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Problem Statement 

 

There are many reasons for need of Error Correcting Codes such as noise, cross-talk etc., 

which may lead data to get corrupted during transmission. The upper layers work on 

some generalized view of network architecture and are not aware of actual hardware data 

processing. So, upper layers expect error-free transmission between systems. Most of the 

applications would not function expectedly if they receive erroneous data. Applications 

such as voice and video may not be that affected and with some errors they may still 

function well. 

         Data-link layer uses some error control mechanism to ensure that codeword (data 

bit streams) are transmitted with certain level of accuracy. But to understand how errors 

is controlled, it is essential to know what types of errors may occur and what types of 

correcting techniques to be used.  

         An error during data transmission has been a serious problem facing over the last 

few decades. So, our aim is to reduce the error rates by combine two methods (Hamming 

and Repetition code) of error correcting codes, which improves the performance of the 

proposed method.  
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Abstract 

 

Environmental interference and physical defects in the communication medium 

can cause random bit errors during data transmission. Error coding is a method of 

detecting and correcting these errors to ensure information is transferred intact 

from its source to its destination. Error coding is used for fault tolerant computing 

in computer memory, magnetic and optical data storage media, satellite and deep 

space communications, network communications, cellular telephone networks, and 

almost any other form of digital data communication. Error coding uses 

mathematical formulas to encode data bits at the source into longer bit words for 

transmission. The "code word" can then be decoded at the destination to retrieve 

the information. The extra bits in the code word provide redundancy that, 

according to the coding scheme used, will allow the destination to use the 

decoding process to determine if the communication medium introduced errors 

and in some cases correct them so that the data need not be retransmitted. 

Different error coding schemes are chosen depending on the types of errors 

expected, the communication medium's expected error rate, and whether or not 

data retransmission is possible. Faster processors and better communications 

technology make more complex coding schemes, with better error detecting and 

correcting capabilities, possible for smaller embedded systems, allowing for more 

robust communications. However, tradeoffs between bandwidth and coding 

overhead, coding complexity and allowable coding delay between transmissions, 

must be considered for each application. 

 

During the transmission of data from transmitter to receiver, there is loss of 

information in the communication channel due to noise. This loss is measured in 

terms of bit error rate (BER) and several decoding algorithms and modulation 

techniques used to minimize it. Some of the error-correcting codes are Hamming 
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code, Repetition code, BCH code [4], Reed Solomon code and Hybrid code. 

Hybrid Code[6] are one of the most powerful types of error control codes 

currently available, which could achieve low BERs at signal to noise ratio (SNR) 

very close to Shannon limit. Nevertheless, the specific performance of the code 

highly depends on the particular decoding algorithm used at the receiver. 
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1. INTRODUCTION 

 

   1.1 Overview 

In information theory and coding theory with applications in computer science 

and telecommunication, error detection and correction or error control are 

techniques that enable reliable delivery of digital data over unreliable 

communication channels. Many communication channels are subject to channel 

noise, and thus errors may be introduced during transmission from the source to 

receiver. Error detection techniques allow detecting such errors, while error 

correction enables reconstruction of the original data in many cases. 

Forward error correction (FEC) [4] is the method of transmitting error correction 

information along with the message. At the receiver, this error correction 

information is used to correct any bit-errors that may have occurred during the 

transmission. The improved performance comes at the cost of introducing a 

considerable amount of redundancy in the transmitted code. There are various 

FEC codes in use today for purpose of error correction. Most codes fall into either 

of two major categories: block codes [4] and convolutional codes [4]. 

Block codes work with fixed length blocks of code. Convolutional codes deal 

with data sequentially (i.e. taken a few bits at a time) with the output depending 

on both the present input as well as previous inputs. 

The error correcting codes is often designed first with the goal of minimizing the 

gap from Shannon Capacity and attaining the target error probability. 

   1.2 Noisy Communications 

         Noise in a communications channel can cause errors in the transmission of            

            binary digits. 

        • Transmit: 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 … 

        • Receive:   1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 … 
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        • For some types of information, errors can be detected and corrected but not     

           in others. 

           Example: Transmit: Come to my house at 17:25 … 

                                 Receive: Come to my house at 14:25 … 

 

    1.3 Making Digits Redundant 

 In binary error correcting codes, only certain binary sequences (called code 

words) are transmitted. 

 This is similar to having a dictionary of allowable words. 

 After transmission over a noisy channel, we can check to see if the received 

binary sequence is in the dictionary of code words and if not, choose the 

codeword most similar to what was received. 

    1.4 Binary Error Correcting Codes 

 2k equally likely messages can be represented by k binary digits. 

 If these k digits are not coded, an error in one or more of the k binary digits will 

result in the wrong message being received. 

 Error correcting codes is a technique where by more than the minimum number of  

binary digits are used to represent the messages. 

 The aim of the extra digits, called redundant or parity digits, is to detect and 

hopefully correct any errors that occurred in transmission. 

   1.5 Types of ECC 

 Binary Codes 

Encoder and decoder works on a bit basis. 

 Non-binary Codes 

-Encoder and decoder works on a byte or symbol basis.  

-Bytes usually are 8 bits but can be any number of bits. 

-Galois field arithmetic is used. 



3 
 

-Example is a Reed Solomon Code. 

            -More generally, we can have codes where the number of symbols is a   

              prime or a power of a prime. 

   1.6 Types of Binary codes 

There are two types of Binary codes: 

 Block Codes 

                                                                                                                                       

                                   Fig 1:Block codes representation 

 

 Convolutional Codes   

                           Fig 2:Convolutional codes representation 

 

 

 1.7 Types of Error Correcting Codes 

       1.7.1 Hamming Code 

       A Hamming Code [6] can be used to detect and correct one-bit change in                                                  
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          an encoded code word. This approach can be useful as a change in a single  

          bit is more than a change in two bits or more bits.   

                           

          HAMMING BINARY BLOCK CODE WITH k=4 AND n=7 

           -In general, a block code with k information digits and block length n is  

            called an (n,k) code. 

           -Thus, this example is called an (7,4) code. 

           -This is a very special example where we use pictures to explain the code.   

Other codes are NOT explainable in this way.   

              - All that we need to know is modulo 2 addition, ⊕: 

                    0 ⊕ 0 = 0,  1 ⊕ 0 = 1, 0 ⊕ 1 = 1, 1 ⊕ 1 = 0.  

            - Message digits: C1 C2 C3 C4 

            - Code word C1 C2 C3 C4 C5 C6 C7 

 Parity Check Equations: 

      C1 ⊕ C2 ⊕ C3 ⊕ C5 = 0 

            C1 ⊕ C3 ⊕ C4 ⊕ C6 = 0 

            C1 ⊕ C2 ⊕ C4 ⊕ C7 = 0 

      

                 Fig 3: parity check equations  
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 Parity Check Matrix: 

                              1 1 1 0 1 0 0 

                              1 0 1 1 0 1 0 

                                                                                                      1 1 0 1 0 0 1                      

            There is an even number of 1’s in each circle. 

 

                                                                 HAMMING (7,4) CODE: ENCODING 

 Message: (C1 C2 C3 C4 ) = (0 1 1 0) 

             

                       Fig 4:Hamming code encoding 

 Resultant code word: 0 1 1 0 0 1 1 

HAMMING (7,4) CODE: DECODING 

 Transmitted code word: 0 1 1 0 0 1 1 

 Example 1: Received block with one error in a message bit.   

                                         0 1 0 0 0 1 1 



6 
 

                 

                                         Fig 5: Hamming code decoding 

                     

            HAMMING (7,4) CODE: DECODING 

 Transmitted code word: 0 1 1 0 0 1 1 

 Example 2: Received block with two errors: 

                                       1 1 1 0 0 0 1                                

 

                                     

                   Fig 6: Hamming code decoding of two errors. 

 

1.7.2 BCH Code (Bose, Chaudhuri and Hocquenghem) 

                   How do we modify a Hamming code to correct two errors? In other    

                         words, how can we increase its minimum distance from   3 to 5? We      
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                         will either have to lengthen the code words or eliminate some of    

                         them from our code.  

                                   Correcting two errors in a long word may not be much better   

                         than correcting one error in a short one. So we will try to produce a   

                         double error correcting sub code of the Hamming code by removing  

                         some code words to make a new  code.BCH codes is a generalization    

                         of hamming codes for multiple error correction. Binary BCH codes    

                         were first discovered by A. Hocquenghem  in 1959 and    

                         independently by R.C. Bose and D.K. Ray-Chaudhuri in 1960. 

               1.7.2.1 Introduction 

                       -BCH[4] codes are cyclic codes. Only the codes, not the decoding   

                                algorithms, were discovered by these early writers. 

                               -The original applications of BCH codes were restricted to binary   

                                codes of length 2
m  

− 1for some integer m. These were extended later  

                                 by Gorenstein and  Zeiler(1961)  to the nonbinary codes with  

                                 symbols from Galois Field GF(q). 

                               -The first decoding algorithm for binary BCH codes was devised by   

                                 Peterson in 1960. Since then peterson’s algorithm has been revised  

                                 by Berlekamp, Massey, Forney and many others. 

 

    1.7.2.2 Primitive BCH Codes 

                       -For any integer m ≥ 3and t < 2m −1
there exists a primitive BCH  

                                code with the following parameters: 
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 block length: n = 2m  − 1                           

 parity check bits: n − k ≤ m*t 

 minimum distance: 𝑑𝑚𝑖𝑛 ≥2t+1           

             -This code can correct t or fewer random errors over a span of 2
m  −  1 

                                bit positions. 

                                  This code is a t-error correcting BCH code. 

                                -For example, for m=5 and t=2 

                                    n=25 -1=31 

                                    mt=5×2=10 

                                    n – k ≤ m*t=10  

                                   𝑑𝑚𝑖𝑛 ≥ 2(2) + 1 ≥ 5 

                                   This is a BCH(31,21) error correcting code.        

                         

                    1.7.2.3 Generator Polynomial of Binary BCH Codes 

                               -Let α be a primitive element in GF( 2
m 

). 

                               -The generator polynomial of the BCH code is defined as the least   

                                 common multiple g(x) = lcm(m1(x),…,md − 1(x)). 

                               -Note that the degree of g(x) is mt or less. 

                                 Hence the number of parity-check bits ;n-k, of the code is at most   

                                 mt. 

                               -Note that the generator polynomial of the binary BCH code is  

                                 originally found to be the least common multiple of the minimum  
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2 

                                 polynomials φ1 ,φ2 ,L,φ2 t. 

                               i.e. g(x)=LCM {φ1 ( x ),φ2 ( x ),φ3 ( x),L,φ2 t −1 ( x ),φ2 t ( x )} 

                                 However, generally, every even power of α in GF( 2
m 

)  has the  

                                 same minimal polynomial as some preceding odd power of α  in  

                                 GF( 2
2 m 

). 

                                 As a consequence, the generator polynomial of the t-error correcting  

                                 binary BCH code can be reduced  to 

                                     g(x)=LCM{ φ1 ( x),φ3 ( x),L,φ2 t −1 ( x)}. 

                                 Example:- m=4,t=3 

                                 Let ∝ be a primitive element in GF(24) which is constructed  

                                 based on the primitive polynomial p(x)= 1 + x + x 
4 

                                                 g( x ) = LCM {φ1 ( x),φ 3 ( x ),φ5 ( x )} 

                                          = φ1 ( x )φ3 ( x )φ5 ( x) 

                                                 = 1 + x + x 
2 

+ x 
4 

+ x 
5 

+ x 
8 

+ x 
10

 

                       This code is a (15, 5) BCH cyclic code.  

             

  1.7.2.4 Properties of Binary BCH codes 

 Consider a t-error correcting BCH code of length n = 2
m  

− 1 with  

generator polynomial g(x). 

 g(x) has a ∝ ,∝2  
,∝3,L,∝2𝑡  
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g(∝𝑖)=0 for 1≤ i ≤ 2t 

 Since a code polynomial c(x) is a multiple of g(x), c(x) also has  

∝ ,∝2 
,∝3,L,∝2𝑡 as roots ,i.e. c(∝𝑖)=0 for 1≤ i ≤ 2t.  

 A polynomial of degree less than 2𝑚 - 1is a code polynomial if and, only if it 

has ∝ ,∝2 
,∝3,L,∝2𝑡 as roots.             

 

1.7.3 REED-SOLOMON CODE 

1.7.3.1 History  

In coding theory, Reed-Solomon(RS)[6] codes are non-binary cyclic error-

correcting codes invented by Irving S.Reed and Gustavo Solomon in 1960.They 

described a systematic way of building codes that could detect and correct 

multiple random symbol errors. 

1.7.3.2 Introduction 

Reed-Solomon codes [6] are examples of error correcting codes, in which 

redundant information is added to data so that it can be recovered reliably despite 

errors in transmission or storage and retrieval. The error correction system used 

on CD’s and DVD’s is based on a Reed-Solomon code. These codes are also used 

on satellite links and other communications systems. 

                By adding t check symbols to the data, an RS code can detect any 

combination of up to t erroneous symbols, or correct up to ⌊t/2⌋ symbols. RS 

codes are suitable as multiple-burst bit-error correcting codes, since a sequence of 

b + 1 consecutive bit errors can affect at most two symbols of size b. 

                The choice of t is up to the designer of the code, and may be selected 

within wide limits. 

The RS decoder corrects the entire symbol, whether the error was caused by one 

bit being corrupted or by all of the bits being corrupted.  
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                Thus, if a symbol is wrong, it might as well be wrong in all of its bit 

positions. This gives RS codes tremendous burst-noise advantages over binary 

codes. Burst-noise is relatively common in wireless communication due to fading. 

The code minimum distance for RS code is given by 

                        𝑑𝑚𝑖𝑛= n- k +1 

where k is now the number of data symbols being encoded, and n is    

the length of the codeword. 

The code can correct up to t symbol errors, where t is given by 

                         t = 
𝑛−𝑘

2
 

This equation shows that a codeword needs 2t parity symbols to    

correct t errors. 

1.7.3.3 Advantages 

 RS codes can be used for long block lengths with less decoding time than other 

codes because RS codes work with symbol-based arithmetic. 

 It provides better throughput. 

 

1.7.3.4 Applications 

 Used in the Voyager spacecraft  

 They are currently used in the compact disc player 

 Specific applications for digital audio, data transfer over mobile radio, satellite 

communications, spread spectrum systems. 

 

1.7.4 REPETITION CODE 

        Introduction 

 In coding theory, the repetition code [8] is one of the most basic error-correcting 

codes. In order to transmit a message over a noisy channel that may corrupt the 
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transmission in a few places, the idea of the repetition code is to just repeat the 

message several times. 

 The repetition code [8] is generally a very naive method of encoding data across a 

channel, and it is not preferred for Additive White Gaussian Noise 

Channels (AWGN), due to its worse-than-the-present error performance. 

 The chief attraction of the repetition code[8] is the ease of    

 implementation. 

 

 Repetition Coder 

 The encoder is a simple device that repeats,  times, a particular bit   

  to the waveform modulator when the bit is received from the source  

  stream. 

      For example, if we have a (3,1) repetition code[8], then   

  encoding the signal m= 101001 yields  a  code   

 

  Repetition Decoder 

  Repetition decoding is usually done using Majority logic detection.     

  To determine the value of a particular bit, we look at the received    

  copies of the bit in the stream and choose the value that occurs more   

  frequently. 

  For example, suppose we have a (3, 1) repetition code [8] and   we decoded the     

  signal c=11000111. The decoded message is m= 101, as we have most    

  occurrence of 1's (two to one), 0's (two to one), and 1's (three to zero) in the first,    

  second, and third code sequences, respectively. 

 

 

http://en.wikipedia.org/wiki/AWGN
http://en.wikipedia.org/wiki/Majority_logic_decoding
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                      How much does this Repetition code [8] improve Reliability? 

                      Repeating each bit three times allows us to correct one error in group    

                      of three bits, but not more errors. 

                               Suppose each bit has probability P of being received correctly,                  

                      independently of each bit. 

                      The probability that a group of three repeated bits will be decoded             

                      Correctly is: 

                      Pr(0 errors) + Pr(1 error) = 𝑃3 + 3𝑃2(1 – P)  

                           Here is a plot of this vs P: 

                       

                                                         Fig 7: Performance of Repetition code 

 

                       Applications 

 Due to the simplicity of the channel encoding and decoding for repetition codes, 

they find applications in fading channels and non-AWGN environments. 

Repetition codes [8] can be viewed as a method of space-time diversity as well. 

 Some UARTs, such as the ones used in the FlexRay protocol, use a majority filter 

to ignore brief noise spikes. This spike-rejection filter can be seen as a kind of a 

repetition decoder. 
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1.7.5 Comparison of various Codes        

           The comparison [2] of various codes is as shown in figure: 

             

             Fig 8: Comparison of various codes 

 

  

           

            Table 1: Comparing different Error-Correcting Codes on BER 
 

          

 

 

                       

 

 

Performance 

Metric 

Hamming 

(7,4) 

Repetition 

(3,1) 

Hamming 

(15,11) 

Hybrid         

code 

BER 0.000 0.800 0.3637 0.111 
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2. LITERATURE REVIEW 

 

            Different reported techniques are discussed below: 

 Blais et al. [3] proposed a method for improving code rate of BCH code 

over other codes by introducing some explicit families of good algebraic 

codes. 

 Wallace et al. [4] proposed different decoding algorithms and shows that 

Berlekamp decoding algorithm is complex and not too attractive. 

 Mitchell et al. [6] compared BER performance of different error correcting 

codes for various code rates. 

 Fujihasji et al. [7] proposed a method to modified hamming codes that 

have the capability of all error detecting and one error correcting on an 

ideal optical channel. 

 Singh and Bahel et al. [2] presented a study of various block code namely 

Hamming code and Bose-Chaudhuri-Hocquenghem(BCH) code and 

estimated the performance of such codes on the basis of Eb/No value. 

 Neal et al. [8] proposed a method i.e. Repetition method  to improve the 

communication between both sides. 

 Berger and Todorov et al. [9] presented a method  to improve the 

communication process using block error-correcting codes.  

                           Table 2 shows the existing methods using ECCs. 
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           Table 2: Existing Methods using ECCs 

S.No. Author’s Name, Year      ECC Used               Results 

1.     Eric Blais & Venkat     

    Guruswami, 2010 

   BCH code  BCH code have better 

 rate than binary codes 

 constructed from RS     

codes. 

2.     Hank Wallace, 2001 

 

   BCH code  The Berlekamp deco- 

 ding algorithm is  

 complex and not too 

 attractive for high- 

 speed communication 

 system. 

3.   Gregory Mitchell, 2009   Hamming code 

   BCH code 

  Reed Solomon 

FEC codes allows   

communications to achieve  

the same level of  

transmission reliability,  

quantified by the BER, at 

lower output levels.   

4.     Priti Shankar, 2000 

 

  Hamming code To overcome the limitation   

of not being able to 

distinguish between single 

and double errors. 

5.    Chugo Fujihashi, 2008 

 

  Hamming Code Modified Hamming code 

offer a capability of all error 

detecting and one error 

correcting. 

6.    Jaspreet Singh and Dr.            

   Shalini Bahel, 2014 

  Hamming Code 

   BCH Code 

Performance of BCH code is 

better than Hamming Code. 

For smaller value of  
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Eb/No the BCH is having 

better results and Hamming 

give better result for higher 

value. 

 

 

        3. DESIGN 

  3.1   Calculating the Hamming Code 

The key to the Hamming Code [3] is the use of extra parity bits to allow   

            the identification of a single error. Create the code word as follows: 

 Mark all bit positions that are powers of two as parity bits. (Positions 1, 2, 4, 8, 

16, 32, 64, etc.) 

 All other bit positions are for the data to be encoded. (Positions 3, 5, 6, 7, 9, 10, 

11, 12, 13, 14, 15, 17, etc.) 

 Each parity bit calculates the parity for some of the bits in the code word. The 

position of the parity bit determines the sequence of bits that it alternately checks 

and skips.  

Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. 

(1,3,5,7,9,11,13,15,...) 

Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc. 

(2,3,6,7,10,11,14,15,...) 

Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. 

(4,5,6,7,12,13,14,15,20,21,22,23,...) 

Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, (8-15,24-31,40-47,...) 

Position 16: check 16 bits, skip 16 bits, check 16 bits, skip 16 bits, etc. (16-31,48-

63,80-95,...) 

Position 32: check 32 bits, skip 32 bits, check 32 bits, skip 32 bits, etc. (32-63,96-

127,160-191,...) 
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 Set a parity bit to 1 if the total number of ones in the positions it checks is odd. 

Set a parity bit to 0 if the total number of ones in the positions it checks is even. 

 

                     Example: 

                          Data stored = 00111001 

            Check bits:      

                                

                                             Fig 9: Check bits calculation         

                           

            Putting it together: 

 
                                             Fig 10: code word representation 
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                                           Fig 11: error correction in hamming code 

 

            

 3.2    BCH Decoding Algorithm 

 Consider a BCH code [4] with n = 2
m 

− 1 and generator polynomial g(x). 

 Suppose a code polynomial c(x) = 𝑐0 + 𝑐1𝑥 + 𝐿 +  𝑐𝑛−1𝑥𝑛−1 is transmitted. 

Let r(x) = 𝑟0 +  𝑟1𝑥 + 𝐿 +  𝑟𝑛−1𝑥𝑛−1 be the received polynomial. 

 Then r(x) = c(x) + e(x), where e(x) is the error polynomial. 

 To check whether r(x) is a code polynomial or not, we simply test  

                    whether  r(∝)= r(∝2) = L = r (∝2t) = 0. 
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i 

i i 

i 

                    If yes, then r(x) is a code polynomial otherwise r(x) is not a code   

                    polynomial and the presence of errors is detected. 

               Procedure 

               The BCH codes decoding has 3 steps: 

1. Syndrome Computation 

               The syndrome consists of 2t components in GF ( 2
m 

) 

                                                                     

               and S  = r(α 
i 

) for 1 ≤ i ≤ 2t  

              Computation: 

        Let ∅𝑖(x) be the minimum polynomial of α 
i 

        Dividing r(x) by ∅𝑖(x) we obtain: 

             r(x) = a(x) ∅𝑖(x) + b(x) 

        Then 𝑆𝑖 = b(∝𝑖)  

        𝑆𝑖 = b(∝𝑖) can be obtained by linear feedback shift-register with     

           connection based on ∅𝑖(x). 

2. Syndrome and Error Pattern 

Since r(x) = c(x) +e(x) 

then s= r(∝𝑖) = c(∝𝑖) + e(∝𝑖)= e(∝𝑖) for 1 ≤ i ≤ t. 

This gives a relationship between the syndrome and the error pattern. 

Suppose e(x) has V errors (ν ≤ t) at the locations specified by x 
j1, x 

j2, L, x 
jν

. 

   i.e. e(x)= x 
j1+ x 

j2+ L + x 
jν where, 0 ≤ j1  <j2  < L < jν≤ n – 1. 
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ν 

    From above two equations, we have the following relation between       

    syndrome components and error location:  

              𝑆1 = 𝑒(∝) =∝𝑗1 + ∝𝑗2  + …… + ∝𝑗𝑣  

             𝑆2 = e(∝2) = (∝𝑗1)2 + (∝𝑗2)2 + …… + (∝𝑗𝑣)2 

                  . 

                  . 

                  . 

             𝑆2𝑡 =e(∝2𝑡) = (∝𝑗1)2𝑡 + (∝𝑗2)2𝑡  + ……+ (∝𝑗𝑣)2𝑡 

     If we can solve the 2t equations, we can determine   ∝𝑗1  , ∝𝑗2 ,L,   ∝𝑗𝑣   

    The unknown parameter ∝𝑗𝑢= Zu for u=1, 2, L, V are called the “error laocation   

     number”. 

     When ∝𝑗𝑢  ,1 ≤ u < V are found, the powers 𝑗𝑢, u=1,2,L,V give us the error  

     location in e(x). 

            3. Error Location Polynomial 

             (Error-Locator Polynomial) 

             Suppose that ν ≤ t errors actually occur 

                 Define error-locator polynomial L (z) as 

                    L (z) = (1+𝑍1z)(1+𝑍2z)…….(1+𝑍𝑣z) 

                             = ∏ (1 + 𝑍𝑖
𝑣
𝑖=1 z) 

                             = 𝜎0 + 𝜎1z + 𝜎2𝑧2 + …… + 𝜎𝑣𝑧𝑣 

                    where, 𝜎0=1. 

                  L(z) has 𝑍1
−1,𝑍2

−1,……..,𝑍𝑣
−1 as roots. 

    Note that Z= ∝𝑗𝑢 
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If we can determine L(z) from the syndrome S = ( S1 , S2 , L, S2 t ) , 

then the roots of L(z) give us the error-location numbers. 

 

   3.3 Repetition Code Algorithm 

We are trying to send a series of bits through a channel that sometimes randomly 

changes a bit from 0 to 1 or vice versa. 

One way to improve reliability despite this “noise” is to send each bit three times. 

E.g., if we want to send the bit sequence 01101, we actually send 

000111111000111. 

          The receiver looks at the bits in groups of three, and decodes each group to 

the bit that occurs most often in the group. 

          An example in which the correct message is decoded despite four 

transmission errors: 

                            

 

Limitation of Repetition Code 

The receiver looks at the bits in groups of three, and decodes each group to the bit 

that occurs most often in the group. So, there will be no more than a single error in 

a particular group of three and If there, then it will decode codeword incorrectly.   
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   3.4 Reed Solomon Code Implementation 

An RS [6] (n, k, n-k+1) code has: 

 k digit messages 

 n digit codeword 

 n – k + 1 distance between code words (at least) 

 (n - k)/2 errors before it cannot be decoded 

 2s = n - k 

Encoding Process: 

 m is the message encoded as a polynomial 

 m` = m* pow(x,2s) 

 b = m`(mod g)  

where m`= q*g + b for some q 

 c = m`- b 

-Code words are multiples of g, and are systematic. 

-Verifying a codeword is valid is a matter of checking for divisibility by g. 

Decoding Process: 

1. Calculate Syndromes 

Calculate the first 2s syndromes. 

 Syndromes are defined for all l: 

       𝑆𝑙 = ∑ 𝑌𝑖
𝑠
𝑖=1 𝑋𝑖

𝑙 

 For the first 2s, it reduces to: 

       𝑆𝑙 = E(∝𝑙) = ∑ 𝑌𝑖
𝑠
𝑖=1  ∝𝑙𝑗𝑖   1≤ l ≤ 2s 

 𝑆𝑙 = R(∝𝑙) = E(∝𝑙) for the first 2s powers of ∝. 

 Encode the syndromes in a generator polynomial: 

        s(z) = ∑ 𝑠𝑖
∞
𝑖=1  𝑧𝑖 

 This can be computed by finding each 𝑠𝑖 from received codeword for the first 2s 

values. 
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2. Berlekamp-Massey Algorithm - calculates the Error Locator Polynomials and 

Error Evaluator Polynomials. 

 Input: Syndrome polynomial from the above step. 

 Output: Error Locator Polynomial σ (z) and Error Evaluator Polynomial ω (z).  

 Defined as: 

                   𝜎(z) = ∏ (1 −  𝑋𝑖𝑧)𝑠
𝑖=1  

                   𝜔(z) = 𝜎(z) + ∑ 𝑧𝑋𝑖𝑌𝑖
𝑠
𝑖=1  ∏ (1 −  𝑋𝑗𝑧)𝑠

𝑗=1
𝑗≠1

 

 Notice that the error locations are the inverse roots of σ(z). (Roots are 1/X 1, 1/X 

2… 1/X s). 

 Observe the following relation: 

 

             

                                     =…….intermediate steps omitted 

                                     = 1 + s(z) 

 Key equation thus states: 

            

 𝜎(z) and 𝜔(z) have degree at most s. 

 Key Equation represents a set of 2s equations and 2s unknowns.     

 B-M iterates 2s times. 

 At each iteration, it produces a pair of polynomials: 

          (∝𝑙 (𝑧), 𝜔𝑙 (𝑧)) 

 where the polynomials satisfy that iteration’s key equation: 

                          (1 + s (z)) σ(l) ( z ) (mod z l+1 ) = ω(l) ( z ) 

3. Chien’s Procedure 

 Recall the definition of σ ( z ): 



25 
 

  σ ( z ) = ∏ (1 −  𝑋𝑖
𝑠
𝑖=1 𝑧)                  

     

 Now that we have σ (z), finding the array of Xi values is simply a matter of 

solving for the roots. 

 The Easy Way: since we’re working over a small field, just test every value  

            1. Let α be a generator  

            2. Initialize {Xi} to the empty set 

            3. For l = 1, 2 . . . . 

            If σ (α l) = 0: add α −l to {Xi} 

  

4. Forney’s Formula 

Using the Error Evaluator Polynomial ω (z) and the error locations {Xi},             

the error magnitudes {Yi} can be computed. 

   3.5 Hybrid Coding Implementation 

In this type of coding we apply two error-correcting codes. 

Here we used Hamming code [6] as an “outer code” and Repetition code[8] as an 

“inner code”. 

            The inner code gets the error rate down and the Hamming code [6] is then 

applied to correct the rest of the errors. We denote this encoding scheme with 

Hamm/Inn or Hamm/Rept. 

 Hamming encoder Repetition encoder  Repetition decoder Hamming dc 

In this we apply a similar error-correcting scheme by using Hamming code [6] 

with proper parameters as an outer code and Repetition code [8] as an inner code. 

 As we have already explained it is more applicable to use repetition code as inner 

code and Hamming code as outer code in hybrid error correcting scheme. In this 

case the signature error probability is given by: 

        𝑃𝑠𝑖𝑔,ℎ𝑦𝑏𝑟𝑖𝑑 = ∑ ( 𝑖
𝑛)𝑛

𝑖=𝑡+1  𝑃𝑟𝑒𝑝
𝑖 (1 - 𝑃𝑟𝑒𝑝)𝑛−𝑖 
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4. IMPLEMENTATION 

   4.1 Comparison Parameters: 

 Error detection capability 

 Bit-error rate(BER) 

   4.2 Tools and Technologies: 

       4.2.1 Java 1.6 Version: 

       4.2.1.1 Characteristics: 

      JAVA is a programming language [1], developed by Sun Microsystems    

        and first released in 1995 (release 1.0). Since that time, it gained a large   

        popularity mainly due to two characteristics: 

 A JAVA programme is hardware and operating system independent. If well 

written (!), the same JAVA programme, compiled once, will run identically 

on a SUN/Solaris workstation, a PC/windows computer or a Macintosh 

computer. Not mentioning other UNIX flavors, including Linux, and every 

Web browser, with some restrictions described below. 

This universal executability is made possible because a JAVA programme is 

run through a JAVA Virtual Machine. 

 It is an object oriented language. This feature is mainly of interest for 

software developers. 

       4.2.1.2 JAVA Virtual Machine (JVM): 

                      A JAVA programme is build by a JAVA compiler which generates its   

                      own binary code. This binary code is independant from any hardware   

                      and operating system. To be executed, it needs a virtual machine,  

                      which is a programme analyzing this code and executing the   
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            instructions it contains. 

                            Of course, this Java Virtual Machine (JVM)[1] is hardware and   

            operating system dependant. Two types of Virtual Machines exist:   

            those included in every Web Browser, and those running as an   

            independent programme, like the Java RunTime Environment (JRE)     

            from Sun Microsystems. These programmes need to be downloaded for   

            your particular platform. 

  

     4.3 Diagrams 

          4.3.1 Use Case Diagram  

                                 Fig 12: Use Case Diagram 
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          4.3.2 Activity Diagram 

 

                                          Fig 13: Activity Diagram 
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      4.4 Code 

                 4.4.1 BCH Code 

package error.codes; 

import java.io.BufferedReader; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.util.Random; 

public class BCHNEW { 

    int m = 5, n = 31, k = 21, t = 2, d = 5; 

 int length = 31; 

 int p[] = new int[6]; 

 int alpha_to[] = new int[32]; 

 int index_of[] = new int[32]; 

 int g[] = new int[11]; 

 int recd[] = new int[31]; 

 int data[] = new int[21]; 

 int bb[] = new int[11]; 

 int numerr, decerror = 0; 

 int errpos[] = new int[32]; 

 int seed; 

 void read_p() { 

  p[0] = p[2] = p[5] = 1; 

  p[1] = p[3] = p[4] = 0; 

 } 

 void generate_gf() { 

  int i, mask=1; 

  alpha_to[m] = 0; 

  for (i = 0; i < m; i++) { 

   alpha_to[i] = mask; 

   index_of[alpha_to[i]] = i; 

   if (p[i] != 0) 
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              alpha_to[m] ^= mask; 

   mask <<= 1; 

  } 

  index_of[alpha_to[m]] = m; 

  mask >>= 1; 

  for (i = m + 1; i < n; i++) { 

   if (alpha_to[i - 1] >= mask) 

  alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1); 

   else alpha_to[i] = alpha_to[i - 1] << 1; 

   index_of[alpha_to[i]] = i; 

  } 

  index_of[0] = -1; 

 } 

 void gen_poly() { 

  int ii, jj, ll, kaux; 

  int test, aux, nocycles, root, noterms, rdncy; 

  int cycle[][] = new int[15][6]; 

  int size[] = new int[15]; 

  int min[] = new int[11]; 

  int zeros[] = new int[11]; 

  cycle[0][0] = 0; 

  size[0] = 1; 

  cycle[1][0] = 1; 

  size[1] = 1; 

  jj = 1; 

  do { 

   ii = 0; 

  do { 

   ii++; 

   cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n; 

   size[jj]++; 
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    aux = (cycle[jj][ii] * 2) % n; 

   } while (aux != cycle[jj][0]); 

   ll = 0; 

   do { 

    ll++; 

    test = 0; 

   for (ii = 1; ((ii <= jj) && (test == 0)); ii++) 

  for (kaux = 0; ((kaux < size[ii]) && (test == 0)); kaux++) 

    if (ll == cycle[ii][kaux]) 

       test = 1; 

   } while ((test != 0) && (ll < (n - 1)));// test 

   if (test == 0) {// (!test) 

    jj++; /* next cycle set index */ 

    cycle[jj][0] = ll; 

    size[jj] = 1; 

   } 

  } while (ll < (n - 1)); 

  nocycles = jj; /* number of cycle sets modulo n */ 

  kaux = 0; 

  rdncy = 0; 

  for (ii = 1; ii <= nocycles; ii++) { 

   min[kaux] = 0; 

   for (jj = 0; jj < size[ii]; jj++) 

    for (root = 1; root < d; root++) 

     if (root == cycle[ii][jj]) 

      min[kaux] = ii; 

   if (min[kaux] != 0) { 

    rdncy += size[min[kaux]]; 

    kaux++; 

   }} 

  noterms = kaux; 
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  kaux = 1; 

  for (ii = 0; ii < noterms; ii++) 

   for (jj = 0; jj < size[min[ii]]; jj++) { 

    zeros[kaux] = cycle[min[ii]][jj]; 

    kaux++; 

   } 

System.out.printf("This is a (%d, %d, %d) binary BCH code\n", length,k, d); 

  g[0] = alpha_to[zeros[1]]; 

  g[1] = 1; /* g(x) = (X + zeros[1]) initially */ 

  for (ii = 2; ii <= rdncy; ii++) { 

   g[ii] = 1; 

   for (jj = ii - 1; jj > 0; jj--) 

    if (g[jj] != 0) 

 g[jj] = g[jj - 1] ̂ alpha_to[(index_of[g[jj]] + zeros[ii]) % n]; 

    else 

     g[jj] = g[jj - 1]; 

   g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n]; 

  } 

  System.out.printf("g(x) = "); 

  for (ii = 0; ii <= rdncy; ii++) { 

   System.out.printf("%d", g[ii]); 

   if ((ii != 0) && ((ii % 70) == 0)) 

    System.out.printf("\n"); 

  } 

  System.out.printf("\n"); 

 } 

 void encode_bch() { 

  int i, j; 

  int feedback; 

  for (i = 0; i < length - k; i++) 

   bb[i] = 0; 
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  for (i = k - 1; i >= 0; i--) { 

   feedback = data[i] ^ bb[length - k - 1]; 

   if (feedback != 0) { 

    for (j = length - k - 1; j > 0; j--) 

     if (g[j] != 0) 

      bb[j] = bb[j - 1] ^ feedback; 

     else 

      bb[j] = bb[j - 1]; 

    bb[0] = g[0] & feedback;// g[0] &&feedback 

   } else { 

    for (j = length - k - 1; j > 0; j--) 

     bb[j] = bb[j - 1]; 

    bb[0] = 0; 

   } 

  }} 

 void decode_bch() { 

  int i, j, q; 

  int elp[] = new int[3], s[] = new int[5], s3; 

  int count = 0, syn_error = 0; 

  int loc[] = new int[3], err[] = new int[3], reg[] = new int[3]; 

  int aux; 

  System.out.printf("s[] = ("); 

  for (i = 1; i <= 4; i++) { 

   s[i] = 0; 

   for (j = 0; j < length; j++) 

    if (recd[j] != 0) 

     s[i] ^= alpha_to[(i * j) % n]; 

   if (s[i] != 0) 

   syn_error = 1; /* set flag if non-zero syndrome */ 

     

   s[i] = index_of[s[i]]; 
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   System.out.printf("%3d ", s[i]); 

  } 

  System.out.printf(")\n"); 

  if (syn_error != 0) { /* If there are errors, try to correct them */ 

   if (s[1] != -1) { 

    s3 = (s[1] * 3) % n; 

    if (s[3] == s3) /* Was it a single error ? */ 

    { 

                       System.out.printf("One error at%d\n", s[1]); 

     recd[s[1]] ^= 1; /* Yes: Correct it */ 

    } else {  

     if (s[3] != -1) 

    aux = alpha_to[s3] ^ alpha_to[s[3]]; 

     else 

      aux = alpha_to[s3]; 

     elp[0] = 0; 

    elp[1] = (s[2] - index_of[aux] + n) % n; 

    elp[2] = (s[1] - index_of[aux] + n) % n; 

     System.out.printf("sigma(x) = "); 

     for (i = 0; i <= 2; i++) 

    System.out.printf("%3d ", elp[i]); 

     System.out.printf("\n"); 

     System.out.printf("Roots: "); 

     for (i = 1; i <= 2; i++) 

      reg[i] = elp[i]; 

     count = 0; 

    for (i = 1; i <= n; i++) { /* Chien search */ 

      q = 1; 

      for (j = 1; j <= 2; j++) 

       if (reg[j] != -1) { 

      reg[j] = (reg[j] + j) % n; 
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     q ^= alpha_to[reg[j]]; 

       } 

     if (q == 0) { /* store error location number*/                             

     loc[count] = i % n; 

     count++; 

     System.out.printf("%3d ", (i % n));  

    }} 

    System.out.printf("\n"); 

     if (count == 2) 

               for (i = 0; i < 2; i++) 

     recd[loc[i]] ^= 1; 

     else 

   System.out.printf("incomplete decoding\n"); 

    } 

   } else if (s[2] != -1) /* Error detection */ 

   System.out.printf("incomplete decoding\n"); 

  }} 

 public void run() { 

  int i; 

                read_p(); /* read generator polynomial g(x) */ 

 generate_gf(); /* generate the Galois Field GF(2**m) */ 

 gen_poly(); /* Compute the generator polynomial of BCH code */ 

  seed = 1; 

  Random  random = new Random(seed); 

  for (i = 0; i < k; i++) 

   data[i] = (random.nextInt() & 67108864) >> 26; 

  encode_bch(); /* encode data */ 

  for (i = 0; i < length - k; i++) 

  recd[i] = bb[i]; /* first (length-k) bits are redundancy */ 

  for (i = 0; i < k; i++) 

  recd[i + length - k] = data[i]; /* last k bits are data */ 
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  System.out.printf("c(x) = "); 

  for (i = 0; i < length; i++) { 

   System.out.printf("%1d", recd[i]); 

   if ((i != 0) && ((i % 70) == 0)) 

    System.out.printf("\n"); 

  } 

  System.out.printf("\n"); 

System.out.printf("Enter the number of errors and their positions: "); 

  BufferedReader wt = new BufferedReader(new 

InputStreamReader(System.in)); 

  String numerrStr = null; 

  try { 

   numerrStr = wt.readLine(); 

  } catch (IOException e) { 

                               e.printStackTrace(); 

  } 

  numerr = Integer.valueOf(numerrStr); 

  for (i = 0; i < numerr; i++) { 

   String errposStr = null; 

   try { 

    errposStr = wt.readLine(); 

   } catch (IOException e) { 

    e.printStackTrace(); 

   } 

   errpos[i] = Integer.valueOf(errposStr); 

   recd[errpos[i]] ^= 1; 

  } 

  System.out.printf("r(x) = "); 

  for (i = 0; i < length; i++) 

  System.out.printf("%1d", recd[i]); 

  decode_bch(); 
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  System.out.printf("Results:\n"); 

  System.out.printf("original data  = "); 

  for (i = 0; i < k; i++) 

   System.out.printf("%1d", data[i]); 

  System.out.printf("\nrecovered data = "); 

  for (i = length - k; i < length; i++) 

   System.out.printf("%1d", recd[i]); 

  System.out.printf("\n"); 

  for (i = length - k; i < length; i++) 

   if (data[i - length + k] != recd[i]) 

    decerror++; 

  if (decerror != 0) 

      System.out.printf("%d message decoding errors\n", decerror); 

  else     System.out.printf("Succesful decoding\n"); 

 } 

       public static void main(String[] args) { 

  BCHNEW bch_32_21_5 = new BCHNEW(); 

  bch_32_21_5.run(); 

 }    } 

                    OUTPUT: (Snapshot) 

                      

                                    Fig 14: Output of the code                                       



38 
 

5. FUTURE OUTLOOK 

 

   5.1 Description 

The next course of action includes the performance improvement of 

Error Correcting Codes and implementation of an application   using 

Hybrid code. The implementation will be preceded by the design and 

modeling of method.  The implementation will be followed by the 

testing phase of scheme. 
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CONCLUSION 

 

In this report, we mainly work on detecting and correcting errors in a codeword 

during data transmission by using different error correcting techniques. Different 

Error correcting codes work on different parameters. Some of the codes are 

Hamming code, BCH code, Repetition Code and Hybrid Code. 

        Hamming code correct an error detected at the receiver side. The main 

advantage of this code is Encoding and Decoding are easy to implement. But, the 

problem with this code is that they can detect and correct only a single error. So, 

Hamming code is limited to few applications only. 

        So we will try to produce a double error correcting sub-code of the Hamming 

code by removing some code words to make a new one.BCH code is a 

generalization of hamming codes for multiple error correction. Another advantage 

of BCH code is the ease with which they can be decoded, namely, via an 

algebraic method known as syndrome decoding.  

        Repetition Code can correct multiple errors, but the problem with this code is 

its Bit Error Rate (BER) is too high. 

       So we will try to implement a different kind of code i.e. The Hybrid Code. It 

is a combination of two error correcting codes. Here we used hamming code as an 

“outer code” and repetition code as an “inner code”. It’s main advantages are it 

can correct multiple errors and produces very low BER. 
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                       Appendix 

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package test; 

 

import java.util.Scanner; 

import java.io.*; 

import java.util.Random; 

/** 

 * 

 * @author Saurabh 

 */ 

public class HybridCode { 

    public static void main(String args[]){ 

    int i=0,j=0,dd=0; 

     

  int total_bits; 

  double bits=0; 

  int a[]=new int[11]; 

  int b[]=new int[15]; 

  int c[]=new int[15]; 

  int d[]=new int[45]; 

  int p[]=new int[4]; 

  int bb[]=new int[45]; 

  int cc[]=new int[15]; 

  Scanner sr=new Scanner(System.in); 

 

  String Hex="ABC"; 

  int location =0; 
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  for(i=0;i<3;i++) //input data in array a 

  { 

      if(Hex.charAt(i)=='A') 

      { 

          a[location++]=0; 

          a[location++]=1; 

          a[location++]=0; 

      } 

      else if(Hex.charAt(i)=='B') 

      { 

          a[location++]=1; 

          a[location++]=0; 

          a[location++]=1; 

          a[location++]=1; 

      } 

      else if(Hex.charAt(i)=='C') 

      { 

          a[location++]=1; 

          a[location++]=1; 

          a[location++]=0; 

          a[location++]=0; 

      } 

  }    

  total_bits=a.length; 

  System.out.println("Data codeword length is:"); 

  System.out.println(total_bits); 

  System.out.println("Data code is:"); 

   

  for(i=0;i<11;i++)  //display data through array a 

  { 

   System.out.print(a[i]); 
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   System.out.print("\t"); 

  } 

   

  for(j=0;j<15;j++)  // Hamming code for even parity input in array b 

  { 

   b[j]=0;  

  } 

   

  if((a[0]+a[1]+a[3]+a[4]+a[6]+a[8]+a[10])%2==0) 

    b[0]=0; 

    else 

    b[0]=1; 

    

  if((a[0]+a[2]+a[3]+a[5]+a[6]+a[9]+a[10])%2==0) 

    b[1]=0; 

    else 

    b[1]=1; 

    

    if((a[1]+a[2]+a[3]+a[7]+a[8]+a[9]+a[10])%2==0) 

    b[3]=0; 

    else 

    b[3]=1; 

    

    if((a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10])%2==0) 

    b[7]=0; 

    else 

    b[7]=1; 

    

    System.out.println("");   

    for(j=0,i=0;j<15;) 

    { 
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     if(j==0||j==1||j==3||j==7) 

     j++; 

     else 

      { 

        b[j]=a[i]; 

         j++; 

         i++; 

      } 

    } 

    System.out.println(""); //print the Hamming code for even parity 

    System.out.println("Hamming code for even parity is:"); 

     

    for(j=0;j<15;j++) 

    { 

     System.out.print(b[j]); 

     System.out.print("\t"); 

    } 

    System.out.println(""); 

    System.out.println(""); 

   

    for(i=0;i<15;i++) 

    { 

     c[i]=b[i]; 

    } 

     

    Random r= new Random(); 

    int rand = r.nextInt(15); 

    

     if(c[rand]==1) 

         c[rand]=0; 

     else  
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         c[rand]=1; 

     

     

    System.out.println("the hamming code with error is:"); 

    for(j=0;j<15;j++) 

    System.out.print(c[j]); 

    System.out.println(""); 

     

    int e=0; 

    int size=45; 

    for(i=0;e<15;) 

    { 

      if(c[e]==1) 

      { 

          bb[i++]=1; 

          bb[i++]=1; 

          bb[i++]=1; 

           

          e++; 

      } 

      else 

      { 

          bb[i++]=0; 

          bb[i++]=0; 

           

          bb[i++]=0; 

          e++; 

      } 

       

  } 

    System.out.print("\n"); 
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    System.out.print("Received Data code:"); 

    for(i=0;i<size;i++){ 

        System.out.print(bb[i]); 

    } 

   System.out.print("\n"); 

   System.out.print("\n"); 

    

   for(i=0;i<size;i++){ 

        d[i]=bb[i]; 

    } 

     

    System.out.println("Enter an error in data code:"); //Input Hamming code by 

user and compare 

    for(i=0;i<45;i++) 

    { 

     bb[i]=sr.nextInt(); 

    } 

     

    System.out.print("\n"); 

    System.out.println("Encrypted Data:"); 

     

      for(j=0;j<size;j++){ 

       //System.out.print(""); 

       System.out.print(" " + bb[j]);     

       } 

       

      System.out.println(""); 

    int same=0; 

    for(i=0;i<=d.length-1;i++){ 

        if(d[i]!=bb[i]){ 

            same++; 
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        } 

    } 

    System.out.println("Number of Errors in a code word:"); 

    System.out.println(same); 

     

    int count=0,index=0,countz=0,counto=0; 

  for(i=0;i<size;i++){ 

      if(bb[i]==0) 

              countz++; 

          else 

              counto++; 

       

      if(i%3==2) 

      { 

        if(countz>counto) 

        { 

            cc[index++]=0; 

        } 

        else 

        { 

            cc[index++]=1; 

        } 

        countz=0; 

        counto=0; 

      } 

  } 

  System.out.println("\nFinal data after decrytption n correction is by 

Repetition Code:"); 

    for(i=0;i<15;i++) 

        System.out.print(cc[i]); 

     



48 
 

    p[0]=cc[0]; 

    p[1]=cc[1]; 

    p[2]=cc[3]; 

    p[3]=cc[7]; 

     

    if((((c[2]+c[4]+c[6]+c[8]+c[10]+c[12]+c[14])%2)==0 && 

p[0]==0||(((c[2]+c[4]+c[6]+c[8]+c[10]+c[12]+c[14])%2)!=0 && p[0] ==1))) 

    p[0]=0; 

    else 

    p[0]=1; 

    

    

    if((((c[2]+c[5]+c[6]+c[9]+c[10]+c[13]+c[14])%2)==0 && 

p[1]==0||(((c[2]+c[5]+c[6]+c[9]+c[10]+c[13]+c[14])%2)!=0 && p[1] ==1))) 

    p[1]=0; 

    else 

    p[1]=1; 

    

    

    if((((c[4]+c[5]+c[6])%2)==0 && p[2]==0||(((c[4]+c[5]+c[6])%2)!=0 && 

p[2] ==1))) 

    p[2]=0; 

    else 

    p[2]=1; 

    

    

    if((((c[8]+c[9]+c[10])%2)==0 && p[3]==0||(((c[8]+c[9]+c[10])%2)!=0 && 

p[3] ==1))) 

    p[3]=0; 

    else 

    p[3]=1; 
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    for(i=3;i>=0;i--)   //find out the place for wrong bit.  

    { 

     dd=dd+(p[i]*(int)Math.pow(2,i)); 

    } 

     

    System.out.println(""); 

    if(dd==0)     

    System.out.println("The data code is correctly received"); 

    else 

    System.out.println("The "+ dd +"  bit is wrongly received"); 

     

    if(c[dd-1]==0)  //correct Hamming code. 

     c[dd-1]=1; 

      else 

     c[dd-1]=0; 

       System.out.println(""); 

     

      System.out.println("The Correct Hamming code is:"); 

      for(i=0;i<15;i++) 

      { 

          System.out.print(c[i]); 

          System.out.println("\t"); 

      } 

      System.out.println("The Bit Error Rate:"); 

       bits=(double) same/total_bits; 

        System.out.printf("%f",bits); 

  } 

} 


