
 
 

 
 

 

Project Report on 

JustTalk: An instant messaging and VoIP calling based android 

application 

Project Report submitted in partial fulfilment of the requirement for 

the degree of 

Bachelor of Technology. 

in  

Computer Science & Engineering 

Under the Supervision of 

Ms. Nishtha Ahuja 

By 

    Aman Khurana (Roll no-111284) 

To 

 

Jaypee University of Information and Technology Waknaghat, 

Solan – 173234, Himachal Pradesh 



 
 

ii 
 

Certificate 

 

This is to certify that project report entitled ―JustTalk: an android application‖, submitted by 

Aman Khurana in partial fulfillment for the award of degree of Bachelor of Technology in 

Computer Science & Engineering to Jaypee University of Information Technology, 

Waknaghat, Solan  has been carried out under my supervision.  

This work has not been submitted partially or fully to any other University or Institute for the 

award of this or any other degree or diploma. 

                                                                                      

Date:       Supervisor’s Name: Ms Nishtha Ahuja 

       Designation: Assistant Professor 

 

  



 
 

iii 
 

Acknowledgement 

I take this opportunity to express our sincere thanks and deep gratitude to all 

those people who extended their wholehearted co-operation and helped me in 

completing this project successfully. First of all, I would like to thank Dr S.P 

Ghrera (Head of Department, CSE) for creating opportunities .Special thanks 

to Ms Nishtha Ahuja, Project Mentor for all the help and guidance extended to 

me by her in every stage during our project development. Her inspiring 

suggestions and timely guidance enabled us to perceive the various aspects of the 

project in a new light. I am highly indebted and grateful for her strict 

supervision, constant encouragement, inspiration and guidance, which ensure the 

worthiness of our work. 

 

 

 

 

 

 

 

Date:          Name of student: 

30/04/2015       Aman Khurana 

 

  



 
 

iv 
 

TABLE OF CONTENTS 
 
 
 
 

TITLE PAGE NO. 

Abstract vi 

List of figures and tables vii 

Acronyms viii 

  

 

Chapter 1.Introduction 01-02 

1.1 Purpose 01 

1.2 Overview 02 

1.3 Scope 02 

 

Chapter 2.Software Environment 03-08 

2.1 Security And Privacy 03 

2.2 Software Requirements 04 

2.3 Hardware Requirements 07 

2.4 System Development Requirements 08 

Chapter 3.Methodology Used 9-10 

3.1 Waterfall Methodology 9 

3.2 Prototype Methodology 10 

   

Chapter 4.Project Design 11-15 

4.1 Use Case Diagram 11 

4.2 Activity Diagram 12 

4.3 Class Diagram 15 

Chapter 5.Coding Standards 16-17 

5.1 Short Methods 16 

5.2 Definitions of fields in standard places 16 

5.3 Limit Variable Scope 16 

5.4 Order Import Statements 16 

5.5 Naming Conventions 17 

5.6 Follow Field Naming Conventions 17 

5.7 Labels And Comments 17 



 
 

v 
 

Chapter 6.Technologies Used 18-29 

6.1 Google Cloud Messaging 18 

6.2 Sinch 24 

6.3 Parse 32 

6.4 VoIP 35 
 

Conclusion and future work          37  

Snapshots of Data Analytics          38 

References                39



 
 

vi 
 

 

 Abstract 

This application provides a platform for people to communicate and connect on a voluntary 

condition of anonymity. This application aims to conceive a community of volunteers, who 

interact with the users of the application via VOIP calls and instant messaging to empathize, 

sympathize or just connect on a human level. This application will act as a catalyst for people 

to share and talk about the happy and sad moments of their life with an anonymous volunteer 

who can be anyone. This would be useful as communication can help a great deal in every 

aspect of life. Talking to anonymous people can be useful in many situations and 

circumstances. The best part being of the application is that the volunteers since they are 

anonymous will be non-judgemental.  

The user needs to authenticate using a username & password. When the user is authenticated 

it gains to the list of volunteers for either instant messaging or making an internet call .The 

list is populated using a parse backend. Every user has an option of volunteering simply by 

turning on a toggle which once done implies that the user is now a member of the volunteer 

community. Then it can set its availability status as a volunteer .After call completion the 

user is required to rate the volunteer. This would help us to maintain a consistent user 

experience as it would provide us with the overall rating of any particular volunteer.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

List of Figures and Tables: 

 

Figure no. Figure Name Page no 

Figure 2.1 Software Stack 4 

Figure 2.2 Hardware Software Requirement 6 

Figure 3.1 Water Fall Model 9 

Figure 3.2 Prototype Model 10 

Figure 4.1 Use Case Diagram 11 

Figure 4.2 User Call Activity diagram 12 

Figure 4.3 User registration Activity diagram 13 

Figure 4.4 Volunteer Registration Activity Diagram 14 

Figure 4.5 Class Diagram 15 

Figure 6.1 GCM Architecture 20 

Figure 6.2 Twillo Architecture 25 

Figure 6.3 VoIP using PC 29 

Figure 6.4 VoIP using Phone 29 

 

Table no.   Table Name     Page no 

1    GCM components and credentials 19 

  



 
 

viii 
 

              Acronyms 

 
 

Eclipse IDE- Eclipse Integrated Development Environment 

 

Android SDK- Android Software Development Kit 

 

AVD – Android Virtual Device 

 

JDK- Java Development Kit 

 

PCs – Personal Computers 

 

RAM- Random Access Memory 

 

AOSP- Android Open Source Project 

 

VOIP-Voice Over I P 

 

GCM-Google Cloud Messaging 

 

SMS- Short Messaging Service 

 

ACID- Atomicity, Consistency, Integrity, Durability 

 

 

  



 

1 
 

CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 

With the boom of android devices in the market, any application built on android has the 

potential to reach the masses. Thus the inception of this project was done by consistent 

observation of our immediate and not so immediate environment. The observation revealed a 

not so obvious fact that many a times people do not talk about things in their lives. The happy 

things they keep with themselves, scared that they might not lose it and the sad things also 

they keep with the perception that nobody cares and sharing of their sad concerns may seem 

too daunting a task because of the fear of judgement by their own loved ones. The sad reality 

is that people want to share these things. These things result in lowering of the happiness 

quotient of our society and increase of the sadness index. The reason: people do not talk. If 

people start talking and sharing these things the society can change for good. Here is where 

our application JustTalk comes into picture. 

As the name indicates you need to Just Talk about your sadness to get it out of your system or 

Just Talk to share your happiness to increase its magnitude. It helps to get rid of many evils 

like suicide, depression, stress, etc from our society and thus the Solution: Just Talk. 

 

1.1 PURPOSE 

 
The inception of this project was done by consistent observation of our immediate and not so 

immediate environment. The observation revealed a not so obvious fact that many a times 

people do not talk about things in their lives. The happy things they keep with themselves, 

scared that they might not lose it and the sad things also they keep with the perception that 

nobody cares and sharing of their sad concerns may seem too daunting a task because of the 

fear of judgement by their own loved ones. The sad reality is that people want to share these 

things. These things result in lowering of the happiness quotient of our society and increase of 

the sadness index. The reason: people do not talk. If people start talking and sharing these 

things the society can change for good. Here is where our application JustTalk comes into 

picture. 

As the name indicates you need to Just Talk about your sadness to get it out of your system or 

Just Talk to share your happiness to increase its magnitude. It helps to get rid of many evils 

like suicide, depression, stress, etc from our society and thus the Solution: Just Talk 
 

 



 
 

2 
 

 

1.2 OVERVIEW 

 
This application will act as a catalyst for people to share and talk about the happy and sad 

moments of their life with an anonymous volunteer who can be anyone. This would be useful 

as communication can help a great deal in every aspect of life. Talking to anonymous people 

can be useful in many situations and circumstances. The best part being of the application is 

that the volunteers since they are anonymous will be non-judgemental. The application will 

also support messaging with a volunteer. 

When the application is launched for the first time the user will have to login using his phone 

number as the unique identification id and a verification code will be sent to his phone using 

which he will be required to verify the authenticity of his phone number. This will be a one- 

time procedure. When the user has been authenticated, he will have options to talk to or chat 

with a volunteer from list of available volunteers or to register himself as a volunteer. If the 

user chooses to talk then also there are two options available, one is a regular call and other of 

an internet call. The internet call uses VoIP. The chat functionality is provided using Google 

Cloud Messaging APIs. After the call is completed the user is asked to rate the quality of the 

call. This would help us to maintain a consistent user experience as it would provide us with 

the overall rating of any particular volunteer. If a user is registered as a volunteer, he would 

have the option of setting his availability status on or off. 

 

 

 

 

 

1.3 SCOPE 

 
 Universality of android devices makes it available to a wide section of the society. 

 

 The simplicity and all time availability of this app makes it more worthy as the user   

carries his phone everywhere and he can easily use the various application 

functionalities.

 As this application caters to a very subtle and important aspect of the entire society,

This application has the potential to transform , in a small or a big way, the very life of 

its users.

 

 

  



 
 

3 
 

 

 

CHAPTER 2 
 
 

SOFTWARE ENVIRONMENT 
 
 
Android is an operating system based on the Linux kernel and designed primarily for 

touchscreen mobile devices such as smartphones and tablet computers. Initially developed by 

Android, Inc., which Google backed financially and later bought in 2005. Android's user 

interface is based on direct manipulation using touch inputs that loosely correspond to real-

world actions, like swiping, tapping, pinching, and reverse pinching to manipulate on-screen 

objects. 
 

Since Android devices are usually battery-powered, Android is designed to 

manage memory (RAM) to keep power consumption at a minimum, in contrast to desktop 

operating systems which generally assume they are connected to unlimited mains electricity. 

Android has an active community of developers and enthusiasts who use the Android Open 

Source Project (AOSP) source code to develop and distribute their own modified versions of 

the operating system. These community-developed releases often bring new features and 

updates to devices faster than through the official manufacturer/carrier channels, albeit without 

as extensive testing or quality assurance provide continued support for older devices that no 

longer receive official updates; or bring Android to devices that were officially released 

running other operating systems, such as the HP Touch Pad . 

 
 

 

 

 

 

 

 

 



 
 

4 
 

 

2.1 SECURITY AND PRIVACY 
 

Android applications run in a sandbox, an isolated area of the system that does not have access 

to the rest of the system's resources, unless access permissions are explicitly granted by the 

user when the application is installed. Before installing an application, Play Store displays all 

required permissions: a game may need to enable vibration or save data to an SD card, for 

example, but should not need to read SMS messages or access the phonebook. 

 

 

SOFTWARE STACK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1 Software Stack 

 

 



 
 

5 
 

2.2 SOFTWARE SPECIFICATION 
 

 

 Android 2.2 (minimum) 
 
 

Android is an operating system based on the Linux kernel and designed primarily for  

touchscreen mobile devices such as smartphones and tablet computers. Android's user 

interface is based on direct manipulation using touch inputs that loosely correspond to real-

world actions, like swiping, tapping, pinching, and reverse pinching to manipulate on-

screen objects. 

 

 

 Android emulator 2.2 or higher 
 
 

 

The Android SDK includes a mobile device emulator — a virtual mobile device that runs 

on your computer. The emulator lets you develop and test Android applications without 

using a physical device. 

 

 

 Jdk 1.5 or higher 
 
 

 

The Java Development Kit (JDK) is an implementation of either one of the Java SE, Java 

EE or Java ME platforms released by Oracle Corporation in the form of a binary product 

aimed at Java developers on Solaris, Linux, Mac OS X or Windows. Since the introduction 

of the Java platform, it has been by far the most widely used Software Development Kit 

(SDK) 

 

 Eclipse IDE 
 

Eclipse is an integrated development environment (IDE). It contains a base workspace and    

an extensible plug-in system for customizing the environment. Written mostly in Java, 

Eclipse can be used to develop applications. 

 
 



 
 

6 
 

 

 

2.3 HARDWARE SPECIFICATION  
 
 
 

 Android smart phone 
 
 
 
 

Android phones are smart phones where we can deploy applications on each of these 

phones. Android phones are smart phones where we can deploy applications on each of 

these phones. Example of android phones are HTC Dream, Nexus One, 
 

Samsung Galaxy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2  Hardware And Software Specification 

 

 

 

 

2.4 SYSTEM DEVELOPMENT REQUIREMENTS  
 
 
 

 Android SDK 
 

Android software development is the process by which new applications are created for 

the  Android operating system. Applications are usually developed in the  Java 

programming language using the Android  Software  Development Kit, but other 



 
 

7 
 

development tools are available. 

 

 

 Eclipse IDE 
 

Eclipse is an integrated development environment (IDE). It contains a base workspace 

and an extensible plug-in system for customizing the environment. Written mostly in 

Java, Eclipse can be used to develop applications. 

 

 

 Android AVD 
 

The AVD Manager provides a graphical user interface in which you can create and 

manage Android Virtual Devices (AVDs), which are required by the Android Emulator. 

 

 

 Android emulator 2.2 or higher 
 

The Android SDK includes a mobile device emulator — a virtual mobile device that 

runs on your computer. The emulator lets you develop and test Android applications 

without using a physical device 

 

 Genymotion Android Emulator 
 

Genymotion is an Android emulator for building and testing great Android apps. It‘s 

fast, simple and powerful. AOSP-based for perfect Android compliance, 20 pre-

configured devices, CPU and OpenGL acceleration, etc. Genymotion is the next 

generation of the AndroVM open source project. 


 Third Party API’s 

  
 Google cloud messaging API for android 

Google Cloud Messaging (GCM) for Android is a service that allows you to 

send data from your server to your users' Android-powered device, and also to 

receive messages from devices on the same connection. The GCM service 

handles all aspects of queueing of messages and delivery to the target Android 

application running on the target device, and it is completely free. 

 

 Sinch 

 Parse 

    Parse Database  



 
 

8 
 

CHAPTER 3 
 
 

   METHODOLOGY 
 
 

 

3.1 WATERFALL METHODOLOGY 
 
The waterfall model is a sequential design process which is used in software development 

processes in which progress is seen as flowing steadily downwards (like a waterfall) through 

the phases of Conception, Initiation, Analysis, Design, Construction, Testing, 

Production/Implementation, and Maintenance. The waterfall model was first defined by 

Winston W. Royce in 1970 and has been widely used for software projects ever since. Our 

own implementation of the requirements/design phase is to produce a Functional Specification 

(detailing what the application will do) and a User Interface Specification (detailing how it 

will do it). When using this methodology it is vital that all requirements are captured during 

the Requirements/design phase as it can be very expensive to re-visit requirements once 

implementation (coding) has begun. 

 

 

 

 

 
 

 

 

 

 

 

. 

              

 



 

9 
 

3.2 PROTOTYPE METHODOLOGY 
 
The basic idea here is that instead of freezing the requirements before a design or coding can 

proceed, a throwaway prototype is built to understand the requirements. This prototype is 

developed based on the currently known requirements. By using this prototype, the client can 

get an ―actual feel‖ of the system, since the interactions with prototype can enable the client 

to better understand the requirements of the desired system. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Prototype Model 
 

 

 

 

 

 

 

 

  



 
 

10 
 

 CHAPTER 4 
 
 
 
 

Project Design 
 

 

4.1   Use Case Diagram 
 

A use case diagram at its simplest is a representation of a user's interaction with the system 

and depicting the specifications of a use case. A use case diagram can portray the different 

types of users of a system and the various ways that they interact with the system. This type 

of diagram is typically used in conjunction with the textual use case and will often be 

accompanied by other types of diagrams as well. 

 

 

 

Figure 4.1 Use Case Diagram 

 

 



 
 

11 
 

4.2   Activity Diagram 

 

Activity diagrams are graphical representations of workflows of stepwise activities and 

actions with support for choice, iteration and concurrency. In the Unified Modelling 

Language, activity diagrams are intended to model both computational and organisational 

processes (i.e. workflows. Activity diagrams show the overall flow of control. 

   

 

 

        Figure 4.2  User Call Activity 

 
 



 
 

12 
 

                  Fig 4.3 user login activity  

    

                                                                        

  

 



 
 

13 
 

   

 

                                

Figure 4.4 Volunteer Registration Activity 

    



 
 

14 
 

 

4.3 CLASS DIAGRAM 
 
 

 

A class diagram in the Unified Modelling Language (UML) is a type of static 

structure diagram that describes the structure of a system by showing the 

system's classes, their attributes, operations, and the relationships among 

objects. 

 

 

 

 

                  

 

Figure 4.5 Class Diagram 

                   

  



 
 

15 
 

 

 

CHAPTER 5 
 

 

CODE DETAILS 
 
 
 

5.1 Coding Standards 
 

The standard used in the development of the system is JAVA Programming 

standards. it includes naming conversions of variables, constants and objects, 

standardized formats or labelling and commenting code, spacing, formatting 

and indenting. 

 

 

5.2 Use Short Methods 
 

To the extent that it is feasible, methods should be kept small and focused. It is, 

however, recognized that long methods are sometimes appropriate, so no hard 

limit is placed on method length. If a method exceeds 40 lines or so, think about 

whether it can be broken up without harming the structure of the program. 

 

 

5.3 Definition of Fields in Standard Places 
 

Fields should be defined either at the top of the file, or immediately before the 

methods that use them. 

 

 

5.4 Limit Variable Scope 
 

The scope of local variables should be kept to a minimum . By doing so, you 

increase the readability and maintainability of your code and reduce the 

likelihood of error. Each variable should be declared in the innermost block that 

encloses all uses of the variable. 

 



 
 

16 
 

 

 

5.5 Order Import Statements 
 

The ordering of import statements is: 
 

1. Android imports  
 
2. java and javax  
 

To exactly match the IDE settings, the imports should be: 
 

• Alphabetical within each grouping, with capital letters before lower case 

letters (e.g. Z before a).  
 
• There should be a blank line between each major grouping.  
 
 
 
 

 

5.6 NAMING CONVENTIONS 
 

Classes‘ names and interface names will start with capital letter. The function 

names will start with small letters and the first letter of each word in the 

function name will be in capital letter. 
 
Follow Field Naming Conventions 
 

• Non-public, non-static field names start with m.  
 
• Static field names start with s.  
 
• Other fields start with a lower case letter.  
 
• Public static final fields (constants) are  
 

ALL_CAPS_WITH_UNDERSCORES 
 
 
 
 
 
 

5.7 LABELS AND COMMENTS 
 

Sufficient labels and comments are included in the description of it for the 

benefits if the developer and other programmers who might examine it later. 

 



 
 

17 
 

 

 

CHAPTER 6 

 

   Technologies Used 
 

 

6.1 Google Cloud Messaging API 
 

Google Cloud Messaging (GCM) for Android is a free service that helps developers send data 

from servers to their Android applications on Android devices, and upstream messages from 

the user's device back to the cloud. This could be a lightweight message telling the Android 

application that there is new data to be fetched from the server (for instance, a "new email" 

notification informing the application that it is out of sync with the back end), or it could be a 

message containing up to 4kb of payload data (so apps like instant messaging can consume 

the message directly). The GCM service handles all aspects of queueing of messages and 

delivery to the target Android application running on the target device 

Here are the primary characteristics of Google Cloud Messaging (GCM): 

 

It allows 3rd-party application servers to send messages to their Android applications. 

Using the GCM Cloud Connection Server, you can receive upstream messages from the 

user's device. 

An Android application on an Android device doesn't need to be running to receive messages. 

The system will wake up the Android application via Intent broadcast when the message 

arrives, as long as the application is set up with the proper broadcast receiver and 

permissions. 

It does not provide any built-in user interface or other handling for message data. GCM 

simply passes raw message data received straight to the Android application, which has full 

control of how to handle it. For example, the application might post a notification, display a 

custom user interface, or silently sync data. 

 

It requires devices running Android 2.2 or higher that also have the Google Play Store 

application installed, or  an emulator running Android 2.2 with Google APIs. However, you 

are not limited to deploying your Android applications through Google Play Store. 



 
 

18 
 

It uses an existing connection for Google services. For pre-3.0 devices, this requires users to 

set up their Google account on their mobile devices. A Google account is not a requirement 

on devices running Android 4.0.4 or higher. 

 

6.1.1 Key Concepts 

This table summarizes the key terms and concepts involved in GCM. It is divided into these 

categories: 

•Components - The entities that play a primary role in GCM. 

•Credentials - The IDs and tokens that are used in different stages of GCM to ensure that all 

parties have been authenticated, and that the message is going to the correct place. 

 

 

 

 



 
 

19 
 

 

Table 1: GCM components and credentials 

6.1.2 Architecture Overview 

A GCM implementation includes a Google-provided connection server, a 3rd-party app 

server that interacts with the connection server, and a GCM-enabled client app running on an 

Android device: 

 

 

Figure 6.1 GCM Architecture 

 



 
 

20 
 

 

 

This is how these components interact: 

 

Google-provided GCM Connection Servers take messages from a 3rd-party application 

server and send these messages to a GCM-enabled Android application (the "client app") 

running on a device. Currently Google provides connection servers for HTTP and XMPP. 

The 3rd-Party Application Server is a component that you implement to work with your 

chosen GCM connection server(s). App servers send messages to a GCM connection server; 

the connection server enqueues and stores the message, and then sends it to the device when 

the device is online. For more information, see Implementing GCM Server. 

The Client App is a GCM-enabled Android application running on a device. To receive GCM 

messages, this app must register with GCM and get a registration ID. If you are using the 

XMPP (CCS) connection server, the client app can send "upstream" messages back to the 

connection server. For more information on how to implement the client app, see 

Implementing GCM Client. 

 

6.1.3 Lifecycle flow 

1. Enable GCM. An Android application running on a mobile device registers to receive 

messages. 

2. Send a message. A 3rd-party application server sends messages to the device. 

3. Receive a message. An Android application receives a message from a GCM server. 

 

Enable GCM 

The first time the Android application needs to use the messaging service, it calls the 

GoogleCloudMessaging method register(), as discussed in Implementing GCM Client. The 

register() method returns a registration ID. The Android application should store this ID for 

later use (for instance, to check in onCreate() if it is already registered). 

 

Send a message 

 

Here is the sequence of events that occurs when the application server sends a message: 



 
 

21 
 

 

The application server sends a message to GCM servers. 

Google enqueues and stores the message in case the device is offline. 

When the device is online, Google sends the message to the device. 

On the device, the system broadcasts the message to the specified Android application via 

Intent broadcast with proper permissions, so that only the targeted Android application gets 

the message. This wakes the Android application up. The Android application does not need 

to be running beforehand to receive the message. 

The Android application processes the message. If the Android application is doing non-

trivial processing, you may want to grab a PowerManager. WakeLock and do any processing 

in a service. 

An Android application can unregister GCM if it no longer wants to receive messages. 

 

 

Receive a message 

This is the sequence of events that occurs when an Android application installed on a mobile 

device receives a message: 

 

The system receives the incoming message and extracts the raw key/value pairs from the 

message payload, if any. 

The system passes the key/value pairs to the targeted Android application in a 

com.google.android.c2dm.intent.RECEIVE Intent as a set of extras. 

The Android application extracts the raw data from the 

com.google.android.c2dm.intent.RECEIVE Intent by key and processes the data. 

 

6.1.4 Implementing GCM Client 

A Google Cloud Messaging (GCM) client is a GCM-enabled app that runs on an Android 

device. To write your client code, we recommend that you use the GCM APIs. The client 

helper library that was offered in previous versions of GCM still works, but it has been 

superseded by the more efficient GCM APIs. 



 
 

22 
 

A full GCM implementation requires both a client implementation and a server 

implementation. For more information about implementing the server side, see Implementing 

GCM Server. 

The following sections walk you through the steps involved in writing a GCM client-side 

application. Your client app can be arbitrarily complex, but at bare minimum, a GCM client 

app must include code to register (and thereby get a registration ID), and a broadcast receiver 

to receive messages sent by GCM. 

 

 

Step 1: Set Up Google Play Services 

To write your client application, use the GCM APIs. To use this API, you must set up your 

project to use the Google Play services SDK, as described in Setup Google Play Services 

SDK. 

 

Caution: When you add the Play Services library to your project, be sure to add it with 

resources, as described in Setup Google Play Services SDK. The key point is that you must 

reference the library—simply adding a .jar file to your Eclipse project will not work. You 

must follow the directions for referencing a library, or your app won't be able to access the 

library's resources, and it won't run properly. If you're using Android Studio, this is the string 

to add to the dependency section of your application's build.gradle file: 

dependencies { 

  compile "com.google.android.gms:play-services:3.1.+" 

} 

 

Step 2: Edit Your Application's Manifest 

Add the following to your application's manifest: 

 

The com.google.android.c2dm.permission.RECEIVE permission so the Android application 

can register and receive messages. 

The android.permission.INTERNET permission so the Android application can send the 

registration ID to the 3rd party server. 

The android.permission.GET_ACCOUNTS permission as GCM requires a Google account 

(necessary only if if the device is running a version lower than Android 4.0.4) 



 
 

23 
 

The android.permission.WAKE_LOCK permission so the application can keep the processor 

from sleeping when a message is received. Optional—use only if the app wants to keep the 

device from sleeping. 

An applicationPackage + ".permission.C2D_MESSAGE" permission to prevent other 

Android applications from registering and receiving the Android application's messages. The 

permission name must exactly match this pattern—otherwise the Android application will not 

receive the messages. 

A receiver for com.google.android.c2dm.intent.RECEIVE, with the category set as 

applicationPackage. The receiver should require the com.google.android.c2dm.SEND 

permission, so that only the GCM Framework can send a message to it. If your app uses an 

IntentService (not required, but a common pattern), this receiver should be an instance of 

WakefulBroadcastReceiver. A WakefulBroadcastReceiver takes care of creating and 

managing a partial wake lock for your app. 

A Service (typically an IntentService) to which the WakefulBroadcastReceiver passes off the 

work of handling the GCM message, while ensuring that the device does not go back to sleep 

in the process. Including an IntentService is optional—you could choose to process your 

messages in a regular BroadcastReceiver instead, but realistically, most apps will use a 

IntentService. 

If the GCM feature is critical to the Android application's function, be sure to set 

android:minSdkVersion="8" or higher in the manifest. This ensures that the Android 

application cannot be installed in an environment in which it could not run properly. 

Here are excerpts from a sample manifest that supports GCM: 

<manifest package="com.example.gcm" ...> 

 

    <uses-sdk android:minSdkVersion="8" android:targetSdkVersion="17"/> 

    <uses-permission android:name="android.permission.INTERNET" /> 

    <uses-permission android:name="android.permission.GET_ACCOUNTS" /> 

    <uses-permission android:name="android.permission.WAKE_LOCK" /> 

    <uses-permission 

android:name="com.google.android.c2dm.permission.RECEIVE" /> 

 

    <permission android:name="com.example.gcm.permission.C2D_MESSAGE" 

        android:protectionLevel="signature" /> 

    <uses-permission android:name="com.example.gcm.permission.C2D_MESSAGE" 

/> 

 

    <application ...> 

        <receiver 

            android:name=".GcmBroadcastReceiver" 

            android:permission="com.google.android.c2dm.permission.SEND" > 

            <intent-filter> 

                <action 

android:name="com.google.android.c2dm.intent.RECEIVE" /> 

                <category android:name="com.example.gcm" /> 

            </intent-filter> 



 
 

24 
 

        </receiver> 

        <service android:name=".GcmIntentService" /> 

    </application> 

 

</manifest> 

 

6.2 Sinch 

 
The Sinch SDK is a product that makes adding voice calling and instant messaging to android 

mobile applications very convenient. It handles all the complexity of signalling and audio 

management while providing the freedom to create different features. 

 

First Time Setup: 

 
The Steps are as follows: 

 

Register an application 

 

1. Register a Sinch Developer account at http://www.sinch.com/signup. 

2. Setup a new Application using the Dashboard where you can then obtain an 

Application Key and an Application Secret. 

 

Add the Sinch client to Android Studio 

 

1. Copy the entire libs folder to your project‘s root directory. 

2. Right-click the jar-files and choose ‗Add As Library‘. 

3. Create a new folder under src/main and name it jniLibs. 

4. Move the armeabi and armeabi-v7a folders into the newly created jniLibs folder. 

 

Permissions 

 

A minimum set of permissions are needed for the app to use the Sinch SDK. These are 

specified in the AndroidManifest.xml  file. If the calling functionality will be used, all five 

permissions listed here are needed. However, if the calling functionality isn‘t used, the last 

three (RECORD_AUDIO, MODIFY_AUDIO_SETTINGS and READ_PHONE_STATE) 

can be omitted. 

 

1. <uses-permission android:name="android.permission.INTERNET" /> 

2. <uses-permission 

android:name="android.permission.ACCESS_NETWORK_STATE" /> 

3. <uses-permission android:name="android.permission.RECORD_AUDIO" /> 

4. <uses-permission 

android:name="android.permission.MODIFY_AUDIO_SETTINGS" /> 

http://www.sinch.com/signup


 
 

25 
 

5. <uses-permission android:name="android.permission.READ_PHONE_STATE" 

/> 

Note: By default, the Sinch SDK hangs up any Sinch call if the regular phone app has an 

active call. This functionality requires the permission READ_PHONE_STATE. However, if 

this default functionality isn‘t wanted, turn it off by 

calling sinchClient.getCallClient().setRespectNativeCalls(false);  and the permission 

READ_PHONE_STATE is not needed. 

Verify Manifest in runtime during development 

To verify that the manifest has the necessary permissions 

the sinchClient.checkManifest()  method can be used. This method should be called 

before starting the client and will throw an exception if the manifest isn‘t setup 

correctly. sinchClient.checkManifest()  should only be called during development. When 

the application is ready for release the method call can safely be removed. 

Note: This method takes into consideration which features the app supports (for example, 

calling, instant messaging, respecting native calls, and so on). 

Call sinchClient.checkManifest()  after the setup but before the start of the SinchClient. 

 

Sinch Client: 

The SinchClient is the Sinch SDK entry point. It is used to configure the user‘s and device‘s 

capabilities, as well as to provide access to feature classes such as 

the CallClient, MessageClient and AudioController. 

Create a Sinch Client: 

1. // Instantiate a SinchClient using the SinchClientBuilder. 

2. android.content.Context context = this.getApplicationContext(); 

3. SinchClient sinchClient = Sinch.getSinchClientBuilder().context(context) 

4.                                                   .applicationKey("<application key>") 

5.                                                   .applicationSecret("<application secret>") 

6.                                                   .environmentHost("sandbox.sinch.com") 

7.                                                   .userId("<user id>") 

8.                                                   .build(); 

 

The Application Key and Application Secret are obtained from the Sinch Developer 

Dashboard. The User ID should uniquely identify the user on the particular device. 



 
 

26 
 

Note: All listener call-backs emitted from the Sinch SDK are invoked on the same thread that 

the call to SinchClientBuilder.build  is made on. If the invoking thread is not the main-

thread, it needs to have an associated Looper . 

Specify Capabilities: 

The following example shows how to setup the client with both voice calling and instant 

messaging enabled. 

1. // Specify the client capabilities.  

2. // At least one of the messaging or calling capabilities should be enabled. 

3. sinchClient.setSupportMessaging(true); 

4. sinchClient.setSupportCalling(true); 

5. sinchClient.setSupportManagedPush(true); 

6. // or 

7. sinchClient.setSupportActiveConnectionInBackground(true); 

8. sinchClient.startListeningOnActiveConnection() 

Calling startListeningOnActiveConnection  allows your application to receive incoming 

calls and messages without using push notifications. 

Note: If the application is meant to only make outgoing calls but not receive incoming calls, 

don‘t call startListeningOnActiveConnection  or setSupportManagedPush . Outgoing 

calls can be made after calling the start method. 

 

Start the Sinch Client: 

Before starting the client, add a client listener. 

1. sinchClient.addSinchClientListener(new SinchClientListener() { 

2.  

3.     public void onClientStarted(SinchClient client) { } 

4.  

5.     public void onClientStopped(SinchClient client) { } 

6.  

7.     public void onClientFailed(SinchClient client, SinchError error) { } 

8.  

9.     public void onRegistrationCredentialsRequired(SinchClient client, 

ClientRegistration registrationCallback) { } 

10.  

11.     public void onLogMessage(int level, String area, String message) { } 

12. }); 

13.  

14. sinchClient.start(); 



 
 

27 
 

Terminate the Sinch Client: 

When the app is done using the SinchClient, it should be stopped. If the client is currently 

listening for incoming events, it needs to stop listening as well. After terminate  is called, 

any object retrieved directly from the client object (that is, CallClient , MessageClient , 

and AudioController ) is considered invalid. 

Terminating the client: 

1. sinchClient.stopListeningOnActiveConnection(); 

2. sinchClient.terminate(); 

 

Calling: 

The Sinch SDK supports two types of calls: app-to-app calls and app-to-phone calls. The 

CallClient is the entry point for the calling functionality of the Sinch SDK. 

Calls are placed through the CallClient  and events are received using 

the CallClientListener . The call client is owned by the SinchClient and accessed 

using sinchClient.getCallClient() . Calling is not enabled by default. 

Enable calling with the following method before starting the SinchClient : 

1. sinchClient.setSupportCalling(true); 

 

Set Up an App to App Call: 

Use the CallClient to start the call (the callUser  method). Pass the user identifier of the 

callee (the user receiving the call) to the call method, so that Sinch services can connect the 

call to the callee. 

1. CallClient callClient = sinchClient.getCallClient(); 

2. Call call = callClient.callUser("<remote user id>"); 

3. call.addCallListener(...);  

A call object is returned, containing details about the participants in the call, call details such 

as start time, call state, possible errors, and so on. 

 



 
 

28 
 

Assuming the callee‘s device is available, the method onCallProgressing is called on the 

CallListener. It notifies the application that the outgoing call is progressing. If a progress tone 

should be played, this is where it should be started. When the other party answers, the 

onCallEstablished method is called. Now, the users can start talking. If a progress tone was 

previously played, it should be stopped now. 

 

Handle Incoming Calls: 

To answer calls, the application must be notified when the user receives an incoming call. 

Add a CallClientListener to the CallClient to act on the incoming calls. The 

CallClientListener is notified using onIncomingCall() as calls come in to the device. 

1. CallClient callClient = sinchClient.getCallClient(); 

2. callClient.addCallClientListener(...); 

When the incoming call method is executed, the call can either be connected automatically 

without any user action, or it can wait for the user to press the answer or the hangup button. If 

the call is set up to wait for a user response, we recommended that a ringtone is played to 

notify the user that there is an incoming call. 

1. @Override 

2. public void onIncomingCall(CallClient callClient, Call call) { 

3.     // Start playing ringing tone 

4.     ...  

5.  

6.     // Add call listener 

7.     call.addCallListener(...);           

8. } 

To get events related to the call, add a call listener. The call object contains details about 

participants, start time, potential error codes, and error messages. 

 

Answer Incoming Call: 

To answer the call, use the answer method on the call to accept it. If a ringtone was 

previously played, it should be stopped now. User presses the answer button: 

1. // User answers the call 

2. call.answer(); 

3.  

4. // Stop playing ringing tone 

5. ...      



 
 

29 
 

Now, the clients on both ends establish the connection. When the call is established and the 

voice streams are running in both directions, the onCallEstablished listener method is called. 

 

Decline Incoming Call: 

If the call should not be answered, use the hangup method on the call to decline. The caller is 

notified that the incoming call was denied. If a ringtone was previously played, it should be 

stopped now. User presses the hangup button. 

1. // User does not want to answer 

2. call.hangup(); 

3.  

4. // Stop playing ringing tone 

5. ...   

 

Disconnecting a call: 

When the user wants to disconnect an ongoing call, use the hangup method. Either user 

taking part in a call can disconnect it. Hanging up a call: 

1. call.hangup(); 

When either party disconnects a call, the application is notified using the call listener method 

onCallEnded. This allows the user interface to be updated, an alert tone to be played, or 

similar actions to occur. A call can be disconnected before it has been completely established. 

Hanging up a connecting call: 

1. // Starting a call 

2. Call call = callClient.callUser("<remote user id>"); 

3.  

4. // User changed his/her mind, let’s hangup 

5. call.hangup(); 

 

Volume Control: 

To make sure that the volume of the call can be modified by the hardware volume controls, 

setVolumeControlStream(AudioManager.STREAM_VOICE_CALL) must be called on the 

Activity where the call is handled. Make sure that volumeControlStream is reset to a suitable 

value when the call has ended. 

For example, after creating a call (using CallClient.callUser) or when answering a call (using 

Call.answer()) you should call 



 
 

30 
 

setVolumeControlStream(AudioManager.STREAM_VOICE_CALL);. When the call ends, 

set the volume control stream back to it‘s previous value. For example in your 

implementation of CallListener: 

1. @Override 

2.     public void onCallEnded(Call call) { 

3.         setVolumeControlStream(AudioManager.USE_DEFAULT_STREAM_TYPE); 

4.     } 

 

 

Instant Messaging: 

The MessageClient is the entry point to Instant Messaging functionality in the Sinch SDK. 

Messages are sent through the MessageClient and events are received using the 

MessageClientListener. The message client is owned by the SinchClient and accessed using 

SinchClient.getMessageClient(). Instant messaging is not enabled by default. To enable 

instant messaging, SinchClient.setSupportMessaging(true) must be set. 

1. sinchClient.setSupportMessaging(true); 

2. sinchClient.start(); 

3.  

4. ... 

5.  

6. MessageClient messageClient = sinchClient.getMessageClient(); 

7. messageClient.addMessageListener(...); 

 

Send a Message: 

Sending a message with the Sinch SDK is easy. Get hold of a MessageClient as described 

earlier and pass it a WritableMessage. 

1. // Create a WritableMessage 

2. WritableMessage message = new WritableMessage( 

3.         "someRecipientUserId", 

4.         "Hello someRecipientUserId! How are you?");  

5.  

6. // Send it 

7. messageClient.send(message); 

 

 



 
 

31 
 

Message Delivery Success 

When a message to a recipient is successfully sent, there is an event on the 

MessageClientListener, onMessageSent. 

@Override 

public void onMessageSent(MessageClient client, Message message) { 

    // Persist message 

    // Update UI 

} 

Updating the UI from the onMessageSent callback is especially convenient when a user is 

logged in into more than one device simultaneously. The onMessageSent callback is fired on 

each device. This aids in keeping the UI consistent across devices. When the system has 

confirmed the messages were delivered the listener is notified using the 

onMessageDeliveredmethod. Inspecting the MessageDeliveryInfo parameter passed to the 

callback reveals more details on the specific event. 

1. @Override 

2. public void onMessageDelivered(MessageClient client, MessageDeliveryInfo 

deliveryInfo) { 

3.   Log.d(TAG, "The message with id "+deliveryInfo.getMessageId() 

4.     +" was delivered to the recipient with id"+ deliveryInfo.getRecipientId()); 

5. } 

 

Message Delivery Failure: 

Delivering a message to a recipient can fail for various reasons: there might not be a network 

available, the recipient does not have instant messaging support and so on. When a message 

failed to reach its destination the listener is notified using the onMessageFailed callback. The 

reason for failing to deliver a message is propagated back as an MessageFailureInfo instance. 

1. @Override 

2. public void onMessageFailed(MessageClient client, Message message, 

MessageFailureInfo failureInfo) { 

3.         Log.d(TAG, "Failed to send to user: "+info.getRecipientId() 

4.                     +" because: "+failureInfo.getSinchError().getMessage()); 

5. } 

Messages are persisted internally in the SDK. In case the message was not sent successfully it 

will be retried automatically at a later point in time. The message will be retried for 12 hours 

and then fail permanently firing the failure callback. 



 
 

32 
 

Messages are stored in the backend for 30 days before being removed. If the recipient has not 

started the app and downloaded the message history within this time frame, the message will 

be lost and no notification will be received. 

A message should be retried only in case of network unavailability (use 

messageFailureInfo.getSinchError().getErrorType().equals(ErrorType.NETWORK)). In this 

case create a new WritableMessage (using new WritableMessage(message)) and send that 

instance because the previous message is considered stale. 

 

Receive a Message: 

Incoming messages (Message) are delivered using the method onIncomingMessage on the 

MessageClientListener. 

1. @Override 

2. public void onIncomingMessage(MessageClient client, Message message) { 

3.     // Persist message 

4.     // Update UI 

5. } 

 

6.3 Parse 
  

Introduction: 

The Parse platform provides a complete backend solution for your mobile application. The 

Data services of this cloud based platform are used for the purpose of database of users and 

the messages. 

On Parse, you create an App for each of your mobile applications. Each App has its own 

application id and client key that you apply to your SDK install. Your account on Parse can 

accommodate multiple Apps. This is useful even if you have one application, since you can 

deploy different versions for test and production. 

The ParseObject 

Storing data on Parse is built around the ParseObject. Each ParseObject contains key-value 

pairs of JSON-compatible data. This data is schemaless, which means that you don't need to 

specify ahead of time what keys exist on each ParseObject. You simply set whatever key-

value pairs you want, and our backend will store it. For example, let's say you're tracking 

high scores for a game. A single ParseObject could contain: 

score: 1337, playerName: "Sean Plott", cheatMode: false 



 
 

33 
 

Keys must be alphanumeric strings. Values can be strings, numbers, booleans, or even arrays 

and objects - anything that can be JSON-encoded. Each ParseObject has a class name that 

you can use to distinguish different sorts of data. For example, we could call the high score 

object a GameScore. We recommend that you NameYourClassesLikeThis and 

nameYourKeysLikeThis, just to keep your code looking pretty. 

 

Saving Objects: 

Let's say you want to save the GameScore described above to the Parse Cloud. The interface 

is similar to a Map, plus the saveInBackground method: 

ParseObject gameScore = new ParseObject("GameScore"); 

gameScore.put("score", 1337); 

gameScore.put("playerName", "Sean Plott"); 

gameScore.put("cheatMode", false); 

gameScore.saveInBackground(); 

After this code runs, you will probably be wondering if anything really happened. To make 

sure the data was saved, you can look at the Data Browser in your app on Parse. You should 

see something like this: 

objectId: "xWMyZ4YEGZ", score: 1337, playerName: "Sean Plott", cheatMode: false, 

createdAt:"2011-06-10T18:33:42Z", updatedAt:"2011-06-10T18:33:42Z" 

There are two things to note here. You didn't have to configure or set up a new Class called 

GameScore before running this code. Your Parse app lazily creates this Class for you when it 

first encounters it. There are also a few fields you don't need to specify that are provided as a 

convenience. objectId is a unique identifier for each saved object. createdAt and updatedAt 

represent the time that each object was created and last modified in the cloud. Each of these 

fields is filled in by Parse, so they don't exist on a ParseObject until a save operation has 

completed. 

 

Retrieving Objects: 

Saving data to the cloud is fun, but it's even more fun to get that data out again. If you have 

the objectId, you can retrieve the whole ParseObject using a ParseQuery: 

ParseQuery<ParseObject> query = ParseQuery.getQuery("GameScore"); 

query.getInBackground("xWMyZ4YEGZ", new GetCallback<ParseObject>() { 

  public void done(ParseObject object, ParseException e) { 

    if (e == null) { 

      // object will be your game score 



 
 

34 
 

    } else { 

      // something went wrong 

    } 

  } 

}); 

To get the values out of the ParseObject, there's a getX method for each data type: 

int score = gameScore.getInt("score"); 

String playerName = gameScore.getString("playerName"); 

boolean cheatMode = gameScore.getBoolean("cheatMode"); 

If you don't know what type of data you're getting out, you can call get(key), but then you 

probably have to cast it right away anyways. In most situations you should use the typed 

accessors like getString. The three special values have their own accessors: 

String objectId = gameScore.getObjectId(); 

Date updatedAt = gameScore.getUpdatedAt(); 

Date createdAt = gameScore.getCreatedAt(); 

If you need to refresh an object you already have with the latest data that is in the cloud, you 

can call the fetchInBackground method like so: 

myObject.fetchInBackground(new GetCallback<ParseObject>() { 

  public void done(ParseObject object, ParseException e) { 

    if (e == null) { 

      // Success! 

    } else { 

      // Failure! 

    } 

  } 

}); 

The code in the GetCallback will be run on the main thread. 

 



 
 

35 
 

6.4 VoIP 
 

 

Voice over IP (VoIP) is a methodology and group of technologies for the delivery of voice 

communications and multimedia sessions over Internet Protocol (IP) networks, such as the 

Internet. Other terms commonly associated with VoIP are IP telephony, Internet telephony, 

broadband telephony, and broadband phone service. 

 

The term Internet telephony specifically refers to the provisioning of communications 

services (voice, fax, SMS, voice-messaging) over the public Internet, rather than via the 

public switched telephone network (PSTN). The steps and principles involved in originating 

VoIP telephone calls are similar to traditional digital telephony and involve signaling, 

channel setup, digitization of the analog voice signals, and encoding. Instead of being 

transmitted over a circuit-switched network, however, the digital information is packetized, 

and transmission occurs as IP packets over a packet-switched network. Such transmission 

entails careful considerations about resource management different from time-division 

multiplexing (TDM) networks. 

 

Early providers of voice-over-IP services offered business models and technical solutions that 

mirrored the architecture of the legacy telephone network. Second-generation providers, such 

as Skype, have built closed networks for private user bases, offering the benefit of free calls 

and convenience while potentially charging for access to other communication networks, 

such as the PSTN. This has limited the freedom of users to mix-and-match third-party 

hardware and software. Third-generation providers, such as Google Talk, have adopted[1] the 

concept of federated VoIP—which is a departure from the architecture of the legacy 

networks. These solutions typically allow dynamic interconnection between users on any two 

domains on the Internet when a user wishes to place a call. 

 

VoIP systems employ session control and signaling protocols to control the signaling, set-up, 

and tear-down of calls. They transport audio streams over IP networks using special media 

delivery protocols that encode voice, audio, video with audio codecs, and video codecs as 

Digital audio by streaming media. Various codecs exist that optimize the media stream based 

on application requirements and network bandwidth; some implementations rely on 

narrowband and compressed speech, while others support high fidelity stereo codecs. Some 

popular codecs include μ-law and a-law versions of G.711, G.722, which is a high-fidelity 

codec marketed as HD Voice by Polycom, a popular open source voice codec known as 

iLBC, a codec that only uses 8 kbit/s each way called G.729, and many others. 

 

VoIP is available on many smartphones, personal computers, and on Internet access devices. 

Calls and SMS text messages may be sent over 3G or Wi-Fi 

 

Protocols 

 

Voice over IP has been implemented in various ways using both proprietary protocols and 

protocols based on open standards. Examples of the VoIP protocols are: 

 

H.323 

Media Gateway Control Protocol (MGCP) 

Session Initiation Protocol (SIP) 

H.248 (also known as Media Gateway Control (Megaco)) 



 
 

36 
 

Real-time Transport Protocol (RTP) 

Real-time Transport Control Protocol (RTCP) 

Secure Real-time Transport Protocol (SRTP) 

Session Description Protocol (SDP) 

Inter-Asterisk eXchange (IAX) 

Jingle XMPP VoIP extensions 

Skype protocol 

Teamspeak

  Figure 6.3 VoIP using Pc 
 

 

 

 

Figure6.4. VoiP using phone 

 

 



 
 

37 
 

CONCLUSION AND FUTURE WORK 

 

The requirement analysis and design of the project has been done successfully. The project 

has been successfully implemented. Subsequent updates will include volunteer blocking and 

video calling features. The project is now live and running. The maintenance and support for 

the users of the application is in process.  



 
 

38 
 

SNAPSHOTS OF THE ANALYTICS 

 

Sample Users. 

 

Users Messages 

   

 

 

 

 

 

 

 



 
 

39 
 

    REFERENCES 

 

[1]D.  Griffiths, Head first android development. [Place of publication not identified]: 

O'Reilly Media, 2015. 

[2]M.  Murphy, The busy coder's guide to advanced Android development. [U.S.]: 

CommonsWare, LLC, 2009. 

[3]O.  Ayokunle, 'Implementing Security on a Voice over Internet Protocol (VoIP) Network: 

A Practical Approach', IOSRJCE, vol. 7, no. 4, pp. 24-30, 2012. 

[4]'VoIP for emerging devices', Communications Engineer, vol. 5, no. 5, pp. 26-31, 2007. 

[5]I.  Poole, 'What exactly is VoIP?', Communications Engineer, vol. 3, no. 2, pp. 44-45, 

2005. 

[6]R.  Ebbinghaus, 'VoIP lessons', Communications Engineer, vol. 1, no. 5, pp. 28-31, 2003. 

[7]L.  Bhebhe and R.  Parkkali, 'VoIP Performance over HSPA with Different VoIP Clients', 

Wireless Pers Commun, vol. 58, no. 3, pp. 613-626, 2010. 

[8] Developer.android.com, 'Android Developers', 2015. [Online]. Available: 

http://developer.android.com. [Accessed: 01- Oct- 2014]. 

[9]J.  Hamel, 'Android Messaging App Tutorial with Parse | Android App Tutorial | Sinch', 

Sinch, 2015. [Online]. Available: https://www.sinch.com/tutorials/android-messaging-

tutorial-using-sinch-and-parse/. [Accessed: 01- Mar- 2015]. 

[10]C.  Jensen, 'Using Sinch with Parse | Sinch', Sinch, 2015. [Online]. Available: 

https://www.sinch.com/tutorials/using-sinch-parse-sinch/. [Accessed: 08- Mar- 2015]. 

[11]J.  Hamel, 'Send Push Notifications In a Android Messaging App with GCM', Sinch, 

2015. [Online]. Available: https://www.sinch.com/tutorials/send-push-notifications-

android-messaging-app-using-gcm/. [Accessed: 14- Mar- 2015]. 

[12]J.  Hamel, 'App to Phone Calling with Android | Sinch', Sinch, 2015. [Online]. Available: 

https://www.sinch.com/tutorials/app-to-phone-calling-android/. [Accessed: 08- May- 

2015]. 



 
 

40 
 

[13]J.  Hamel, 'Build a Simple Android Calling App | Sinch', Sinch, 2015. [Online]. 

Available: https://www.sinch.com/tutorials/android-app-to-app-calling-tutorial/. 

[Accessed: 08- Apr- 2015]. 

[14] YouTube, '#1 Android Material Design Tutorial 1 with Android Studio [HD 1080p]', 

2015. [Online]. Available: 

https://www.youtube.com/watch?v=h57QpXp2TRg&list=PLonJJ3BVjZW6CtAMbJz1

XD8ELUs1KXaTD. [Accessed: 03- Apr- 2015]. 

[15] YouTube, '#2 Android Material Design Colors: Android Tutorial For Beginners [HD 

1080p]', 2015. [Online]. Available: 

https://www.youtube.com/watch?v=hrlGVU8z7zc&index=2&list=PLonJJ3BVjZW6Ct

AMbJz1XD8ELUs1KXaTD. [Accessed: 04- Apr- 2015]. 

[16] YouTube, '#3 Android ToolBar Example: Android Tutorial For Beginners [HD 1080p]', 

2015. [Online]. Available: 

https://www.youtube.com/watch?v=pMO8EVkhJO8&list=PLonJJ3BVjZW6CtAMbJz1

XD8ELUs1KXaTD&index=3. [Accessed: 04- Apr- 2015]. 

[17] YouTube, '#4 Android Customize Toolbar: Android Material Design Tutorial [HD 

1080p]', 2015. [Online]. Available: 

https://www.youtube.com/watch?v=4XfDDfa3rv8&list=PLonJJ3BVjZW6CtAMbJz1X

D8ELUs1KXaTD&index=4. [Accessed: 05- Apr- 2015]. 

[18] YouTube, '#5 Adding Actions to ToolBar/ActionBar/AppBar : Android Tutorials [HD 

1080p]', 2015. [Online]. Available: https://www.youtube.com/watch?v=EAZv1fP-

5TM&list=PLonJJ3BVjZW6CtAMbJz1XD8ELUs1KXaTD&index=5. [Accessed: 06- 

Apr- 2015]. 

[19] YouTube, '#6 Android Material Design Navigation Drawer Part 1 [HD 1080p]', 2015. 

[Online]. Available: 

https://www.youtube.com/watch?v=zWpEh9k8i7Q&index=6&list=PLonJJ3BVjZW6Ct

AMbJz1XD8ELUs1KXaTD. [Accessed: 06- Apr- 2015]. 

[20] YouTube, '#7 Android Navigation Drawer Material Design Part 2 [HD 1080p]', 2015. 

[Online]. Available: 

https://www.youtube.com/watch?v=tR2K_Sav7q8&index=7&list=PLonJJ3BVjZW6Ct



 
 

41 
 

AMbJz1XD8ELUs1KXaTD. [Accessed: 07- Apr- 2015]. 

[21] YouTube, '#8 Material Design Navigation Drawer Part 3: Android Tutorials [HD 

1080p]', 2015. [Online]. Available: 

https://www.youtube.com/watch?v=AsbtXnJ1zww&list=PLonJJ3BVjZW6CtAMbJz1X

D8ELUs1KXaTD&index=8. [Accessed: 07- Apr- 2015]. 

[22] YouTube, '#9 Android Navigation Drawer Material Design Part 4 [HD 1080p]', 2015. 

[Online]. Available: 

https://www.youtube.com/watch?v=TBKpsGar5mc&index=9&list=PLonJJ3BVjZW6Ct

AMbJz1XD8ELUs1KXaTD. [Accessed: 08- Apr- 2015]. 

[23] YouTube, '#10 Material Design Navigation Drawer Types: Android Tutorials [HD 

1080p]', 2015. [Online]. Available: 

https://www.youtube.com/watch?v=pJPRPvZoNt4&index=10&list=PLonJJ3BVjZW6C

tAMbJz1XD8ELUs1KXaTD. [Accessed: 08- Apr- 2015]. 

[24] Parse.com, 'Parse', 2015. [Online]. Available: 

https://www.parse.com/docs/android/guide. [Accessed: 08- Mar- 2015]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

42 
 

 

 

 

 

 

 
 

 

 


