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ABSTRACT 

 

A consistent expansion in the quantity of ozone depleting substances is making 

genuine dangers the climate and life on earth. In this unique circumstance, CO2 is 

one of the significant competitors among them. Decreasing the abundance CO2 by 

changing over it into mechanical items is valuable for the climate and to help modern 

development. Transformation of CO2into methanol is extremely gainful as it is less 

expensive to create, less inflammable, can be delivered from biomass, and is 

favorable in numerous ventures. Methanol is acquiring prevalence as an option in 

contrast to oil based powers and is valuable for a more secure and cleaner climate. 

Bio-energy with carbon catch and capacity (BECCS) can be utilized to extricate 

bioenergy from biomass which can be utilized to catch and store the CO2 in this way, 

diminishing its environmental level. This biomass can be utilized to in fer biofuels 

like methanol which can be utilized straightforwardly. Inexhaustible gaseous petrol 

called biomethane can likewise be delivered utilizing biomass which can additionally 

be utilized in cooking, and for different applications. It will in this ma nner lessen the 

utilization of non-renewable energy sources. To lessen the reliance on plastic, 

manufactured polymers, and expanding utilization of sustainable assets, bio -

filaments, for example, cellulosic strands that are being utilized in the development 

and car industry. Bioproducts like rice husk, agrarian waste, kitchen squander like 

products of the soil strips, and so on that are gotten as biowaste can be utilized to 

create biofuels like methanol, ethanol, and other potential powers which can supplan t 

the inordinate use of non-renewable energy sources. This article portrays the change 

of CO2 into methanol utilizing biocatalysts like microorganisms, compounds, natural 

solvents, polymers, nanostructures, and other substance draws near.  

Keywords: Bioenergy; biofuels; biofibres; bioproducts; biowastes, biomethane .  
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INTRODUCTION 

 

Expanding ozone harming substance outflows has become a danger to the earth and 

its animals. preferably, to lessen it we ought not utilize sources that discharge or 

delivery the CO2 or convert the created CO2 before its delivery into the environment. 

Different cycle strengthening methodologies have been created or are being 

scrutinized to accomplish these objectives. Simultaneously, an enormous measure of 

CO2 is being delivered into the climate from human exercises, businesses, autos, and 

power plants. This discharged CO2 is one of the significant supporters of the nursery 

impact causing unwanted environmental change and obliteration to the planet, yet it's 

anything but a fundamental segment for supporting life on earth (Zheng et al., 2017). 

Normal fauna on the earth and seas confer significantly to lessen the CO2 adjacent to 

these in a confined metropolitan region, city structures or businesses greener sources, 

algal pinnacle, material embedded boards, CO2-phillic solvents can be utilized to 

eliminate the delivered CO2. The significant test is the maintainability of the cycle as 

they need bigger extra room and after the response of the synergist interaction what 

will be the destiny of items and results stays unanswered. Thus, we need to track 

down an effective way that utilizes the CO2 present in the air and converts it into 

significant items. Environmentally friendly power energy or bioenergy based items 

are sought after to replace petroleum products. In this manner methanol incorporated 

by the change of CO2 can be one of the monetarily significant items that discharge a 

lower measure of CO2 after its burning. Grounded that methanol has high volumetric 

and gravimetric energy thickness and is a vital fuel that is supplanting the utilization 

of petroleum derivatives (Gutterød et al., 2020). Its great benefit is to lessen the 

outflow of GHGs from vehicles. It has the most noteworthy hydrogen to carbon 

proportion in contrast with any fluid fuel and can be promptly corrupted in both high-

impact and anaerobic conditions. Out of the all out energy utilization of the world, 

49% of it is met by powers like fuel, diesel, jetoils, and so on (Lewis and Nocera, 

2006) When contrasted with regular powers, it is more worthwhile when contrasted 

with fuel and diesel. Methanol can possibly diminish fossil fuel byproducts by 65%-

95%. The Gibbs free energy of methanol is - 166kJ/mol and the warmth of 
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development is - 239 kJ/mol(Alper and Orhan, 2017). Methanol is an incredible fuel 

that can be utilized in the inside burning motors (ICE), direct oxidation methanol 

power devices (DMFC) and as a beginning material for the creation of light olefins 

(Olah et al., 2009). It is exceptionally flexible in making every day need items, it is 

productively burnable, handily dispersed, and generally accessible, making it  

moderate to utilize (Hengne et al., 2019). It can likewise be utilized in wastewater 

treatment, power creation, and as a significant forerunner for different modern 

responses (Leonzio, 2018) Many natural based techniques, enzymatic transformation 

strategies, chemo-enzymatic strategies, film adsorption, and so forth are being 

utilized to change CO2 over to methanol remembering, the way that no additional 

waste or destructive gases ought to be delivered and standards of green science ought 

to be followed. Food and agribusiness squander, metropolitan strong waste, and 

ranger service deposits are a portion of the huge destinations which give feedstock 

that can be utilized to deliver methanol utilizing measures like aging, gasification, 

Kraft measure, and so forth This will build methanol creation utilizing waste which 

would somehow or another have spoiled or metropolitan waste which would have just 

constructed tension on landfills. Obert and Dave accomplished a response for  change 

of CO2 to methanol by switching the natural metabolic pathways. They made a blend 

of catalysts like FDH, FaldDH, and ADH for consecutive decrease of CO2 to 

methanol.In this enzymatic response, NADH was utilized as the terminal electron 

benefactor. (Baskaya et al., 2010) Another methodology was utilized by Wang et al., 

where they made a multi-protein course framework utilizing catechol and gelatin 

which were consecutively immobilized in the ultrathin, cross breed microcapsules. 

This method when contrasted with the one detailed by Obert and Dave showed slight 

improvement in the methanol yield for example 52.6%. (Wang et al., 2014)  

 

Microporous natural polymers (MOPs) are additionally utilized for CO2 catch and 

transformation credited to the processability, high selectivity, moderate actual 

maturing, high gas penetrability, the high dissolvability of gases, and high surface 

space of these films. The utilization of these layers with CO2-philic materials gives a 
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similarly less expensive and energy-productive technique for CO2 catch and change 

into methanol and different synthetic compounds and fluid energizes like formic 

corrosive, methane, and carbonate. (Ashley et al., 2012)  

 

The at first CO2 being discharged from enormous assembling enterprises, concre te 

plants, and geothermal cycles in higher focus appeared to be possible to catch and 

change over. However, profoundly productive detecting gadgets and crossover CCS 

innovations made it conceivable to distinguish the CO2 at 400 ppm level and catch it. 

(Campbell, 1997) Several procedures including thermochemical, photochemical, 

electrochemical, and natural have been utilized to change over CO2 into valuable 

items. Direct electrochemical decrease of CO2 produces methane, methanol, just as 

ethanol-dependent on response conditions. (Zarandi et al., 2019). CO2 can be 

valorized through hydrogenation, focussing on Reverse water-gas shift response 

(RWGS), methanation, and methanol creation (Gutterød et al., 2020). The methanol 

combination from CO2 hydrogenation and RWGS is a thermodynamically restricted 

response and harmony change of CO2 diminishes with expanding response 

temperature, in this way it 's anything but a reactant framework (Dang et al., 2019). 

Methanol is likewise set up by the hydrogenation of CO2 by the  RWGS response. The 

impetus Ni/Al12O19 can be utilized at the modern scale(Samimi et al., 2019). As of 

late, it has been seen that indium oxide is a profoundly specific impetus in the warm 

hydrogenation of CO2 to methanol Recently, the hydrogenation of CO2 to methanol 

was completed utilizing heterogeneous CuZnO upheld on Al2O3 (Chun and Song, 

2020). Methanol integrated by CO2 hydrogenation is productive for putting away 

energy as solid O-H securities and has an unbiased carbon impression with a perfect 

wellspring of energy.  

 

The expanding cost of raw petroleum and decrease in its accessibility has expanded 

the interest for its substitutes. Methanol can likewise be gotten from warm synergist 

change of syngas. It can straightforwardly be utilized by energy un its and ignition 

motors, as a substitute to fuel and diesel-controlled motors and can be utilized by 
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implication as a structure square of significant worth added synthetic compounds. 

Methanol delivered from syngas by joining H2 to CO or CO2 is advantageous  to 

lessen the measure of CO2 from the environment (Hengne et al., 2019). Any 

carbonaceous feedstock can be changed over to a scope of hydrocarbons and H2O by 

means of methanol with colossal modern significance. Like methanol to olefins 

(MTO), methanol to propene (MTP), Mobil's olefin-to-fuel, and distillate measure 

(MOGD) and Topsoe's improved gas combination (TIGAS), and so forth (Dang et al., 

2019). The three principle pathways for CO2 transformation into important items are 

mineral carbonation, compound change, and natural change (Burkart et al., 2019). 

Aspen HYSYS business programming stage has been utilized for the advancement of 

three CO2 to methanol change methods and for playing out the demonstrating tasks 

(Abdelaziz et al., 2017).  

 

Different parts of transformation of CO2 to methanol have been talked about in this 

survey article focussing on materials and composites, natural solvents, substance 

obsession of CO2, and change utilizing organisms and other natural microorganisms.
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Material and composites- for CO2  conversion to methanol  

 

CO2 can be converted into methanol using a variety of methods. A good catalyst 

suitable for CO2 conversion into methanol is the one which is active in reducing in 

CO2, it should be stable and should not get poisoned by the released gases or by-

products and should have a high faradaic efficiency towards the production of 

methanol. Some of the efficient methods used for the conversion of CO 2 to methanol 

are the electrocatalytic reduction of CO2 to methanol using homogeneous or 

heterogeneous catalysts to speed up the rate of reaction, heterogeneous catalysts 

being a better choice. Porphyrins are very robust materials with unique properties and 

colorful structure which are widely being used these days for the conversion of CO2 

to methanol.  

Electrocatalytic reduction of CO2 in methanol medium 

 

Electrocatalytic decrease of carbon dioxide is the cycle of decrease of carbon dioxide into 

important mixtures and powers like methanol utilizing power for decrease. Decreased 

compound species are acquired after the electrocatalytic CO2 decrease response. 

Electrochemical decrease of CO2 can be utilized to create synthetics or different energizes and 

feedstocks like methanol, formic corrosive, methane, carbon monoxide, and so on The 

electrolytes utilized in these responses influence the decrease of CO2. Solvents utilized 

additionally assume a vital part in looking after pH, conductivity, and harmfulness.  

 

The decrease response during the time spent change of carbon dioxide which is a steady 

particle, to methanol includes 6 electrons which makes it a dynamically more slow response. 

(Albo et al., 2015) This change requires the utilization of proficient and exceptionally specific 

impetuses for its transformation into energizes and other important products(Lashgari et al., 

2017).  
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Utilizing heterogeneous impetuses for transformation of CO2 to methanol is broadly utilized 

for mechanical purposes. Multifunctional Cu/Zn impetuses and their oxides are utilized on 

different supporting material as an impetus for modern cycles because of their high selectivity 

and change rate. Impetuses dependent on metals like Pd, Ni, Ag, Au, In among others like Pt 

nanoparticles are utilized in heterogeneous catalysis for CO2conversion to methanol. (Wang et 

al., 2017a) Heterogeneous reactant hydrogenation of vaporous CO2 into methanol utilizing 

electrical energy is additionally seen to be advantageous for the change of CO2 into biofuels, 

adding to sustainable power and green science. Most existing impetuses are not proficient 

because of side response of hydrogen creation, helpless selectivity, long haul security is low 

and the harming of respectable metals may happen. The action of a heterogeneous impetus can 

be improved by appropriate help. Thus, a decent impetus with appropriate help ought to be 

given to heighten the exhibition. Carbonaceous materials like initiated carbon and carbon 

nanotubes can be utilized as extraordinary impetus upholds. They enjoy numerous benefits 

like less expensive assembling, great warm conductivity, huge pore volume, and explicit high 

surface area(Wang et al., 2019). For instance, in an investigation by Han et al. distributed in 

the Chem, polymeric cobalt phthalocyanine upheld on carbon nanotube is accounted for to be 

a profoundly productive impetus utilized in carbon dioxide decrease. (Han et al., 2017)  

 

Notwithstanding heterogeneous synergist hydrogenation responses, some homogeneous 

impetuses are additionally being utilized for the transformation of CO2. These impetuses are 

accessible in various structures like natural solvents, ionic solvents, and metal 

complexes(Zarandi et al., 2019). As of late, it is seen that essential heterocyclic natural 

mixtures like pyrimidine increment the decrease response of CO2 transformation when 

contrasted with other homogeneous impetuses. (Albo et al., 2015).  

 

Alteration is done in electrocatalysts to expand the decrease effectiveness and increment the 

faradaic productivity. As of late, the impetuses are being changed and intended to control the 

elements of nano-particles showing a mono-dispersive configuration(Zarandi et al., 2019). The 
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accompanying table gives data about the impetuses utilized for CO2 transformation to 

methanol and the response conditions needed for something very similar.
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Table: Heterogeneous catalysts and the reaction conditions (pressure, temperature) for the conversion of carbon dioxide to 

methanol, %age of CO2 conversion, and methanol yield. 

CATALYST PRESSURE 

(MPa) 

TEMP. 

(K) 

CO2 

CONVERSION 

(%) 

METHANOL 

YIELD 

H2/CO2 REFERENCES 

Cu/Al2O3 10 473 2.4 1.05 mol kg-

cat-1 h-1 

3.8/1 (Bansode et al., 

2013) 

Cu-Ba/Al2O3 10 473 3.6 0.14 mol kg-

cat-1 h-1 

3.8/1 (Bansode et al., 

2013) 

Cu-K/Al2O3 10 473 2.8 1.62 mol kg-

cat-1 h-1 

3.8/1 (Bansode et al., 

2013) 

12Cu10Zr/ɣ -

Al2O3 

3 513 14.30 - 3/1 (Zhang et al., 

2006) 

Cu–V/ɣ-Al2O3 3 513 14.10 - 3/1 (Zhang et al., 

2006) 

Cu/ZnO(Al2O3) 5 443 25.90 - 3/1 (Liu et al., 

2007b) 

Cu/ZnO/Al2O3 - 493 - - 1/1 (Wang et al., 

2010) 

Cu/ZnO/Al2O3 3 513 12 212 g L-1cat h-1 3/1 (Wang et al., 

2011) 
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5%Au–20% 

Cu/Cr2O3 . 

3Al2O3 

4 533 - 66 g Kg-1cat h-1 3/1 (Mierczynski et 

al., 2011) 

2wt%SiO2–

TiO2/ CuO–

ZnO–Al2O3 

2.6 533 40.70 16.8% 3/1 (Zhang et al., 

2012) 

Cu/ZnO/Al2O3 36 533 65.80 7.7 g g-1cat  

h-1 

10/1 (Bansode and 

Urakawa, 

2014) 

Cu/ZnO/Al2O3/ 

Y2O3 

9 503 29.90 0.57 g g-1cat  

h-1 

73/24 (Gao et al., 

2015b) 

Cu–ZnO–

ZrO2– 

MgO/Al2O3 

2 523 12.12 31 g Kg-1cat h-1 3/1 (Ren et al., 

2015) 

Cu/ZnO/Al2O3 3 523 - - - (Kunkes et al., 

2015) 

Cu.ZnO/Al2O3 5 543 9 - 3/1 (da Silva et al., 

2016) 

Cu/ZnO/Al2O3 44.2 553 65.30 15.3 g g-1cat  

h-1 

3/1 (Gaikwad et 

al., 2016) 

CuZnZr 3 503 19.6 2.3 mol kg-cat-1 3/1 (Bansode and 
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h-1 Urakawa, 

2014) 

CuZnZr 3 513 17 1.65 mol kg-

cat-1 h-1 

3/1 (Xiao et al., 

2015) 

CuZnZr 5 513 22.4 14.13 mol kg-

cat-1 h-1 

3/1 (Arena et al., 

2013a) 

CuZnZr 5 513 9.7 37.05 mol kg-

cat-1 h-1 

3/1 (Arena et al., 

2013a) 

CuZnTi 3 513 16.4 1.51 mol kg-

cat-1 h-1 

3/1 (Xiao et al., 

2015) 

CuZn 3 513 16.1 1.39 mol kg-

cat-1 h-1 

3/1 (Xiao et al., 

2015) 

CuZnTi-Zr 3 513 17.4 1.79 mol kg-

cat-1 h-1 

3/1 (Xiao et al., 

2015) 

CuZnZrLa 3 503 20.5 2.7 mol kg-cat-1 

h-1 

3/1 (Bansode and 

Urakawa, 

2014) 

CuZnZrCe 3 503 22.8 3.2 mol kg-cat-1 

h-1 

3/1 (Bansode and 

Urakawa, 

2014) 

ZrO2 doped 5 523 26.41 0.22 g mL-1 3/1 (Yang et al., 
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CuZnO h-1 2006) 

Cu/ZnO/ZrO2 3 523 19.40 - 3/1 (Raudaskoski 

et al., 2007) 

Cu/Zn/Al/Zr 4 513 20.51 0.435 g mL-1 

h-1 

3/1 (An et al., 

2007) 

Cu–ZnO/ZrO2 3 513 17.50 - 3/1 (Arena et al., 

2007) 

Cu–ZnO/ZrO2 1 473 3.20 - 3/1 (Arena et al., 

2008) 

CuO/ZnO/ZrO2 

(CZZ) 

3 513 17 9.6% 3/1 (Guo et al., 

2009) 

CuO/ZnO/ZrO2 

(CZZ) 

3 493 12 8.5% 3/1 (Guo et al., 

2010) 

Cu/ZrO2 2 523 13.60 1.76 mmol 

g-1h-1 

3/1 (Zhuang et al., 

2010) 

Cu/ZnAl2O4 4 533 - 233 g g-1cat  

h-1 

3/1 (Maniecki et 

al., 2010) 

Cu/ZnO/ZrO2 3 513 15.70 9.1% 3/1 (Guo et al., 

2011a) 

La-Cu/ZrO2 3 493 6.20 4.3% 3/1 (Guo et al., 

2011b) 
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ZnOCu/CeZrO2 3 513 16.90 - 3/1 (Bonura et al., 

2011) 

Cu/ZnO 0.7 413-433 - - 9/1 (Karelovic et 

al., 2012) 

Cu/Zn/Al/Y 5 523 26.90 0.52 g g-1cat  

h-1 

3/1 (Gao et al., 

2013) 

Cu–ZnO/ZrO2 5 513 22.40 14.3% 3/1 (Arena et al., 

2013b) 

Cu–ZnO–ZrO2 7 523 22 22 mol kg-cat-1 

h-1 

3/1 (Ladera et al., 

2013) 

Cu-ZrO2/CNF 3 443 - 4.28 g Kg1cat 

h-1 

3/1 (Din et al., 

2014) 

Cu/CrCuO4 and 

Cu/ Mo2C 

4 408 - - 3/1 (V:V) (Chen et al., 

2015) 

CuO/ZnO-

filament 

3 513 16.50 0.55 g g-1cat  

h-1 

3/1 (Lei et al., 

2015) 

CuO–ZnO 3 513 17.40 7.6% 3/1 (Xiao et al., 

2015) 

Cu/Hal 3 553 15 - 3/1 (Witoon et al., 

2016) 

CuO–ZnO– 3 513 12.10 6.5% 3/1 (Li et al., 2015) 
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ZrO2 

(CuZnGa)MW 3 543 15.90 4241 mmol kg-

cat-1 h-1 

3/1 (Cai et al., 

2015) 

Cu2Zn1Al1.2Z-

r0.1 

9 523 36.50 0.45 g g-1cat  

h-1 

73/24 (Gao et al., 

2015a) 

Cu–ZnO 3 523 - - 3/1 (Tisseraud et 

al., 2015) 

core–shellCu/ 

ZnO@m-SiO2 

5 543 11.90 153.9 g kg1cat 

h-1 

73/24 (Yang et al., 

2016) 

Cu/β -Mo2C 2 573 28 - 5/1 (Posada-Pérez 

et al., 2016) 

Cu-ZrO2 3 523 - - 3/1 (Ro et al., 

2016) 

Cu/Zn/Al/Zr 

fibrous 

5 523 25.50 - 3/1 (Kiss et al., 

2016) 

Cu/ZnO/ZrO2 5 543 23 0.21 g mL-1 h-1 3/1 (Dong et al., 

2016) 

CuZn/rGO 1.5 523 26 424 mg gcat
-1 h-

1 

3/1 (Deerattrakul et 

al., 2016) 

CuO–ZnO–

ZrO2 

2 513 13.20 219.7 g kg1cat 

h-1 

3/1 (Witoon et al., 

2016) 
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Cu–ZnO 3 523 - - 3/1 (Tisseraud et 

al., 2016) 

ZnO-ZrO2 2 573 3.4 7.75 mol kg-

cat-1 h-1 

3/1 (Wang et al., 

2017a) 

 5 593 10 23.04 mol kg-

cat-1 h-1 

3/1 (Wang et al., 

2017a) 

Pd-Cu/SiO2 4.1 523 6.6 1.12 mol kg-

cat-1 h-1 

3/1 (Jiang et al., 

2015) 

Pd-Cu/P25 4.1 523 16.4 1.80 mol kg-

cat-1 h-1 

3/1 (Lin et al., 

2019) 

Pd-Cu/CeO2 4.1 523 9.9 1.37 mol kg-

cat-1 h-1 

3/1 (Lin et al., 

2019) 

Pd-Cu/ZrO2 4.1 523 15.8 1.87 mol kg-

cat-1 h-1 

3/1 (Lin et al., 

2019) 

Pd-Cu/Al2O3 4.1 523 12.4 1.69 mol kg-

cat-1 h-1 

3/1 (Lin et al., 

2019) 

Pd-Cu/Ti0.1 

Zr0.9O2 

4.1 493 6.4 1.80 mol kg-

cat-1 h-1 

3/1 - 

Pd/Mo2C 4 473 97 -  3/1 (Chen et al., 

2016) 

Pd- 4.1 523 10.1 2.23 mol kg- 3/1 - 
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Cu/Ti0.1Zr0.9O2 cat-1 h-1 

Pd-P/In2O3 5 573 20 27.81 mol kg-

cat-1 h-1 

4/1 (Rui et al., 

2017) 

Pd-I/In2O3 5 573 18 25 mol kg-cat-1 

h-1 

4/1 (Rui et al., 

2017) 

Pd-In2O3CP 5 553 - 31.56 mol kg-

cat-1 h-1 

4/1 (González-

Garay et al., 

2019) 

Pd-In2O3CP 5 553 - 19.06 mol kg-

cat-1 h-1 

4/1 (González-

Garay et al., 

2019) 

Pd–ZnO 3 523 6.3 37.1 mg g1cat 

h-1 

3/1 (Liang et al., 

2009) 

Pd@Zn 4.5 543 - 12 g g1cat h-1 - (Liao et al., 

2016) 

Pd/ZnO 0.1 423-573 4 - 9/1 (Díez-Ramírez 

et al., 2016) 

Pd–Cu/SiO2 4.1 523 6.6 0.31 µmol g1cat 

h-1 

3/1 (Jiang et al., 

2015) 

Pd/β–Ga2O3 1.7 543 12 - 7.5/1 (Oyola-Rivera 

et al., 2015) 
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Pd-ZnO 5 543 7 343 mg g1cat h-

1 

3/1 (Liang et al., 

2015) 

Pd-Ga2O3 5 523 9.8 555 mg g1cat h-

1 

3/1 (Kong et al., 

2011) 

Au/Al2O3 0.5 493 2 0.02 mol kg-

cat-1 h-1 

3/1 (Hartadi et al., 

2015) 

Au/ZnO 0.5 493 0.2 0.08 mol kg-

cat-1 h-1 

3/1 (Hartadi et al., 

2015) 

Au/ZnO 5 513 1 4.23 mol kg-

cat-1 h-1 

3/1 (Hartadi et al., 

2016) 

 0.5 513 0.4 1.19 mol kg-

cat-1 h-1 

3/1 (Hartadi et al., 

2016) 

Au/ZnO 0.1 498 1 0.09 mol kg-

cat-1 h-1 

9/1 (Vourros et al., 

2017) 

Au/ZrO2 0.5 493 5.3 0.18 mol kg-

cat-1 h-1 

3/1 (Hartadi et al., 

2015) 

Au/TiO2 0.5 493 9.4 0.04 mol kg-

cat-1 h-1 

3/1 (Hartadi et al., 

2015) 

Au/CeO2 0.1 498 1 0.15 mol kg-

cat-1 h-1 

9/1 (Vourros et al., 

2017) 

Au-CuO/SBA- 3 523 24.2 -  3/1 (Li et al., 2017) 
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Materials for CO2 conversion 

Nanomaterials 

Studies are being done to decrease CO2 and convert it into significant items, one of them 

being methanol. Among numerous methodologies used to diminish CO2 and combine 

methanol, utilizing nanomaterials as an impetus has stood out because of their different 

properties. High surface region, low planned locales, and enormous edge parcel are the 

properties that give these metallic nanoparticles an interesting synergist execution when 

contrasted with the other mass materials.(Yang et al., 2018) Direct hydrogenation of methanol 

from CO2 is a harmless to the ecosystem response when it is performed utilizing efficient 

impetuses. Bi-metallic Pd-In nanoparticles were created for this response and they showed 

great synergist movement. These intermetallic nanomaterials were seen to be generally 

effective as they showed 70% higher methanol rates during fluid stage methanol combination 

tests, they likewise displayed >80% improved methanol selectivity at 270˚C when contrasted 

with the recently utilized heterogeneous impetus, Cu/ZnO/Al2O3 which showed just 45% 

methanol selectivity. Cu/ZnO/Al2O3 shows low methanol selectivity, solidness, and normal 

synergist movement. Creating impetuses dependent on In2O3 (Martin et al., 2016), PdGa2O3 

(Fiordaliso et al., 2015), AuZnO (Hartadi et al., 2016), PdZnO (Bahruji et al., 2016), and 

CuCeO2 (Johnston-Peck et al., 2013) are totally demonstrated to be viable nanomaterials. 

Porphyrins 

 

Porphyrins are broadening their approval towards catching CO2 and its transformation into 

some significant items like methanol. Effective porphyrin-based materials are being created 

like porphyrin-based nanoreactors, porphyrin-based translucent materials, porphyrin-based 

dendrimers, covalent natural structures, metal-natural systems, and permeable natural 

polymers for CO2 catch and porphyrin and metalloporphyrin-based impetuses have been 

utilized for its transformation into esteem added items like methanol. (Kumar et al., 

2015)Methanol, as a final result after CO2 change, relies upon the focal particle of the 

porphyrin ring. Metals, for example, Cu, Ag, Au, Ni, and Pd as focal metal iotas in the 
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porphyrin ring produce methanol. (Tripkovicet al., 2013) Photoelectrocatalysis method (PEC) 

was applied interestingly to change over CO2 into methanol utilizing porphyrin, Ti/TiO2 

nanotubes were covered with a complex of copper (II) porphyrin ([Cu(T4H3MPP)]), giving 

(Ti/TiO2NT-CuP), this framework was upheld by Na2SO4 electrolyte and ¬optimized under 

encompassing conditions giving a methanol yield of 0.033mmol/L. (Brito et al., 2020) 

Photosensitized-TiO2 nanotube adjusted by Zn (II) porphyrins and Ru (II) polypyridyl/edifices 

was utilized as a porphyrin-based impetus for CO2 decrease and transformation into methanol 

with an item centralization of 746 µmol/L/gcat-1 (Wang et al., 2012) Liu et al., utilized 

Cu¬¬¬2+ in a porphyrin-based MOF, (5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin TCPP) 

based MOF for CO2 catch and change into methanol, mirroring the cycle of photosynthesis.  

 

In the wake of checking on writing identified with CO2 change into methanol, it tends to be 

summed up that doping porphyrin moieties into different impetuses can build the fluid stage 

age of methanol altogether.
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Table: Reduction of CO2 to methanol using a photocatalyst doped with porphyrins, the medium of reaction, and yield of 

methanol produced. 

Porphyrin-doped 

photocatalyst 

Reaction medium Temperature 

(˚C) 

Product(s) Methanol yield Reference 

Ti-MCM-48(25)CuTPP 0.1M 

(NaOH/Na2SO3) 

25 Methanol 297.06 µmol.g-1 (Nadeem et al., 

2018) 

Ti-MCM-48(25) 0.1M 

(NaOH/Na2SO3) 

25 Methanol 85.23 µmol.g-1 (Nadeem et al., 

2018) 

Cu complex/GO DMF/H2O (9:1) - Methanol 1600 µmol.g-1 (Kumar et al., 

2015) 

CuPpMOF H2O/ Triethyl 5 Methanol 262.6 µmol.g-1.h-1 (Liu et al., 2013) 

TiO2NTs/Cu porphyrin-

Ru complexes 

0.05M (NaOH/ 

Na2SO3) 

50 Methanol 733 µmol.g-1 (Wang et al., 

2012) 

Cophthalocyanine/ 

TiO2 

NaOH/Na2NO3 - Methanol, Methane, 

Hydrogen, CHO, 

Formic acid 

2.1 µmol.g-1 (Liu et al., 2007a) 

Ti-Si thin film CO2, H2O Vapours - Methanol, Methane Approx. 16 

µmol.g-1 

(Ikeue et al., 

2002) 

Ti-β(F)/Ti-β(OH) 

Zeolites 

CO2, H2O Vapours - Methanol, Methane >0.5 µmol.g-1 (Ikeue et al., 

2001) 

Ti-MCM-41/ Ti-MCM-

48 

CO2, H2O Vapours - Methanol, Methane 1.5 µmol.g-1 (Anpo et al., 

1998) 
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Metal Organic Frameworks (MOFs) 

Table: MOF-based catalysts for the conversion of CO2 to methanol using heterogeneous catalysis method for conversion and 

their catalytic performance under ambient conditions. 

 

MOF-based Electrocatalyst Reaction time (h) Faradaic efficiency of 

methanol 

Remark Reference 

Cu/C derived from MOF 5 43.2% Low yield (Zhao et al., 2017) 

HKUST-1 17 5.6% Very low FE (Albo et al., 2017) 

Ru doped-HKUST-1 1 FEmethanol + FEethanol= 

47.2% 

Catalytic activity 

unstable for longer 

reaction period 

(Perfecto-Irigaray et al., 

2018) 

Co-Pc-PBBA 24 - Not specific for 

methanol production 

(Yao et al., 2018) 

Ti/TiO2-ZIF-8 50 - Relatively low 

methanol yield 

(Cardoso et al., 2018) 
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Biochar 

Squander natural matter or biomass is a modest and economical carbon-rich matter, it's 

anything but an effective option to other petro-determined fills because of its pervasive and 

carbon-nonpartisan nature. (Li et al., 2014)  

 

It is pyrolyzed or thermochemically changed over into a strong material in an oxygen-

restricted climate. This strong result is known as biochar. Biochar can be gotten by biomass 

carbonization as the fundamental item and by biomass gasification and quick pyrolysis as a 

result. Various sorts of biochar are acquired dependent on the substance of lignin, cellulose, 

and hemicellulose (Xiong et al., 2017)  

 

An increment in temperature while transformation of biomass to biochar diminishes its yield 

yet additionally expands the surface space of biochar which is useful for better adsorption. 

(Madhu et al., 2016)  

The accompanying table shows a few instances of biomass crude material utilized in the 

development of biochar under a given temperature. 

Table- Biochar yield from biomass raw material at a given temperature. 

Biomass raw 

material 

Temperature (K) Biochar yield (%) References  

Corncob 673-973 34.2-20.2 (Zhang et al., 2009) 

Corncob 723-1523 5.7-30.6 (Demirbas, 2004) 

Olive husk 723-1523 19.4-44.5 (Demirbas, 2004) 

Pine  573-723 26-58 (Shabangu et al., 

2014) 

Rice husk 673-873 25.5-33 (Williams and 

Nugranad, 2000) 

Sewage sludge 623-1223 39-52 (Sánchez et al., 
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2009) 

 

In a study reported by Lobos et al., they researched for electro -oxidation of methanol 

using biochar supported Cu-Ru@Pt nanoparticles as a catalyst which exhibited a 3-9 

times higher catalytic activity as compared to commercial Pt -Ru/C catalyst. (Lobos et 

al., 2016)The following table presents biochar-based catalysts used in the conversion 

of biomass to methanol under ambient conditions.  

 

Table: Biodiesel production using biochar catalyst under ambient conditions 

(temperature and time)  

Catalyst Biodiesel 

production 

Ratio Temperature 

(Celcius) 

Time Catalytic 

activity 

References 

Waste 

eggshells 

supported 

on fly ash 

biochar 

Soybean oil 

and 

methanol 

1:6.9 70 5h FAME 

yield of 

96.97% 

(Chakraborty 

et al., 2010) 

Bovine 

bone waste 

biochar 

Soybean oil 

and 

methanol 

1:6 65 3h FAME 

yield of 

97% 

(Smith et al., 

2013) 

Crab shell 

biochar 

Karanja oil 

and 

methanol 

1:8 65 120 

min 

Biodiesel 

yield of 

94% 

(Madhu et 

al., 2016) 

Chicken 

manure 

biochar 

Waste 

cooking oil 

and 

methanol 

1:20 

(V: V) 

350 - FAME 

yield of 

95% 

(Jung et al., 

2018) 

Pig meat 

and bone 

Palm oil and 

methanol 

1:7 65 150 

min 

Biodiesel 

yield of 

(Wang et al., 

2017b) 
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meal 

biochar 

98.2% 

Coconut 

shell 

Palm oil and 

methanol 

1:30 60 6h Biodiesel 

yield of 

88.15% 

(Endut et al., 

2017) 

Hardwood 

biochar 

Methanol/oil 15:1 65 24h 85.1 gL-1 

(FAME) 

(Dehkhoda 

and Ellis, 

2013) 

Wood-

mixture 

biochar 

Methanol/oil 15:1 150 3h 44% (Yu et al., 

2011) 

Peanut hull-

biochar 

Methanol/oil 20:1 60 6h 70% (Kastner et 

al, 2011) 

Commercial 

biochar 

Methanol/oil 10:1 150 3h 48% (Dehkhoda 

et al, 2013) 

Rice husk 

biochar 

Methanol/oil 20:1 110 15h 88% (Li et al, 

2014) 

Palm kernel 

shell 

biochar 

Methanol/ 

sunflower 

oil 

9:1 60 6h 99% (Bazargan et 

al., 2015) 

 

Bio-inspired materials for CO2 sequestration 

Designing a catalyst is a challenging task. One of the ways of overcoming this 

challenge is by taking ideas from natural systems that have evolved over many years 

to efficiently perform redox reactions at lower energy costs. Like, the mineral greigite 

can reduce CO2 to methanol at ambient conditions owing to its structural similarity to 

modern-day CO2 converting enzymes. (Roldan et al., 2015)Naturally, there are six 

mechanisms to reduce carbon dioxide, i.e. reductive pentose phosphate cycle,  

reductive acetyl-CoA pathway, reductive citric acid cycle, dicarboxylate cycle, 4-
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hydroxybutyrate cycle, and 3-hydroxypropionate bi-cycle. The designing of bio-

inspired catalysts is a way to modify the living systems by adding certain 

characteristics to improve their performance. Bio-inspired materials have many 

advantages like biodegradability, low corrosion, ease of disposal, and easy 

configuration. (Carrera et al., 2017)One such study was reported by Apkle et al., 

where they designed a biocatalyst inspired by honeycomb. It was prepared by therma l 

condensation of Si-O2 templates and dicyandiamide creating a honeycomb-like 

structure in HC-C3N4 accumulating Ni(OH)2 nanoclusters as a replacement to 

platinum, on the surface of the catalyst to improve charge segregation efficiency. This 

biocatalyst showed an excellent reduction of CO2 to methanol by generating 

0.73µmol/h/g (Akple et al., 2020)Tsung and his co-workers prepared a synthetic 

catalyst for the conversion of  CO2 to methanol, that is the most active system 

reported till date, after getting inspired by the naturally occurring fuel -producing 

supramolecular protein assemblies. They used ruthenium-based catalysts, 

encapsulating one of them in MOF UiO-66 so that it could be used later. The catalytic 

activity could be modulated by changing the positions of the catalysts similar to the 

supramolecular protein assemblies in enzymes. The multi-catalytic system carried out 

the conversion process in three steps. First, converting CO 2 to formate, then 

esterification of formic acid to formate, and finally, the conversion of formate to 

methanol showing 2.23*10 -7mmol catalytic activity in the final step. (Rayder et al., 

2020) 
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Biomaterials Temperature/ 

Pressure 

Adsorption removal capacity 

for Carbon Capture and 

Storage 

Reference 

KOH activated starch 298 K/ 1 Bar  15.2 wt% (Cooper, 2015) 

KOH activated 

cellulose 

298K/ 1 Bar 15.2 wt% (Cooper, 2015) 

Celtuce derived 

porous carbon 

298 K/ 1 Bar 19.2 wt% (Cooper, 2015) 

Sawdust derived 

carbon sorbents 

298 K/ 1 Bar 21.2 wt% (Cooper, 2015) 

LC-1 700 273-298 K/ 

0.01-1.00 Bar 

0.29 (Cooper, 2015) 

LC-2 600 273-298 K/ 

0.01-1.00 Bar 

0.27 (Cooper, 2015) 

LC-2 700 273-298 K/ 

0.01-1.00 Bar 

0.30 (Cooper, 2015) 

LC-2 700H 273-298 K/ 

0.01-1.00 Bar 

0.31 (Cooper, 2015) 

LC-2 800 273-298 K/ 

0.01-1.00 Bar 

0.32 (Cooper, 2015) 

LC-3 700 273-298 K/ 

0.01-1.00 Bar 

0.28 (Cooper, 2015) 

Amine-Mg 

(DOBDC) MOF  

298K/ 1 Bar 5.66 mmolg-1 (He et al., 2018) 

Mg-MOF-74 296K/ 1 Bar 8 mmolg-1 (Shao et al., 2013) 

D-PEO 308K/ 3.5 Bar - (Qian et al., 2015) 

D-PEO-1 308K/ 3.5 Bar 49 Barrer (Qian et al., 2015) 

Am-PEO 308K/ 4.05 Bar 12 Barrer (Hull et al., 2012) 

XLPEGDA 308K/ 4.05 Bar 12 Barrer (Hull et al., 2012) 

LCM - 17 Barrer (Zhu et al., 2015) 
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Table: Enzymatic conversion of CO2 into methanol using multi-enzymatic 

systems and the average rate of formation of methanol per hour.  

Enzymes System Methanol 

productivity 

(Mm/h) 

Reference 

CIFDH+BmFaldDH+YADH+PTDH Free enzyme 0.55 (Singh et 

al., 2018) 

CIFDH+BmFaldDH+YADH+PTDH Free enzyme 0.49 (Singh et 

al., 2018) 

CIFDH+BmFaldDH+YADH+PTDH+EMIM-

Ac 

Free enzyme 1.13 (Singh et 

al., 2018) 

CIFDH+BmFaldDH+YADH+PTDH+EMIM-

Ac 

Free enzyme 1.31 (Singh et 

al., 2018) 

CbFDH+ PpFaldDH+ YADH Free enzyme 0.007 (Yadav et 

al., 2014) 

CbFDH+ PpFaldDH+ YADH+ PTDH Free enzyme 0.014 (Cazelles 

et al., 

2013) 

CbFDH+ PpFaldDH+ YADH+ GDH Co-

immobilized 

0.040 (El-Zahab 

et al., 

2008) 

CbFDH+ PpFaldDH+ YADH Immobilized 0.002 (Jiang et 

al., 2009) 
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Chemo-enzymatic conversion of CO 2  into methanol 

 

Biochemical techniques can be utilized for the decrease of CO2 and its transformation to 

lessen the contamination brought about by the results for example make the cycle eco-

accommodating and increment the usage of CO2. Biochemical strategies are favorable as the 

necessary energy for carbon catch is less, usefulness can be improved by straightforwardly 

infusing CO2 and green growth can be used at lower costs when contrasted with different 

techniques. (Yaashikaa et al., 2019)Sulphuric corrosive or a strong base can be utilized as 

impetuses yet they have a few burdens like erosion of equipment.Microbialelectrosynthesis 

analyze showed that homoacetogens may deliver extracellular acetic acid derivation and 2-

oxobutyrate utilizing carbon dioxide and electrons are provided through graphite 

electrode(Nevin et al., 2010). Microbial electrosyntheis (MES) is getting mainstream among 

researchers because of its properties like potential for sunlight based to item productive change 

of CO2 when contrasted with heterotrophic aging routes(Claassens et al., 2016). 

Electrochemical responses including biocatalysts don't deliver any harmful mixtures and are 

savvy. MES is more specific towards acetic acid derivation and methane from CO2 decrease. 

Electro-aging is likewise accomplished for the bioconversion of different sorts of natural 

matter.(Chu et al., 2020)The CO2 catch from the air is costly, henceforth the mechanical 

creation of powers and different items utilizing CO2 ought to be decentralized and high 

volume squander CO2 can be utilized as a crude material(Bui et al., 2018; Haas et al., 2018). 

Lipase can be utilized as an impetus for transesterification since it is productive and explicit. It 

actually has numerous disadvantages to be utilized as an impetus like longer response time, 

response conditions should be kept up stringently and the compound can't be reused (Xiang et 

al., 2019). Aminopyridine cobalt complex can be utilized for transformation of CO2 to CO, 

aminopyridine cobalt complex copies the impact of CO-dehydrogenase(Wang et al., 2019)
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