
1

 Personalized Web Search using Browsing History

and

Domain knowledge

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology

in

Information Technology

under the Supervision of

 Ms.Reema Aswani

By

 Faiz Hussain(111447)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

Certificate

This is to certify that project report entitled “Personalized web search using

Browsing History and Domain Knowledge”,submitted by Faiz Hussain in partial

fulfillment for the award of degree of Bachelor of Technology in Computer Science &

Engineering to Jaypee University of Information Technology, Waknaghat, Solan has

been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: Supervisor’s Name : Ms Reema

Aswani

 Designation :

3

Acknowledgement

I thankfully acknowledge the contribution of various different journals, magazines

and books, from which some of the material have been collected to enrich this project.

I am very much grateful to Ms. Reema Aswani,for his guidance and support

throughout my project,and also for his constant inspiration from the very first day

when I had started the work for this project.

I would also like to give my deepest and sincerest thanks to my friends for guiding me

and telling about modification that can be done to this project.

Date: Name of the student :Faiz Hussain

4

Table of Content

S. No. Topic Page No.

1. Introduction 1

 1.1 About Search Engine 8

 1.2 Proposed Architecture 9

2. Related Work 10

 2.1 Framework 10

 2.2 Literature Review 10

3. Framework for proposed system 13

 3.1 General Framework 13

4. Project Contents 14

 4.1 Main Contents 14

5. Description of Contents 15

 5.1 Domain knowledge Modeling 15

 5.2 User Profile Modeling 16

 5.3 Enhanced User Profile 17

 5.4 Screenshot of Home Page 19

6. Experimental Results and Analysis 20

 6.1 Statistics 20

7. Documents as geometric objects 26

 7.1 How to rank documents for full - text search 26

8.. Project Parts 28

 8.1 Computing word frequencies in web pages using BST 28

 8.2 Processing user queries to find most relevant web pages 30

 8.3 Adding a GUI front end to the search engine and cache 32

 8.4 Adding a hyperlink graph to web browser 35

9. Conclusions and Future Work 37

10. References 38

5

6

List of Figures

S.No. Title Page No.

1. General Architecture 13

 2. Query 1 20

 3. Query 2 21

 4. Query 3 22

 5. Query 4 22

7

List of Tables

S.No. Title Page No.

1. Terms – Category Matrix (TCM) 15

2. Alchemy API to DMOZ Category Mapping 16

3. Terms – Document Matrix (TDM) 17

8

Abstract

Abstract-Generic search engines are important for retrieving relevant information

from web. However these engines follow the "one size fits all" model which is not

adaptable to individual users. Personalized web search is an important field for tuning

the traditional IR system for focused information retrieval. This project is an attempt

to improve personalized web search. User's Profile provides an important input for

performing personalized web search. This paper proposes a framework for

constructing an Enhanced User Profile by using user's browsing history and enriching

it using domain knowledge. This Enhanced User Profile can be used for improving

the performance of personalized web search. In this project we have used the

Enhanced User Profile specifically for suggesting relevant pages to the user. The

experimental results show that the suggestions provided to the user using Enhanced

User Profile are better than those obtained by using a User Profile.

9

 CHAPTER 1. INTRODUCTION

 1.1. About Search Engine

 With the development of World Wide Web, web search engines have contributed a

lot in searching information from the web. They help in finding information on the

web quick and easy. But there is still room for improvement. Current web search

engines do not consider specific needs of user and serve each user equally. It is

difficult to let the search engine know what the user actually want. Generic search

engines are following the "one size fits all" model which is not adaptable to

individual users.

When different users give same query, same result will be returned by a typical search

engine, no matter which user submitted the query. This might not be appropriate for

users which require different information. While searching for the information from

the web, users need infonl1ation based on their interest. For the same keyword two

users might require different piece of information. This fact can be explained as

follows: a biologist and a programmer may need information on "virus" but their

fields are is entirely different. Biologist is searching for the "virus" that is a

microorganism and programmer is searching for the malicious software. For this type

of query, a number of documents on distinct topics are returned by generic search

engines. Hence it becomes difficult for the user to get the relevant content. Moreover

it is also time consuming. Personalized web search is considered as a promising

solution to handle these problems, since different search results can be provided

depending upon the choice and information needs of users. It exploits user

information and search context to learning in which sense a query refer.

10

1.2. Proposed Architecture

In order to perform Personalized Web search it is important to model User's

need/interest. Construction of user profile is an important part for personalized web

search. User profiles are constructed to model user's need based on his/her web usage

data.This project proposes an architecture for constructing user profile and enhances

the user profile using background knowledge. This Enhanced User Profile will help

the user to retrieve focused information. It can be used for suggesting good Web

pages to the user based on his search query and background knowledge.

11

 CHAPTER 2. RELATED WORK

2.1. FrameWork

Framework for Personalized search engine consists of user modeling based on user

past browsing history or application he/she is using etc. And then use this context to

make the web search more personalized. This section presents different approaches

and the related work done in the field of Personalized Web search.

2.2. Different Scientist Perceptions

For providing personalized search results, Micro Speretta implemented a wrapper

around the search site that collects information about user's search activity and builds

user profile by classifying collected information (queries or snippets). They have used

these profiles to re-rank the search results and the rank-order of the user-examined

results before and after re-ranking were compared. They found that user profiles

based on queries and user profiles based on snippets both were equally effective and

re-rank gave 34% improvement in compare to rank-order.

Fang Liu identified that current web search engines do not consider the special needs

of user or interests of user and proposes a novel technique which uses search history

of user to learn user profiles. This work uses user's search history for learning of user

profile and category hierarchy for learning of a general profile and then combines

both profiles to categorize user's query to represent user's search intention and

to disambiguate the words used in query.

Chunyan Liang also identifies that different users may have need of different special

information, when they use search engines and techniques of personalized web search

can be used to solve the problem effectively. Three approaches Rocchio method, k-

12

Nearest method and Support Vector Machines have been used in [3] to build user

profile to present an individual user's preference and found that k-Nearest

method is better than others in terms of its efficiency and robustness.

Xuwei Pan suggested a context based personalized web search model. In this paper

the authors have given a personalized web search outcome which is in accordance

with the need of user in various situations. The analysis of model has resulted in three

concepts to implement the model, which is semantic indexing for web resources

,modeling and acquiring user context and semantic similarity matching between web

resources and user context. The author has defined it as context based adaptive

personalized web search.

K. W. T. Leung have proposed a Personalized Web search model with location

preferences. In this paper the location and content concept has been separated and is

organized into different ontology to make an ontology-based, multi-facet (OMF)

profile which is captured by web history and location interest. This model actually

gives results by outlining the concepts in accordance with the preference of user. By

keeping the diverse interest of the users in mind, location entropy is introduced for

finding the degree of interest and information related to location and query. The

personalized entropies actually estabilize the relevant output content and location

content. At last, an SVM based on the ontology is derived which can be used for

future purpose for ranking or reranking. The experiments shows that the results

produced by OMF profiles are more accurate in comparison with the ones which use

baseline method.

O. Shafiq have proposed a personalized web search model that combines community

based and content based evidences based on novel ranking technique. Nowadays,

uploading data on internet has become a daily activity. A massive amount of data is

uploaded in the form of web pages, news, and blogs etc. on a regular basis. So, it

becomes very difficult for the user to search for relevant content. Not only for

13

users but also for search engines like Google and Yahoo it becomes difficult.

Information overload is the only reason behind this difficult situation. Other than this

user's preference is the second problem, which is not taken into consideration while

producing the results. The author tried to solve this problem through this model which

produce results on the basis of preference and interest of the user.

In this project, authors proposed a unique approach to find out the interest and

preference of the user. It's a two way approach, first it will find out the activities of

user through his/her profile in social networking sites. Secondly, it will find out

information from what the social networking sites provide to the user through

friends and community. Based on the results, user's interest and preference will be

prioritized by the web search or it is personalized.

14

CHAPTER 3. FRAMEWORK FOR PROPOSED

SYSTEM

3.1. General Framework

We propose a framework for personalized web search which considers individual's

interest into mind and enhances the traditional web search by suggesting the relevant

pages of his/her interest. We have proposed a simple and efficient model

which ensures good suggestions as well as promises for effective and relevant

information retrieval. In addition to this, we have implemented the proposed

framework for suggesting relevant web pages to the user.

15

 CHAPTER 4. PROJECT CONTENTS

4.1. Main Contents

Our system considers user's profile (based on user's weblogl navigation browsing

history) and Domain Knowledge in order to perform personalized web search. Using

a Domain Knowledge, the system stores information about different domain.

Information obtained from User Profile is classified into these specified categories.

The learning agent learns user's choice automatically through the analysis of user

navigation/browsing history, and creates/updates enhanced User Profile conditioning

to the user's most recent choice. Once the user inputs query, the system provides good

suggestions for personalized web search based on enhanced user profile. Further our

model makes good use of the advantages of popular search engines, as it can re-rank

the results obtained by the search engine based on the enhanced user profile.

16

 CHAPTER 5. DESRIPTION OF CONTENTS

5.1. Domain Knowledge Modeling

Domain knowledge is the background knowledge that we used to enhance the user

profile. The source which we have used for preparing Domain Knowledge is DMOZ

directory. For preparing Domain Knowledge, first we have crawled the web pages

from DMOZ directory for some specified categories, where each category is

represented by collection of URL's present in that category. After crawling, we have

extracted the keywords from the crawled web pages. The collections of keywords

form the vocabulary for the crawled pages. Now we form a term category matrix,

which specifies weight of each term in each category. The weight may be represented

by frequency of the term in that category. Here Wjj represents number of times the

term tj is present in Category Catej. The matrix may be represented as follows:

Term/Category Cate1 Cate2 Cate3 ……….. Caten

t1 W11 W12 W13 ……….. W1n

t2 W21 W22 W23 ………. W2n

t3 W31 W32 W33 ……… W3n

…… ……… …….. …….. ………

Tm Wm1 Wm2 Wm3 ……. Wmn

 Table 1. Terms – Category Matrix (TCM)

17

5.2. User Profile Modeling

User profile is used to reflect user's interest and predict their intentions for new

queries. User Profile also helps to deal with ambiguous queries. To create the user

profile, we need to classify the web pages accessed by a user into particular category.

Alchemy API has been used for classifying web pages. Alchemy API classifies a web

page by giving it a particular category along with confidence (numerical value) which

shows its probability of belonging to that particular category. If the web page is

classified with confidence above the specified threshold level then only we have

consider that page to contribute for that category. As we are using DMOZ for

background knowledge, we have to map these Alchemy categories to DMOZ

categories. Thus in our model, a User Profile is represented as a category preference

vector, where weight of each category represents user's interest in that category. As

shown in the Figure , users browsing history is used to build user profile. When the

number of web pages browsed by the user grows above the specified threshold, the

learning agent updates user profile. User interest will thus be represented by fix

number of categories weights. It can be denoted by

Where, CWj will be the number of web pages of category i visited by that user,

normalized by maximum number of page visits among all categories.

Alchemy Categories DMOZ Categories

Arts & Entertainment Arts

Business Business

Computers & Internet Computers

Culture & Politics Regional

Gaming Games

Health

Health

Recreation Recreation

Science & Technology Science

18

Sports Sports

 Table 2. Alchemy API to DMOZ Category Mapping

For modeling User Profile we have used Vector Space Model (VSM). We consider all

the webpages present in browsing history of particular user. Each web page

corresponds to a specific document. The outcome of vector space model is a

term document matrix (TDM) which represents each webpage/document as a feature

vector of terms. Here we consider each document as a URL.

 D1 D2 D3 ……… Dn

T1 W11
Wl2 W13 W1n

T2 W21 W22 W23 W2n

T3 W31 W32 W33 W3n

……….

Tm Wml Wm2 Wm3 Wmn

 Table 3. Terms – Document Matrix (TDM)

5.3. Enhanced User Profile

Enhanced User Profile is an important part in our framework. An Enhanced User

Profile improves the User Profile by using the Domain Knowledge. For preparing the

Enhanced User Profile we have considered each URL of the User Profile, match it

with Domain Knowledge URLs and add most relevant URLs to the Enhanced User

Profile.

Following steps explain the process of preparing the Enhanced User Profile. Perform

the following steps for each document (URL) in user profile :

 Select the URL from the User Profile.

 Add the URL to the Enhanced User Profile.

 Find the cosine similarity of this URL with the URLs present in user specific

categories from the Domain Knowledgebase.

19

 Rank the URLs on descending order of cosine similarity.

 Retrieve top 20 URLs.

 Calculate the average of the cosine similarity of these top 20 URLs.

 From the top 20 URLs add only those URLs to the enhanced user profile

whose similarity value is above the average value.

To summarize the process, for each URL (form user profile) most relevant URLs

from the user specific Domain Knowledge category are added to prepare enhanced

user profile.

The cosine formula used for the similarity of the URL u in User Profile to each web

pages dj in Domain Knowledge is as follows:

A cosine similarity measure is the angle between the web page in User Profile u and

the document vector dj.

20

5.4. Screenshot of Home Page

21

CHAPTER 6. EXPERIMENTAL RESULTS AND

ANALYSIS

6.1. Statistics

In the absence of standard benchmark datasets which is suitable for our problem, we

have designed our own dataset. In our Experiment, we have used the browsing history

of 10 different users from our university, 6 from Computer department and 4 from

Electronics department. Our Experiment is conducted for 50 queries of which 35

queries from Computer domain and 15 queries from Electronics domain.

In order to collect the domain knowledge, we have crawled the datasets from DMOZ

for the selected topics using Apache Nutch, while Apache Solr has been used for

indexing crawled pages. By setting crawling parameters of Nutch we have

restricted the crawling to specific DMOZ topic.

Using the information of user browsing history and domain knowledge, we create an

Enhanced User Profile. Once the Enhanced User Profile is created, we take the user

query and suggest the relevant web pages with respect the query. In our Experiment,

we have used User Profile as a base case for suggesting the relevant pages and

compared the results with the pages suggested from Enhanced User Profile. For each

query, we suggest top 20 relevant documents from User Profile and for the same

query we also suggest top 20 relevant documents from Enhanced User Profile. In

order to compare the efficiency of the result, we compared the similarity of suggested

documents with the user query.

In order to represent the result graphically, we have used the bar graph. The analysis

of the result is done in 2 different ways. First one is the individual cosine similarities

of suggested pages and the second one is the average cosine similarity obtained for

top 20 suggested pages.

22

For each query, we draw a bar graph of the cosine similarity measure for each

suggested web page. The Figure 4.l to Figure 4.4 shows the graph for Query1 to

Query4.

 QUERY 1

23

 QUERY 2

24

 QUERY 3

 QUERY 4

25

In this section, we have analyzed the results for different Queries. For each query, we

have retrieved top 20 relevant web pages with User Profile and Enhanced User

Profile. As we can see clearly from the above figures (Query 1 to Query 4) that all the

queries show the improved result for Enhanced User Profile as compared to those

suggested using User Profile.

26

CHAPTER 7 . DOCUMENTS AS GEOMETRIC

OBJECTS

7.1 How to rank documents for full text search

When we type a query into a search engine – say “Einstein on relativity” – how does

the search engine decide which document to return? When the document is on the

web ,part of that answer is provided by the PageRank algorithm, which analysis the

link structure of the web to determine the importance of different webpages. But what

should we do when the documents aren’t on the web, and there is no link structure?

How should we determine which documents most closely match the intent of the

query?

In this topic I explain the basic idea of how to rank different documents according to

their relevance. They are based on the VECTOR SPACE MODEL for documents.

The key idea is to transform search from a linguistic problem into a geometric

problem. Instead of thinking of documents and queries as strings of letters, we adopt a

point of view in which both documents and queries are represented as vectors in a

vector space. In this point of view, the problem of determining how relevant a

document is to a query is just a question of determining how parallel the query vector

and the document vector are. The more parallel the vectors, the more relevant the

document is.

This geometric way of treating documents turns out to be very powerful. It’s used by

most modem search engines, including web search engines such as Google and Bing,

as well as search libraries such as Lucene. The ideas can also be used well beyond

search, for problems such as document classification, and for finding clusters of

related documents. What makes this approach powerful is that it enables us to bring

the tools of geometry to bear on the superficially very non-geometric problem of

understanding text.

27

tf*idf forms the basis of scoring documents for relevance when querying a corpus, as

in a search engine. It is the product of two terms: term frequency and inverse

document frequency. Tf-idf is a transformation you apply to texts to get two real-

valued vectors. You can then obtain the cosine similarity of any pair of vectors by

taking their dot product and dividing that by the product of their norms. That yields

the cosine of the angle between the vectors. TF-IDF is just a way to measure the

importance of tokens in text; it's just a very common way to turn a document into a

list of numbers (the term vector that provides one edge of the angle you're getting the

cosine of).

To compute cosine similarity, you need two document vectors; the vectors represent

each unique term with an index, and the value at that index is some measure of how

important that term is to the document and to the general concept of document

similarity in general.

If d2 and q are tf-idf vectors, then

where θ is the angle between the vectors. As θ ranges from 0 to 90 degrees, cos θ

ranges from 1 to 0. θ can only range from 0 to 90 degrees, because tf-idf vectors are

non-negative.

There's no particularly deep connection between tf-idf and the cosine similarity/vector

space model; tf-idf just works quite well with document-term matrices. It has uses

outside of that domain, though, and in principle you could substitute another

transformation in a VSM.

28

 CHAPTER 8. PROJECT PARTS

8.1 Computing Word Frequencies in Web Pages using Binary

Search Trees

The first step to building a search engine is to be able to analyze web pages based on

their content. This will eventually allow us to rate how relevant a particular page is for

a given user request. The content of a page is obviously correlated with the words it

contains. For this assignment you will use a binary search tree to help you calculate

and store the frequencies of words found in a given web page. Then you will print out

the most frequent words found.

Begin by experimenting with the Scanner class and its associated test class provided

below. The Scanner class is written to scan either a file or a string. For this

assignment you will use the Scanner class for scanning a file. The constructor for the

Scanner class requires a filename. It then opens the given file and will return the next

token that it finds when the method getNextToken() is called. For our purposes a

token will be a single non-alphabetic and non-numeric character, such as punctuation,

or a string of contiguous alphabetic and numeric characters up until white space is

encountered or the end of file.

Once you understand how the Scanner class works, modify the TestScanner class to

read in a filename from the command line, and test that it works (see the section on

Command Line Arguments below).

Next, you need to implement the insertElement, findMinimumNode, and

findMaximumNode methods of the LinkedBinarySearchTree class. Make sure that

your insertElement does not allow duplicate elements to be inserted in the tree. Once

you have tested these changes to the LinkedBinaryTree class, you can start

implementing the main part of this assignment.

29

8.1.1 Command line Arguments

Command line arguments are passed into a main method as an array of String:

 public static void main(String args[]) {

To get the number of command line args, check value of args.length and to get a

particular command line argument access the corresponding args array entry (arg[0] is

the first command line argument as a String). To convert a command line argument

from its String form to another type, use the valueOf methods of the Integer, Float,

etc. classes. For example:

 # if this is the command line

 #

 % java MatrixMult 10 15 matrix_contents

 # this is how to convert the command line args 10 and 15 to int

 #

 int m = (Integer.valueOf(args[0])).intValue(); // arg[0] is "10"

 int n = (Integer.valueOf(args[1])).intValue(); // arg{1] is "15"

 String matrixFile = args[2];

8.1.2 Word Frequency Tree Classes

You should create a WordFrequencyTree class that implements the BinarySearchTree

interface. This class will have a LinkedBinaryTree data member (it may need

additional data members too), and its implementation of the BinarySearchTree

interface methods just invoke the corresponding method on its LinkedBinaryTree data

member. In addition it should have at least three constructors: a default constructor, a

constructor that takes an input file argument and a constructor that takes an input file

and an ignore file argument. The second two constructors will process the file(s) and

create the initial word frequency tree as specified above.

30

8.1.3 Java Classes

These classes include the following:

 Scanner class

 TestScanner class and a simple test file testscannerfile

 BTNode interface

 BinarySearchTree interface

 LinkedBTNode class

 LinkedBinarySearchTree class: a partial implementation of the

LinkedBinarySearchTree class, some of the methods are left for you to

implement.

 TraversalIterator class: returned by the LinkedBinarySearchTree traversal

methods

8.2 Processing User Queries to Find the Most Relevant Web Pages

A basic and very simple search engine which is used as the starting point for the

project.

import java.io.*;

import java.util.Scanner;

class Index1 {

 WikiItem start;

 private class WikiItem {

 String str;

 WikiItem next;

31

 WikiItem(String s, WikiItem n) {

 str = s;

 next = n;

 }

 }

 public Index1(String filename) {

 String word;

 WikiItem current, tmp;

 try {

 Scanner input = new Scanner(new File(filename), "UTF-8");

 word = input.next();

 start = new WikiItem(word, null);

 current = start;

 while (input.hasNext()) { // Read all words in input

 word = input.next();

 System.out.println(word);

 tmp = new WikiItem(word, null);

 current.next = tmp;

 current = tmp;

 }

 input.close();

 } catch (FileNotFoundException e) {

 System.out.println("Error reading file " + filename);

 }

 }

 public boolean search(String searchstr) {

 WikiItem current = start;

 while (current != null) {

 if (current.str.equals(searchstr)) {

 return true;

 }

 current = current.next;

32

 }

 return false;

 }

 public static void main(String[] args) {

 System.out.println("Preprocessing " + args[0]);

 Index1 i = new Index1(args[0]);

 Scanner console = new Scanner(System.in);

 for (;;) {

 System.out.println("Input search string or type exit to stop");

 String searchstr = console.nextLine();

 if (searchstr.equals("exit")) {

 break;

 }

 if (i.search(searchstr)) {

 System.out.println(searchstr + " exists");

 } else {

 System.out.println(searchstr + " does not exist");

 }

 }

 console.close();

 }

}

8.3 Adding a GUI front-end to the search engine and adding a cache

of search query results

Part 1 of the assignment is building a GUI front-end to your search engine that also

performs the fetching and displaying URLs job of a web browser. Part 2 is adding

caching of query results to your search engine, and speeding up the execution of

queries by using the cached results of previous queries.

33

8.3.1 GUI

Build a GUI front-end to your search engine. It should have the following 6 GUI

components:

1. a query text box (where the user can type in a query)

2. a search button

3. a URL text box (where the user can type in a url)

4. a fetch URL button

5. a display area for search results

6. a display area for fetched urls

Your WebBrowser's main method will start up by taking a url_list and ignore_list

command line options, create a ProcessQueries object, and then create the GUI front-

end.

The WebBrowser GUI will work like the following:

 When the get URL button is selected, the url entered in the URL text box is

evaluated, the url's webpage is fetched and its contents are displayed in the

display box for fetched urls.

 When the search button is selected, the query entered in the query box is

evaluated and the search results box displays the ordered list of matching

webpages

 . In addition, the webpage of the best match is fetched and displayed in the

display box for fetched urls.

8.3.2 Caching

Below is a demonstration of how your more efficient query processing program

should behave. You will save all previous query results in a data structure called the

cache. When the user types in a query, you will first check the cache to see if you

have processed a similar request in the past.

34

Enter next Query String or -1 to quit

#####################################

artificial

 Results for your Query "artificial":

 Query: artificial

 Query Result NOT Found in cache <-------- print out whether or

not query is in cache

 0 words from query found in cache <-------- if not, print out how many

words of the query are in the cache

 Matching URLs:

 www.cs.swarthmore.edu/~meeden priority: -8

#####################################

Enter next Query String or -1 to quit

#####################################

artificial intelligence

 Results for your Query "artificial intelligence":

 Query: artificial intelligence

 Query Result NOT Found in cache

 1 words from query found in cache

 Matching URLs:

 www.cs.swarthmore.edu/~meeden priority: -17

#####################################

Enter next Query String or -1 to quit

#####################################

intelligence

35

 Results for your Query "intelligence":

 Query: intelligence

 Query Result Found in cache

 Matching URLs:

 www.cs.swarthmore.edu/~meeden priority: -9

Notice that the first time the user asks about "artificial" we cannot find anything in

the cache. But the next time the user asks about "artificial intelligence" we can grab

the stored information about "artificial" and perform a search of

WordFrequencyTrees for just the "intellignece" part. When the query "intelligence" is

entered, its result simply can be obtained from the stored informatation in the cache.

Also note that we want to be able to recognize that a query is the same regardless of

the word order, so "artificial intelligence" is the same as "intelligence artificial".

8.4 Adding a hyperlink graph to the Web browser

For this program you will add a graph of URL links to your Web browser. You will

create the graph by parsing a starting url's file and finding href links of other local

webpages, and parsing them, and so on. The graph will contain a vertex for each url,

and an edge (u, v) if there is a link from url u to url v. The graph can be added as a

data member to your ProcessQueries or WebBrowser class.

You will use the graph in two ways:

1. You will create a "Graph Window" button and add it to your Web browser.

When this button is selected it will bring up a new window with the following

options:

o A display window to print results of button actions

o A "Reachable From" button and text window: when a url is entered in

the text window, and the button is selected, it calls the reachableFrom

method of your graph and prints out the results to the display window.

36

o A "Shortest Path" button and text window: when a url is entered in the

text window, and the button is selected, it calls the shorestPath method

of your graph and prints out the results of the shortest path from the url

to all other urls reachable from it. You are required to implement the

shortestPath method of the Graph class.

o A "Print Graph" button: when selected, the graph is printed to the

display window.

We implemented the Graph Window GUI for you, you just need to add a

button to your WebBrowser to pop-up the Graph Window.

2. You will add linkage information to compute a good search result: If a page

that matches a query string is linked-to by many other pages its priority should

be increased some amount based on its linked-to degree. You should use this

new criterion combined with word frequency count information to order query

results.

37

CHAPTER 9. CONCLUSION AND FUTURE

WORK

In this project, we have proposed a framework for personalized web search using User

Profile and Domain Knowledge. Based on the User Profile and the Domain

Knowledge, the system keeps on updating the user profile and thus builds an

enhanced user profile. This Enhanced user profile is then used for suggesting relevant

web pages to the user. The proposed framework has been implemented by

performing some experiments. These experiments shows that the performance of the

system using enhanced user profile is better than those which are obtained through the

simple user profile. Our work is significant as it improves the overall search

efficiency, catering to the personal interest of the user's. Thus, it may be a small step

in the field of personalized web search. In future this framework may be applied for

re-ranking the web pages retrieved by search engines on the basis of user priorities.

38

 REFERENCES

[I] M Speretta and S Gauch, "Personalized Search Based on User Search

Histories", Proceeding Of International Conference on Web Intelligence,

pp. 622-628,2005.

[2] F Liu, C Yu and W Meng, "Personalized Web Search for Improving

Retrieval Effectiveness", IEEE Transactions On Knowledge And Data

Engineering, pp. 28-40, Volume 16,2004.

[3] C Liang, "User Profile for Personalized Web Search", International

Conference on Fuzzy Systems And Knowledge Discovery, pp. 1847-

1850,2011 .

[4] X Pan, Z Wang and X Gu, "Context-Based Adaptive Personalized Web

Search for Improving Information Retrieval Effectiveness", International

Conference on Wireless Communications, Networking and Mobile

Computing, pp. 5427 - 5430, 2007.

[5] K.W.T. Leung, D.L. Lee and Wang-Chien Lee, "Personalized Web

search with location preferences", IEEE 26th International Conference

on Data Engineering, pp. 70 I - 712, 2010 .

[6] O. Shafiq, R. Alhajj and 1. G. Rokne, "Community Aware Personalized

Web search", International Conference on Advances in Social Networks

Analysis and Mining, pp. 3351 - 355,2010

