
Remote Monitoring System for Network
Management

Project Report submitted in partial fulfilment of the requirement for the
degree of Bachelor of Technology in

CCoommppuutteerr SScciieennccee && EEnnggiinneeeerriinngg

under the Supervision of

MMrr.. PPuunniitt GGuuppttaa

By

AAnnvviitt SShhaarrmmaa((111111221144))

to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

Wakanaghat, Himachal Pradesh, India

To Whom It May Concern,

This is to certify that project report entitled Remote Monitoring System for
Network Management, submitted by Anvit Sharma, enrollment number 111214,
in partial fulfillment for the award of degree of Bachelor of Technology in
Computer Science & Engineering to Jaypee University of Information Technology,
Waknaghat, Solan is being carried out under my supervision. This work has not
been submitted partially or fully to any other University or Institute for the award
of this or any other degree or diploma.

Date: Supervisor's name: Punit Gupta
 Designation: Assistant Professor

Jaypee University of Information Technology.
Waknaghat, Solan, HP

ACKNOWLEDGEMENT

I wish to express my gratitude to all those individuals who has contributed their
ideas, time and energy to make this report a success. The satisfaction that
accompanies the successful completion of any task would be incomplete
without the mention of the people who made it possible, whose constant
guidance and encouragement crown all the efforts. An understanding of the
study like this, is never the outcome of the effort of a single person, rather it
bears the imprint of a number of people who directly or indirectly helped me in
completing this project. I would be failing in my duty if I don’t say a word of
thanks to all those people.

I would like to express my deepest gratitude to Mr. Punit Gupta, Senior
Professor, JUIT for providing me with an opportunity to work on this project. It
is my present privilege to acknowledge my profound gratitude and
indebtedness toward him for his inspiration, constructive criticism & invaluable
suggestion.

Finally, I would also like to thank my family and friends for their support
throughout the project.

Anvit Sharma
111214, CSE

JUIT

TABLE OF CONTENTS

ABSTRACT

1
CHAPTER 1: GENERAL DEFINITIONS RELATED TO PROJECT 4

1.1 NETWORK MANAGEMENT 5

1.2 RMON 8

1.3 NETWORK MONITORING 9

1.4 INTERNET PROTOCOL (IP) 10

1.5 UDP(USER DATAGRAM PROTOCOL) 13

CHAPTER 2: LITERATURE REVIEW AND PREVIOUS WORK 15

CHAPTER 3: PROJECT RELATED DEPENDENCIES 18

3.1 PCAP 19

3.2 THE JPCAP LIBRARY 20

3.3 WINPCAP AND LIBPCAP 26

3.4 XAMPP 27

3.5 VMWARE 29

3.6 HIGHCHARTS 30

3.7 NETBEANS 32

3.8 JAVA (32 BITS) 34

CHAPTER 4: TOOLS AND TECHNIQUES 36

CHAPTER 5: RESULTS AND CONCLUSION 46

5.1 INTERPRETATION OF THE GRAPHS 50

5.2 CONCLUSION AND FUTURE DEVELOPMENT 52

REFERENCES 53

LIST OF FIGURES AND TABLES

Figure 1: IP Datagram format 12

Figure 2: Code obtaining the list of network interfaces 22

Figure 3: Code opening the network interfaces 23

Figure 4: Parameters when calling the
JpcapCaptor.openDevice() method

23

Figure 5: Code for printing the captured packets 24

Figure 6: Code for printing the captured packets 25

Figure 7: Screenshot of XAMPP control panel 28

Figure 8: Screenshot of VMware software 29

Figure 9: Screenshot of Logarithmic chart 31

Figure 10: Screenshot of Netbeans IDE 33

Figure 11: Architectural diagram of NMS 37

Figure 12: The icon of jdk 32 bits is shown 38

Figure 13: The icon of Winpcap and Jpcap libraries are shown 38

Figure 14: Installation process of XAMPP server 39

Figure 15: Snapshot of libraries to be included 40

Figure 16: Database connection established 40

Figure 17: Table name packet created 41

Figure 18: Table name packet created in database phpmyadmin 41

Figure 19: Code for packet capture running 42

Figure 20: Table named packet in database phpmyadmin being 42

updated

Figure 21: Copied contents of Highcharts in
C:\xampp\htdocs\Highcharts-4.1.5

43

Figure 22: Graph_1: php code for creating graph of Packet
Number vs length. Similar is for other graphs

43

Figure 23: HTML doc for main page 44

Figure 24: main html document source code 45

Figure 25: Remote monitoring for network management
homepage

47

Figure 26: Number of packets vs length of the packet 48

Figure 27: Number of packets vs Timestamp Count 48

Figure 28: Number of packets vs. IP packet version 49

Figure 29: Number of packets vs. id field 49

ABSTRACT

2

Network is a key part of a business's IT system. To keep it running smoothly it’s
important to perform some basic network management tasks.

Why computer network maintenance matters?

There are several reasons why good network management is important.

 Prevent problems: Much like servicing a car, good network management will
stop problems occurring and prolong your network’s life.

 Work efficiently: Good management ensures your staff have access to the IT
they need to do their jobs effectively.

 Maintain security: Even if you set your network up securely to begin with,
you need good management to ensure it stays that way.

 Stay up to date: Although network technology doesn’t move as fast as other
areas of business IT, careful upgrades may help improve performance.

A well-managed network will serve business better, reducing the time one
spends solving problems and allowing to get on with running the company
more efficiently.

There are five important areas of network management-

1. Software management: This involves taking care of the software installed on
your network. It includes keeping track of installed software, applying any
important updates and deciding whether to upgrade when new versions
become available.

2. Hardware management: You need to maintain the physical equipment which
makes up your network. This might involve inspecting servers, cleaning dust
from vents and testing key hardware like uninterruptible power supplies and
backup drives.

3. File management: Particularly important if you operate a central file store on a
server, file management involves keeping all the files on your system
organised, deleting temporary files and archiving old data so there’s room to
save new files.

3

4. Security management: If your business relies on its computer network, then
keeping that network secure is very important. Security-related tasks include
running and testing backups, regularly scanning for viruses and testing your
firewall.

5. User management: You can reduce administration and boost your network’s
security further by giving employees different levels of access depending on
what they need to do, removing access rights when staff leave and controlling
what files people can change.

It’s important you stay on top of these things. Performed regularly, network
management and maintenance needn’t take a great deal of time or cause
much disruption.

Keeping on top of computer network maintenance

To make sure network management and maintenance tasks are carried out
regularly, make someone in your business responsible for them and build the
tasks into your company’s schedule. If you leave them until someone has a
spare moment then they’ll probably never get done!

To minimise disruption, perform some computer network maintenance out of
normal working hours. Tasks like defragmenting hard drives, running virus
scans or testing backup systems can slow down a network server.

You may also be able to automate some management tasks. For instance, virus
scanners can be set to perform a full scan at a specific time.

In network management terms, network monitoring is the phrase used to
describe a system that continuously monitors a network and notifies a
network administrator though messaging systems (usually e-mail) when a
device fails or an outage occurs. Network monitoring is usually performed
through the use of software applications and tools.

At the most basic level, ping is a type of network monitoring tool. Other
commercial software packages may include a network monitoring system that
is designed to monitor an entire business or enterprise network.

Some applications are used to monitor traffic on your network, such
as VoIP monitoring, video stream monitoring, mail server (POP3 server)
monitoring, and others.

4

CHAPTER 1: GENERAL DEFINITIONS
RELATED TO PROJECT

5

1.1 NETWORK MANAGEMENT

In computer networks, network management is the operation, administration,
maintenance, and provisioning (OAMP) of networked systems. Network
management is essential to command and control practices and is generally
carried out of a network operations centre.

 Operation deals with keeping the network (and the services that the
network provides) up and running smoothly. It includes monitoring the
network to spot problems as soon as possible, ideally before users are
affected.

 Administration deals with keeping track of resources in the network and
how they are assigned. It includes all the "housekeeping" that is necessary
to keep the network under control.

 Maintenance is concerned with performing repairs and upgrades—for
example, when equipment must be replaced, when a router needs a patch
for an operating system image, when a new switch is added to a network.
Maintenance also involves corrective and preventive measures to make the
managed network run "better", such as adjusting device configuration
parameters.

 Provisioning is concerned with configuring resources in the network to
support a given service. For example, this might include setting up the
network so that a new customer can receive voice service, real time
communications etc.

A common way of characterizing network management functions is FCAPS—
Fault, Configuration, Accounting, Performance and Security.

Functions that are performed as part of network management accordingly
include controlling, planning, allocating, deploying, coordinating, and
monitoring the resources of a network, network
planning, frequency allocation, predetermined traffic routing to support load

6

balancing, cryptographic key distribution authorization, configuration
management, fault management, security management, performance
management, bandwidth management, Route analytics and accounting
management.

Data for network management is collected through several mechanisms,
including agents installed on infrastructure, synthetic monitoring that
simulates transactions, logs of activity, sniffers and real user monitoring. In the
past network management mainly consisted of monitoring whether devices
were up or down; today performance management has become a crucial part
of the IT team's role which brings about a host of challenges—especially for
global organizations. Network management does not include user terminal
equipment.

A network management system (NMS) is a set of hardware and/or software
tools that allow an IT professional to supervise the individual components of a
network within a larger network management framework.

Network management system components assist with:

 Network device discovery - identifying what devices are present on a
network.

 Network device monitoring - monitoring at the device level to determine
the health of network components and the extent to which their
performance matches capacity plans and intra-enterprise service-level
agreements (SLAs).

 Network performance analysis - tracking performance indicators such
as bandwidth utilization, packet loss, latency, availability and uptime
of routers, switches and other Simple Network Management Protocol
(SNMP) -enabled devices.

 Intelligent notifications - configurable alerts that will respond to specific
network scenarios by paging, emailing, calling or texting a network
administrator.

7

Network management is a broad range of functions including activities,
methods, procedures and the use of tools to administrate, operate, and
reliably maintain computer network systems. Strictly speaking, network
Management does not include terminal equipment (PCs, workstations,
printers, etc.). Rather, it concerns the reliability, efficiency and
capacity/capabilities of data transfer channels.

While there is no precise definition of the term due to it being such a broad
concept, some of the main areas are summarized below:

Network Administration: This involves tracking and inventorying the many
network resources such as monitoring transmission lines, hubs, switches,
routers, and servers; it also involves monitoring their performance and
updating their associated software – especially network management
software, network operating systems, and distributed software applications
used by network users.

Network Operation: This involves smooth network functioning as designed
and intended, including close monitoring of activities to quickly and efficiently
address and fix problems as they occur and preferably even before users are
aware of the problem.

Network Maintenance: This involves timely repair and necessary upgrades to
all network resources as well as preventive and corrective measures through
close communication and collaboration with network administrators. Example
work includes replacing or upgrading network equipment such as switches,
routers and damaged transmission lines.

Network Provisioning: This involves configuring network resources to support
the requirements of a particular service; example services may be voice
capabilities or increasing broadband requirements to facilitate more users.

8

1.2 RMON

Remote Monitoring (RMON) is a standard monitoring specification that
enables various network monitors and console systems to exchange network-
monitoring data. RMON provides network administrators with more freedom
in selecting network-monitoring probes and consoles with features that meet
their particular networking needs. An RMON implementation typically
operates in a client/server model. Monitoring devices (commonly called
"probes" in this context) contain RMON software agents that collect
information and analyze packets. These probes act as servers and the Network
Management applications that communicate with them act as clients. While
both agent configuration and data collection use SNMP, RMON is designed to
operate differently than other SNMP-based systems:

 Probes have more responsibility for data collection and processing, which
reduces SNMP traffic and the processing load of the clients.

 Information is only transmitted to the management application when
required, instead of continuous polling.

In short, RMON is designed for "flow-based" monitoring, while SNMP is often
used for "device-based" management. RMON is similar to other flow-based
monitoring technologies such as NetFlow and SFlow because the data collected
deals mainly with traffic patterns rather than the status of individual devices.
One disadvantage of this system is that remote devices shoulder more of the
management burden, and require more resources to do so. Some devices
balance this trade-off by implementing only a subset of the RMON MIB groups.
A minimal RMON agent implementation could support only statistics, history,
alarm, and event.

9

1.3 NETWORK MONITORING

In network management terms, network monitoring is the phrase used to
describe a system that continuously monitors a network and notifies a
network administrator though messaging systems (usually e-mail) when a
device fails or an outage occurs. Network monitoring is usually performed
through the use of software applications and tools.

At the most basic level, ping is a type of network monitoring tool. Other
commercial software packages may include a network monitoring system that
is designed to monitor an entire business or enterprise network.

Some applications are used to monitor traffic on your network, such
as VoIP monitoring, video stream monitoring, mail server (POP3 server)
monitoring, and others.

While an intrusion detection system monitors a network for threats from the
outside, a network monitoring system monitors the network for problems
caused by overloaded and/or crashed servers, network connections or other
devices. For example, to determine the status of a webserver, monitoring
software may periodically send an HTTP request to fetch a page.
For email servers, a test message might be sent through SMTP and retrieved
by IMAP or POP3.

Commonly measured metrics are response time, availability and uptime,
although both consistency and reliability metrics are starting to gain
popularity. The widespread addition of WAN optimization devices is having an
adverse effect on most network monitoring tools -- especially when it comes to
measuring accurate end-to-end response time because they limit round trip
visibility.[1]

Status request failures - such as when a connection cannot be established,
it times-out, or the document or message cannot be retrieved - usually
produce an action from the monitoring system. These actions vary -- an alarm
may be sent (via SMS, email, etc.) to the resident sysadmin, automatic failover
systems may be activated to remove the troubled server from duty until it can
be repaired, etc. Monitoring the performance of a network uplink is also
known as network traffic measurement, and more software are listed there.

10

1.4 INTERNET PROTOCOL (IP)

The Internet Protocol (IP) is the principal communications protocol in
the Internet protocol suite for relaying datagrams across network boundaries.
Its routing function enables internetworking, and essentially establishes
the Internet.

IP has the task of delivering packets from the source host to the destination
host solely based on the IP addressing the packet headers. For this purpose, IP
defines packet structures that encapsulate the data to be delivered. It also
defines addressing methods that are used to label the datagram with source
and destination information.

Historically, IP was the connectionless datagram service in the
original Transmission Control Program introduced by Vint Cerf and Bob Kahn in
1974; the other being the connection-oriented Transmission Control
Protocol (TCP). The Internet protocol suite is therefore often referred to as
TCP/IP.

The first major version of IP, Internet Protocol Version 4 (IPv4), is the dominant
protocol of the Internet. Its successor is Internet Protocol Version 6 (IPv6).

The Internet Protocol is responsible for addressing hosts and for routing
datagrams (packets) from a source host to a destination host across one or
more IP networks. For this purpose, the Internet Protocol defines the format of
packets and provides an addressing system that has two functions: identifying
hosts; and providing a logical location service. Each datagram has two
components: a header and a payload. The IP header is tagged with the source
IP address, the destination IP address, and other meta-data needed to route
and deliver the datagram. The payload is the data that is transported. This
method of nesting the data payload in a packet with a header is called
encapsulation. IP addressing entails the assignment of IP addresses and
associated parameters to host interfaces. The address space is divided into
networks and sub-networks, involving the designation of network or routing
prefixes. IP routing is performed by all hosts, but most importantly by routers,
which transport packets across network boundaries. Routers communicate
with one another via specially designed routing protocols, either interior
gateway protocols or exterior gateway protocols, as needed for the topology
of the network.

11

IP routing is also common in local networks. For example, many Ethernet
switches support IP multicast operations. These switches use IP addresses and
Internet Group Management Protocol to control multicast routing but
use MAC addresses for the actual routing.

The design of the Internet protocols is based on the end-to-end principle. The
network infrastructure is considered inherently unreliable at any single
network element or transmission medium and assumes that it is dynamic in
terms of availability of links and nodes. No central monitoring or performance
measurement facility exists that tracks or maintains the state of the network.
For the benefit of reducing network complexity, the intelligence in the network
is purposely mostly located in the end nodes of data transmission. Routers in
the transmission path forward packets to the next known, directly reachable
gateway matching the routing prefix for the destination address.

As a consequence of this design, the Internet Protocol only provides best effort
delivery and its service is characterized as unreliable. In network architectural
language, it is a connectionless protocol, in contrast to connection-
oriented modes of transmission. Various error conditions may occur, such
as data corruption, packet loss, duplication and out-of-order delivery. Because
routing is dynamic, meaning every packet is treated independently, and
because the network maintains no state based on the path of prior packets,
different packets may be routed to the same destination via different paths,
resulting in out-of-order sequencing at the receiver.

Internet Protocol Version 4 (IPv4) provides safeguards to ensure that the IP
packet header is error-free. A routing node calculates a checksum for a packet.
If the checksum is bad, the routing node discards the packet. The routing node
does not have to notify either end node, although the Internet Control
Message Protocol (ICMP) allows such notification. By contrast, in order to
increase performance, and since current link layer technology is assumed to
provide sufficient error detection, the IPv6 header has no checksum to protect
it.

All error conditions in the network must be detected and compensated by the
end nodes of a transmission. The upper layer protocols of the Internet protocol
suite are responsible for resolving reliability issues. For example, a host may
cache network data to ensure correct ordering before the data is delivered to
an application. The dynamic nature of the Internet and the diversity of its
components provide no guarantee that any particular path is actually capable

of, or suitable for, performing the data transmission requested, even if the
path is available and reliable. One of the te
data packets allowed on a given link. An application must assure that it uses
proper transmission characteristics. Some of this responsibility lies also in the
upper layer protocols. Facilities exist to examine the
unit (MTU) size of the local link and
entire projected path to the destination. The IPv4 internetworking layer has
the capability to automatically
units for transmission. In this case, IP provides re
delivered out of order.

The Transmission Control Protocol
adjusts its segment size to be smaller than the MTU. The
Protocol(UDP) and the Internet Control Message Protocol
MTU size, thereby forcing IP to fragment oversized datagrams.

Figure 1: IP Datagram format

of, or suitable for, performing the data transmission requested, even if the
path is available and reliable. One of the technical constraints is the size of
data packets allowed on a given link. An application must assure that it uses
proper transmission characteristics. Some of this responsibility lies also in the
upper layer protocols. Facilities exist to examine the maximum transmission

(MTU) size of the local link and Path MTU Discovery can be used for the
entire projected path to the destination. The IPv4 internetworking layer has
the capability to automatically fragment the original datagram into smaller
units for transmission. In this case, IP provides re-ordering of fragments

Transmission Control Protocol (TCP) is an example of a protocol that
adjusts its segment size to be smaller than the MTU. The User Datagram

Internet Control Message Protocol (ICMP) disregard
MTU size, thereby forcing IP to fragment oversized datagrams.

Figure 1: IP Datagram format

of, or suitable for, performing the data transmission requested, even if the
chnical constraints is the size of

data packets allowed on a given link. An application must assure that it uses
proper transmission characteristics. Some of this responsibility lies also in the

maximum transmission
can be used for the

entire projected path to the destination. The IPv4 internetworking layer has
the original datagram into smaller

ordering of fragments

xample of a protocol that
User Datagram

(ICMP) disregard

13

1.5 UDP(USER DATAGRAM PROTOCOL)

The User Datagram Protocol (UDP) is one of the core members of the Internet
protocol suite. The protocol was designed by David P. Reed in 1980 and
formally defined in RFC 768.

UDP uses a simple connectionless transmission model with a minimum of
protocol mechanism. It has no handshaking dialogues, and thus exposes
any unreliability of the underlying network protocol to the user's program.
There is no guarantee of delivery, ordering, or duplicate protection. UDP
provides checksums for data integrity, and port numbers for addressing
different functions at the source and destination of the datagram.

With UDP, computer applications can send messages, in this case referred to
as datagrams, to other hosts on an Internet Protocol (IP) network without prior
communications to set up special transmission channels or data paths. UDP is
suitable for purposes where error checking and correction is either not
necessary or is performed in the application, avoiding the overhead of such
processing at the network interface level. Time-sensitive applications often use
UDP because dropping packets is preferable to waiting for delayed packets,
which may not be an option in a real-time system. If error correction facilities
are needed at the network interface level, an application may use
the Transmission Control Protocol (TCP) or Stream Control Transmission
Protocol (SCTP) which are designed for this purpose.

A number of UDP's attributes make it especially suited for certain applications.

 It is transaction-oriented, suitable for simple query-response protocols such
as the Domain Name System or the Network Time Protocol.

 It provides datagrams, suitable for modelling other protocols such as in IP
tunnelling or Remote Procedure Call and the Network File System.

 It is simple, suitable for bootstrapping or other purposes without a full
protocol stack, such as the DHCP and Trivial File Transfer Protocol.

 It is stateless, suitable for very large numbers of clients, such as
in streaming media applications for example IPTV

14

 The lack of retransmission delays makes it suitable for real-time
applications such as Voice over IP, online games, and many protocols built
on top of the Real Time Streaming Protocol.

 Works well in unidirectional communication, suitable for broadcast
information such as in many kinds of service discovery and shared
information such as broadcast time or Routing Information Protocol.

Applications use datagram sockets to establish host-to-host
communications. An application binds a socket to its endpoint of data
transmission, which is a combination of an IP address and a service port. A
port is a software structure that is identified by the port number, a
16 bit integer value, allowing for port numbers between 0 and 65535. Port
0 is reserved, but is a permissible source port value if the sending process
does not expect messages in response.

The Internet Assigned Numbers Authority (IANA) has divided port numbers
into three ranges.[2] Port numbers 0 through 1023 are used for common,
well-known services. On Unix-like operating systems, using one of these
ports requires super user operating permission. Port numbers 1024 through
49151 are the registered ports used for IANA-registered services. Ports
49152 through 65535 are dynamic ports that are not officially designated
for any specific service, and may be used for any purpose. They also are
used as ephemeral ports, from which software running on the host may
randomly choose a port in order to define itself. In effect, they are used as
temporary ports primarily by clients when communicating with servers.

15

CHAPTER 2: LITERATURE REVIEW AND
PREVIOUS WORK

16

The literature referred for this project was mostly picked from research papers
and pre-existing softwares based on Network management. Web based
encyclopaedias were extensively used for the description of fundamental
definitions related to the project. They were also used to understand certain
concepts which were to be applied in the project. Literature regarding the
project dependencies were read from their source sites. An extensive
description of references will be provided in the references section of this
report.

There is wide variety of literature available on Network management. There is
a bevy of research papers and articles available on this topic. A systematic
approach of reading relevant materials was adopted and a simultaneous
conceptualization of the information gained was done via coding. A lot of time
and resources were utilized to install and run project dependencies which are
covered later in this report. Network management is a vast area and
pinpointing the aspect to be developed was essential. In this project, it is
endeavoured to capture UDP packets, store them into a database and analyze
them thereby giving us details regarding the performance of the network.

Previous work was mostly aimed in understanding the nuances of the project
problem and reading literature relevant to it. A code was also developed by
establishing a client-server socket connection. This was later discarded and
jpcap library was used instead to create a packet capturing application.

Existing software’s on Network Management:

1. OpenNMS: Open NMS is an award winning network management
application platform with a long track record of providing solutions for
enterprises and carriers. OpenNMS can generate its own events or receive
events from outside sources, such as SNMP Traps, syslog or TL/1. It is even
easy to send custom events to OpenNMS: simply connect to a TCP port and, if
you have permission, sent some XML-formatted text. OpenNMS can serve as
the central repository for your network event stream. Able to handle bursts of
thousands of events per second, OpenNMS also has a number of correlation
methods to automatically clear events, translate one event into another, a
reduce duplicate events into one alarm. OpenNMS was started during a time
when Service Level Agreements (SLAs) were the focus of much management
effort. The application comes with a large number of service monitors that
perform synthetic transactions ranging from a simple ICMP request (ping) or
port check, up through complex website monitoring and round trip e-mail
testing. Detailed reports can be generated on the availability of the services,

17

and it is extremely easy to customize polling rates as well as to configure
scheduled downtime.

2. Paessler: Adding to normal bandwidth monitoring capabilities based
on SNMP, PRTG allows administrators to discern actual bandwidth usage based
on multiple parameters, such as source and destination IP addresses, MAC
addresses, port numbers, protocols, etc., using packet sniffing. Furthermore,
PRTG's packet sniffing functionality can be used to generate top lists, which
enable administrators to recognize detailed usage trends, sources and
destinations of individual communications via the network, as well as the
details of the traffic flowing within said network.

18

CHAPTER 3: PROJECT RELATED
DEPENDENCIES

19

3.1 PCAP

In the field of computer network administration, pcap (packet capture) consists
of an application programming interface (API) for capturing network
traffic. Unix-like systems implement pcap in the libpcap library; Windows uses
a port of libpcap known as WinPcap.

Monitoring software may use libpcap and/or WinPcap to
capture packets travelling over a network and, in newer versions, to transmit
packets on a network at the link layer, as well as to get a list of network
interfaces for possible use with libpcap or WinPcap.

The pcap API is written in C, so other languages such as Java, .NET languages,
and scripting languages generally use a wrapper; no such wrappers are
provided by libpcap or WinPcap itself. C++ programs may link directly to the C
API or use an object-oriented wrapper.

libpcap and WinPcap provide the packet-capture and filtering engines of
many open source and commercial network tools, including protocol analyzers
(packet sniffers), network monitors, network intrusion detection systems,
traffic-generators and network-testers.

libpcap and WinPcap also support saving captured packets to a file, and
reading files containing saved packets; applications can be written, using
libpcap or WinPcap, to be able to capture network traffic and analyze it, or to
read a saved capture and analyze it, using the same analysis code.

20

3.2 THE JPCAP LIBRARY

Introduction:

Jpcap is an open source library for capturing and sending network packets
from Java applications. It provides facilities to:

 capture raw packets live from the wire.
 save captured packets to an offline file, and read captured packets from

an offline file.
 automatically identify packet types and generate corresponding Java

objects (for Ethernet, IPv4, IPv6, ARP/RARP, TCP, UDP, and ICMPv4
packets).

 filter the packets according to user-specified rules before dispatching
them to the application.

 send raw packets to the network

Jpcap is based on libpcap/winpcap, and is implemented in C and Java.
Jpcap has been tested on Microsoft Windows (98/2000/XP/Vista), Linux
(Fedora, Ubuntu), Mac OS X (Darwin), FreeBSD, and Solaris.

Using Jpcap, you can develop applications to capture packets from a network
interface and visualize/analyze them in Java. You can also develop Java
applications to send arbitrary packets through a network interface. jpcap is a
set of Java classes which provide an interface and system for network packet
capture. A protocol library and tool for visualizing network traffic is included.
jpcap hides the low-level details of network packet capture by abstracting
many network packet types and protocols into Java classes. Internally, jpcap
implements bindings to the libpcap system library through JNI (the Java Native
Interface).

jpcap utilizes libpcap, a widely deployed shared-library for capturing user-level
packets. libpcap must be installed on your system in order to use jpcap. jpcap
consists of a small shared-library which wraps libpcap plus a collection of Java
classes. The shared-library component provides event hooks, communication

21

and data conversion between a running Java VM and libpcap. The 'capture'
package contains the core capture system.

The 'net' package contains abstractions for many network packet types and
protocols. The 'simulator' package contains a network simulator. jpcap is
licensed under the Mozilla Public License. Active jpcap development is taking
place on Unix platforms. However, jpcap should run on any platform where
libpcap is implemented.

Jpcap can be used to develop many kinds of network applications, including
(but not limited to):

 network and protocol analyzers

 network monitors

 traffic loggers

 traffic generators

 user-level bridges and routers

 network intrusion detection systems (NIDS)

 network scanners

 security tools

Jpcap captures and sends packets independently from the host protocols
(e.g., TCP/IP). This means that Jpcap does not (cannot) block, filter or
manipulate the traffic generated by other programs on the same machine: it
simply "sniffs" the packets that transit on the wire. Therefore, it does not
provide the appropriate support for applications like traffic shapers, QoS
schedulers and personal firewalls.

Library usage:

When you want to capture packets from a network, the first thing you have to
do is to obtain the list of network interfaces on your machine. To do so, Jpcap
providesJpcapCaptor.getDeviceList() method. It returns an array
of NetworkInterface objects.A NetworkInterface object contains some
information about the corresponding network interface, such as its name,
description, IP and MAC addresses, and datatlink name and description.
The following sample code obtains the list of network interfaces and prints out
their information:

22

Figure 2: Code obtaining the list of network interfaces

//Obtain the list of network interfaces
NetworkInterface[] devices =
JpcapCaptor.getDeviceList();

//for each network interface
for (int i = 0; i < devices.length; i++) {
 //print out its name and description
 System.out.println(i+": "+devices[i].name + "(" +
devices[i].description+")");

 //print out its datalink name and description
 System.out.println(" datalink:
"+devices[i].datalink_name + "(" +
devices[i].datalink_description+")");

 //print out its MAC address
 System.out.print(" MAC address:");
 for (byte b : devices[i].mac_address)
 System.out.print(Integer.toHexString(b&0xff) +
":");
 System.out.println();

 //print out its IP address, subnet mask and
broadcast address
 for (NetworkInterfaceAddress a :
devices[i].addresses)
 System.out.println(" address:"+a.address + " " +
a.subnet + " "+ a.broadcast);
}

23

Once you obtain the list of network interfaces and choose which network
interface to capture packets from, you can open the interface by
using JpcapCaptor.openDevice()method. The following piece of code illustrates
how to open an network interface:

Figure 3: Code opening the network interfaces

When calling the JpcapCaptor.openDevice() method, you can specify the
following parameters:

Figure 4: Parameters when calling the JpcapCaptor.openDevice() method.

Name: Purpose:

Network Interface Network interface that you want to open.

int snaplen Max number of bytes to capture at once.

boolean promics True if you want to open the interface in promiscuous
mode, and otherwise false. In promiscuous mode, you
can capture packets every packet from the wire, i.e.,
even if its source or destination MAC address is not same
as the MAC address of the interface you are opening. In
non-promiscuous mode, you can only capture packets
send and received by your host.

int to_ms Set a capture timeout value in milliseconds.

NetworkInterface[] devices =
JpcapCaptor.getDeviceList();
int index=...; // set index of the interface that
you want to open.

//Open an interface with openDevice(NetworkInterface
intrface, int snaplen, boolean promics, int to_ms)
JpcapCaptor
captor=JpcapCaptor.openDevice(device[index], 65535,
false, 20);

24

JpcapCaptor.openDevice() returns an instance of JpcapCaptor. You can then
call several methods of the JpcapCaptor class to actually capture packets from
the network interface.Once you obtain an instance of of JpcapCaptor, you can
capture packets from the interface. There are two major approaches to
capture packets using a JpcapCaptor instance: using a callback method, and
capturing packets one-by-one.

Call back approach: In this approach, you implement a callback method to
process captured packets, and then pass the callback method to Jpcap so that
Jpcap calls it back every time it captures a packet. Let's see how you can do this
approach in detail.
First, you implement a callback method by defining a new class which
implements the PacketReceiver interface. The PacketReceiver interface defines
a receivePacket()method, so you need to implement a receivePacket() method

in your class.
The following class implement a receivePacket() method which simply prints
out a captured packet:

Figure 5: Code for printing the captured packets.

Then, you can call either JpcapCaptor.processPacket() or
JpcapCaptor.loopPacket() methods to start capturing using the callback

method. When calling processPacket()or loopPacket() method, you can also
specify the number of packets to capture before the method returns. You can
specify -1 to continue capturing packets infinitely. The two methods for
callback, processPacket() and loopPacket(), are very similar. Usually you might
want to use processPacket() because it supports timeout and non_blocking
mode, while loopPacket() doesn't.

class PacketPrinter implements PacketReceiver {
 //this method is called every time Jpcap captures
a packet
 public void receivePacket(Packet packet) {
 //just print out a captured packet
 System.out.println(packet);
 }
}

25

Capturing packets one-by-one: Using a callback method is a little bit tricky
because you don't know when the callback method is called by Jpcap. If you
don't want to use a callback method, you can also capture packets using
the JpcapCaptor.getPacket() method. getPacket() method simply returns a
captured packet. You can (or have to) call getPacket() method multiple times
to capture consecutive packets. The following sample code also prints out
captured packets:

Figure 6: Code for printing the captured packets.

JpcapCaptor
captor=JpcapCaptor.openDevice(device[index], 65535,
false, 20);

//call processPacket() to let Jpcap call
PacketPrinter.receivePacket() for every packet
capture.
captor.processPacket(10,new PacketPrinter());

captor.close();

26

3.3 WINPCAP AND LIBPCAP

WinPcap is the industry-standard tool for link-layer network access in
Windows environments: it allows applications to capture and transmit network
packets bypassing the protocol stack, and has additional useful features,
including kernel-level packet filtering, a network statistics engine and support
for remote packet capture.

WinPcap consists of a driver, that extends the operating system to provide
low-level network access, and a library that is used to easily access the low-
level network layers. This library also contains the Windows version of the well
known libpcap Unix API.

Thanks to its set of features, WinPcap is the packet capture and filtering engine
of many open source and commercial network tools, including protocol
analyzers, network monitors, network intrusion detection systems, sniffers,
traffic generators and network testers.

WinPcap is software that allows your network interface card to (NIC) operate
in "promiscuous" mode. Normally if a NIC sees traffic addressed to another NIC
on the network, it ignores it. If you are running a network sniffer application,
you may have a need to capture that traffic for inspection. Putting a NIC in
promiscuous mode allows your NIC to capture traffic addressed to another
machine and pass it to the sniffer application.

Libpcap is a system-independent interface for user-level packet capture.
libpcap provides a portable framework for low-level network monitoring.
Applications include network statistics collection, security monitoring, network
debugging, etc.

27

3.4 XAMPP

XAMPP is a free and open source cross-platform web server solution stack
package, consisting mainly of the Apache HTTP Server, MySQL database,
and interpreters for scripts written in the PHP and Perl programming
languages.

XAMPP requires only one zip, tar, 7z, or exe file to be downloaded and run, and
little or no configuration of the various components that make up the web
server is required. XAMPP is regularly updated to incorporate the latest
releases of Apache, MySQL, PHP and Perl. It also comes with a number of other
modules including OpenSSL and phpMyAdmin.

Self-contained, multiple instances of XAMPP can exist on a single computer,
and any given instance can be copied from one computer to another.It is
offered in both a full, standard version and a smaller version.

Officially, XAMPP's designers intended it for use only as a development tool, to
allow website designers and programmers to test their work on their own
computers without any access to the Internet. To make this as easy as possible,
many important security features are disabled by default.[2] In practice,
however, XAMPP is sometimes used to actually serve web pages on the World
Wide Web[citation needed]. A special tool is provided to password-protect the
most important parts of the package.

XAMPP also provides support for creating and manipulating databases
in MySQL and SQLite among others. Once XAMPP is installed, it is possible to
treat a localhost like a remote host by connecting using an FTP client. Using a
program like FileZilla has many advantages when installing a content
management system (CMS) like Joomla or WordPress. It is also possible to
connect to localhost via FTP with an HTML editor.

The default FTP user is "newuser", the default FTP password is "wampp". The
default MySQL user is "root" while there is no default MySQL password.

In this project XAMPP has been used to create a localhost database called
phpmyadmin. This database connects with the netbeans IDE and we can
update the values on this table.

Figure 7: Screenshot of XAMPP control panel.

3.5 VMWARE

VMware Workstation is one of the best desktop virtualization
applications available. If you need to run an operating system in a virtual
machine, VMware Workstation is one of your best options. It is feature packed
and offers support for tons of operating systems. VMware is dedicated to
updating their applications to support the latest operating systems and
hardware.

Windows XP has been used in VMware workstation for this project. The reason
behind using VMware was that it improved the execution of the program for
packet capture. Below is the snapshot of the software:

Figure 8: Screenshot of VMware software.

30

3.6 HIGHCHARTS

Highcharts is a charting library written in pure JavaScript, offering an easy way
of adding interactive charts to your web site or web application. Highcharts
currently supports line, spline, area, areaspline, column, bar, pie, scatter,
angular gauges, arearange, areasplinerange, columnrange, bubble, box plot,
error bars, funnel, waterfall and polar chart types. It works in all modern
mobile and desktop browsers including the iPhone/iPad and Internet Explorer
from version 6. On iOS and Android, multitouch support provides a seamless
user experience. Standard browsers use SVG for the graphics rendering. In
legacy Internet Explorer graphics are drawn using VML. One of the key features
of Highcharts is that under any of the licenses, free or not, you are allowed to
download the source code and make your own edits. This allows for personal
modifications and a great flexibility. Highcharts is solely based on native
browser technologies and doesn't require client side plugins like Flash or Java.
Furthermore you don't need to install anything on your server. No PHP or
ASP.NET. Highcharts needs only two JS files to run: The highcharts.js core and
either the jQuery, MooTools or Prototype framework. One of these
frameworks is most likely already in use in your web page. Highcharts supports
line, spline, area, areaspline, column, bar, pie, scatter, angular gauges,
arearange, areasplinerange, columnrange and polar chart types. Many of these
can be combined in one chart. Setting the Highcharts configuration options
requires no special programming skills. The options are given in a JavaScript
object notation structure, which is basically a set of keys and values connected
by colons, separated by commas and grouped by curly brackets. Through a full
API you can add, remove and modify series and points or modify axes at any
time after chart creation. Numerous events supply hooks for programming
against the chart. In combination with jQuery, MooTools or Prototype's Ajax
API, this opens for solutions like live charts constantly updating with values
from the server, user supplied data and more. With the exporting module
enabled, your users can export the chart to PNG, JPG, PDF or SVG format at the
click of a button, or print the chart directly from the web page.

In this project Highcharts have been used to show relation between rows of
database generated by the captured packets. Using these graphs a network
administrator can easily guess about the condition of the network. The
software created captures UDP packets.

Figure 9: Screenshot of Logarithmic chart.

32

3.7 NETBEANS

NetBeans is a software development platform written in Java. The
NetBeans Platform allows applications to be developed from a set of
modular software components called modules. Applications based on the
NetBeans Platform, including the NetBeans integrated development
environment (IDE), can be extended by third party developers. The NetBeans
IDE is primarily intended for development in Java, but also supports other
languages, in particular PHP, C/C++ and HTML5. NetBeans is cross-
platform and runs on Microsoft Windows, Mac OS X, Linux, Solaris and other
platforms supporting a compatible JVM.

The NetBeans Team actively support the product and seek feature suggestions
from the wider community. Every release is preceded by a time for Community
testing and feedback. NetBeans IDE is an open-source integrated development
environment. NetBeans IDE supports development of all Java application types
(Java SE (including JavaFX), Java ME, web, EJB and mobile applications) out of
the box. Among other features are an Ant-based project
system, Maven support, refactorings, version
control (supporting CVS,Subversion, Git, Mercurial and Clearcase).

All the functions of the IDE are provided by modules. Each module provides a
well defined function, such as support for the Java language, editing, or
support for the CVS versioning system, and SVN. NetBeans contains all the
modules needed for Java development in a single download, allowing the user
to start working immediately. Modules also allow NetBeans to be extended.
New features, such as support for other programming languages, can be added
by installing additional modules. For instance, Sun Studio, Sun Java Studio
Enterprise, and Sun Java Studio Creator from Sun Microsystems are all based
on the NetBeans IDE.

An IDE is much more than a text editor. The NetBeans Editor indents lines,
matches words and brackets, and highlights source code syntactically and
semantically. It lets you easily refactor code, with a range of handy and
powerful tools, while it also provides code templates, coding tips, and code
generators.
The editor supports many languages from Java, C/C++, XML and HTML, to PHP,
Groovy, Javadoc, JavaScript and JSP. Because the editor is extensible, you can
plug in support for many other languages. Keeping a clear overview of large
applications, with thousands of folders and files, and millions of lines of code,
is a daunting task. NetBeans IDE provides different views of your data, from

multiple project windows to helpful tools for setting up your applications and
managing them efficiently, letting you drill down into your data quickly and
easily, while giving you versioning tools via Subversion, Mercurial, and Git
integration out of the box. When new developers join your project, they can
understand the structure of your application because your code is well-
organized. The cost of buggy code increases the longer it remains unfixed.
NetBeans provides static analysis tools, especially integration with the widely
used FindBugs tool, for identifying and fixing common problems in Java code.
In addition, the NetBeans Debugger lets you place breakpoints in your source
code, add field watches, step through your code, run into methods, take
snapshots and monitor execution as it occurs.

The NetBeans Profiler provides expert assistance for optimizing your
application's speed and memory usage, and makes it easier to build reliable
and scalable Java SE, JavaFX and Java EE applications. NetBeans IDE includes a
visual debugger for Java SE applications, letting you debug user interfaces
without looking into source code. Take GUI snapshots of your applications and
click on user interface elements to jump back into the related source code.

NetBeans 32 bits has been used as it is compatible with Jpcap library.

Figure 10: Screenshot of Netbeans IDE.

34

3.8 JAVA (32 BITS)

Java is a set of several computer software and specifications developed by Sun
Microsystems, later acquired by Oracle Corporation, that provides a system for
developing application software and deploying it in a cross-platform computing
environment. Java is used in a wide variety of computing
platforms from embedded devices and mobile phones to enterprise
servers and supercomputers. While less common, Java applets run in secure,
sandboxed environments to provide many features of native applications and
can be embedded in HTML pages.

Writing in the Java programming language is the primary way to produce code
that will be deployed as byte code in a Java Virtual Machine (JVM); byte
code compilers are also available for other languages, including Ada,
JavaScript, Python, and Ruby. In addition, several languages have been
designed to run natively on the JVM, including Scala, Clojure and Groovy. Java
syntax borrows heavily from C and C++, but object-oriented features are
modeled after Smalltalk and Objective-C. Java eschews certain low-level
constructs such as pointers and has a very simple memory model where every
object is allocated on the heap and all variables of object types are references.
Memory management is handled through integrated automatic garbage
collection performed by the JVM. The Java platform is a suite of programs that
facilitate developing and running programs written in the Java programming
language. The platform is not specific to any one processor or operating
system, rather an execution engine (called a virtual machine) and a compiler
with a set of libraries are implemented for various hardware and operating
systems so that Java programs can run identically on all of them.

The heart of the Java platform is the concept of a "virtual machine" that
executes Java bytecode programs. This bytecode is the same no matter what
hardware or operating system the program is running under. There is a JIT (Just
In Time) compiler within the Java Virtual Machine, or JVM. The JIT compiler
translates the Java bytecode into native processor instructions at run-time and
caches the native code in memory during execution.

The use of bytecode as an intermediate language permits Java programs to run
on any platform that has a virtual machine available. The use of a JIT compiler
means that Java applications, after a short delay during loading and once they
have "warmed up" by being all or mostly JIT-compiled, tend to run about as
fast as native programs. Since JRE version 1.2, Sun's JVM implementation has
included a just-in-time compiler instead of an interpreter.

35

Although Java programs are cross-platform or platform independent, the code
of the Java Virtual Machines (JVM) that execute these programs is not. Every
supported operating platform has its own JVM.

In this project Java 32 bits have been used as it is compatible with Jpcap
library.

36

CHAPTER 4: TOOLS AND TECHNIQUES

Following is the architectural diagram of the project implementation. It gives a
bird's eye view of the whole software.

Figure 11: Architectural diagram of NMS.

Step 1: Install VMware on the system

The libraries used to run the project were better suited to Windows XP
environment. As previous attempts to suit library execution in Windows 8
environment were futile, Windows XP was installed on VMware.

Step 2: Install Java 32 bit

The library jpcap is only compatible with 32 bit java.

Figure 12: The icon of jdk 32 bits is shown.

Step 3: Install Winpcap and Jpcap libraries via their setups

Jpcap and winpcap libraries are the core dependencies on which the packet
capture code runs. Hence, it is very essential to ensure their proper
installation.

Figure 13: The icon of Winpcap and Jpcap libraries are shown.

Step 4: Install XAMPP

XAMPP server provides us with a local host which can run MySql and Apache
servers.

Figure 14: Installation process of XAMPP server.

Step 5: Install NETBEANS IDE

Netbeans is the editor used to run the packet capture program. Also, ensure
that com.mysql.jdbc.jar, MYSQL JDBC driver and JDK 32 bit are included in the
library of the project.

Figure 15: Snapshot of libraries to be included.

Step 6: Create a database connection and a table which will hold details of
the information the program generates.

Figure 16: Database connection established.

Figure 17: Table name packet created.

Step 7: Open the localhost server and verify whether the table has been
created or not.

Figure 18: Table name packet created in database phpmyadmin.

Step 8: Run the code for packet capture

Figure 19: Code for packet capture running.

Step 9: Validate whether the data generated is being stored in database
phpmyadmin.

Figure 20: Table named packet in database phpmyadmin being updated.

Step 10: Create php code to generate graphs out of columns of database. For
creating graphs, download Highcharts zip package and uninstall its contents
in xampp/htdocs.

Figure 21: Copied contents of Highcharts in C:\xampp\htdocs\Highcharts-
4.1.5.

(Here, graph_1,graph_2,graph_3,graph_4 and main are created later)

Figure 22: Graph_1: php code for creating graph of Packet Number vs length.
Similar is for other graphs.

Step 11: Create a html doc which links all the graphs to a single page

Figure 23: HTML doc for main page

Step 12: Run the main html doc. The user will be able to view the graphs.

Figure 24: main html document source code

46

CHAPTER 5: RESULTS AND
CONCLUSION

The final output would appear as follows:

Figure 25: Remote monitoring for network management homepage

The user will see certain graphs being generated on his or her screen. They will
be as follows:

1. Number of packets vs length of the packet

2.Timestamp count vs Number of packets

3. Number of packets vs version of ip packet

4.Number of packets vs identification field of the packet

These are shown below-

Figure 26: Number of packets vs length of the packet

Figure 27: Number of packets vs Timestamp Count

Figure 29: Number of packets vs. id field

Figure 28: Number of packets vs. IP packet version

50

5.1 INTERPRETATION OF THE GRAPHS

1. The first graph between Packet Number and Length of packet tells us which
packet has what length. This graph can be useful to network managers to
decipher about the amount of data travelling in the network. If the packet
length is outside the admissible range the network administrator can
terminate connections to reduce load on the network.

2. The second graph can also be termed as the network performance graph. It
tells the relation between number of packets and timestamp count. As clear
from the graph, the difference between two timestamps is initially large, which
depicts that the rate of packet capturing is initially slow. As, we move further
we see that the difference between consecutive timestamps decrease,
denoting that the rate of packet capturing has now increased. A network
manager can speculate from this graph the following possibilities:

- If the difference between timestamps is too large, then the graph will be very
steep. This could denote that there is very sparse traffic or the network is not
functioning properly.

- If the difference between timestamps is too less, then it can be inferred that
the traffic is very dense and the network could be overloaded. In this case the
graph will show a very gentle slope.

Using these results a network manager can take appropriate action on the
network functioning.

3.The third graph is between number of packets vs the version of ip packet
received. The network manager can guess from the graph about the type of
version a packet is following. This can be a direct indication of the amount of
information a packet is carrying(ipv4 carries less information than ipv6). Ipv6
can support real time audio and data. If there is large amount of ipv6 data then
network changes can be incorporated to adjust this type of information.

4.The fourth graph is between number of packets and id field. Identification
field is 16-bit field which identifies a datagram originating from the source
host. The combination of the identification and source IPv4 address must

51

uniquely define a datagram as it leaves the source host. To guarantee
uniqueness, the IPv4 protocol uses a counter to label the datagrams. The
counter is initialized to a positive number. When the IPv4 protocol sends a
datagram, it copies the current value of the counter to the identification field
and increments the counter by 1. As long as the counter is kept in the main
memory, uniqueness is guaranteed. When a datagram is fragmented, the value
in the identification field is copied to all fragments. In other words, all
fragments have the same identification number, the same as the original
datagram. The identification number helps the destination in reassembling the
datagram. It knows that all fragments having the same identification value
must be assembled into one datagram.

So, this graph can indicate the identification number of packet, thus keeping a
record of the packets flowing in the network.

52

5.2 CONCLUSION AND FUTURE DEVELOPMENT

The project covers the basic aspects of network management. Since the server
can be accessed from anywhere, the database and the graphs can be viewed
from anywhere, thus enabling remote monitoring. The project is based on
capturing UDP packets and generation of graphs for network performance
interpretation. This can be extrapolated to other type of packets such as
TCP,ICMP etc which can give a more vivid picture of the network. More
information can be gained from the tables generated and new graphs can be
created. This could improve the accuracy of network analysis and pre-mediate
problems in network.

Every software needs continuous development to sustain. The present project,
with few enhancements can provide sufficient analysis about a small LAN
network. If the database and graph generation is further improved ,a WAN can
easily be monitored.

53

REFERENCES

1. https://www.winpcap.org/install/ (download link for winpcap)

2. http://jpcap.gitspot.com/index.html (download link for libcap)

3. https://www.vmware.com/products/ (download link for vmware)

4. https://www.apachefriends.org/download.html (download link for xampp)

5. https://java.com/en/download/ (download link for java 32 bit)

6. http://www.highcharts.com/download (download link for highcharts)

7. https://netbeans.org/downloads/ (download link for netbeans)

8. http://www.sipinspector.com/download/jpcap/JPcap_tutorial

9. Remote Configuration Monitoring of Autonomous Information Processing
Machine on LAN by Hema Thomas1 Christ University, Bangalore.

10. Harsh Mittal, Manoj Jain and Latha Banda, Monitoring Local area Network
using remote method invocation , International Journal of Computer Science
and Mobile Computng, vol. 2, Issue. 5, May 2013.

11. Dinesh C. Verma, Simplifying Network Administration Using Policy-Based
Management, IEEE Network, March/April 2002.

12. Network Management: Principles and Practice, Mani Subramanian

