, Ruby, Lua,

Scala, Java, JavaScript, C/C++, FORTRAN, and that's only the tip of the iceberg.

Conda is an open source bundle the executives framework and climate the&ard

framework that sudden spikes in demand for Windows, macOS and Linux. Conda

rapidly introduces, runs and updates bundles and their conditions. Conda effectively

makes, spares, loads and switches between conditions on your neighborhood PC. It was

made for Python programs, yet it can bundle and disperse programming for any
language. Conda as a bundle director causes you discover and introduce bundles. On

the off chance that you need a bundle that requires an alternate form of Python, you

don't have to change to an alternate climate director, on the grounds that conda is

likewise a climate administrator. With only a ple orders, you can set up an
absolutely isolated climate to run that distinctive form of Python, while proceeding to

run your typical adaptation of Python in your ordinary climate.

In its default design, conda can introduce and deal with the thousand bundles at
repo.anaconda.com that are fabricated, assessed and kepf up by Anaconda®. Conda can
be joined with constant mix frameworks, for example, Travis CI and AppVeyor to give
successive, mechanized testing of your code. The conda bundle and climate director is
remembered for all adaptations of Anaconda and Miniconda. Conda is additionally
remembered for Anacoﬂa Enterprise, which gives nearby undertaking bundle and
climate the executives for Python, R, Node.js, Java and other application stacks. Conda
is additionally accessible on conda-produce, a network channel. You may likewise get
conda on PyPl, however that approach may not be as modern.

3.7 Python:

Python is a deciphered, significant level, universally useful programming language. Made

by Guido van Rossum and first delivered in 1991, Python's plan theory accentuates code

lucidness with its striking utilization of huge whitespace. Its language builds and article

arranged methodology mean to assist software engineers with composing, intelligent code

for little and enormous scope ventures.

Python is powerfully composed and trash gathered. It bolsters various programming ideal

models, including procedural, object-situated, and practical programming. Python is

26

frequently portrayed as a "batteries included" language because of its complete standard

library.

a Spyder IDE :
Spyder is a powerful scientific environment written in Python, for Python, and designed

by and for scientists, engineers and data analysts. It offers a unique combination of the
advanced editing, analysis, debugging, and profiling functionality of a comprehensive
development tool with the data exploration, interactive execution, deep inspection, and
beautiful visualization capabilities of a scientific package.

Beyond its many built-in features, its abilities can be extended even further via its plugin
system and APIL. Furthermore, Spyder can also be used as a PyQt5 extension library,
allowing developers to build upon its functionality and embed its components, such as the

interactive console, in their own PyQt software.

3.9 Jupyter Notebook :

JupyterLab is an online intelligent advancement climate for Jupyter scratch pad, code, and
information. JupyterLab is adaptable: design and orchestrate the Ul to help a wide scope

of work processes in information science, logical figuring, and Al JupyterLab is
extensible and measured: compose modules that add new parts and coordinate with
existing ones.

The Jupyter Notebook is an open-source web application that permits you to make and

share records that contain live code, conditions, representations and story text.
Utilizations include: information cleaning and change, mathematical reproduction,

measurable demonstrating, information representation, Al, and substantially more.

27

3.10 Web App

The frontend(User Interface) of this project is created using Angular 7.
Angular 7 is a Typescript framework that is used to create single page web applications

and has many features bootstraped into it, like form validation, routing, route gaurd etc.

Angular uses a component based approach towars app building. The entities and their
related business logic. Angular apps also have services that allow the app components to
interact with each other and exchange data within the app or outside it.

Angular is based on typescript which is a scripting language and superset of javascript.

Typescript offers a stricter typing discipline than javascript.

The Sass is being used for the UL Sass is another scripting language that is interpreted to

CSS

The App offers followinig use casses :
1. Filter news by country
2. Filter news by genre

3. Filter news by country and genre

The app uses news api to mitigate its core functions and serve news to the user
The App has following components :

1. Home Component

2. Navbar Component

3. Footer Component
The app also uses following services to interact within the components and the with the
news api

1. Nav Service

2. News Service

3.11 Use cases in the Web App

21

3.11.1 Filter news by country

To show neews cards filtered according to region or country selected

311.2 Filter news by genre

To show news according to the category selected from the nav bar

3.11.3 Filter news by country and genre

To filter news according to country and category both by selecting country first

and then category

3.12 Components of the web app

3.12.1 Home Component

This component displays news cards according to the selected filter applied by the
user.
If no filters are applied by the user , then the default filters i.e. country : India and

Category : general will be applied for the news.

3.12.2 NavBar Component

This component is responsible for adding the filter options and category options to

the news app. These filter option are provided by the new.api and may change.

3.12.3 Footer Component

This component is a used to display the details of app and prominent news sources

used by news.api.

22

3.13 Services used by the Web App

3.13.1 Nav service

This provides all filter options and categories to the NavBar component.

This service selects the filter provided and passes them to the news service

3.13.2 News service

API calls for the app made through this service and it helps in making the app
modular and extensible. This service recieves the filter options and makes api

calls

23

The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough

we have used the top_n = 5 sentences as the hyperparameter for generating the summary

28

of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.’
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of

any size (the size of the text data is measured using number of sentences in it). Altough

29

we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is

the size of input text file) to generate a more comprehensive summary of the document.

30

The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough

we have used the top_n = 5 sentences as the hyperparameter for generating the summary

31

of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of

any size (the size of the text data is measured using number of sentences in it). Altough

32

we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n=N/2 (where N is
the size of input text file) to generate a more comprehensive summary of the document.
The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is

the size of input text file) to generate a more comprehensive summary of the document.

33

Chapter 4
PERFORMANCE ANALYSIS

4.1 Analysis for the GloVe word embeddings method :
The GloVe strategy fundamentally utilizes the TF-1DF technique for making vectors.
a.Calculation of TF:

number of occurrences of term in document

tf(t,d) =

total number of all words in document

The variable "TFVals" is ascertaining this equation. In the event that we run the sentence
"Hi, my name is Brandon. Brandon. The elephant hops over the moon" through the term
recurrence work, we'll get something that resembles this:
0.125 95 0.375 0.125 0.125 25
0.125 0.125

Hello, my hame is Brandon. Brandon Brandon. The elephant jumps over the moon.

We have the term frequencies of words, but we want to calculate the most important
sentences, not words. To do that, we go through every single sentence and see what words

come up in that sentence which are in TF Vals.

0.125 95 0.375 0.375 0.375 0.125 0.125 25
0.125 0.125

Hello, my name is Brandon. Brandon Brandon. The elephant jumps over the moon.

We simply need to add them all up and partition by the number of words we have. Since
we're just including the TF estimations of relentless words, it's quite reasonable in the
event that we partition by the number of constant words there are, rather than the number
of words there are in a sentence. In the event that we don't partition by the number of
words we have, long sentences have a bit of leeway over more limited ones.

[J.I‘Z."l+tl.:l{2.":+!]..‘i?5 — ().278 ﬂ.:i?"')-:l!—ﬂ.l%?ﬁ —0.375 (l.l‘lﬂ+(l.!{‘2.’n+[}.l2;’n —0.125

=~ =~

0.125 195 0375 0375 0375 0125 0.125 0.125

—— | T —— N —— i
Hello, my name is Brandon. Brandon Brandon. The elephant jumps over the oon.

34

b. Computation of IDF:
Term recurrence is the way basic a word is, backwards report recurrence (1DF) is the way

novel or uncommon a word is. The equation for IDF is:

how many times the term, {, appears.

wdf (L, d) = loc —
f(t,d) '](n.umbcr of documents containing the term, t.

IDF utilized over numerous reports, though TF is worked for one record. You can choose
what a report is. In this article, each sentence is its am record.
The initial not many strides of IDF is equivalent to TF. We prettify the archive, include

the words in the record and get all the exceptional words.

1 1 1 1 1
— N —
My name is Brandon. I love Brandon. Is a dog.

We're currently going to experience each and every word and tally how frequently that
word shows up in each sentence and ascertain the IDF score utilizing the underneath

equation.

How many documents there are (sentences)

log10(: -
) How many times that word appears in all document

3
IDF of ” Brandon” log10(§) 0.176

Now we just do this for every non stop word.

0.477 0.176 0.477 0.176 0.477
— . —l—
My name is Brandon. I love Brandon. Is a dog .

4.2 Analysis for the WF method for findng vectors: Below is our code flow to

generate summarize text:-

35

Input article — split into sentences — remove stop words — build a similarity matrix —

generate rank based on matrix — pick top N sentences for summary.

Generate clean sentences:

def read article(file name):

file = cpen[file_name, r")
filedata = file.readlines|()
article = filedata[0].split(". ")

for sentence in article:
rint (sentence)
entences.append (sentence.replace (" [*a-zA-Z]", "

=~ ‘0

(" "))
entences.pop ()

tn
o

w

return sentences

Similarity matrix
This is where we will be using cosine similarity to find similarity between sentences

def build_similarity_matrix (sentences, stop_wo:ds):
Create an empty similarity matrix
np.zeros ((len (sentences),

matrix =

if both are same

1] [idx2] =

], sentences[idx2],

4.3 Results at various stages :

A. For the GloVe method :

36

In [2]:

In [3]:
Out[3]:

df = pd.read_csv("tennis_articles v4.csv")

df.head()

article_id

article_text source

1

s w N o= 8

2
3
4
]

In [4]:
out[4]:

Maria Sharapova has basically no friends as te...

BASEL, Switzeriand (AF), Roger Federer advance... hitp-fwww iEnnis comipro-game/2018/1 0icopil-5

Roger Federer has revealed of . i is-roger-fe_..
Kesi Nishikor will iy lo end his long losing ... hitnhwwwiennis 10inishiko...
Federer. 37, first broke Shrough on tour over hifps:iwww express oo ukisporttennis1 036101

df['article text'][0]

"Maria Sharapova has basically no friends as tennis players on
the WTA Tour. The Russian player has no problems in openly spe
aking about it and in a recent interview she said: 'I don't re
ally hide any feelings too much. I think everyone knows this i
s my job here. When I'm on the courts or when I'm on the court
playing, I'm a competitor and I want to beat every single pers
on whether they're in the locker room or across the net.So I'm
not the one to strike up a conversation about the weather and
know that in the next few minutes I have to go and try to win
a tennis match. I'm a pretty competitive girl. I say my hello
s, but I'm not sending any players flowers as well. Uhm, I'm n
ot really friendly or close to many players. I have not a lot
of friends away from the courts.' When she said she is not rea
1ly close to a lot of players, is that something strategic tha
t she is doing? Is it different on the men's tour than the wom
en's tour? 'No, not at all. I think just because you're in the
same sport doesn't mean that you have to be friends with every
one just because you're categorized, you're a tennis player, s
o0 you're going to get along with tennis players. I think every
person has different interests. I have friends that have compl
etely different jobs and interests, and I've met them in very
different parts of my life. I think everyone just thinks becau
se we're tennis players we should be the greatest of friends.
But ultimately tennis is just a very small part of what we do.
There are so many other things that we're interested in, that
w do- n

37

In [10]: sentences = []
for s in df['article text']:
sentences.append(sent_tokenize(s))
sentences = [y for x in sentences for y in x] # flatten list
In [11]: sentences[:5]
Out[11]: ['Maria Sharapova has basically no friends as tennis players o
n the WTA Tour.'
"The Russian player has no problems in openly speaking about
it and in a recent interview she said: 'I don't really hide an
y feelings too much.",
'T think everyone knows this is my job here.’,
"When I'm on the courts or when I'm on the court playing, I'm
a competitor and I want to beat every single person whether th
ey're in the locker room or across the net.So I'm not the one
to strike up a conversation about the weather and know that in
the next few minutes I have to go and try to win a tennis matc
h.u'
"I'm a pretty competitive girl."]
In [24]: nltk.download('stopwords')

Out[24]:

In [25]:

In [26]:

In[1:

In [27]:

[nltk data] Downloading package stopwords to
[n1tk_data] /home/bhaskar/nltk data. ..
[nltk data] Unzipping corpora/stopwords.zip.

True

from nltk.corpus import stopwords
stop words = stopwords.words('english')

function to remove stopwords

def remove stopwords(sen):
sen new = * “.join([i for i in sen if i not in stop words])
return sen_new

remove stopwords from the sentences
clean sentences = [remove stopwords(r.split()) for r in clean sentences]

Extract word vectors
word embeddings = {}
f = open(‘glove.6B.168d.txt", encoding="utf-8')
for line in f:
values = line.split()
word = values[8]
coefs = np.asarray(values[1:], dtype='float32')
word_embeddings[word] = coefs
f.close()

38

In [29]: clean sentences

In [38]: sentence_vectors

0ut[36]: [array([-©.06768815, ©.09256166, ©.63329273, -0.02311481, ©.01546605,
©.1853495 , ©.09308354, 0.42582178, -0.24139106, -0.08799385,
©.24989085, ©.85680139, 0.1477317 , 0.19214791, -0.118520889,
-9.13337198, ©.20583408, ©.11695171, -0.28442192, ©.33139458,
©.12599568, ©.1967534 , 0.15575756, 0.5180779 , ©.30478284,
-9.12746389, ©.04639504, -0.7776317 , 0.37259623, 0.025560163,
-0.28453514, ©.3427335 , 0.09285065, 0.07136673, ©.24223588,
©.153613 -9.29634136, ©.39717883, -0.23219974, -0.1128767 ,
-9.32462594, -0.1468936 , ©.35839875, -0.3026954 , 0.16459417,
-9.15502267, -0.01870048, -0.2684455 , 0.2881759 , -0.50023335,
-0.15034528, -0.2343842 , ©.16917214, 0.63483965, -0.13028543,
-2.1654103 , -9.06345838, 0.08818175, 1.9153687 , ©.8081116 ,
-9.23266864, ©.57686883, -0.20425446, 0.23006882, ©.33329207,
-8.12515187, ©.155755 ©.3699625 , ©.16224106, -0.14049056,
©.8752349 , -©.14599869, -0.10349172, -0.28060302, ©.03892569,
©.11594792, ©.22164218, 0.87488332, -0.52976537, -0.07361726,
©.69293356, -0.20686361, -0.24258394, 0.08630013, -1.185478
-0.38094005, -©.38220796, ©.11073201, -0.14750852, -0.1982723 ,
-9.2221683 , -0.07648158, ©.04446296, 0.2679849 , -0.13877201,
0.00610776, -©.39457384, -0.20842241, 0.50812364, ©.46988693],

dtype=float3z),

array([-4.5618337e-82, 1.581951le-81, 3.8475230e-61, -2.1156366e-01,

B .For WF method :

In [2]: file = open("tT.TxT", "r"
file2 = open{"ww.txt","w")
filedata = file.readlines{)

article = filedata[8].split(~. *)

for w in article:
file2.write(w)
file2.write(™\n")
file2.close()
print(filedata)
print{article)

prinE*\R======rrer=amaaa=a it}
sentences = []
for sentence in article
print({sentence)
sentences.append(sentence. replace(”["a-zA-Z]", " *).split(" ")

sentences.append(re, sub("["a-zA-2]"'," °,
sentences.pop()
stopwords = stopwords.words('english')

sentence) .split(’ '))

I hope that my following explanation is helpful, if there is more information I can explain, please let me know via comm
ent or message and I will update the answer.Some Introduction:The "math® that goes into it is simple

A graph is a list of nodes (vertices) and thee connections (edges).TextRank uses the structure of the text and the known
parts of speech for words to assign a score to words that are keywords for the text

I don't think it takes much if any math to understand the concepts of the paper, but the terminolegy may be somewhat den
se the first time through

The algorithm gives more value to nodes with lots of connections, and gives more influence in steps to better connected
nodes, 50 it reinforces itself and eventually finds its stable score

The structure d the text is represented in the way the graph is made.The TextRank Algorithm:First, the words are assigne

39

In [5]: | sentl=['For", 'years,', 'Facebook’', 'gave', 'some', 'of', 'the’, "world's", 'largest’, 'technology', 'companies', 'more’,

sent2=["The', 'special’, 'arrangements', 'are', 'detailed’, 'in', "hundreds', 'of', "pages', 'of', 'Facebook', 'documents
nltk.download("stopwords")
stop words = nltk.corpus.stopwords.words('english'})

if stop words is None:

stop words = []
sentl = [w.lower(} for w in sentl]
sent2 = [w.lower(} for w in sent2]

all words = list(set(sentl + sent2))

vectorl = [6] * len(all words)
vectorz = [8] * len(all_words)

build the vector for the first sentence
for w in sentl:
if w in stopwords:
continue
vectorl[all words.index(w)] += 1

build the vector for the second sentence
for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1
print{vectorl)
print(vector2}

@ 11,1,1,11,1®@® 11,6, 1,@#9o,0, 1,6,1,90,1,1,1,6,1,1,0,1,0,0,2%e 1,0, 1,0, 8 1,
1, @,1,6,8,8,88,1,8]
[6,8 9 0 0, 06,06,06,0 1,0, 1,06,06,06,0,1,1,06,0,0,1,66,6 0204040648686 1,1,06,060608 1,0, 8,

4.4 Comparison between the two method:

As referenced before , the TE-IDF approach includes more perplexing estimations when

contrasted with the WF strategies. This overhead isn't just obvious regarding time

devoured for producing the outcome yet additionally the memory devoured by the two

portions while working on comparative datasets.

Henceforth we picked the WF approach for our venture.

40

Chapter 5
CONCLUSIONS

5.1 Conclusion:

The approach of WF - Cosine matrix scoring has generated good results on text data of
any size (the size of the text data is measured using number of sentences in it). Altough
we have used the top_n = 5 sentences as the hyperparameter for generating the summary
of input text file but have also included a consolidated value of top_n =N/2 (where N is

the size of input text file) to generate a more comprehensive summary of the document.

5.2 Future Scope:

The project is already being used in commercial world for summarizing big news articles
into small headlines and RSS feeds. We are planning to implementing this kernel onto a
front end and host it using a web service and create a small widget/application that
automatically summarizes the results from the first few links that are generated when a

user searches a query on some search engine,

5.3 Addition of extra features to web app :

The web app is still in a nascent stage and can use extra features to cater a wide
audience. Following features are presently prototyped and will be added to the web
app soon :

1. Addition of social share feature

2. Addition of email updates for selected filters

3. Addition of account based activity log for keeping record of selected filters
and email preferences

41

42

6 Screenshots of the Web App

fYy @ O J & & Fsignin

@ GENERAL

Cyclone Taukate: [
Railways cancels
trains till 21 May. F
- Mint

Cyclonic storm Tauktae had
intensified and was heading
towards the coast of Gujarat and
the Union Territory of Daman
and Diu and Dadra and Nagar
Haveli, the India Meteorological
Department (IMD) said

LATEST NEWS

How to watch NASA's
launched, Apple Ingenuity Mars Helicopter
ntinues space gray fly in 3D - Deseret News
dredieiize s Where can [watch NASA
Hindustan Times Ingenuity helicopter fly on Mars?
More tech news includes Realme Is there really a helicopter on
8 5G getting a new variant and Mars?

Airtel getting Covid support
services on its platform.

Fig. 11

Screenshot showing the
country filters

43

2021-05-15 20:02:40 PM GMT+3

7

‘Everyone will find their
match’: Harsh Vardhan on
Biocon chief's vaccine-
marriage humour -
Hindustan Times

Union minister Dr Harsh Vardhan
on Saturday said Indians will be
spoilt for vaccine choice as
Biocon chief Kiran Mazumdar-
Shaw compared the vaccine
situation with that of an
arranged marriage.

fYy 0@ JE &~ $ksignin

BUSINESS

2021-05-15 20:05:42 PM GMT+3

Mumbai Man Orders
Mouthwash On Amazon,
Gets Smartphone - NDTV

A Mumbai-based co-founder of a
travel luggage company has said
Amazon India delivered him a
smartphone when he had ordered
only a mouthwash. Lokesh Daga
said the package label on the
delivered item was in his name
but the invoice was in somebody

else

LATEST NEWS

Devyani International files
DRHP to raise ¥1,400
crore via IPO - Mint

Crude palm oil to continue
bullish momentum, up
1.4% during the week -
Moneycontrol.com

Bitcoin Drops to Over
2-Month Low After Report
Binance Under U.S. Probe,
Tesla Move - News18

Despite the pandemic, it opened
109 stores across its core brand Bitcoin slid to a 2-1/2-month low

on Thursday after a regulatory

The momentum indicator
Relative Strength Index is at
62.67, which indicates bullish
movement in the prices.

business in the last 6 months
probe into crypto exchange
Binance added to pressure from
Tesla Inc chief Elon Musk's
reversing his stance on accepting
the digital currency.

]

Fig. 12
Screenshot showing the
category filters

f W @ @ JE @ Hhkinmin

LATEST NEWS

Cyclone Taukate: Indian
Railways cancels several
trains il 21 May. Full list

Tech Wrap: Amazon
miniTV launched, Apple
discontinues space gray
iMac accessories
Cyelonic stoem Tauktas had Hindustan Times
Intenaifiod and was heading

aa
n Itx platfoem.

Diepartmest (MO id

COVID-19 recovery di
What 1o wat when
recovering from
coranavinas - Times of
India

reparts D)
cied dwathia in 24 howrs,

biggest single-day tall,

ver 34,000 mare «

T -

=
CHtT W4
S \T _S¥

“IRomt Write Your Covishield dose gap row

1 UK going back to 8 weeks,
Inadian scientists must
beware of govi’s trap, says
‘Wanting To Play Test P... - Moneycontrol
Cricket” -
NDTVSports.com

e g trap
irswhich sesestists ared medical
xperts will ful
mernment will pass the blams
o themn,” Chidambaram said.

dithn’t wan tos ply Test crickst
.

®

I Covid revien
calls for audit of
installation, eperation of
ventilators pre

stites - The Indian

£

RS chief Mahan Bhugwat todsy

Calrmn Energy sues Alr
Indin in LIS court to
recover $1.2 billion
arbitration award against
India - India Today

Extremely Rare Plutond

Found in the Depths of
Pacific Ocean Could Be
Oider Than Our Solar
System - News18

ppemed 1y

g i e imsterstellar g,

=N

How to watch NASAS
Ingenuity Mars Helicopter
iy in 3D - Deseret News
Whers can 1 wnich HASA
ngeeity holicoptes lly on Mare?

1 there really a halicoptes an
Mara?

military demealish

tian i g in G |
Al Sahorts - Al lnzeers
English

Redmi Note 8 (2021)
Specifications Tipped via
FEC Listing, India Launch
Mot Likely | Technology
News - Gadgets 360

Kimami U1 fusther goes on b ek
Ehat the Redmi Mote 8 Q2021 will
it b luncking an I

o, ol Turkey. Check out
all the details.

20210313 00217 P8 GMT2

o Wi A

“Everyone will find their
match': Harsh Vardhan on
Biocon chief's vaccine.
marriage humour
Hindustan Times

ard
mpeailt o vaccing chalcs ax
Biacan chief Kirsn Mazumedsr-
Shaw compared the vaccine
itumtian with that of ar
arranged marrisge.

"
Contines Winning Streak
st Cowidd, 1,447 Canen
vy - News 18

A
Tosel

Bitcoln Drops to Over
2-Month Low After Report
Binance Under U.5. Probe,
Tesla Move - Mews18

miteain slid b=

b mnto crypte wochange

mi
T

tance an accepting
the digital currercy.

Tradia
i Khans cop st s being

From Deepika Padukons
to Shah Rukh Khan: §
Bollywoad celebs who
rejected major roles in
Hollywood films -
Bollywood Life

Dewpike Paubane o Shab

[racn
Rthe: Vousr Mos

declason 1o relense

lack fungus’ cases in
Lavid patients are rising,
says ALIMS chief, warns
against misuse of sterolds
- Mint

T b Farsgass irsfction, alss

P p—

Fig. 13
Screenshot showing the
default filters

bhaskar

ORIGINALITY REPORT

29, 206 13« 16«

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Rafael Ferreira, Frederico Freitas, Luciano de 40/
Souza Cabral, Rafael Dueire Lins et al. "A ’
Context Based Text Summarization System",

2014 11th IAPR International Workshop on
Document Analysis Systems, 2014

Publication

Submitted to Institute of Technology, Nirma 30/
University ’
Student Paper

towardsdatascience.com 3
Internet Source %
www.analyticsvidhya.com

Internet Source y y 2%

Submitted to Asia Pacific Instutute of 2

%

Information Technology
Student Paper

www.machinelearningplus.com Ly
0

Internet Source

WWW.Mecs-press.org 1 o
0

Internet Source

=

Submitted to The University of Buckingham ’I Y
0

Student Paper

skerritt.blo
Internet Source g 1%
Submitted to Amity Universit
Student Paper y y 1%
Submitted to Ghana Technology University 1 o
College °

Student Paper

N
N

Submitted to Guru Jambheshwar University of 'I Y
0

Science & Technology
Student Paper

docs.conda.io

Internet Source 1%
link.springer.com

Internetg)urceg 1%

Submitted to University of Westminster 1
Student Paper %

—
o

www.gcreddy.com <1 o
0

Internet Source

—
~N

"Advances in Signal Processing and Intelligent <1

» . . %
Recognition Systems", Springer Science and
Business Media LLC, 2021

Publication

Submitted to Kookmin University

Student Paper

<1 %

soumyadipnandi.wordpress.com <'I
Internet Source %
Submitted to The British College

Student Paper g <1 %
WWW.coursehero.com

Internet Source <1 %

"Query based Text Summarization", <1 o
International Journal of Recent Technology ’
and Engineering, 2019
Publication
Submitted to Southampton Solent Universit

Student Paper p y <1 %
Submitted to Yaba College of Technolo

Student Paper g gy <1 %

Rahim Khan, Yurong Qian, Sajid Naeem. <1 o
"Extractive based Text Summarization Using ’
KMeans and TF-IDF", International Journal of
Information Engineering and Electronic
Business, 2019
Publication

Prakhar Sethi, Sameer Sonawane, Saumitra <1 o

Khanwalker, R. B. Keskar. "Automatic text
summarization of news articles", 2017

International Conference on Big Data, loT and
Data Science (BID), 2017

Publication

Tanusree De, Debapriya Mukherjee. "Chapter <1 o
3 Explainable NLP: A Novel Methodology to ’
Generate Human-Interpretable Explanation
for Semantic Text Similarity", Springer Science
and Business Media LLC, 2021
Publication
www.mitpressjournals.or

InternetSourcep J g <1 %

"Soft Computing in Data Analytics", Springer <1 o
Science and Business Media LLC, 2019 ’
Publication
medium.com

Internet Source <1 %

Daniel G. A. Smith, Doaa Altarawy, Lori A. <1 o
Burns, Matthew Welborn et al. " The QCA °
project: An open - source platform to
compute, organize, and share quantum
chemistry data ", WIREs Computational
Molecular Science, 2020
Publication

Submitted to National University Of Science <1 o

and Technology

Student Paper

machinelearningmastery.com

Internet Source

<1%

Submitted to Hofstra Universit
Student Paper y <1 %
epdf.tips
IntErnet SOE)FCG <1 %
WWW.newsweek.com
Internet Source <1 %
www.ukessays.com
Internet Source y <1 %
Rafael Dueire Lins, Rafael Ferreira Mello, <1
. . %
Steve Simske. "DocEng'19 Competition on
Extractive Text Summarization", Proceedings
of the ACM Symposium on Document
Engineering 2019, 2019
Publication
digilib.stmik-banjarbaru.ac.id
Integrnet Source J <1 %
alive-directory.com
Internet Source y <1 %

Exclude quotes Off Exclude matches Off
Exclude bibliography Off

REFERENCES

[1] “Language Independent Extractive Summarization” by Rada Mihalcea Department of
Computer Science and Engineering University of North Texas.

[2] “ClusterRank: A Graph Based Method for Meeting Summarization” by Nikhil Garg,
Benoit Favre, Korbinian Reidhammer, Dilek Hakkani-Tur.

[3] “Graph-Based Text Summarization Using Modified TextRank” by Chirantana
Mallick, Ajit Kumar Das, Madhurima Dutta, Asit Kumar Das and Apurba Sarkar.

[4] “Extractive based Text Summarization Using K-Means and TF-IDF” by Rahim Khan,
Yurong Qian, Sajid Naeem School of Software, Xinjiang University, Urumqi 830008,
China.

[5] “What is a simple but detailed explanation of Textrank?”” answered by, Luis Argerich,
Professor of Data Science at the University of Buenos Aires. (UBA).

[6]” A Context Based Text Summarization System” Rafael Ferreira , Frederico Freitas ,
Luciano de Souza Cabral , Rafael Dueire Lins , Rinaldo Lima ,Gabriel Franc , Steven J.
Simske , and Luciano Favaro, Informatics Center, Federal University of Pernambuco,
Recife, Pernambuco, Brazil Department of statistics and informatics, Federal Rural
University of Pernambuco, Recife, Pernambuco, Brazil

[7] ”Automatic Text Summarization of News Articles” Prakhar Sethi , Sameer Sonawane
, Saumitra Khanwalker , R. B. Keskar ,Department of Computer Science Engineering,
Visvesvaraya National Institute of Technology, India

[8] 7 AUTOMATED TEXT SUMMARIZATION AND THE SUMMARIST SYSTEM”

Eduard Hovy and Chin-Yew Lin ,Information Sciences Institute of the University of
Southern California

[9]” An Extractive Approach for English Text Summarization”’Kanchan D. Patil 1 ,
Sandip A. Patil 2 , Yogesh S. Deshmukh, Department of Information Technology,
Sanjivani College of Engineering, Kopargaon, India”

43

Appendices
##the code:
#!/usr/bin/env python3
-*- coding: utf-8 -*-

import nltk

#for the english stopwords present in the nltk

from nltk.corpus import stopwords

#for the cosine_distance() function present in nltk.cluster.util
import numpy as np

from nltk.cluster.util import cosine_distance

#imports networkx 2.4.0
#backcompatibilty of this code lies till networkx 1.1.0

import networkx as nx

#for plotting undirected graph using cosine matrix
import matplotlib.pyplot as plt
#%%

#reads the orignal atricle from a txt file
def read_article(file_name):
file = open(file_name, "r")

filedata = file.readlines()

#makes a list of strings that are sentences present in the article

article = filedata[0].split(". ")

44

sentences =[]
for sentence in article:
print(sentence)
#depending on your version of conda ,any one of the below lines would work fine
#seprates the words in the string article[sentence]
#1
sentences.append(sentence.replace('["a-zA-Z]", " ").split(" "))
#2

#sentences.append(re.sub('[*a-zA-Z]'," ', sentence).split(' "))

#leaves the last

sentences.pop()

return sentences,article.size()

#%%

#returns cell value for cosine matrix

#iterates over the sentences]] list and calculates the cosine distance between them
#cosine_distance(u, v):

e

#Returns 1 minus the cosine of the angle between vectors v and u. This is

#equal to 1 - (u.v / |u]|v|).

mm

#return 1 - (numpy.dot(u, v) / (sqrt(numpy.dot(u, u)) * sgrt(numpy.dot(v, v))))

def sentence_similarity(sent1, sent2, stopwords=None):

#use empty list if stopwords aren't present for given language

if stopwords is None:

stopwords =[]

45

#convert the words to lowercase for nltk.stopwords][]
sent1 = [w.lower() for w in sent1]

sent2 = [w.lower() for w in sent2]

#remove redundant words

all_words = list(set(sent1 + sent2))

#initialize vector for sent1 and sent2
#a numpy array can also be used by making further alterations in the code
vector1 = [0] * len(all_words)

vector2 = [0] * len(all_words)

build the vector for the first sentence

for w in sent1:

#remove stopwords
if w in stopwords:
continue

vector1[all_words.index(w)] += 1

build the vector for the second sentence

for w in sent2:

#remove stopwords
if w in stopwords:
continue

vector2[all_words.index(w)] += 1

#cosine distance calculated according to above formula

return 1 - cosine_distance(vector1, vector2)

46

#%%

#building cosine similarity matrix

def build_similarity _matrix(sentences, stop_words):
Create an empty similarity matrix

similarity_matrix = np.zeros((len(sentences), len(sentences)))

#iterates over every element of list sentences[] to calculte cosine distance
for idx1 in range(len(sentences)):

for idx2 in range(len(sentences)):

#ignore if both are same sentences
if idx1 == idx2:
continue

similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentencesl[idx2],
stop_words)

return similarity_matrix

#%%

def generate_summary(file_name, top_n=5):
nltk.download("stopwords")
stop_words = stopwords.words('english’)

summarize_text =[]
Step 1 - Read text anc split it
sentences ,top_n_consolidated= read_article(file_name)

top_n=top_n_consolidated

Step 2 - Generate Similary Martix across sentences

47

sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)

Step 3 - Rank sentences in similarity martix
#creates an undirected graph using the square matrix obtained form build_similarity _matrix()

sentence_similarity_graph =
nx.from_numpy_array(sentence_similarity_martix,parallel_edges=True, create_using=None)

#draw the unlabled graph
nx.draw(sentence_similarity_graph)

plt.draw()

#converts the undirected graph to a directed graph by adding two dircted graph for each
undirected edge

#writes weights for the sentences

scores = nx.pagerank(sentence_similarity _graph)

Step 4 - Sort the rank and pick top sentences
ranked_sentence = sorted(((scoresli],s) for i,s in enumerate(sentences)), reverse=True)

print("Indexes of top ranked_sentence order are ", ranked_sentence)

#adds top_n sentences to the summarized text
for i in range(top_n):

summarize_text.append(" ".join(ranked_sentence[i][1]))

Step 5 - output the summarize text

print("Summarize Text: \n", ". ".join(summarize_text))

#%%

let's begin

generate_summary("tt.ixt", 5

48

49

