
1

PROJECT REPORT

on

Load Balancing Algorithm for Content Delivery Network

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

in

COMPUTER SCIENCE & ENGINEERING

under the Supervision of

PUNIT GUPTA

By

 Anushree Gupta

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

CERTIFICATE

This is to certify that project report entitled “Load Balancing Algorithm for Content Delivery

Network ”, submitted by Anushree Gupta in partial fulfillment for the award of degree of

Bachelor of Technology in Computer Science & Engineering to Jaypee University of

Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date: 15/05/2015 Punit Gupta

3

Acknowledgement

I am highly indebted to Mr. Punit Gupta for his guidance and constant supervision as well

as for providing necessary information regarding the project & also for his support in

implementing the project.

I would like to express my gratitude towards my parents & members of Jaypee University

of Information Technology for their kind co-operation and encouragement which helped

me in this project.

I would like to express my special gratitude and thanks to industry persons for giving me

such attention and time.

My thanks and appreciations also go to my colleagues in developing the project and

people who have willingly helped me out with their abilities.

Date: 15/05/2015 Anushree Gupta

4

*

CONTENTS

Project Report ...1

Certificate ..2

list of figures ... 6

List of tables ... 9

Abstract .. 10

Chapter 1 .. 11

1.1 Evolution of CDN over internet .. 12

1.2 Introduction ... 15

1.3 Existing CDNs ... 18

CHAPTER 2 ... 21

Literature Review ... 22

2.1.1 literature review one .. 22

2.1.1.1 PAPER Title .. 22

2.1.1.2 Summary ... 22

2.1.2 literature review two .. 23

2.1.2.1 PAPER Title .. 23

2.1.2.2 Summary ... 23

2.1.3 literature review three.. 24

2.1.3.1PAPER Title .. 24

2.1.3.2 Summary ... 24

2.1.4 literature review four ... 25

2.1.4.1 PAPER TITLE .. 25

2.1.4.2 Summary ... 25

2.1.4 literature review five .. 27

2.1.5.1 PAPER TITLE .. 27

2.1.5.2 Summary ... 27

2.1.4 literature review six .. 28

2.1.6 PAPER TITLE ... 28

2.1.6.1 Summary ... 28

2.1.7 literature review seven .. 29

2.1.7 PAPER TITLE ... 29

5

2.1.7.1 Summary ... 29

2.1.4 literature review eight.. 30

2.1.8 PAPER TITLE ... 30

2.1.8.1 Summary ... 30

2.1.4 literature review nine ... 31

2.1.9 PAPER TITLE ... 31

2.1.9.1 Summary ... 31

2.2 Comparative study .. 32

CHAPTER 3 ... 35

3.1 Problem Statement ... 36

3.1.1 Existing Load Balancing Algorithms ... 36

3.1.1.1 Random balancing mechanism ... 36

3.1.1.2 Round Robin Algorithm... 36

3.1.1.3 Least Loaded algorithm ... 36

3.2 Issues of existing load balancing algorithms ... 37

3.3 proposed model .. 38

3.4 FLOW Diagram ... 39

3.5 System Architecture ... 41

3.6 Pseudo CODE ... 42

Chapter 4 .. 44

4.1 Implementation .. 45

4.1.1 Specifications of the system used ... 45

4.1.2 Emulation ... 46

4.1.3 Simulation .. 51

4.1.3.1 FIRST SCENARIO: .. 51

4.1.3.2 Second scenario ... 53

4.1.3..3 Third Scenario .. 54

4.1.4 Comprehensive study .. 64

Conclusion .. 66

References .. 67

Web References .. 68

6

 LIST OF FIGURES

Figure 1: Evolution of CDN... 13

Figure 2: Content Delivery network ... 15

Figure 3: Reuqest routing in cdn environment .. 17

Figure 4: Architecture of cdn ... 18

Figure 5: Content/services provided by a cdn ... 19

Figure 6 : load balancing stratefy ... 22

Figure 7: USE case diagram... 24

Figure 8 : Analysis of the variation of three metrics, as discussed in the paper 25

Figure 9: Results of the proposed algorithm ... 26

Figure 10 : Depicting a dynamic approach to load balancing.. 27

Figure 11: Comparison graph... 28

Figure 12 : Fluid queue model ... 29

Figure 13: Deployment Scenario .. 31

Figure 14: flow diagram .. 39

Figure 15: system architecture ... 41

Figure 16: pseudo code .. 42

Figure 17: pseudo code .. 43

Figure 18: Screenshot 1 ... 45

Figure 19: screenshot 2 .. 46

Figure 20: home page .. 46

Figure 21: : Directed to server 1 ... 47

Figure 22: Directed to server 2 ... 47

Figure 23: Directed to server 3 .. 48

7

Figure 24: Database Record 1 .. 48

Figure 25 : Database Record 2 ... 49

Figure 26: Database Record 3 .. 49

Figure 27: Database Record 4

8

 .. 50

Figure 28: Database Record 5 .. 50

Figure 29: comparative graph generated for 20 requests ... 56

Figure 30: CPU Utilization Graph .. 57

Figure 31:Comparison Graph for 30 requests ... 58

Figure 32:CPU utilization graph .. 59

Figure 33:comparison graph for 40 requests... 60

Figure 34:CPU utilization .. 61

Figure 35:Comparison Graph for 50 requests ... 62

Figure 36:CPU Utilization Graph... 63

Figure 37: CPU Utilization graph .. 64

Figure 38 : successful requests ... 65

9

LIST OF TABLES

Table 1: existing cdn systems .. 20

Table 2: Comparative study ... 34

Table 3: first scenario .. 52

Table 4:second scenario ... 53

Table 5: third scenario ... 54

Table 6: comparison .. 55

Table 7:cpu utilization of 20 requests... 56

Table 8: cpu utilization of 30n requests .. 58

Table 9 : cpu utilization of 40 requests ... 60

Table 10 : CPU utilization of 50 requests ... 62

Table 11 : comprehensive cpu utilization ... 64

Table 12 : successful requests .. 65

10

ABSTRACT

Content Delivery Networks (CDNs) have evolved to overcome the inherent limitations of

the Internet in terms of user perceived Quality of Service (QoS) when accessing Web

content. A CDN replicates content from the origin server to cache servers, scattered over

the globe, in order to deliver content to end-users in a reliable and timely manner from

nearby optimal surrogates. Content distribution on the Internet has received considerable

research attention. It combines development of high-end computing technologies with

high performance networking infrastructure and distributed replica management

techniques.

Over the last decade, considerable research efforts and momentum have been directed

into this sphere, both from the academia and the commercial developers. It could

undoubtedly be considered as one of the top emerging technologies that will have a major

impact on the quality of science and society over the next 20 years. Having said that a

glimpse of the technological trends and future directions in this domain would be helpful

to position researchers and practitioners at the forefront of the field.

A critical component of CDN architecture is the request routing mechanism. It allows to

direct users’ requests for content to the appropriate server based on a specified set of

parameters. The proximity principle,by means of which a request is always served by the

server that is closest to the client, can sometimes fail. Indeed, the routing process

associated with a request might take into account several parameters (like traffic load,

bandwidth, and servers’ computational capabilities) in order to provide the best

performance in terms of time of service, delay, etc. Furthermore, an effective request

routing mechanism should be able to face temporary, and potentially localized, high

request rates (the so-called flash crowds) in order to avoid affecting the quality of service

perceived by other users.

11

CHAPTER 1

12

1.1 EVOLUTION OF CDN OVER INTERNET

Over the last decades, users have witnessed the growth and maturity of the Internet. As a

consequence, there has been an enormous growth in network traffic, driven by rapid

acceptance of broadband access, along with increases in system complexity and content

richness. The over-evolving nature of the Internet brings new challenges in managing and

delivering content to users. As an example, popular Web services often suffer congestion

and bottleneck due to the large demands made on their services. A sudden spike in Web

content requests may cause heavy workload on particular Web server(s), and as a result a

hot spot can be generated. Coping with such unexpected demand causes significant strain

on a Web server. Eventually the Web servers are totally overwhelmed with the sudden

increase in traffic, and the website holding the content becomes temporarily unavailable.

Content providers view the Web as a vehicle to bring rich content to their users. A

decrease in service quality, along with high access delays mainly caused by long

download times, leaves the users in frustration. Companies earn significant financial

incentives from Web-based e-business. Hence, they are concerned to improve the service

quality experienced by the users while accessing their Web sites. As such, the past few

years have seen an evolution of technologies that aim to improve content delivery and

service provisioning over the Web. When used together, the infrastructures supporting

these technologies form a new type of network, which is often referred to as content

network.

Several content networks attempt to address the performance problem through using

different mechanisms to improve the Quality of Service (QoS). One approach is to

modify the traditional Web architecture by improving the Web server hardware adding a

high-speed processor, more memory and disk space, or maybe even a multi-processor

system. This approach is not flexible. Moreover, small enhancements are not possible and

at some point, the complete server system might have to be replaced. Caching proxy

deployment by an ISP can be beneficial for the narrow bandwidth users accessing the

Internet. In order to improve performance and reduce bandwidth utilization, caching

proxies are deployed close to the users. Caching proxies may also be equipped with

technologies to detect a server failure and maximize efficient use of caching proxy

resources. Users often configure their browsers to send their Web request through these

caches rather than sending directly to origin servers. When this configuration is properly

done, the user’s entire browsing session goes through a specific caching proxy. Thus, the

caches contain most popular content viewed by all the users of the caching proxies. A

provider may also deploy different levels of local, regional, international caches at

geographically distributed locations. Such arrangement is referred to as hierarchical

caching. This may provide additional performance improvements and bandwidth savings.

13

A more scalable solution is the establishment of server farms. It is a type of content

network that has been in widespread use for several years. A server farm is comprised of

multiple Web servers, each of them sharing the burden of answering requests for the

same website. It also makes use of a Layer 4-7 switch, Web switch or content switch that

examines content request and dispatches them among the group of servers. A server farm

can also be constructed with surrogates instead of a switch. This approach is more

flexible and shows better scalability. Moreover, it provides the inherent benefit of fault

tolerance. Deployment and growth of server farms progresses with the upgrade of

network links that connects the Web sites to the Internet.

Although server farms and hierarchical caching through caching proxies are useful

techniques to address the Internet Web performance problem, they have limitations. In

the first case, since servers are deployed near the origin server, they do little to improve

the network performance due to network congestion. Caching proxies may be beneficial

in this case. But they cache objects based on client demands. This may force the content

providers with a popular content source to invest in large server farms, load balancing,

and high bandwidth connections to keep up with the demand. To address these

limitations, another type of content network has been deployed in late 1990s. This is

termed as Content Distribution Network or Content Delivery Network, which is a system

of computers networked together across the Internet to cooperate transparently for

delivering content to end-users.

FIGURE 1: EVOLUTION OF CDN

14

With the introduction of CDN, content providers started putting their Web sites on a

CDN. Soon they realized its usefulness through receiving increased reliability and

scalability without the need to maintain expensive infrastructure. Hence, several

initiatives kicked off for developing infrastructure for CDNs. As a consequence, Akamai

Technologies evolved out of an MIT research effort aimed at solving the flash crowd

problem. Within a couple of years, several companies became specialists in providing

fast and reliable delivery of content, and CDNs became a huge market for generating

large revenues. The flash crowd events like the 9/11 incident in USA [98], resulted in

serious caching problems for some site. This influenced the CDN providers to invest

more in CDN infrastructure development, since CDNs provide desired level of protection

to Websites against flash crowds. First generation CDNs mostly focused on static or

Dynamic Web documents. On the other hand, for second generation of CDNs the focus

has shifted to Video-on-Demand (VoD), audio and video streaming. But they are still in

research phase and have not reached to the market yet.

With the booming of the CDN business, several standardization activities also emerged

since vendors started organizing themselves. The Internet Engineering Task Force (IETF)

as a official body took several initiatives through releasing RFCs (Request For

Comments) . Other than IETF, several other organizations such as Broadband Services

Forum (BSF) , ICAP forum , Internet Streaming Media Alliance [took initiatives to

develop standards for delivering broadband content, streaming rich media content –

video, audio, and associated data – over the Internet. In the same breath, by 2002, large-

scale ISPs started building their own CDN functionality, providing customized services.

In 2004, more than 3000 companies were found to use CDNs, spending more than $20

million monthly. A market analysis shows that CDN providers have doubled their

earnings from streaming media delivery in 2004 compared to 2003. In 2005, CDN

revenue for both streaming video and Internet radio was estimated to grow at 40%. A

recent marketing research shows that combined commercial market value for streaming

audio, video, streaming audio and video advertising, download media and entertainment

was estimated at between $385 million to $452 million in 2005. Considering this trend,

the market was forecasted to reach $2 billion in fouryear (2002-2006) total revenue in

2006, with music, sports, and entertainment subscription and download revenue for the

leading content categories. However, the latest report from AccuStream iMedia Research

reveals that since 2002, the CDN market has invested $1.65 billion to deliver streaming

media (excluding storage, hosting, applications layering), and the commercial market

value in 2006 would make up 36% of the $1.65 billion four-year total in media and

entertainment, including content, streaming advertising, movie and music downloads and

User Generated Video (UGV) distribution . A detailed report on CDN market

opportunities, strategies, and forecasts for the period 2004-2009, in relation to streaming

media delivery can be found in .

15

1.2 INTRODUCTION

With the proliferation of the Internet, popular Web services often suffer congestion and

bottlenecks due to large demands made on their services. Such a scenario may cause

unmanageable levels of traffic flow, resulting in many requests being lost. Replicating the

same content or services over several mirrored Web servers strategically placed at

various locations is a method commonly used by service providers to improve

performance and scalability. The user is redirected to the nearest server and this approach

helps to reduce network impact on the response time of the user requests.

FIGURE 2: CONTENT DELIVERY NETWORK

Content Delivery Networks provide improved network performance by maximizing

bandwidth, improving accessibility and maintaining correctness through content

replication. They offer fast and reliable applications and services by distributing content

to cache or edge servers located close to users. A CDN has some combination of content-

delivery, request-routing, distribution and accounting infrastructure. The content-delivery

infrastructure consists of a set of edge servers (also called surrogates) that deliver copies

of content to end-users. The request-routing infrastructure is responsible to directing

client request to appropriate edge servers. It also interacts with the distribution

infrastructure to keep an up-to-date view of the content stored in the CDN caches. The

distribution infrastructure moves content from the origin server to the CDN edge servers

and ensures consistency of content in the caches. The accounting infrastructure maintains

logs of client accesses and records the usage of the CDN servers. This information is used

for traffic reporting and usage-based billing. In practice, CDNs typically host static

content including images, video, media clips, advertisements, and other embedded

objects for dynamic Web content. Typical customers of a CDN are media and Internet

advertisement companies, data centers, Internet Service Providers (ISPs), online music

A CDN is a collection of network elements arranged for more effective delivery of

content to end-users . Collaboration among distributed CDN components can occur over

nodes in both homogeneous and heterogeneous environments. CDNs can take various

16

forms and structures. They can be centralized, hierarchical infrastructure under certain

administrative control, or completely decentralized systems. There can also be various

forms of inter networking and control sharing among different CDN entities. The typical

functionality of a CDN includes:

1. Request redirection and content delivery services to direct a request to the closest

suitable surrogate server using mechanisms to bypass congestion, thus

overcoming flash crowds or SlashDot effects.

2. Content outsourcing and distribution services to replicate and/or cache content to

distributed surrogate servers on behalf of the origin server.

3. Content negotiation services to meet specific needs of each individual user (or

group of users).

4. Management services to manage the network components, to handle accounting,

and to monitor and report on content usage.

A CDN provides better performance through caching or replicating content over some

mirrored Web servers (i.e. surrogate servers) strategically placed at various locations in

order to deal with the sudden spike in Web content requests, which is often termed as

flash crowd or SlashDot effect . The users are redirected to the surrogate server nearest to

them. This approach helps to reduce network impact on the response time of user

requests. In the context of CDNs, content refers to any digital data resources and it

consists of two main parts: the encoded media and metadata . The encoded media

includes static, dynamic and continuous media data (e.g. audio, video, documents, images

and Web pages). Metadata is the content description that allows identification, discovery,

and management of multimedia data, and also facilitates the interpretation of multimedia

data. Content can be pre-recorded or retrieved from live sources; it can be persistent or

transient data within the system. CDNs can be seen as a new virtual overlay to the Open

Systems Interconnection (OSI) basic reference model. This layer provides overlay

network services relying on application layer protocols such as HTTP or RTSP for

transport .

Figure 3 provides a high-level view of the request-routing in a CDN environment. The

interaction flows are: (1) the client requests content from the content provider by

specifying its URL in the Web browser. Client’s request is directed to its origin server;

(2) when origin server receives a request, it makes a decision to provide only the basic

content (e.g. index page of the Web site) that can be served from its origin server; (3) to

serve the high bandwidth demanding and frequently asked content (e.g. embedded

objects – fresh content, navigation bar, banner ads etc.), content provider’s origin server

redirects client’s request to the CDN provider; (4) using the proprietary selection

algorithm, the CDN provider selects the replica server which is ‘closest’ to the client, in

order to serve the requested embedded objects; (5) selected replica server gets the

embedded objects from the origin server, serves the client requests and caches it for

subsequent request servicing.

17

FIGURE 3: REUQEST ROUTING IN CDN ENVIRONMENT

The three key components of CDN architecture are:

1. Content Provider

2. CDN Provider

3. End User

1. Content provider or customer is the one who delegates the URI name space of the

Web objects to be distributed. The origin server of the content provider holds those

objects.

2. CDN Provider is a proprietary organization or company that provides infrastructure

facilities to content providers in order to deliver content in a timely and reliable

manner.

3. End Users or clients are the entities who access content from the content provider’s

website.

Figure 1 shows a typical content delivery environment where the replicated Web server

clusters are located at the edge of the network to which the end-users are connected. A

content provider (i.e. customer) can sign up with a CDN provider for service and have its

content placed on the content servers. The content is replicated either on-demand when

users request for it, or it can be replicated beforehand, by pushing the content to the

surrogate servers. A user is served with the content from the nearby replicated Web

server. Thus, the user ends up unknowingly communicating with a replicated CDN server

close to it and retrieves files from that server. CDN providers ensure the fast delivery of

any digital content. They host third-party content including static content (e.g. static

18

HTML pages, images, documents, software patches), streaming media (e.g. audio, real

time video), User Generated Videos (UGV), and varying content services (e.g. directory

service, e-commerce service, file transfer service). The sources of content include large

enterprises, Web service providers, media companies and news broadcasters. The end-

users can interact with the CDN by specifying the content/service request through cell

phone, smart phone/PDA, laptop and desktop. Figure 2 depicts the different

content/services served by a CDN provider to end-users.

FIGURE 4: ARCHITECTURE OF CDN

1.3 EXISTING CDNS

In this section, we provide a state-of-the-art survey of the existing CDNs. Many

commercial CDNs (e.g. Akamai, Adero, Digital Island, Mirror Image, Inktomi, Limelight

Networks etc.) as well as academic CDNs (e.g. Coral, Codeen, Globule etc.) are present

in the content distribution space. Table 1 shows a list of these CDNs and a brief summary

of each of them. Most or all of the operational CDNs are developed by commercial

companies which are subject to consolidation over time due to acquisition and/or

mergers. Hence, in the survey, we focus on studying those CDNs that have been in stable

operation for a significant period of time. In this context, it is worth mentioning that

many CDN-specific information such as fees charged by CDNs, existing customers of

CDNs are ignored since they are highly likely to change quickly over time. Therefore, the

information provided in this section is expected to be stable and up-to-date. We provide a

brief discussion on the pricing policies used for CDN services. As mentioned earlier, a

CDN charges its customers according to the content delivered (i.e. traffic) to the end-

19

users by its surrogate servers. There are technical and business challenges in pricing CDN

services. However, most of the commercial CDNs do not reveal any information about

the strategies used by them to charge their services. In the CDN research community,

pricing of CDN services is a relatively new and unexplored area. The use of analytical

models to address the optimal prices of CDN services is presented in. It shows that CDN

pricing polices should consider providing volume discount to content providers. Such an

approach is consistent with current industry practices. It concludes that the recent trends

such as decreasing bandwidth cost will have impact on CDN pricing policies and the

price of CDN services will decline, while the content delivery process on a Web site will

accelerate. In another work Hosanagar et al. demonstrates the importance of realizing an

optimal pricing strategy for CDN services under varying traffic patterns, the adoption

driver of CDN services, and the drivers of profitability within CDN services. It also

reveals that the pure usage based pricing strategy used by most commercial CDNs is

suboptimal in cases with varying level of traffic burstiness. Therefore, it concludes that a

percentile-based pricing strategy can be used in this case that allows

volume discount for content providers with high mean traffic and also additional charges

for content providers with highly bursty traffic.

 FIGURE 5: CONTENT/SERVICES PROVIDED BY A CDN

20

1. Accellion

For Delivery

2. AppStream

Provides on demand software distribution

and on demand software license management

tools

3. CoDeen

For caching of content and redirection of http

requests

4. Coral

Provides content replication

5. Edge Stream

For disrupted video streaming

6. Globix

Provides internet infrastructure and network

services

7. Lime light Networks

On demand, disrupted games, and downloads

8. Netli

Provides business quality internet services

TABLE 1: EXISTING CDN SYSTEMS

21

 CHAPTER 2

22

LITERATURE REVIEW

2.1.1 LITERATURE REVIEW ONE

2.1.1.1 PAPER TITLE

 A Distributed Control Law For Load Balancing In Content Delivery Networks

2.1.1.2 SUMMARY

 This paper deals with the challenging issue of defining and implementing an

effective law for load balancing in Content Delivery Networks. They Proposed a

novel distributed and time-continuous load balancing algorithm. They say that

processing of arriving requests is not continuous over time.

 The algorithm is first introduced in its time-continuous formulation and then put

in a discrete version specifically conceived for its actual implementation and

deployment in an operational scenario.

 Suggested removal of local queue instability conditions through redistribution of

potential excess traffic to the set of neighbours of the congested server.

FIGURE 6 : LOAD BALANCING STRATEFY

23

2.1.2 LITERATURE REVIEW TWO

2.1.2.1 PAPER TITLE

 Optimized Balancing Algorithm For Content Delivery Networks

2.1.2.2 SUMMARY

 In this study the authors present the `fictitiously starred optimised balancing`

(FSOB), a novel algorithm for load balancing in a content delivery network

(CDN) scenario. FSOB exploits the multiple redirection mechanism of the HTTP

protocol to optimally redistribute clients requests among the servers which build

up the CDN.

 Load redistribution is aimed at equalizing the level of occupancy of the server

queues and is achieved through the periodical exchange of information computed

locally at each node. The algorithm initially makes a fictitious assumption about

the local topology of the network, as it is seen by each single server node, which

looks at itself as the centre (i.e. the master) of a star made up of all of its

neighbors (i.e. the slaves). Load redistribution is performed by the master which,

if needed, appropriately redirects incoming requests to its slaves.

24

2.1.3 LITERATURE REVIEW THREE

2.1.3.1PAPER TITLE

 An Efficient Distributed Control law for Effective Load Balancing in Content

Delivery Network

2.1.3.2 SUMMARY

 In this paper, authors face the challenging issue of defining and implementing an

effective law for load balancing in Content Delivery Networks.

 They first design a suitable load-balancing law that assures equilibrium of the

queues in a balanced CDN by using a fluid flow model for the network of servers.

Then they present a new mechanism for redirecting incoming client requests to

the most appropriate server, thus balancing the overall system requests load.

 The mechanism leverages local balancing in order to achieve global balancing.

This is carried out through a periodic interaction among the system nodes.

 This result is then leveraged in order to devise a novel distributed and time-

continuous algorithm for load balancing, which is also reformulated in a time-

discrete version.

FIGURE 7: USE CASE DIAGRAM

25

2.1.4 LITERATURE REVIEW FOUR

2.1.4.1 PAPER TITLE

 Energy-Aware Load Balancing in Content Delivery Networks

2.1.4.2 SUMMARY

 Internet-scale distributed systems such as content delivery networks (CDNs)

operate hundreds of thousands of servers deployed in thousands of data center

locations around the globe. Since the energy costs of operating such a large IT

infrastructure are a significant fraction of the total operating costs, the authors

argue for redesigning CDNs to incorporate energy optimizations as a first-order

principle.

FIGURE 8 : ANALYSIS OF THE VARIATION OF THREE METRICS, AS

DISCUSSED IN THE PAPER

 They have proposed techniques to turn off CDN servers during periods of low

load while seeking to balance three key design goals: maximize energy reduction,

minimize the impact on client-perceived service availability (SLAs), and limit the

frequency of on-off server transitions to reduce wear-and-tear and its impact on

hardware reliability.

26

 They propose an optimal offline algorithm and an online algorithm to extract

energy savings both at the level of local load balancing within a data center and

global load balancing across data centers. We evaluate our algorithms using real

production workload traces from a large commercial CDN.

FIGURE 9: RESULTS OF THE PROPOSED ALGORITHM

27

2.1.4 LITERATURE REVIEW FIVE

2.1.5.1 PAPER TITLE

 Efficient and Distributed Control Mechanism for load Handling in Content

Distributed Network

2.1.5.2 SUMMARY

 A Content distribution network is an effective solution to the emerging Web

applications. Unfortunately it also faces a higher risk of degradation in overall

performance of entire distributed network when high number of request arrives

from client flash crowd. In this research paper the authors propose an efficient

control law for handle the load on individual servers by using efficient request

routing mechanism which can handle worst case scenario in the existing system.

 This paper discusses the importance of handling load using cooperative control

law of surrogate servers. The simulation results show that the proposed system

can successfully handle the all draw back that can be faced in existing system.

FIGURE 10 : DEPICTING A DYNAMIC APPROACH TO LOAD BALANCING

28

2.1.4 LITERATURE REVIEW SIX

2.1.6 PAPER TITLE

 Implementation of Effective Law for Load Balancing

2.1.6.1 SUMMARY

 This paper discusses about the implementation of an effective law for load

balancing Content Delivery Networks (CDN). In this method we will only have

the hardware implementation costs that will be giving the output of the program

without software implementations costs.

FIGURE 11: COMPARISON GRAPH

 So for these requirements, the paper introduces the hardware driven flow slicing

along with software driven load balancer which also reduce implementation costs

when compared to the existing system method.

29

2.1.7 LITERATURE REVIEW SEVEN

2.1.7 PAPER TITLE

 A Scalable Approach for Effective Content Delivery Using Enhanced Distributed

Load Balancing Mechanism

2.1.7.1 SUMMARY

 In the paper, the authors base their proposal on a formal study of a CDN system,

carried out through the exploitation of a fluid flow model characterization of the

network of servers.

FIGURE 12 : FLUID QUEUE MODEL

 They have derived and prove a lemma about the network queues equilibrium.

This result is then lever- aged in order to devise a novel distributed and time-

continuous algorithm for load balancing, which is also reformulated in a time-

discrete version. The discrete formulation of the proposed balancing law is

eventually discussed in terms of its actual implementation in a real-world

scenario.

30

2.1.4 LITERATURE REVIEW EIGHT

2.1.8 PAPER TITLE

 Applying Load Balancing: A Dynamic Approach

2.1.8.1 SUMMARY

 In this paper, the authors have proposed a Dynamic approach to the load

balancing algorithm. The paper discusses the implementation of application load

balancer by using Dynamic load balancing method. load balancing is performed

by integrating more than two physical servers with logical load balancing.

 Dynamic load balancing algorithms make changes to the distribution of work

among workstations at run-time; they use current or recent load information when

making distribution decisions. As a result, dynamic load balancing algorithms can

provide a significant improvement in performance over static algorithms.

However, this comes at the additional cost of collecting and maintaining load

information, so it is important to keep these overheads within reasonable limits

 The paper investigates on the comparative behavior of load balancing with

different parameters, and concludes that dynamic load balancing is more reliable.

31

2.1.4 LITERATURE REVIEW NINE

2.1.9 PAPER TITLE

 Network delay-aware load balancing in selfish and cooperative distributed

systems.

2.1.9.1 SUMMARY

 In this paper the authors consider a geographically distributed request processing

system composed of various organizations and their servers connected by the

Internet. The latency a user observes is a sum of communication delays and the

time needed to handle the request on a server. The handling time depends on the

server congestion, i.e. the total number of requests a server must handle. The

paper focuses on the analyis of the problem of balancing the load in a network of

servers in order to minimize the total observed latency.

FIGURE 13: DEPLOYMENT SCENARIO

32

2.2 COMPARATIVE STUDY

The following section contains the comparative study of the literature reviews mentioned in the

above section. In order to summarize the important aspects of the literature reviews, the following

table is presented. Proposal enumerates the topic of concern in the research paper. The heading

improvements elaborates on the suggestions made in the research papers.

PAPER ID PAPER TOPIC PROPOSAL IMPROVEMENT

06176282
A Distributed Control Law

For Load Balancing In

Content Delivery Networks

A novel

distributed and

time-continuous

load balancing

algorithm through

derivation and

proof of network

queue equilibrium

lemma.

Removal of local

queue instability

conditions through

redistribution of

potential excess traffic

to the set of neighbors

of the congested server

12783915 Optimized Balancing

Algorithm For Content

Delivery Networks

Fictitiously

starred optimized

balancing(FSOB).

Optimizing the load

redistribution system,

by utilizing the

multiple redirection

mechanism of the

HTTP protocol.

EL342514252

1

An Efficient Distributed

Control law for Effective

Load Balancing in Content

Delivery Network

A novel

distributed and

time continuous

algorithm for load

balancing,

reformulated in a

time discrete

version

Removal of local

queue instability

conditions through

redistribution of

potential excess traffic

to the set of neighbours

of the congested server

1109.5641 Energy-Aware Load

Balancing in Content

Delivery Networks

1. Techniques to

turn off CDN

servers during

period of low

load.

Improved upon

reducing the energy

consumption by more

than 55% while

ensuring high level of

availability that meets

33

2. An optimal

online algorithm

and an online

algorithm to

extract energy

savings both at

the level of local

load balancing

within a data

centre and global

load balancing

across data

centres

customer's service

availability

requirements.

IJARCCE9A Efficient and Distributed

Control Mechanism for

load Handling in Content

Distributed Network

Efficient control

law for handling

the load on

individual servers.

Overall performance in

terms of availability,

response time and

queue length handling

3 Implementation of Efective

Law for Load Balancing

Hardware driven

flow slicing along

with software

driven load

balancer

Implementation cost

400_1688 A Scalable Approach for

Effective Content

Delivery Using Enhanced

Distributed Load

Balancing Mechanism

A novel

distributed and

time continuous

algorithm for load

balancing

Removal of local

queue instability,

improved response

time

contentDeliver

y_hcw2013

Network delay-aware load

balancing in selfish and

cooperative distributed

systems

Distributed

algorithm

iteratively

balancing the load

Efficiency

V2I600231 International Journal of

Advanced Research in

Implementation of

application load

Efficiency and

performance

34

Computer Science and

Software Engineering

balancer by using

dynamic load

balancing method

TABLE 2: COMPARATIVE STUDY

35

CHAPTER 3

36

3.1 PROBLEM STATEMENT

3.1.1 EXISTING LOAD BALANCING ALGORITHMS

3.1.1.1 RANDOM BALANCING MECHANISM

 Traffic is directed arbitrarily to any server in your farm. In a random Scheduling,

the requests are assigned to any server picked randomly among the group of

servers.

 Pros: Random Scheduling load balancing algorithm is simple to implement.

 Cons: It can lead to overloading of one server while under-utilization of others.

3.1.1.2 ROUND ROBIN ALGORITHM

 Robin Scheduling Algorithm is that the IP sprayer assigns the requests to a list of

the servers on a rotating basis. For the subsequent requests, the IP sprayer follows

the circular order to redirect the request. Once a server is assigned a request, the

server is moved to the end of the list. This keeps the servers equally assigned.

 Pros: Better than random allocation because the requests are equally divided

among the available servers in an orderly fashion.

 Cons: Not enough for load balancing based on processing overhead required and

if the server specifications are not identical to each other in the server group.

3.1.1.3 LEAST LOADED ALGORITHM

 Least Loaded is a well-known dynamic strategy for load balancing. It assigns the

incoming client request to the currently least loaded server.

 Pros: Adopted in several commercial solutions.

 Cons: It tends to rapidly saturate the least loaded server until a new message is

propagated.

37

3.2 ISSUES OF EXISTING LOAD BALANCING ALGORITHMS

Response Time

 Response time is the time it takes for the server to cater to the requests of the user.

Performance of a CDN is typically characterized by the response time perceived

by the end-users.

 Although there are many other factors to be taken into consideration for building

an effective load balancing algorithm, the scale is tipped in favor of the response

time being the most coveted one. Slow response time is the single greatest

contributor to customers’ abandoning Web sites and processes.

Local Queue Instability

 In a Content Delivery Network, each server has its own queue, for maintain the

requests according to a predetermined order. The stability of the network depends

on the stability of the queues. Condition for stability is a function of length of the

queue.

Data Transfer Rate

 Data transfer rate is the rate at which data is transferred from the server to the user

and vice versa. The faster the data transfer rate, better would be the experience of

the user. The CDNs strive to improve upon this rate, through improving upon the

response time.

Implementation Cost

 This is another important factor in rendering the load balancing algorithms. As we

know to more and more servers are being deployed to make the process faster, the

implementation cost keeps on increasing with each new server.

38

3.3 PROPOSED MODEL

To overcome the drawbacks of the existing algorithms, and to take into account various

issues listed in the previous section, we propose a load balancing algorithm.

Our aim is to design a deadline based approach for a load balancing algorithm which

would take into account various issues and present a solution for these issues with the

help of comparative study of the existing algorithms. The algorithm is based on the

following parameters

1. Request Rate

2. Process Rate

3. Queue length

4. Deadline

5. Network Delay

Request Rate: The rate at which requests are to be received. The server receiving more

requests in unit amount of time would have high request rate, where as server receiving

less requests in unit amount of time would have less request rate. The server with the

least request rate would be preferred over the server with comparatively more request

rate, while redirection of the requests.

Process Rate: Process rate is the ability of the server to process as many requests as

possible in unit amount of time. The higher the process rate, the better. While redirection,

the server with high process rate would be preferred over the one with less request rate.

Queue Length: Each server maintains a queue, for the requests to be queue in, while the

server is handling some other requests. If the queue length of the server is full, the request

must be redirected to another server, whose queue has space to accommodate new

requests.

Deadline: The deadline of the request would also be taken into consideration while

determining the load balancing algorithm. If the request's deadline is about to expire, it

would be given top most priority, and the queue would reshuffle itself, to place it at the

front position.

Network Delay: The delay between the two servers should also be taken into account

while designing an efficient load balancing algorithm. The lesser the delay, the better.

39

3.4 FLOW DIAGRAM

Given below is the flow diagram of the load balancing algorithm

FIGURE 14: FLOW DIAGRAM

40

 Description of flow diagram :

The flow diagram aims to show the work flow of the load balancing algorithm. It is

explained with the help of following steps.

Step 1. First of all we check if servers are ready to receive the requests.

Step 2: When the servers are ready the requests start to arrive.

Step 3: After the arrival of the requests, the requests are queued in for load balancing.

Step 4: Once the requests have been dealt with, they are diverted to their respective

servers, which are then responsible for processing those requests

Step 5: After all the requests in the queue of the serve have been fulfilled, the server

becomes ready to receive more requests.

Step 5: The whole process again is repeated in a loop.

Step 6: In case there are no requests to be fulfilled, we can halt the load balancing for the

time.

41

3.5 SYSTEM ARCHITECTURE

FIGURE 15: SYSTEM ARCHITECTURE

42

3.6 PSEUDO CODE

The following section gives the pseudo code, consisting of two functions, schedule, and

load balance.

Description :

The function FindServer() is depicted in thefollowing figure, from line 1 to 12.

This function finds the first available server, to push the requests into the queue of the

server. First of all it checks whether the queue of the server is empty or not. On finding

the queue empty, it will put the request in the server's queue. In case it encounters that the

queue of the server is full, then it would move on to the next server, and again in the

similar fashion , as stated above.

FIGURE 16: PSEUDO CODE

43

Description :

The Function LoadBalance() is given in the figure, shown below, from line 16 to 30.

This functions primarily aims to balance the load of the requests among the servers. After

the server with empty queue is selected from the findserver() function, this function

springs into action. It again checks for the queue to empty. That again has two cases:

1. When the queue is empty, then it increments the queue counter, i.e. top, and inserts the

request in the respective serve's queue.

2. In case the server's queue is not empty, the request would be waitlisted.

FIGURE 17: PSEUDO CODE

44

CHAPTER 4

45

4.1 IMPLEMENTATION

4.1.1 SPECIFICATIONS OF THE SYSTEM USED

 Operating System: Windows 8

 RAM : 16GB

 Processor: i7

 IDE: Netbeans 7.4, Java sdk 1.7.9

 Glassfish

Description:

Here we have generated 20 requests, with queue length of the each server being constant,

the requests are scheduled on the first come first serve basis, in the respective server's

queue.

 FIGURE 18: SCREENSHOT 1

Description: When the queue of the server is full, the rest of the requests are waitlisted,

and the message "Server busy, request in waiting state " is displayed.

46

 FIGURE 19: SCREENSHOT 2

4.1.2 EMULATION

Description: Screen shot of the emulation home page. The user sends the request by clicking on

the submit button. The request is directed to one of the servers.

FIGURE 20: HOME PAGE

47

Description: Here the request is directed to server 1 by the load balancer. The request's

processing time and Id is displayed.

FIGURE 21: : DIRECTED TO SERVER 1

Description : The following is a screenshot of the request being diverted to the server 2.

FIGURE 22: DIRECTED TO SERVER 2

48

Description: The following is a screenshot of request being diverted to the server 3.

FIGURE 23: DIRECTED TO SERVER 3

Description: The following figures shows the log report of 100 requests being generated and

their processing time by each server.

FIGURE 24: DATABASE RECORD 1

49

FIGURE 25 : DATABASE RECORD 2

FIGURE 26: DATABASE RECORD 3

50

FIGURE 27: DATABASE RECORD 4

FIGURE 28: DATABASE RECORD 5

51

4.1.3 SIMULATION

4.1.3.1 FIRST SCENARIO

Here we are assuming three servers for experiment purpose. The constraints are:

 The processing time for 3 servers is as follows:

 Server1 : 1000 ms

 Server2 : 2000 ms

 Server3 : 3000 ms

 Requests generated for all the servers is 20.

 ID the following figure denotes the unique request ID for the particular request.

 Each server has also been assigned a unique id, denoted by server ID in the following

table.

 The processing time for each request has been recorded.

Algorithm Tested: Round Robin, i.e. The requests are distributed to the servers in a round robin

fashion. First request being sent to the very first server available, the second being sent to the

next, and third to one after that. After the sequential distribution of requests to -all the available

servers, it comes back to the very first server.

ID Server ID Processing Time

0 1 1.01E+09

1 2 2.01E+09

2 3 3.01E+09

3 1 2.32E+09

4 2 4.09E+09

5 3 6.09E+09

6 1 3.4E+09

52

7 2 6.17E+09

8 3 9.17E+09

9 1 4.48E+09

10 2 8.23E+09

11 3 1.22E+10

12 1 5.56E+09

13 2 1.03E+10

14 3 1.53E+10

15 1 6.64E+09

16 2 1.24E+10

17 3 1.84E+10

18 1 7.72E+09

19 2 1.45E+10

 TABLE 3: FIRST SCENARIO

53

4.1.3.2 SECOND SCENARIO

Keeping the constraints of the first scenario constant, i.e. 3 servers, with respective processing

time, and 20 requests are generated.

However now we test it on different algorithm. This algorithm is based on the random approach.

Here the requests are distributed to the server in a random fashion. Any request can be diverted to

any server, randomly, irrespective of queue length, processing time etc.

ID Server ID Processing Time

0 2 2.005E+09

1 2 4.103E+09

2 3 3.005E+09

3 2 6.18E+09

4 3 6.081E+09

5 2 8.256E+09

6 2 1.033E+10

7 1 1.003E+09

8 3 9.159E+09

9 1 2.327E+09

10 2 1.241E+10

11 2 1.449E+10

12 1 3.409E+09

13 1 4.484E+09

14 1 5.564E+09

15 3 1.224E+10

16 1 6.644E+09

17 3 1.531E+10

18 2 1.657E+10

19 3 1.839E+10
TABLE 4:SECOND SCENARIO

54

4.1.3..3 THIRD SCENARIO

Again, keeping the constraints of the previous two scenario constant, we now come to our

most efficient algorithm. Least loaded algorithm, which diverts the requests to the server

based on the queue length of the server. The server having least queue length is sought,

and the request is send to that server, so as to minimize the delay and increase efficiency.

The following table shows the details of the requests, server and the processing time.

ID Server ID Processing Time

0 1 1.006E+09

1 2 2.007E+09

2 3 3.005E+09

3 1 2.289E+09

4 2 4.09E+09

5 3 6.083E+09

6 1 3.387E+09

7 2 6.174E+09

8 3 9.163E+09

9 1 4.467E+09

10 2 8.252E+09

11 3 1.224E+10

12 1 5.544E+09

13 2 1.034E+10

14 3 1.532E+10

15 1 6.623E+09

16 2 1.241E+10

17 3 1.84E+10

18 1 7.709E+09

19 2 1.449E+10
TABLE 5: THIRD SCENARIO

55

Now, we compare the results of the above three algorithms, for 20 requests, on 3 servers

and analyze their performance. The following graph shows the comparison based on the

processing time.

Least Loaded (in

nano seconds)

Round Robin (in

nano seconds)

Random (in nano

seconds)

1999237493 1007936399 2005070692

4092742675 2008345236 4102759649

6186337237 3011954206 3004646031

2998390739 2321348050 6179696281

998335145 4088624408 6081437259

8263795571 6090383349 8255553512

6091678245 3402917027 10332727490

2278873355 6166358613 1003135130

10364978419 9168905719 9159266830

9193254534 4480416450 2327092297

3372394360 8230883447 12410025916

12473721327 12246174209 14490273014

12286108827 5558984151 3408631765

4480847747 10308266121 4483578522

14590507543 15337937169 5563823054

15403267531 6637815288 12237281148

5589609043 12403783026 6644413986

16684163259 18413450995 15314368312

18508445946 7719400943 16568492606

6682991061 14479549168 18390276436

TABLE 6: COMPARISON

56

With the help of the above table, following graph was generated for 20 Requests, which

were directed to 3 servers

FIGURE 29: COMPARATIVE GRAPH GENERATED FOR 20 REQUESTS

CPU Utilization for 20 requests in the three cases is given by the following data

 Least Loaded Round Robin Random

CPU

Utilization(%) 34.1861 37.7613 31.89

TABLE 7:CPU UTILIZATION OF 20 REQUESTS

57

Graph for CPU Utilization for 20 requests is give as

FIGURE 30: CPU UTILIZATION GRAPH

58

Performing the similar procedure, for 30 requests, with 3 servers having respective

processing times for the three algorithms, ie.e random, round robin, and least loaded, we

get the following figures:

Plotting the processing time on the y-axis, and requests ids on x

FIGURE 31:COMPARISON GRAPH FOR 30 REQUESTS

CPU Utilization for 30 requests in the three cases is given by the following data

 Least Loaded Round Robin Random

CPU

Utilization(%)

25.3374 26.6992 28.6699

TABLE 8: CPU UTILIZATION OF 30N REQUESTS

59

CPU Utilization for 30 requests in the three cases is given by the following data

FIGURE 32:CPU UTILIZATION GRAPH

60

Similarly for 40 requests, we generate the following graph.

FIGURE 33:COMPARISON GRAPH FOR 40 REQUESTS

CPU Utilization for 40 requests in the three cases is given by the following data

Least Loaded Round Robin Random

CPU

Utilization(%) 15.9083074 20.15253913 19.30233

TABLE 9 : CPU UTILIZATION OF 40 REQUESTS

61

Graph for CPU Utilization for 40 Requests is give as :

FIGURE 34:CPU UTILIZATION

62

Performing the same for 50 requests, we get the following graph.

FIGURE 35:COMPARISON GRAPH FOR 50 REQUESTS

CPU Utilization for 40 requests in the three cases is given by the following data

Least Loaded Round Robin Random

CPU

Utilization (%) 16.6896 16.9858 14.2009

TABLE 10 : CPU UTILIZATION OF 50 REQUESTS

63

Graph for CPU Utilization for 50 requests is given as :

FIGURE 36:CPU UTILIZATION GRAPH

64

4.1.4 COMPREHENSIVE STUDY

The following section shoes the comprehensive study of the three algorithms.

The following figure depicts the CPU utilization of three algorithms, with different number of

requests.

Requests --> 20 30 40 50

Least Loaded

(%) 34.181 25.3374 20.12478 17.12195

Round Robin(%) 37.7613 26.6992 20.1525 16.9858

Random(%) 31.89 28.6699 19.3023 14.2009
TABLE 11 : COMPREHENSIVE CPU UTILIZATION

The following graph was generated using the above table.

FIGURE 37: CPU UTILIZATION GRAPH

65

The following figure depicts the successful requests in three algorithms, with different number of

requests.

Requests --> 20 30 40 50

Least Loaded 13 15 15 15

Round Robin 14 16 16 16

Random 13 16 16 15
TABLE 12 : SUCCESSFUL REQUESTS

The following graph was generated using the above table.

FIGURE 38 : SUCCESSFUL REQUESTS

66

CONCLUSION

Least loaded load balancing approach would prove to more efficient than the earlier

approaches of load balancing, as it takes into account the important factor of time

associated with it. Therefore, the requests which are usually lost due to expiry of their

deadlines, would also be taken into consideration, as the request having the shortest

deadline would be given topmost priority. This would ensure high performance and better

user experience. Also the response time would be improved upon, as the factors such as

queue length, network delay, request rate and process rate are taken into account. The

future work would deal with proving this hypothesis, with the help of scientific data.

67

REFERENCES

1. Amrita, D., and A. Aruna. "A Scalable Approach for Effective Content Delivery

Using Enhanced Distributed Load Balancing Mechanism."

2. Manfredi, Sabato, Francesco Oliviero, and Simon Pietro Romano. "A distributed

control law for load balancing in content delivery networks." IEEE/ACM

Transactions on Networking (TON) 21, no. 1 (2013): 55-68.Skowron, Piotr, and

Krzysztof Rzadca. "Network delay-aware load balancing in selfish and

cooperative distributed systems." In Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,

pp. 7-18. IEEE, 2013.

3. Mathew, Vimal, Ramesh K. Sitaraman, and Prashant Shenoy. "Energy-aware load

balancing in content delivery networks." In INFOCOM, 2012 Proceedings IEEE,

pp. 954-962. IEEE, 2012.

4. Mohammed, Sabah, and Edward A. Pingoy. "Implementation of Effective Law

for Load Balancing." (2011).

5. Pathan, Al-Mukaddim Khan, and Rajkumar Buyya. "A taxonomy and survey of

content delivery networks." Grid Computing and Distributed Systems Laboratory,

University of Melbourne, Technical Report (2007).

6. Roy, Sudipta, Sanjay Nag, Indra Kanta Maitra, and Samir K. Bandyopadhyay.

"International Journal of Advanced Research in Computer Science and Software

Engineering." International Journal 3, no. 6 (2013).

7. Sampath, K. V., and T. S. Ragavendra. "Efficient and Distributed Control

Mechanism for load Handling in Content Distributed Network." future 3, no. 5

(2014)..

8. Skowron, Piotr, and Krzysztof Rzadca. "Network delay-aware load balancing in

selfish and cooperative distributed systems." In Parallel and Distributed

Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th

International, pp. 7-18. IEEE, 2013.

9. S. K. Mehertaj, K. V. Subbaiah, P. Santhi, T. Bharath Manohar, International

Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 4, Jul - Aug.

2013 pp-2514-2521.

68

WEB REFERENCES

1. http://www.ramkitech.com/2012/10/tomcat-clustering-series-simple-load.html

2. http://www.cloudbus.org/

3. http://www.loadbalancerblog.com/blog/2013/06/load-balancing-scheduling-methods-

explained

4. http://www.google.co.in/patents/US6249801

5. https://devcentral.f5.com/articles/choosing-a-load-balancing-algorithm-requires-devops-

fu

6. http://docs.oracle.com/javase/tutorial/

	Project Report
	Computer Science & Engineering
	Punit Gupta
	Anushree Gupta

	Certificate
	list of figures
	List of tables
	Abstract
	Chapter 1
	1.1 Evolution of CDN over internet
	1.2 Introduction
	1.3 Existing CDNs

	CHAPTER 2
	Literature Review
	2.1.1 literature review one
	2.1.1.1 PAPER Title
	2.1.1.2 Summary

	2.1.2 literature review two
	2.1.2.1 PAPER Title
	2.1.2.2 Summary

	2.1.3 literature review three
	2.1.3.1PAPER Title
	2.1.3.2 Summary

	2.1.4 literature review four
	2.1.4.1 PAPER TITLE
	2.1.4.2 Summary

	2.1.4 literature review five
	2.1.5.1 PAPER TITLE
	2.1.5.2 Summary

	2.1.4 literature review six
	2.1.6 PAPER TITLE
	2.1.6.1 Summary

	2.1.7 literature review seven
	2.1.7 PAPER TITLE
	2.1.7.1 Summary

	2.1.4 literature review eight
	2.1.8 PAPER TITLE
	2.1.8.1 Summary

	2.1.4 literature review nine
	2.1.9 PAPER TITLE
	2.1.9.1 Summary

	2.2 Comparative study

	CHAPTER 3
	3.1 Problem Statement
	3.1.1 Existing Load Balancing Algorithms
	3.1.1.1 Random balancing mechanism
	3.1.1.2 Round Robin Algorithm
	3.1.1.3 Least Loaded algorithm

	3.2 Issues of existing load balancing algorithms
	3.3 proposed model
	3.4 FLOW Diagram
	3.5 System Architecture
	3.6 Pseudo CODE

	Chapter 4
	4.1 Implementation
	4.1.1 Specifications of the system used
	4.1.2 Emulation
	4.1.3 Simulation
	4.1.3.1 FIRST SCENARIO
	4.1.3.2 Second scenario
	4.1.3..3 Third Scenario

	4.1.4 Comprehensive study

	Conclusion
	References
	Web References

