
i

PERFORMANCE COMPARISON OF ERROR-

CORRECTING CODES

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology

in

Computer Science & Engineering

under the Supervision of

 Mr. Amit Kumar Singh

By

 Saurabh Kumar, 111231

To

 Jaypee University of Information and Technology

 Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Performance comparison of

error-correcting codes”, submitted by Saurabh Kumar in partial

fulfillment for the award of degree of Bachelor of Technology in Computer

Science & Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University

or Institute for the award of this or any other degree or diploma.

 Date: Supervisor’s Name:

 Designation:

iii

Acknowledgement

Many people have contributed to the success of this. Although a single sentence

hardly suffices, I would like to thank God for blessing me with His grace. I am

profoundly indebted to my guide Mr. Amit Kumar Singh for innumerable acts

of timely advice, encouragement and I sincerely express my gratitude to him.

 I express my immense pleasure and thankfulness to the Prof. Dr. S.P.

Ghrera (HOD) and all the teachers and staff of the Department of CSE & IT,

Jaypee University of Information & Technology, for their cooperation and

support.

Date: Name of the student:

 Saurabh Kumar

 111231

iv

Table of Content

S. No. Topic Page No.

 1. Introduction 1

 1.1 Overview 1

 1.2 Noisy Communications 1

 1.3 Making Digits Redundant 2

 1.4 Binary error correcting codes 2

 1.5 Types of ECC 2

 1.6 Types of Binary codes 3

 1.7 Types of Error Correcting Codes 3

 1.7.1 Hamming Codes 3

 1.7.2 BCH code 6

 1.7.2.1 Introduction 7

 1.7.2.2 Primitive BCH codes 7

 1.7.2.3 Generator Polynomial of binary BCH codes 8

 1.7.2.4 Properties of Binary BCH codes 9

 1.7.3 Reed Solomon Code 10

 1.7.3.1 History 10

 1.7.3.2 Introduction 10

 1.7.3.3 Advantages 11

 1.7.3.4 Applications 11

 1.7.4 Repetition Code 11

 1.7.5 Comparison of various codes 14

v

 2. Literature Review 15

 3. Design 17

 3.1 Calculating the Hamming Code 17

 3.2 BCH Decoding algorithm 19

 3.3 Repetition Code algorithm 22

 3.4 Reed Solomon Implementation 23

 3.5 Hybrid Coding Implementation 25

 4. Implementation 26

 4.1 Comparison Parameters 26

 4.2 Tools and technologies 26

 4.2.1 Java 1.6 Version 26

 4.2.1.1 Characteristics 26

 4.2.1.2 JAVA Virtual Machine (JVM) 26

 4.3 Diagrams 27

 4.3.1 Use Case Diagram 27

 4.3.2 Activity Diagram 28

 4.4 Code 29

 5. Future Outlook 38

 5.1 Description 38

 Conclusion 39

 References 40

 Appendix 41

vi

List of Figures

S.No. Title Page. No.

1. Fig 1: Block codes representation 3

2. Fig 2: Convolutional codes representation 3

3. Fig 3: parity check equations 4

4. Fig 4: Hamming code encoding 5

5. Fig 5: Hamming code decoding 6

6. Fig 6: Hamming code decoding of two errors 6

7. Fig 7: Performance of Repetition code 12

8. Fig 8: Comparison of various codes 14

9. Fig 9: Check bits calculation 18

10. Fig 10: Code word representation 18

12. Fig 11: error correction in hamming code 19

12. Fig 12: Use Case Diagram 27

13. Fig 13: Activity Diagram 28

14. Fig 14: Output of the code 37

vii

List of Tables

 S.No. Title Page No.

 1. Table 1: Comparing different error correcting codes on BER 14

 2. Table 2: Different methods for error correcting codes 16

viii

Problem Statement

There are many reasons for need of Error Correcting Codes such as noise, cross-talk etc.,

which may lead data to get corrupted during transmission. The upper layers work on

some generalized view of network architecture and are not aware of actual hardware data

processing. So, upper layers expect error-free transmission between systems. Most of the

applications would not function expectedly if they receive erroneous data. Applications

such as voice and video may not be that affected and with some errors they may still

function well.

 Data-link layer uses some error control mechanism to ensure that codeword (data

bit streams) are transmitted with certain level of accuracy. But to understand how errors

is controlled, it is essential to know what types of errors may occur and what types of

correcting techniques to be used.

 An error during data transmission has been a serious problem facing over the last

few decades. So, our aim is to reduce the error rates by combine two methods (Hamming

and Repetition code) of error correcting codes, which improves the performance of the

proposed method.

ix

Abstract

Environmental interference and physical defects in the communication medium

can cause random bit errors during data transmission. Error coding is a method of

detecting and correcting these errors to ensure information is transferred intact

from its source to its destination. Error coding is used for fault tolerant computing

in computer memory, magnetic and optical data storage media, satellite and deep

space communications, network communications, cellular telephone networks, and

almost any other form of digital data communication. Error coding uses

mathematical formulas to encode data bits at the source into longer bit words for

transmission. The "code word" can then be decoded at the destination to retrieve

the information. The extra bits in the code word provide redundancy that,

according to the coding scheme used, will allow the destination to use the

decoding process to determine if the communication medium introduced errors

and in some cases correct them so that the data need not be retransmitted.

Different error coding schemes are chosen depending on the types of errors

expected, the communication medium's expected error rate, and whether or not

data retransmission is possible. Faster processors and better communications

technology make more complex coding schemes, with better error detecting and

correcting capabilities, possible for smaller embedded systems, allowing for more

robust communications. However, tradeoffs between bandwidth and coding

overhead, coding complexity and allowable coding delay between transmissions,

must be considered for each application.

During the transmission of data from transmitter to receiver, there is loss of

information in the communication channel due to noise. This loss is measured in

terms of bit error rate (BER) and several decoding algorithms and modulation

techniques used to minimize it. Some of the error-correcting codes are Hamming

x

code, Repetition code, BCH code [4], Reed Solomon code and Hybrid code.

Hybrid Code[6] are one of the most powerful types of error control codes

currently available, which could achieve low BERs at signal to noise ratio (SNR)

very close to Shannon limit. Nevertheless, the specific performance of the code

highly depends on the particular decoding algorithm used at the receiver.

1

1. INTRODUCTION

 1.1 Overview

In information theory and coding theory with applications in computer science

and telecommunication, error detection and correction or error control are

techniques that enable reliable delivery of digital data over unreliable

communication channels. Many communication channels are subject to channel

noise, and thus errors may be introduced during transmission from the source to

receiver. Error detection techniques allow detecting such errors, while error

correction enables reconstruction of the original data in many cases.

Forward error correction (FEC) [4] is the method of transmitting error correction

information along with the message. At the receiver, this error correction

information is used to correct any bit-errors that may have occurred during the

transmission. The improved performance comes at the cost of introducing a

considerable amount of redundancy in the transmitted code. There are various

FEC codes in use today for purpose of error correction. Most codes fall into either

of two major categories: block codes [4] and convolutional codes [4].

Block codes work with fixed length blocks of code. Convolutional codes deal

with data sequentially (i.e. taken a few bits at a time) with the output depending

on both the present input as well as previous inputs.

The error correcting codes is often designed first with the goal of minimizing the

gap from Shannon Capacity and attaining the target error probability.

 1.2 Noisy Communications

 Noise in a communications channel can cause errors in the transmission of

 binary digits.

 • Transmit: 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 …

 • Receive: 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 …

2

 • For some types of information, errors can be detected and corrected but not

 in others.

 Example: Transmit: Come to my house at 17:25 …

 Receive: Come to my house at 14:25 …

 1.3 Making Digits Redundant

 In binary error correcting codes, only certain binary sequences (called code

words) are transmitted.

 This is similar to having a dictionary of allowable words.

 After transmission over a noisy channel, we can check to see if the received

binary sequence is in the dictionary of code words and if not, choose the

codeword most similar to what was received.

 1.4 Binary Error Correcting Codes

 2k equally likely messages can be represented by k binary digits.

 If these k digits are not coded, an error in one or more of the k binary digits will

result in the wrong message being received.

 Error correcting codes is a technique where by more than the minimum number of

binary digits are used to represent the messages.

 The aim of the extra digits, called redundant or parity digits, is to detect and

hopefully correct any errors that occurred in transmission.

 1.5 Types of ECC

 Binary Codes

Encoder and decoder works on a bit basis.

 Non-binary Codes

-Encoder and decoder works on a byte or symbol basis.

-Bytes usually are 8 bits but can be any number of bits.

-Galois field arithmetic is used.

3

-Example is a Reed Solomon Code.

 -More generally, we can have codes where the number of symbols is a

 prime or a power of a prime.

 1.6 Types of Binary codes

There are two types of Binary codes:

 Block Codes

 Fig 1:Block codes representation

 Convolutional Codes

 Fig 2:Convolutional codes representation

 1.7 Types of Error Correcting Codes

 1.7.1 Hamming Code

 A Hamming Code [6] can be used to detect and correct one-bit change in

4

 an encoded code word. This approach can be useful as a change in a single

 bit is more than a change in two bits or more bits.

 HAMMING BINARY BLOCK CODE WITH k=4 AND n=7

 -In general, a block code with k information digits and block length n is

 called an (n,k) code.

 -Thus, this example is called an (7,4) code.

 -This is a very special example where we use pictures to explain the code.

Other codes are NOT explainable in this way.

 - All that we need to know is modulo 2 addition, ⊕:

 0 ⊕ 0 = 0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, 1 ⊕ 1 = 0.

 - Message digits: C1 C2 C3 C4

 - Code word C1 C2 C3 C4 C5 C6 C7

 Parity Check Equations:

 C1 ⊕ C2 ⊕ C3 ⊕ C5 = 0

 C1 ⊕ C3 ⊕ C4 ⊕ C6 = 0

 C1 ⊕ C2 ⊕ C4 ⊕ C7 = 0

 Fig 3: parity check equations

5

 Parity Check Matrix:

 1 1 1 0 1 0 0

 1 0 1 1 0 1 0

 1 1 0 1 0 0 1

 There is an even number of 1’s in each circle.

 HAMMING (7,4) CODE: ENCODING

 Message: (C1 C2 C3 C4) = (0 1 1 0)

 Fig 4:Hamming code encoding

 Resultant code word: 0 1 1 0 0 1 1

HAMMING (7,4) CODE: DECODING

 Transmitted code word: 0 1 1 0 0 1 1

 Example 1: Received block with one error in a message bit.

 0 1 0 0 0 1 1

6

 Fig 5: Hamming code decoding

 HAMMING (7,4) CODE: DECODING

 Transmitted code word: 0 1 1 0 0 1 1

 Example 2: Received block with two errors:

 1 1 1 0 0 0 1

 Fig 6: Hamming code decoding of two errors.

1.7.2 BCH Code (Bose, Chaudhuri and Hocquenghem)

 How do we modify a Hamming code to correct two errors? In other

 words, how can we increase its minimum distance from 3 to 5? We

7

 will either have to lengthen the code words or eliminate some of

 them from our code.

 Correcting two errors in a long word may not be much better

 than correcting one error in a short one. So we will try to produce a

 double error correcting sub code of the Hamming code by removing

 some code words to make a new code.BCH codes is a generalization

 of hamming codes for multiple error correction. Binary BCH codes

 were first discovered by A. Hocquenghem in 1959 and

 independently by R.C. Bose and D.K. Ray-Chaudhuri in 1960.

 1.7.2.1 Introduction

 -BCH[4] codes are cyclic codes. Only the codes, not the decoding

 algorithms, were discovered by these early writers.

 -The original applications of BCH codes were restricted to binary

 codes of length 2
m

− 1for some integer m. These were extended later

 by Gorenstein and Zeiler(1961) to the nonbinary codes with

 symbols from Galois Field GF(q).

 -The first decoding algorithm for binary BCH codes was devised by

 Peterson in 1960. Since then peterson’s algorithm has been revised

 by Berlekamp, Massey, Forney and many others.

 1.7.2.2 Primitive BCH Codes

 -For any integer m ≥ 3and t < 2m −1
there exists a primitive BCH

 code with the following parameters:

8

 block length: n = 2m − 1

 parity check bits: n − k ≤ m*t

 minimum distance: 𝑑𝑚𝑖𝑛 ≥2t+1

 -This code can correct t or fewer random errors over a span of 2
m − 1

 bit positions.

 This code is a t-error correcting BCH code.

 -For example, for m=5 and t=2

 n=25 -1=31

 mt=5×2=10

 n – k ≤ m*t=10

 𝑑𝑚𝑖𝑛 ≥ 2(2) + 1 ≥ 5

 This is a BCH(31,21) error correcting code.

 1.7.2.3 Generator Polynomial of Binary BCH Codes

 -Let α be a primitive element in GF(2
m

).

 -The generator polynomial of the BCH code is defined as the least

 common multiple g(x) = lcm(m1(x),…,md − 1(x)).

 -Note that the degree of g(x) is mt or less.

 Hence the number of parity-check bits ;n-k, of the code is at most

 mt.

 -Note that the generator polynomial of the binary BCH code is

 originally found to be the least common multiple of the minimum

9

2

 polynomials φ1 ,φ2 ,L,φ2 t.

 i.e. g(x)=LCM {φ1 (x),φ2 (x),φ3 (x),L,φ2 t −1 (x),φ2 t (x)}

 However, generally, every even power of α in GF(2
m

) has the

 same minimal polynomial as some preceding odd power of α in

 GF(2
2 m

).

 As a consequence, the generator polynomial of the t-error correcting

 binary BCH code can be reduced to

 g(x)=LCM{ φ1 (x),φ3 (x),L,φ2 t −1 (x)}.

 Example:- m=4,t=3

 Let ∝ be a primitive element in GF(24) which is constructed

 based on the primitive polynomial p(x)= 1 + x + x
4

 g(x) = LCM {φ1 (x),φ 3 (x),φ5 (x)}

 = φ1 (x)φ3 (x)φ5 (x)

 = 1 + x + x
2

+ x
4

+ x
5

+ x
8

+ x
10

 This code is a (15, 5) BCH cyclic code.

 1.7.2.4 Properties of Binary BCH codes

 Consider a t-error correcting BCH code of length n = 2
m

− 1 with

generator polynomial g(x).

 g(x) has a ∝ ,∝2
,∝3,L,∝2𝑡

10

g(∝𝑖)=0 for 1≤ i ≤ 2t

 Since a code polynomial c(x) is a multiple of g(x), c(x) also has

∝ ,∝2
,∝3,L,∝2𝑡 as roots ,i.e. c(∝𝑖)=0 for 1≤ i ≤ 2t.

 A polynomial of degree less than 2𝑚 - 1is a code polynomial if and, only if it

has ∝ ,∝2
,∝3,L,∝2𝑡 as roots.

1.7.3 REED-SOLOMON CODE

1.7.3.1 History

In coding theory, Reed-Solomon(RS)[6] codes are non-binary cyclic error-

correcting codes invented by Irving S.Reed and Gustavo Solomon in 1960.They

described a systematic way of building codes that could detect and correct

multiple random symbol errors.

1.7.3.2 Introduction

Reed-Solomon codes [6] are examples of error correcting codes, in which

redundant information is added to data so that it can be recovered reliably despite

errors in transmission or storage and retrieval. The error correction system used

on CD’s and DVD’s is based on a Reed-Solomon code. These codes are also used

on satellite links and other communications systems.

 By adding t check symbols to the data, an RS code can detect any

combination of up to t erroneous symbols, or correct up to ⌊t/2⌋ symbols. RS

codes are suitable as multiple-burst bit-error correcting codes, since a sequence of

b + 1 consecutive bit errors can affect at most two symbols of size b.

 The choice of t is up to the designer of the code, and may be selected

within wide limits.

The RS decoder corrects the entire symbol, whether the error was caused by one

bit being corrupted or by all of the bits being corrupted.

11

 Thus, if a symbol is wrong, it might as well be wrong in all of its bit

positions. This gives RS codes tremendous burst-noise advantages over binary

codes. Burst-noise is relatively common in wireless communication due to fading.

The code minimum distance for RS code is given by

 𝑑𝑚𝑖𝑛= n- k +1

where k is now the number of data symbols being encoded, and n is

the length of the codeword.

The code can correct up to t symbol errors, where t is given by

 t =
𝑛−𝑘

2

This equation shows that a codeword needs 2t parity symbols to

correct t errors.

1.7.3.3 Advantages

 RS codes can be used for long block lengths with less decoding time than other

codes because RS codes work with symbol-based arithmetic.

 It provides better throughput.

1.7.3.4 Applications

 Used in the Voyager spacecraft

 They are currently used in the compact disc player

 Specific applications for digital audio, data transfer over mobile radio, satellite

communications, spread spectrum systems.

1.7.4 REPETITION CODE

 Introduction

 In coding theory, the repetition code [8] is one of the most basic error-correcting

codes. In order to transmit a message over a noisy channel that may corrupt the

12

transmission in a few places, the idea of the repetition code is to just repeat the

message several times.

 The repetition code [8] is generally a very naive method of encoding data across a

channel, and it is not preferred for Additive White Gaussian Noise

Channels (AWGN), due to its worse-than-the-present error performance.

 The chief attraction of the repetition code[8] is the ease of

 implementation.

 Repetition Coder

 The encoder is a simple device that repeats, times, a particular bit

 to the waveform modulator when the bit is received from the source

 stream.

 For example, if we have a (3,1) repetition code[8], then

 encoding the signal m= 101001 yields a code

 Repetition Decoder

 Repetition decoding is usually done using Majority logic detection.

 To determine the value of a particular bit, we look at the received

 copies of the bit in the stream and choose the value that occurs more

 frequently.

 For example, suppose we have a (3, 1) repetition code [8] and we decoded the

 signal c=11000111. The decoded message is m= 101, as we have most

 occurrence of 1's (two to one), 0's (two to one), and 1's (three to zero) in the first,

 second, and third code sequences, respectively.

http://en.wikipedia.org/wiki/AWGN
http://en.wikipedia.org/wiki/Majority_logic_decoding

13

 How much does this Repetition code [8] improve Reliability?

 Repeating each bit three times allows us to correct one error in group

 of three bits, but not more errors.

 Suppose each bit has probability P of being received correctly,

 independently of each bit.

 The probability that a group of three repeated bits will be decoded

 Correctly is:

 Pr(0 errors) + Pr(1 error) = 𝑃3 + 3𝑃2(1 – P)

 Here is a plot of this vs P:

 Fig 7: Performance of Repetition code

 Applications

 Due to the simplicity of the channel encoding and decoding for repetition codes,

they find applications in fading channels and non-AWGN environments.

Repetition codes [8] can be viewed as a method of space-time diversity as well.

 Some UARTs, such as the ones used in the FlexRay protocol, use a majority filter

to ignore brief noise spikes. This spike-rejection filter can be seen as a kind of a

repetition decoder.

14

1.7.5 Comparison of various Codes

 The comparison [2] of various codes is as shown in figure:

 Fig 8: Comparison of various codes

 Table 1: Comparing different Error-Correcting Codes on BER

Performance

Metric

Hamming

(7,4)

Repetition

(3,1)

Hamming

(15,11)

Hybrid

code

BER 0.000 0.800 0.3637 0.111

15

2. LITERATURE REVIEW

 Different reported techniques are discussed below:

 Blais et al. [3] proposed a method for improving code rate of BCH code

over other codes by introducing some explicit families of good algebraic

codes.

 Wallace et al. [4] proposed different decoding algorithms and shows that

Berlekamp decoding algorithm is complex and not too attractive.

 Mitchell et al. [6] compared BER performance of different error correcting

codes for various code rates.

 Fujihasji et al. [7] proposed a method to modified hamming codes that

have the capability of all error detecting and one error correcting on an

ideal optical channel.

 Singh and Bahel et al. [2] presented a study of various block code namely

Hamming code and Bose-Chaudhuri-Hocquenghem(BCH) code and

estimated the performance of such codes on the basis of Eb/No value.

 Neal et al. [8] proposed a method i.e. Repetition method to improve the

communication between both sides.

 Berger and Todorov et al. [9] presented a method to improve the

communication process using block error-correcting codes.

 Table 2 shows the existing methods using ECCs.

16

 Table 2: Existing Methods using ECCs

S.No. Author’s Name, Year ECC Used Results

1. Eric Blais & Venkat

 Guruswami, 2010

 BCH code BCH code have better

 rate than binary codes

 constructed from RS

codes.

2. Hank Wallace, 2001

 BCH code The Berlekamp deco-

 ding algorithm is

 complex and not too

 attractive for high-

 speed communication

 system.

3. Gregory Mitchell, 2009 Hamming code

 BCH code

 Reed Solomon

FEC codes allows

communications to achieve

the same level of

transmission reliability,

quantified by the BER, at

lower output levels.

4. Priti Shankar, 2000

 Hamming code To overcome the limitation

of not being able to

distinguish between single

and double errors.

5. Chugo Fujihashi, 2008

 Hamming Code Modified Hamming code

offer a capability of all error

detecting and one error

correcting.

6. Jaspreet Singh and Dr.

 Shalini Bahel, 2014

 Hamming Code

 BCH Code

Performance of BCH code is

better than Hamming Code.

For smaller value of

17

Eb/No the BCH is having

better results and Hamming

give better result for higher

value.

 3. DESIGN

 3.1 Calculating the Hamming Code

The key to the Hamming Code [3] is the use of extra parity bits to allow

 the identification of a single error. Create the code word as follows:

 Mark all bit positions that are powers of two as parity bits. (Positions 1, 2, 4, 8,

16, 32, 64, etc.)

 All other bit positions are for the data to be encoded. (Positions 3, 5, 6, 7, 9, 10,

11, 12, 13, 14, 15, 17, etc.)

 Each parity bit calculates the parity for some of the bits in the code word. The

position of the parity bit determines the sequence of bits that it alternately checks

and skips.

Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc.

(1,3,5,7,9,11,13,15,...)

Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc.

(2,3,6,7,10,11,14,15,...)

Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc.

(4,5,6,7,12,13,14,15,20,21,22,23,...)

Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, (8-15,24-31,40-47,...)

Position 16: check 16 bits, skip 16 bits, check 16 bits, skip 16 bits, etc. (16-31,48-

63,80-95,...)

Position 32: check 32 bits, skip 32 bits, check 32 bits, skip 32 bits, etc. (32-63,96-

127,160-191,...)

18

 Set a parity bit to 1 if the total number of ones in the positions it checks is odd.

Set a parity bit to 0 if the total number of ones in the positions it checks is even.

 Example:

 Data stored = 00111001

 Check bits:

 Fig 9: Check bits calculation

 Putting it together:

 Fig 10: code word representation

19

 Fig 11: error correction in hamming code

 3.2 BCH Decoding Algorithm

 Consider a BCH code [4] with n = 2
m

− 1 and generator polynomial g(x).

 Suppose a code polynomial c(x) = 𝑐0 + 𝑐1𝑥 + 𝐿 + 𝑐𝑛−1𝑥𝑛−1 is transmitted.

Let r(x) = 𝑟0 + 𝑟1𝑥 + 𝐿 + 𝑟𝑛−1𝑥𝑛−1 be the received polynomial.

 Then r(x) = c(x) + e(x), where e(x) is the error polynomial.

 To check whether r(x) is a code polynomial or not, we simply test

 whether r(∝)= r(∝2) = L = r (∝2t) = 0.

20

i

i i

i

 If yes, then r(x) is a code polynomial otherwise r(x) is not a code

 polynomial and the presence of errors is detected.

 Procedure

 The BCH codes decoding has 3 steps:

1. Syndrome Computation

 The syndrome consists of 2t components in GF (2
m

)

 and S = r(α
i

) for 1 ≤ i ≤ 2t

 Computation:

 Let ∅𝑖(x) be the minimum polynomial of α
i

 Dividing r(x) by ∅𝑖(x) we obtain:

 r(x) = a(x) ∅𝑖(x) + b(x)

 Then 𝑆𝑖 = b(∝𝑖)

 𝑆𝑖 = b(∝𝑖) can be obtained by linear feedback shift-register with

 connection based on ∅𝑖(x).

2. Syndrome and Error Pattern

Since r(x) = c(x) +e(x)

then s= r(∝𝑖) = c(∝𝑖) + e(∝𝑖)= e(∝𝑖) for 1 ≤ i ≤ t.

This gives a relationship between the syndrome and the error pattern.

Suppose e(x) has V errors (ν ≤ t) at the locations specified by x
j1, x

j2, L, x
jν

.

 i.e. e(x)= x
j1+ x

j2+ L + x
jν where, 0 ≤ j1 <j2 < L < jν≤ n – 1.

21

ν

 From above two equations, we have the following relation between

 syndrome components and error location:

 𝑆1 = 𝑒(∝) =∝𝑗1 + ∝𝑗2 + …… + ∝𝑗𝑣

 𝑆2 = e(∝2) = (∝𝑗1)2 + (∝𝑗2)2 + …… + (∝𝑗𝑣)2

 .

 .

 .

 𝑆2𝑡 =e(∝2𝑡) = (∝𝑗1)2𝑡 + (∝𝑗2)2𝑡 + ……+ (∝𝑗𝑣)2𝑡

 If we can solve the 2t equations, we can determine ∝𝑗1 , ∝𝑗2 ,L, ∝𝑗𝑣

 The unknown parameter ∝𝑗𝑢= Zu for u=1, 2, L, V are called the “error laocation

 number”.

 When ∝𝑗𝑢 ,1 ≤ u < V are found, the powers 𝑗𝑢, u=1,2,L,V give us the error

 location in e(x).

 3. Error Location Polynomial

 (Error-Locator Polynomial)

 Suppose that ν ≤ t errors actually occur

 Define error-locator polynomial L (z) as

 L (z) = (1+𝑍1z)(1+𝑍2z)…….(1+𝑍𝑣z)

 = ∏ (1 + 𝑍𝑖
𝑣
𝑖=1 z)

 = 𝜎0 + 𝜎1z + 𝜎2𝑧2 + …… + 𝜎𝑣𝑧𝑣

 where, 𝜎0=1.

 L(z) has 𝑍1
−1,𝑍2

−1,……..,𝑍𝑣
−1 as roots.

 Note that Z= ∝𝑗𝑢

22

If we can determine L(z) from the syndrome S = (S1 , S2 , L, S2 t) ,

then the roots of L(z) give us the error-location numbers.

 3.3 Repetition Code Algorithm

We are trying to send a series of bits through a channel that sometimes randomly

changes a bit from 0 to 1 or vice versa.

One way to improve reliability despite this “noise” is to send each bit three times.

E.g., if we want to send the bit sequence 01101, we actually send

000111111000111.

 The receiver looks at the bits in groups of three, and decodes each group to

the bit that occurs most often in the group.

 An example in which the correct message is decoded despite four

transmission errors:

Limitation of Repetition Code

The receiver looks at the bits in groups of three, and decodes each group to the bit

that occurs most often in the group. So, there will be no more than a single error in

a particular group of three and If there, then it will decode codeword incorrectly.

23

 3.4 Reed Solomon Code Implementation

An RS [6] (n, k, n-k+1) code has:

 k digit messages

 n digit codeword

 n – k + 1 distance between code words (at least)

 (n - k)/2 errors before it cannot be decoded

 2s = n - k

Encoding Process:

 m is the message encoded as a polynomial

 m` = m* pow(x,2s)

 b = m`(mod g)

where m`= q*g + b for some q

 c = m`- b

-Code words are multiples of g, and are systematic.

-Verifying a codeword is valid is a matter of checking for divisibility by g.

Decoding Process:

1. Calculate Syndromes

Calculate the first 2s syndromes.

 Syndromes are defined for all l:

 𝑆𝑙 = ∑ 𝑌𝑖
𝑠
𝑖=1 𝑋𝑖

𝑙

 For the first 2s, it reduces to:

 𝑆𝑙 = E(∝𝑙) = ∑ 𝑌𝑖
𝑠
𝑖=1 ∝𝑙𝑗𝑖 1≤ l ≤ 2s

 𝑆𝑙 = R(∝𝑙) = E(∝𝑙) for the first 2s powers of ∝.

 Encode the syndromes in a generator polynomial:

 s(z) = ∑ 𝑠𝑖
∞
𝑖=1 𝑧𝑖

 This can be computed by finding each 𝑠𝑖 from received codeword for the first 2s

values.

24

2. Berlekamp-Massey Algorithm - calculates the Error Locator Polynomials and

Error Evaluator Polynomials.

 Input: Syndrome polynomial from the above step.

 Output: Error Locator Polynomial σ (z) and Error Evaluator Polynomial ω (z).

 Defined as:

 𝜎(z) = ∏ (1 − 𝑋𝑖𝑧)𝑠
𝑖=1

 𝜔(z) = 𝜎(z) + ∑ 𝑧𝑋𝑖𝑌𝑖
𝑠
𝑖=1 ∏ (1 − 𝑋𝑗𝑧)𝑠

𝑗=1
𝑗≠1

 Notice that the error locations are the inverse roots of σ(z). (Roots are 1/X 1, 1/X

2… 1/X s).

 Observe the following relation:

 =…….intermediate steps omitted

 = 1 + s(z)

 Key equation thus states:

 𝜎(z) and 𝜔(z) have degree at most s.

 Key Equation represents a set of 2s equations and 2s unknowns.

 B-M iterates 2s times.

 At each iteration, it produces a pair of polynomials:

 (∝𝑙 (𝑧), 𝜔𝑙 (𝑧))

 where the polynomials satisfy that iteration’s key equation:

 (1 + s (z)) σ(l) (z) (mod z l+1) = ω(l) (z)

3. Chien’s Procedure

 Recall the definition of σ (z):

25

 σ (z) = ∏ (1 − 𝑋𝑖
𝑠
𝑖=1 𝑧)

 Now that we have σ (z), finding the array of Xi values is simply a matter of

solving for the roots.

 The Easy Way: since we’re working over a small field, just test every value

 1. Let α be a generator

 2. Initialize {Xi} to the empty set

 3. For l = 1, 2

 If σ (α l) = 0: add α −l to {Xi}

4. Forney’s Formula

Using the Error Evaluator Polynomial ω (z) and the error locations {Xi},

the error magnitudes {Yi} can be computed.

 3.5 Hybrid Coding Implementation

In this type of coding we apply two error-correcting codes.

Here we used Hamming code [6] as an “outer code” and Repetition code[8] as an

“inner code”.

 The inner code gets the error rate down and the Hamming code [6] is then

applied to correct the rest of the errors. We denote this encoding scheme with

Hamm/Inn or Hamm/Rept.

 Hamming encoder Repetition encoder Repetition decoder Hamming dc

In this we apply a similar error-correcting scheme by using Hamming code [6]

with proper parameters as an outer code and Repetition code [8] as an inner code.

 As we have already explained it is more applicable to use repetition code as inner

code and Hamming code as outer code in hybrid error correcting scheme. In this

case the signature error probability is given by:

 𝑃𝑠𝑖𝑔,ℎ𝑦𝑏𝑟𝑖𝑑 = ∑ (𝑖
𝑛)𝑛

𝑖=𝑡+1 𝑃𝑟𝑒𝑝
𝑖 (1 - 𝑃𝑟𝑒𝑝)𝑛−𝑖

26

4. IMPLEMENTATION

 4.1 Comparison Parameters:

 Error detection capability

 Bit-error rate(BER)

 4.2 Tools and Technologies:

 4.2.1 Java 1.6 Version:

 4.2.1.1 Characteristics:

 JAVA is a programming language [1], developed by Sun Microsystems

 and first released in 1995 (release 1.0). Since that time, it gained a large

 popularity mainly due to two characteristics:

 A JAVA programme is hardware and operating system independent. If well

written (!), the same JAVA programme, compiled once, will run identically

on a SUN/Solaris workstation, a PC/windows computer or a Macintosh

computer. Not mentioning other UNIX flavors, including Linux, and every

Web browser, with some restrictions described below.

This universal executability is made possible because a JAVA programme is

run through a JAVA Virtual Machine.

 It is an object oriented language. This feature is mainly of interest for

software developers.

 4.2.1.2 JAVA Virtual Machine (JVM):

 A JAVA programme is build by a JAVA compiler which generates its

 own binary code. This binary code is independant from any hardware

 and operating system. To be executed, it needs a virtual machine,

 which is a programme analyzing this code and executing the

27

 instructions it contains.

 Of course, this Java Virtual Machine (JVM)[1] is hardware and

 operating system dependant. Two types of Virtual Machines exist:

 those included in every Web Browser, and those running as an

 independent programme, like the Java RunTime Environment (JRE)

 from Sun Microsystems. These programmes need to be downloaded for

 your particular platform.

 4.3 Diagrams

 4.3.1 Use Case Diagram

 Fig 12: Use Case Diagram

28

 4.3.2 Activity Diagram

 Fig 13: Activity Diagram

29

 4.4 Code

 4.4.1 BCH Code

package error.codes;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.Random;

public class BCHNEW {

 int m = 5, n = 31, k = 21, t = 2, d = 5;

 int length = 31;

 int p[] = new int[6];

 int alpha_to[] = new int[32];

 int index_of[] = new int[32];

 int g[] = new int[11];

 int recd[] = new int[31];

 int data[] = new int[21];

 int bb[] = new int[11];

 int numerr, decerror = 0;

 int errpos[] = new int[32];

 int seed;

 void read_p() {

 p[0] = p[2] = p[5] = 1;

 p[1] = p[3] = p[4] = 0;

 }

 void generate_gf() {

 int i, mask=1;

 alpha_to[m] = 0;

 for (i = 0; i < m; i++) {

 alpha_to[i] = mask;

 index_of[alpha_to[i]] = i;

 if (p[i] != 0)

30

 alpha_to[m] ^= mask;

 mask <<= 1;

 }

 index_of[alpha_to[m]] = m;

 mask >>= 1;

 for (i = m + 1; i < n; i++) {

 if (alpha_to[i - 1] >= mask)

 alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);

 else alpha_to[i] = alpha_to[i - 1] << 1;

 index_of[alpha_to[i]] = i;

 }

 index_of[0] = -1;

 }

 void gen_poly() {

 int ii, jj, ll, kaux;

 int test, aux, nocycles, root, noterms, rdncy;

 int cycle[][] = new int[15][6];

 int size[] = new int[15];

 int min[] = new int[11];

 int zeros[] = new int[11];

 cycle[0][0] = 0;

 size[0] = 1;

 cycle[1][0] = 1;

 size[1] = 1;

 jj = 1;

 do {

 ii = 0;

 do {

 ii++;

 cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;

 size[jj]++;

31

 aux = (cycle[jj][ii] * 2) % n;

 } while (aux != cycle[jj][0]);

 ll = 0;

 do {

 ll++;

 test = 0;

 for (ii = 1; ((ii <= jj) && (test == 0)); ii++)

 for (kaux = 0; ((kaux < size[ii]) && (test == 0)); kaux++)

 if (ll == cycle[ii][kaux])

 test = 1;

 } while ((test != 0) && (ll < (n - 1)));// test

 if (test == 0) {// (!test)

 jj++; /* next cycle set index */

 cycle[jj][0] = ll;

 size[jj] = 1;

 }

 } while (ll < (n - 1));

 nocycles = jj; /* number of cycle sets modulo n */

 kaux = 0;

 rdncy = 0;

 for (ii = 1; ii <= nocycles; ii++) {

 min[kaux] = 0;

 for (jj = 0; jj < size[ii]; jj++)

 for (root = 1; root < d; root++)

 if (root == cycle[ii][jj])

 min[kaux] = ii;

 if (min[kaux] != 0) {

 rdncy += size[min[kaux]];

 kaux++;

 }}

 noterms = kaux;

32

 kaux = 1;

 for (ii = 0; ii < noterms; ii++)

 for (jj = 0; jj < size[min[ii]]; jj++) {

 zeros[kaux] = cycle[min[ii]][jj];

 kaux++;

 }

System.out.printf("This is a (%d, %d, %d) binary BCH code\n", length,k, d);

 g[0] = alpha_to[zeros[1]];

 g[1] = 1; /* g(x) = (X + zeros[1]) initially */

 for (ii = 2; ii <= rdncy; ii++) {

 g[ii] = 1;

 for (jj = ii - 1; jj > 0; jj--)

 if (g[jj] != 0)

 g[jj] = g[jj - 1] ̂ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];

 else

 g[jj] = g[jj - 1];

 g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];

 }

 System.out.printf("g(x) = ");

 for (ii = 0; ii <= rdncy; ii++) {

 System.out.printf("%d", g[ii]);

 if ((ii != 0) && ((ii % 70) == 0))

 System.out.printf("\n");

 }

 System.out.printf("\n");

 }

 void encode_bch() {

 int i, j;

 int feedback;

 for (i = 0; i < length - k; i++)

 bb[i] = 0;

33

 for (i = k - 1; i >= 0; i--) {

 feedback = data[i] ^ bb[length - k - 1];

 if (feedback != 0) {

 for (j = length - k - 1; j > 0; j--)

 if (g[j] != 0)

 bb[j] = bb[j - 1] ^ feedback;

 else

 bb[j] = bb[j - 1];

 bb[0] = g[0] & feedback;// g[0] &&feedback

 } else {

 for (j = length - k - 1; j > 0; j--)

 bb[j] = bb[j - 1];

 bb[0] = 0;

 }

 }}

 void decode_bch() {

 int i, j, q;

 int elp[] = new int[3], s[] = new int[5], s3;

 int count = 0, syn_error = 0;

 int loc[] = new int[3], err[] = new int[3], reg[] = new int[3];

 int aux;

 System.out.printf("s[] = (");

 for (i = 1; i <= 4; i++) {

 s[i] = 0;

 for (j = 0; j < length; j++)

 if (recd[j] != 0)

 s[i] ^= alpha_to[(i * j) % n];

 if (s[i] != 0)

 syn_error = 1; /* set flag if non-zero syndrome */

 s[i] = index_of[s[i]];

34

 System.out.printf("%3d ", s[i]);

 }

 System.out.printf(")\n");

 if (syn_error != 0) { /* If there are errors, try to correct them */

 if (s[1] != -1) {

 s3 = (s[1] * 3) % n;

 if (s[3] == s3) /* Was it a single error ? */

 {

 System.out.printf("One error at%d\n", s[1]);

 recd[s[1]] ^= 1; /* Yes: Correct it */

 } else {

 if (s[3] != -1)

 aux = alpha_to[s3] ^ alpha_to[s[3]];

 else

 aux = alpha_to[s3];

 elp[0] = 0;

 elp[1] = (s[2] - index_of[aux] + n) % n;

 elp[2] = (s[1] - index_of[aux] + n) % n;

 System.out.printf("sigma(x) = ");

 for (i = 0; i <= 2; i++)

 System.out.printf("%3d ", elp[i]);

 System.out.printf("\n");

 System.out.printf("Roots: ");

 for (i = 1; i <= 2; i++)

 reg[i] = elp[i];

 count = 0;

 for (i = 1; i <= n; i++) { /* Chien search */

 q = 1;

 for (j = 1; j <= 2; j++)

 if (reg[j] != -1) {

 reg[j] = (reg[j] + j) % n;

35

 q ^= alpha_to[reg[j]];

 }

 if (q == 0) { /* store error location number*/

 loc[count] = i % n;

 count++;

 System.out.printf("%3d ", (i % n));

 }}

 System.out.printf("\n");

 if (count == 2)

 for (i = 0; i < 2; i++)

 recd[loc[i]] ^= 1;

 else

 System.out.printf("incomplete decoding\n");

 }

 } else if (s[2] != -1) /* Error detection */

 System.out.printf("incomplete decoding\n");

 }}

 public void run() {

 int i;

 read_p(); /* read generator polynomial g(x) */

 generate_gf(); /* generate the Galois Field GF(2**m) */

 gen_poly(); /* Compute the generator polynomial of BCH code */

 seed = 1;

 Random random = new Random(seed);

 for (i = 0; i < k; i++)

 data[i] = (random.nextInt() & 67108864) >> 26;

 encode_bch(); /* encode data */

 for (i = 0; i < length - k; i++)

 recd[i] = bb[i]; /* first (length-k) bits are redundancy */

 for (i = 0; i < k; i++)

 recd[i + length - k] = data[i]; /* last k bits are data */

36

 System.out.printf("c(x) = ");

 for (i = 0; i < length; i++) {

 System.out.printf("%1d", recd[i]);

 if ((i != 0) && ((i % 70) == 0))

 System.out.printf("\n");

 }

 System.out.printf("\n");

System.out.printf("Enter the number of errors and their positions: ");

 BufferedReader wt = new BufferedReader(new

InputStreamReader(System.in));

 String numerrStr = null;

 try {

 numerrStr = wt.readLine();

 } catch (IOException e) {

 e.printStackTrace();

 }

 numerr = Integer.valueOf(numerrStr);

 for (i = 0; i < numerr; i++) {

 String errposStr = null;

 try {

 errposStr = wt.readLine();

 } catch (IOException e) {

 e.printStackTrace();

 }

 errpos[i] = Integer.valueOf(errposStr);

 recd[errpos[i]] ^= 1;

 }

 System.out.printf("r(x) = ");

 for (i = 0; i < length; i++)

 System.out.printf("%1d", recd[i]);

 decode_bch();

37

 System.out.printf("Results:\n");

 System.out.printf("original data = ");

 for (i = 0; i < k; i++)

 System.out.printf("%1d", data[i]);

 System.out.printf("\nrecovered data = ");

 for (i = length - k; i < length; i++)

 System.out.printf("%1d", recd[i]);

 System.out.printf("\n");

 for (i = length - k; i < length; i++)

 if (data[i - length + k] != recd[i])

 decerror++;

 if (decerror != 0)

 System.out.printf("%d message decoding errors\n", decerror);

 else System.out.printf("Succesful decoding\n");

 }

 public static void main(String[] args) {

 BCHNEW bch_32_21_5 = new BCHNEW();

 bch_32_21_5.run();

 } }

 OUTPUT: (Snapshot)

 Fig 14: Output of the code

38

5. FUTURE OUTLOOK

 5.1 Description

The next course of action includes the performance improvement of

Error Correcting Codes and implementation of an application using

Hybrid code. The implementation will be preceded by the design and

modeling of method. The implementation will be followed by the

testing phase of scheme.

39

CONCLUSION

In this report, we mainly work on detecting and correcting errors in a codeword

during data transmission by using different error correcting techniques. Different

Error correcting codes work on different parameters. Some of the codes are

Hamming code, BCH code, Repetition Code and Hybrid Code.

 Hamming code correct an error detected at the receiver side. The main

advantage of this code is Encoding and Decoding are easy to implement. But, the

problem with this code is that they can detect and correct only a single error. So,

Hamming code is limited to few applications only.

 So we will try to produce a double error correcting sub-code of the Hamming

code by removing some code words to make a new one.BCH code is a

generalization of hamming codes for multiple error correction. Another advantage

of BCH code is the ease with which they can be decoded, namely, via an

algebraic method known as syndrome decoding.

 Repetition Code can correct multiple errors, but the problem with this code is

its Bit Error Rate (BER) is too high.

 So we will try to implement a different kind of code i.e. The Hybrid Code. It

is a combination of two error correcting codes. Here we used hamming code as an

“outer code” and repetition code as an “inner code”. It’s main advantages are it

can correct multiple errors and produces very low BER.

40

REFERENCES

 [1] Herbert Schildt “Complete Reference JAVA, 5thedition, TataMcGraw

 Hill”, chapter 5

 [2] Jaspreet singh and Dr. Shalini Bahel “Comparitive Study of different

 Transmission Techniques of different Block Codes”, IJETT, vol-9 No.12,

 Mar-2014

 [3] Eric Blais & Venkat Guruswami “Introduction to Coding Theory”, Notes

 6, Feb-2010

 [4] Hank Wallace, “error detection and correction using BCH code”

 Atlantic Quality Design, Inc. , 2001

 [5] Shu Lin and Daniel J.Costello Jr. “Error control Coding” 2nd edition,

 Englewood Cliffs, New Jersey: Prentice Hall, 1983

 [6] Gregory Mitchell “Investigation of Hamming, Reed-Solomon, and BCH

 Forward Error Correcting Codes”, ARL-TR-4901,July 2009

 [7] Chugo Fujihashi “Error Detecting Modified Hamming Codes for ideal

 optical channel”, Tokyo Polytech. Univ. vol. 31, No., 2008

 [8] Radford M.Neal “Performance Improvement of Repetition code”, Notes

 for CSC 310, 2004.

 [9] Thierry Berger and Todor Todorov “Improving the watermarking process

 with usage of block error-correcting codes”, Serdica J.Computing ,163-

 180, 2008.

41

 Appendix

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package test;

import java.util.Scanner;

import java.io.*;

import java.util.Random;

/**

 *

 * @author Saurabh

 */

public class HybridCode {

 public static void main(String args[]){

 int i=0,j=0,dd=0;

 int total_bits;

 double bits=0;

 int a[]=new int[11];

 int b[]=new int[15];

 int c[]=new int[15];

 int d[]=new int[45];

 int p[]=new int[4];

 int bb[]=new int[45];

 int cc[]=new int[15];

 Scanner sr=new Scanner(System.in);

 String Hex="ABC";

 int location =0;

42

 for(i=0;i<3;i++) //input data in array a

 {

 if(Hex.charAt(i)=='A')

 {

 a[location++]=0;

 a[location++]=1;

 a[location++]=0;

 }

 else if(Hex.charAt(i)=='B')

 {

 a[location++]=1;

 a[location++]=0;

 a[location++]=1;

 a[location++]=1;

 }

 else if(Hex.charAt(i)=='C')

 {

 a[location++]=1;

 a[location++]=1;

 a[location++]=0;

 a[location++]=0;

 }

 }

 total_bits=a.length;

 System.out.println("Data codeword length is:");

 System.out.println(total_bits);

 System.out.println("Data code is:");

 for(i=0;i<11;i++) //display data through array a

 {

 System.out.print(a[i]);

43

 System.out.print("\t");

 }

 for(j=0;j<15;j++) // Hamming code for even parity input in array b

 {

 b[j]=0;

 }

 if((a[0]+a[1]+a[3]+a[4]+a[6]+a[8]+a[10])%2==0)

 b[0]=0;

 else

 b[0]=1;

 if((a[0]+a[2]+a[3]+a[5]+a[6]+a[9]+a[10])%2==0)

 b[1]=0;

 else

 b[1]=1;

 if((a[1]+a[2]+a[3]+a[7]+a[8]+a[9]+a[10])%2==0)

 b[3]=0;

 else

 b[3]=1;

 if((a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10])%2==0)

 b[7]=0;

 else

 b[7]=1;

 System.out.println("");

 for(j=0,i=0;j<15;)

 {

44

 if(j==0||j==1||j==3||j==7)

 j++;

 else

 {

 b[j]=a[i];

 j++;

 i++;

 }

 }

 System.out.println(""); //print the Hamming code for even parity

 System.out.println("Hamming code for even parity is:");

 for(j=0;j<15;j++)

 {

 System.out.print(b[j]);

 System.out.print("\t");

 }

 System.out.println("");

 System.out.println("");

 for(i=0;i<15;i++)

 {

 c[i]=b[i];

 }

 Random r= new Random();

 int rand = r.nextInt(15);

 if(c[rand]==1)

 c[rand]=0;

 else

45

 c[rand]=1;

 System.out.println("the hamming code with error is:");

 for(j=0;j<15;j++)

 System.out.print(c[j]);

 System.out.println("");

 int e=0;

 int size=45;

 for(i=0;e<15;)

 {

 if(c[e]==1)

 {

 bb[i++]=1;

 bb[i++]=1;

 bb[i++]=1;

 e++;

 }

 else

 {

 bb[i++]=0;

 bb[i++]=0;

 bb[i++]=0;

 e++;

 }

 }

 System.out.print("\n");

46

 System.out.print("Received Data code:");

 for(i=0;i<size;i++){

 System.out.print(bb[i]);

 }

 System.out.print("\n");

 System.out.print("\n");

 for(i=0;i<size;i++){

 d[i]=bb[i];

 }

 System.out.println("Enter an error in data code:"); //Input Hamming code by

user and compare

 for(i=0;i<45;i++)

 {

 bb[i]=sr.nextInt();

 }

 System.out.print("\n");

 System.out.println("Encrypted Data:");

 for(j=0;j<size;j++){

 //System.out.print("");

 System.out.print(" " + bb[j]);

 }

 System.out.println("");

 int same=0;

 for(i=0;i<=d.length-1;i++){

 if(d[i]!=bb[i]){

 same++;

47

 }

 }

 System.out.println("Number of Errors in a code word:");

 System.out.println(same);

 int count=0,index=0,countz=0,counto=0;

 for(i=0;i<size;i++){

 if(bb[i]==0)

 countz++;

 else

 counto++;

 if(i%3==2)

 {

 if(countz>counto)

 {

 cc[index++]=0;

 }

 else

 {

 cc[index++]=1;

 }

 countz=0;

 counto=0;

 }

 }

 System.out.println("\nFinal data after decrytption n correction is by

Repetition Code:");

 for(i=0;i<15;i++)

 System.out.print(cc[i]);

48

 p[0]=cc[0];

 p[1]=cc[1];

 p[2]=cc[3];

 p[3]=cc[7];

 if((((c[2]+c[4]+c[6]+c[8]+c[10]+c[12]+c[14])%2)==0 &&

p[0]==0||(((c[2]+c[4]+c[6]+c[8]+c[10]+c[12]+c[14])%2)!=0 && p[0] ==1)))

 p[0]=0;

 else

 p[0]=1;

 if((((c[2]+c[5]+c[6]+c[9]+c[10]+c[13]+c[14])%2)==0 &&

p[1]==0||(((c[2]+c[5]+c[6]+c[9]+c[10]+c[13]+c[14])%2)!=0 && p[1] ==1)))

 p[1]=0;

 else

 p[1]=1;

 if((((c[4]+c[5]+c[6])%2)==0 && p[2]==0||(((c[4]+c[5]+c[6])%2)!=0 &&

p[2] ==1)))

 p[2]=0;

 else

 p[2]=1;

 if((((c[8]+c[9]+c[10])%2)==0 && p[3]==0||(((c[8]+c[9]+c[10])%2)!=0 &&

p[3] ==1)))

 p[3]=0;

 else

 p[3]=1;

49

 for(i=3;i>=0;i--) //find out the place for wrong bit.

 {

 dd=dd+(p[i]*(int)Math.pow(2,i));

 }

 System.out.println("");

 if(dd==0)

 System.out.println("The data code is correctly received");

 else

 System.out.println("The "+ dd +" bit is wrongly received");

 if(c[dd-1]==0) //correct Hamming code.

 c[dd-1]=1;

 else

 c[dd-1]=0;

 System.out.println("");

 System.out.println("The Correct Hamming code is:");

 for(i=0;i<15;i++)

 {

 System.out.print(c[i]);

 System.out.println("\t");

 }

 System.out.println("The Bit Error Rate:");

 bits=(double) same/total_bits;

 System.out.printf("%f",bits);

 }

}

