

1

 Improving Web Accessibility Using

A Computer Game

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

in

Information Technology

under the Supervision of

Mr. Arvind Kumar

By

Arushi Sharma

111404

to

Jaypee University of Information Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

 CERTIFICATE

This is to certify that project report entitle Improving web accessibility using a

computer game , submitted by Arushi Sharma in partial fulfillment for the award of

degree of Bachelor of Technology in Information Technology to Jaypee University of

Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Supervisor’s Signature :

Supervisor’s Name : Mr Arvind Kumar

 Date :

3

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave us the possibility to complete

this project. I want to thank the Department of CSE & IT in JUIT for giving us the

permission to commence this project in the first instance, to do the necessary research

work.

I am deeply indebted to my project guide Mr Arvind Kumar, whose help, stimulating

suggestions and encouragement helped me in all the time of research on this project. I

feel motivated and encouraged every time I get his encouragement. For his coherent

guidance throughout the tenure of the project, I feel fortunate to be taught by him, who

gave me his unwavering support.

We are also grateful to Mr.Amit Singh(CSE Project lab) for his practical help and

guidance

Arushi Sharma

4

 Table of Content

S.NO TITLE. PAGE NO

1. Introduction

1. Introduction .10

1.1. Early Experiments in Human Computation . 11

1.1.1. Open Mind Initiative .11

1.2. Image Labeling Games . 12

1.2.1. Applications of Image Labeling .12

1.2.2. Goals of Image Labeling . 14

1.3. Motivation for Creating a New Game .14

1.4. Proposed New Game and Related Approaches .15

2. Related Work and State of the Art 9

2.1. The Evolution of Games With A Purpose .17

2.2. Image Labeling Games . 19

2.3 Secure Distributed Human Computation . 20

3. Algorithm

3.1Optimal puzzle selection algorithm .21

3.1.1 Simulation of Algorithm . 23

3.1.2 Discussion. 24

3.2 Flowchart. .24

3.3Score System . 25

3.3.1Porter Stemming Algorithm . 26

4. Implementation

4.1Tools and Technology. 27

4.1.1Java Version 1.628

4.2Classes Provided by the Framework .28

4.3Code. 31

5

5. Results

5.1Snapshots. 69

6. Conclusion and future work

6.1Conclusion. .71

6.2Future Work. 72

7. List of References 73

6

List of Figures

S.NO. TITLE. PAGE NO.

1. Figure2.2.1. Game with a puprose. 18

2. Figure3.1.1 Flowchart of OPSA. 22

3. Figure3.1.1.1 Graph of T vs r. 23

4. Figure 3.1.1.2 Graph of T vs System Gain. 23

5. Figure 3.2.1 Flowchart of Game. 24

6. Figure3.3.1 The Score System. 25

7. Figure 4.4.1 Snapshot 169

8. Figure4.4.2 Snapshot 2.70

7

 List of Tables

S.NO TITLE. PAGE NO

1. Table2.2.1 Game with a purpose.19

8

Abstract

Images on the Web present a major accessibility issue for the visually impaired, mainly

because the majority of them do not have proper captions. This paper addresses the

problem of attaching proper explanatory text descriptions to arbitrary images on the Web.

To this end, we introduce a new game, an enjoyable computer game that collects

explanatory descriptions of images. People play the game because it is fun, and as a side

effect of game play we collect valuable information. Given any image from the World

Wide Web, this game can output a correct annotation for it. The collected data can be

applied towards significantly improving Web accessibility. In addition to improving

accessibility, this is an example of a new class of games that provide entertainment in

exchange for human processing power. In essence, we solve a typical computer vision

problem with HCI tools alone. The Web is not built for the blind. Only a small fraction of

major corporate websites are fully accessible to the disabled, let alone those of smaller

organizations or individuals [5]. However, millions of blind people surf the Web every

day, and Internet use by those with disabilities grows at twice the rate of the non-disabled

.One of the major accessibility problems is the lack of descriptive captions for images.

Visually impaired individuals commonly surf the Web using “screen readers” .We set our

goal to assign proper descriptions to arbitrary images. A “proper” description is correct if

it makes sense with respect to the image, and sufficient if it gives enough information

about its contents. Rather than designing a computer vision algorithm that generates

natural language descriptions for arbitrary images (a feat still far from attainable), we opt

for harnessing humans. It is common knowledge that humans have little difficulty in

describing the contents of images, although typically they do not find this task

particularly engaging. On the other hand, many people would spend a considerable

amount of time involved in an activity they consider “fun.” Thus, like the ESP Game we

achieve our goal by working around the problem, and creating a fun game that produces

the data we aim to collect .We therefore introduce a game which, as a side effect,

generates explanatory sentences for randomly chosen images.

9

Problem Statement

To create an online game in order to improve the web accessibility for visually impaired

people.

10

Chapter 1: Introduction

1. Introduction

In the last few decades, computers have turned from academic curiosities into industrial

machines and finally into ubiquitous devices that penetrate nearly all aspects of modern

life. Many day-to-day things we take for granted would simply be impossible without the

immense computational capabilities of today’s computers. There are airplanes that would

not be able to sustain flight [4], if not for the constant meticulous corrections of highly

complex control systems. Computers can combine and analyze data from thousands of

measurement stations all over the world to create increasingly reliable weather forecasts

Many trains today even run without human drivers [34].This list could be extended to fill

a thesis of its own. Suffice it to say that overall computers are faster, more accurate and

less error-prone than human intuitively in solving a wide variety of problems. However,

the more difficult and diverse these solved problems are, the more apparent the unsolved

ones become: Understanding the meaning of a spoken sentence, distinguishing a cat from

a dog or describing the contents of a picture is no challenge at all for an average five-

year-old, but is currently challenging for even the most advanced computer systems.

One way to approach these somewhat surprising deficiencies is to try and find ways in

which computers can “think” in a more human way. Examples of this include neuronal

networks and other machine learning approaches. Similarly, one can try to transform

these problems to be more accessible for computers and find better algorithms.

A different approach – the one taken in this work – is to simply accept the different “skill

sets” of humans and computers. The goal is then to try and find ways to harness the

special capabilities of the human mind and combine them with the skills of machines.

11

1.1. Early Experiments in Human Computation

Von Ahn calls this process of harnessing the users’ intelligence Human Computation

[24]. A large number of alternative terms are used to describe collaborative problem-

solving, including Crowdsourcing, Peer Production, Collective Intelligence and Crowd

Wisdom. The first experiments in utilizing human intelligence presented tasks to their

users directly. Only later these tasks were turned into the games which are the focus of

this thesis. Nevertheless,the early systems form the base from which these games

evolved.

1.1.1. Open Mind Initiative

One of the first attempts to use the mental capabilities of laypersons to solve scientific

problems was the Open Mind Initiative. The Open Mind Initiative was founded by Stork

to improve intelligent systems such as text- or pattern recognition. Most of these systems

heavily rely on large sets of training data, the acquisition of which can be difficult – after

all, one cannot use computers to create them.

Stork proposes a three-tiered structure for the creation of intelligent systems. Firstly,

domain experts provide the fundamental models and algorithms. The creation of training

data for these systems is too labor intensive to be performed by a small group of

specialists.

Stork therefore propose to allow large groups of laypersons to provide the necessary

training data as the second tier. Finally, the Open Mind Initiative provides a framework

for recruiting and motivating volunteers and collecting the data using the Web. Since

training datasets should usually be as large as possible, it is desirable to recruit as many

volunteers as possible. Stork names a number of incentives for motivating participants.

These incentives include altruism and public recognition. Stork furthermore proposes to

design the interfaces of the data collection systems as games. The experience of playing

these games should be pleasurable, thus motivating users to participate. This is the first

mention of what would later be called Games With A Purpose by von Ahn. However,

Stork and other members of the Open Mind Initiative did not focus on the creation of

games in their further research. The Open Mind Initiative will therefore not be discussed

in more detail in this work.

12

1.2. Image Labeling Games

After the creation of the CAPTCHA, von Ahn recognized another important fact. Aside

from the time wasted through necessary evils like CAPTCHAs, people love to waste time

voluntarily. Von Ahn estimates that several billion human-hours are spent each year

playing solitaire2. If properly channeled, this energy could be used to tackle previously

unsolved large scale computation problems. Von Ahn proposes to do this by creating so

called Games With A Purpose (for better readability, the abbreviations “GWAP” and

“GWAPs” will be used to distinguish “Game With A Purpose” and “Games With A

Purpose” respectively).

The first application of a GWAP demonstrated by von Ahn and Dabbish was image

labeling. Image labeling is the process of creating textual meta-data describing the

content of an image. These meta-data are usually divided into single attributes called

labels or tags (both terms will be used synonymously from now on). These attributes can

include both abstract information, such as the type of the image (e.g., “photograph”,

“drawing”or “painting”), as well as concrete descriptions of the contents depicted in it

(e.g., “small dog” or “tree”). Automating this process is a highly researched subject in the

field of machine learning, but current automatic solutions cannot rival the accuracy of

human created descriptions.

Manually annotating images can be feasible for a private collection of photographs, but

current public image databases often contain millions of different images. Paying workers

to manually label these images is usually not financially feasible and relying solely on

volunteers raises the issue of how to motivate the participants. To solve this problem, von

Ahn and Dabbish created the so-called ESP Game in which two players collaboratively

create textual descriptions of images.

1.2.1. Applications of Image Labeling

There are several reasons for creating accurate textual descriptions of images. Arguably

the most important application for image labeling is image retrieval. Selecting stored

images in a systematic fashion is one of the fundamental functions of any image

database. As a special case, the Web can be considered a very large image database.

Usually, queries to such a database refer to the content of the stored images. For example,

a user might want to access an image depicting a specific object. The following

13

paragraph lists a number of image retrieval methods and explains why image labeling is

important.

One possibility for handling such requests is query by example. The user provides a

sample image and the database returns images that are similar to this image by some

metric. An implementation of this technique is the TinEye image search engine [tin]. One

issue of this method is that the user has no method for specifying which trait of the

sample image is important (images contain colors, shapes and specific objects, all of

which could be, but do not need to be important in a query). Furthermore, this approach

requires that the user is already in possession of a suitable example image. Lastly, query

by example does not allow searching for generic classes of images (for example, images

containing any kind of “building”).

Another approach for creating visual queries is through sketches. Users can create simple

drawings and the image database should return objects that match this sketch in shape

and/or color. For this approach to return accurate results, users need to be able to create

detailed and accurate drawings. Existing implementations of this query approach (see the

works of Eitz et al., Chen et al., Gavilan et al.) are designed for casual applications such

as creating collages from personal images. This suggests that sketching alone is not

sufficient for accurate selection of images. Chen et al. circumvent this problem, by

combining querying by shape with textual queries [3].

Using textual queries is arguably the most common image retrieval technique. Many

image database systems (e.g., Google Images [goob] or Prometheus [pro]) primarily rely

on textual descriptions for querying images. This means that each image is assigned a

symbolic description against which any entered query is matched. Since the content of

the images does not need to be considered while processing the queries, database requests

can be performed using fast and proven algorithms for document retrieval. Furthermore,

users can describe the image they are looking for without having to provide examples or

needing to be able to draw. However, the results of textual queries will only be accurate

and reliable if the descriptions of the images reflect their actual content.

In some cases, image descriptions can be created automatically without analyzing the

content of the images. On the Web, images are often accompanied by text. By

considering spatial proximity between images and texts, potentially relevant keywords

for images can be extracted from Web-sites. Nevertheless, this extraction is error-prone

and fails completely for images without text. Thus, image labeling is highly important for

image retrieval.

14

In turn, an important application for image retrieval is the filtering of content. In some

cases, restricting the access of users to certain materials is desirable. For example, parents

might want to allow their children access to the Web, but protect them from pornography

and violence. Appropriately labeled images could solve this issue reliably.

1.2.2. Goals of Image Labeling

As the arguably most important application, image retrieval defines the desirable

properties of image labeling. Therefore, the labels for an image should reflect the

structure of common queries. Therefore, the existence of a sufficient number of generic

labels for each image is crucial. On the Web, a large number of generically labeled

images already exist – a search for “car” on Bing (formerly Live) Image Search [bin]

returns 150 million results.

In contrast, queries using highly specific labels such as a car make and color return too

few or incorrect results. Therefore, it is also important that images are labeled with as

many specific tags as possible.

In combination, the above statements lead to the following conclusion: The best results in

image retrieval will be achieved if images are labeled with a comprehensive set of labels,

including both generic and specific ones.

1.3. Motivation

Tag Diversity. As discussed above, the goal of image labeling is to create a

comprehensive set of descriptions for any given image.

The basic mechanics of existing games are designed to enforce correct labels, but not

necessarily comprehensive ones. Probably the most important example for this is the ESP

game. It is important because the problem is prominent in the ESP Game and because it

is one of the few implementations that are used productive systems.The ESP game pairs

two random players who have to agree on a description of an image. Thus, each player

does not know anything about her partner and thus has to assume she is not an expert in a

given domain. Therefore, players are more likely to achieve a match if they enter a

generic term as opposed to a specific ones. This has been proven using game theory by

15

Jain and Parkes. The basic game design of the ESP game would thus yield specific

descriptions only with a small likelihood.

Current Solution. As a solution,we propose the use of so called taboo words. Any tag

entered for a given image is added to a list (such a list is kept for each image). If a tag is

already on the list, the number of times it has been assigned is counted. Once this number

of occurrences of a tag exceeds a given threshold, the tag is added to the list of taboo

words for the given image. This list is shown to players in later rounds and the players

cannot enter the displayed labels any longer. Taboo words are meant to force players to

use different and eventually more specific terms.

Since the results of this game are not publicly available, the authors extracted the

displayed taboo words, which reflect the labels assigned to an image.

Despite their restriction to taboo words, we found a large number of redundant and

generic labels in the extracted data. Furthermore, many tags where highly correlated. As

an example, the authors mention that 68% of all images labeled with “clouds” were also

labeled with “sky”. Weber et al. therefore argue that this kind of data does not necessarily

need to be created by human players. To prove their point, they implemented a software

that successfully plays the ESP Game. This is somewhat paradoxical, since the main

objective of the game (i.e., labeling images) cannot yet be achieved reliably by

computers.

1.4. Proposed New Game and Related Approaches

Aside from the use of taboo words, a number of image labeling games have been created

using various strategies for ensuring tag diversity.

Like most of the games mentioned above, the proposed game is designed to be

collaboratively played by two players. A grid of images is shown to both players. The

order of the images is randomized for each player. In the grid of the first player, one

image is highlighted. Their goal is to describe this image to their partner. The second

player must then select the right image from their grid. By selecting the images in the

grid by tag similarity, it is possible to force players to contribute new information. The

basic mechanism of game is quite similar to that of Verbosity, created by von Ahn et

al.However, Verbosity is not an image labeling game and lacks the concept of using input

similarity to increase tag diversity.

16

Scope of this Thesis.

Following the arguments mentioned above, image labeling games should be designed

with both correctness and diversity of tags as their fundamental goals. The aim of this

thesis is to present and evaluate a new design for an image labeling game.

17

Chapter 2: Related work and the state of the art

2. GWAP

The following Section contains a short description of the history of Games With A

Purpose and an overview of the state of the art of GWAPs. The discussed related works

include both games used image labeling as well as games designed for other purposes.

2.1. The Evolution of Games With A Purpose

As described in the previous Section, GWAPs evolved from data gathering systems.

Their main goal is to motivate players to contribute time and effort for solving scientific

problems.These games should thus be designed to be fun to play to incite as many users

as possible.At the same time, GWAPs must perform some kind of calculation while being

played. This purpose of the game does necessarily have to be communicated to the

player, but is the essential characteristic that separates GWAPs from games that only aim

to entertain. Instead of being executed by computer systems, these algorithms are being

“run” on the highly distributed minds of the players. Other than that, the same

considerations as for any other algorithm apply. The game should be correct, meaning

that irrespective of the individual players’ intentions, the relationship between input and

output of the game must conform to a given specification. Von Ahn suggests to achieve

this by making correctness of the output the winning condition for a given game. At first,

this sounds like a paradox. The problems tackled by Games With A Purpose are those to

which the solution cannot be computed. This usually means that the correctness of a

solution cannot be verified automatically either.However, in many instances the players

themselves can verify a solution. In all cases, the players are required to be independent.

Depending on the design of the game and the types of information involved, the players

may also need to be unable to communicate outside of the game. If these preconditions

apply, there are several possibilities of enforcing correct output. Von Ahn proposes two

general verification schemes [24] and later added a third one [26].

• In Output-agreement games, all players involved assume the same role. Their output

will be accepted only if both players independently agree on it.

18

• In Inversion-problem games, the players assume different roles. The first player

transforms a given input into an intermediate output. This output is passed to the second

player. The second player’s task is to reconstruct the first player’s input. If she succeeds,

the intermediate output is accepted

• In Input-agreement games, both players transform a given input into an intermediate

output. In contrast to inversion-problem games, both players can see the intermediate

output of their partner. They then try to agree on whether their respective inputs are

identical

Figure 2.1.1

Despite the diversity of existing Games With A Purpose, almost all of them use

variations of the described methods. The correctness of the output cannot be guaranteed

using any of the described mechanisms. For example, both players could make a mistake

and still agree on the erroneous output. Alternatively, malicious users could circumvent

the communication barrier and deliberately create false .These and other scenarios which

lead to incorrect data cannot be avoided entirely. However, if the aforementioned

19

preconditions apply and a verification method is used, the game design can be adjusted to

return correct solutions with an arbitrarily high probability.

Aside from being correct as described above, an algorithm should also be efficient. For

computer algorithms, this means that the time and memory required for finding a solution

to a given problem should be as low as possible. This requirement is applicable to the

implementation of a game, but not necessarily to the game itself. To evaluate the

efficiency of Games With A Purpose, von Ahn proposes a combination of two measures

• The throughput of a game measures the average number of problems solved per player

in a given time span. This is an indication of how effective players are when they are

playing the game. However, a game with a high throughput can still be inefficient if no

one is willing to play it. The enjoyability of a game is a very important aspect of its

quality and is not captured by the measure of throughput.

• The Average Lifetime Play (ALP) of a game is defined as the overall average time one

single player spends playing the game. Since players are less likely to quit playing a fun

game, this measure is indicative of the enjoyability of a game.

Table 2.1.1

2.2. Image Labeling Games

Although image labeling appears to be a relatively narrow field of application for

GWAPs, a number of different image labeling games have been designed. The earliest

20

and most popular image labeling game is the ESP Game (see next Section) developed by

von Ahn and Dabbish. Several other games have been developed (by the group around

von Ahn as well as other groups) as extensions or improvements to the ESP Game.

Additionally, there are a number of games that use radically different game mechanics.

The following Section gives an overview of these existing implementations and their

respective gameplay.

2.3 Secure Distributed Human Computation

Gentry et al. propose a framework for what they call secure distributed human

computation (SDHC). An SDHC system is constituted by four parties:

• A set of problem suppliers, who have a set of problems they need solved. This is

usually a company.

• A set of (human) problem solvers, who are capable of solving such problems. These are

the primary users of the system – the players, in case of a game.

• A distributor who assigns problems to solvers who are willing to process them.

• A set of store fronts, which are venues (usuallyWeb-sites), at which solvers can contact

the distributor to acquire tasks. The store fronts usually provide some kind of service to

the solvers as a reward for processed problems.Gentry et al. divide the interaction

between these entities into a registration and an operation phase. The authors furthermore

propose a threat model for both phases. In the registration phase, the primary attack lies

in the (possibly automated) creation of multiple user accounts. In the operation phase, the

primary attack lies in the introduction of false answers into the system by malicious users

From this, the authors derive a probabilistic analysis of the reliability of a SDHC system.

To achieve any reliability in human computation, each problem should be processed by

multiple users. Under the assumption that there is only one correct answer for each

problem,the answers of the users must be combined to reach an overall conclusion.

Gentry et al.compare majority voting and Bayesian inference for achieving this. In a

majority vote, the answer given by the highest number of users is elected to be the correct

one. In contrast, Bayesian inference takes into account the previous results of a user, thus

putting more trust into answers by users that have given right answers before. Gentry et

al. prove that majority voting yields the most reliable results in the presence of malicious

users. Assuming that malicious users only provide false answers and the other users are

21

correct 75% of the time, only two thirds of all players need to be honest for majority

voting to succeed. If these conditions are met or exceeded, the reliability of a solution

increases exponentially with number of users assigned to a given problem.

22

Chapter 3:Algorithms

3.1 Optimal puzzle selection algorithm

The idea is there are optimal r labels per labeled image in system

We group images into 3 sets

 1. Contains all the images that have not been played

 2. Contains all the images that have been played at least once, but less than r rounds

3.

Figure3.1.1 Flowchart of OPSA

102 PPPP 

23

3.1.1 Simulation of algorithm

Observation

T vs. r → OPSA

T vs. System gain → 3 strategies

Graphs:

Figure 3.1.1.1 The above graph is T vs. r

Figure3.1.1.2 The above graph is T vs. System gain

24

3.1.2 Discussion

OPSA is superior to RPSA & FPSA in the simulation

A systematically & thorough study to verify the purposed strategies in real systems is

highly desirableTo this end, we decide to implement the game system

3.2 Flow Chart

Figure 3.2.1 The strategy selection process gives priority to the strategy that has been

used least in terms of the # of rounds played previously

25

3.3 Score System

The score system is used to measure the quality of the agreed words

The quality of each the agreed word should depends on its popularity

high frequency → low quality → low score

low frequency → high quality → high score

Figure3.3.1 The score System

0, 0

0

1

0































fk

f

f

L
n

j

j

i

j

j

i

26

3.3.1 Porter stemming algorithm

Apply the Porter Stemming Algorithm to remove common morphological and

inflectional endings of English words

Prevent words with the same root, but receiving different scores (e.g. determinant and

determine)Reduce the plural form to the singular form (e.g. experiments and experiment)

27

Chapter 4:Implementation

4.1Tools and Technologies:

4.1.1 Java 1.6 Version:

4.1.1.1 Characteristics:

JAVA is a programming language, developed by Sun Microsystems and first released in

1995 (release 1.0). Since that time, it gained a large popularity mainly due to two

characteristics:

A JAVA programme is hardware and operating system independant. If well written (!),

the same JAVA programme, compiled once, will run identically on a SUN/solaris

workstation, a PC/windows computer or a Macintosh computer. Not mentioning other

Unix flavors, including Linux, and every Web browser, with some restrictions described

below. This universal executability is made possible because a JAVA programme is run

through a JAVA Virtual Machine. it is an object oriented language. This feature is mainly

of interest for software developers.

4.1.1.2 JAVA Virtual Machine (JVM):

A JAVA programme is build by a JAVA compiler which generates its own binary code.

This binary code is independant from any hardware and operating system. To be

executed, it needs a virtual machine, which is a programme analyzing this binary code

and executing the instructions it contains.

Of course, this Java Virtual Machine (JVM) is hardware and operating system dependant.

Two types of Virtual Machines exist: those included in every Web Browser, and those

running as an independent programme, like the Java RunTime Environment (JRE) from

Sun Microsystems. These programmes need to be downloaded for your particular

platform. As seen in the next paragraph, these two types of Virtual Machines do not

behave exactly the same.

4.1.1.3 Applet and Standalone Application:

A JVM in a web browser runs a JAVA programme as an Applet. The applet is embedded

in a web page and downloaded from a web server like any other HTML page or image

28

when requested. An independent JVM runs a JAVA programme as a Standalone

Application.

4.1.2 Eclipse Galileo Version 3.5.1

Eclipse is an Integrated development environment(IDE). It contains a

base workspace and an extensible plug-in system for customizing the environment.

Written mostly in Java, Eclipse can be used to develop applications in Java.

4.2 Classes Provided by the Framework

The interaction framework provides three base classes that contain the basic functionality

necessary for implementing real-time games. All three classes are generic and abstract.

This means that they must be extended to create actual games. The subclasses which

extend the base classes contain all additional code that describes the behavior of the

game. As only the core functionality is provided by the base classes, the framework

makes it easy to implement a wide range of different game designs. This Section gives an

overview of the functionality provided by the base classes.

PlayerMatcher The most important class in the multi-player interaction framework is

the PlayerMatcher. It lies within the application context and represents the global entry

point for all users wanting to participate in a game. The most important method provided

by the PlayerMatcher is match. The method returns a SharedGame and a Player object. It

can be called without parameters. In this case, it creates a Player and a SharedGame using

default parameters. Alternatively, a Player object and a SharedGame can be provided by

the caller. This makes it possible to customize the parameters of the SharedGame as

opposed to relying on the default value. For example, the two variants of Karido rely on

the same set of classes, but customize the parameters of the SharedGame

to implement the different game mechanics.In the match method, the PlayerMatcher

searches the maintained list of running gamesto ensure that no player is able to participate

in multiple games at the same time. If anexisting game is found and it is compatible the

game provided by the caller, the existing SharedGame and the existing Player object are

29

returned. This means that the player is redirected to the existing game. In contrast, if the

existing game is not compatible with the requested new game, the existing game is

terminated and the new SharedGame is used to find a partner for the player. As the next

step, the PlayerMatcher searches the list of waiting players

SharedGame class

The SharedGame class encapsulates all data that is shared between the players of a game.

In the base class, this data primarily consists of information necessary for running a game

– such as the index of the current round, the total number of rounds, the duration of each

round or the score achieved by the players. The methods provided by the SharedGame

base class consists primarily of accessors for the shared properties. Two abstractmethods

must be implemented by the subclasses created for a game. The startNewRoundmethod is

called each time a new round of the game has begun and can be used to initializeany

game specific properties.

Player class

The Player class represents a player of a game. Each Player contains a Person attribute.

The Person class is provided by the Artigo framework and represents a person that is

logged into the system or plays anonymously. The Player class also holds a GameRound

object, which represents a game round as defined by the Artigo framework. This object

can, for example, be used to append custom actions to the game round. Each Player is

assigned a list of notifiers. These notifiers are text strings, which can be added using the

addNotifier and signal methods. The notifiers are used by the Player object as well as the

user interface to react to events in a game. For example, once a player has sent a tag to

her partner in Karido, a notifier “tags” is added. This notifier is intercepted by the polling

method of the partner’s user interface. The user interface responds by displaying the

updated list of tags.

Preparations. The first step in the implementation of a new game is to create the

necessary folder structure, representing the Java namespace of the new game. In this

example, the used namespace is gwap.game.test. Four new classes must be added into

this namespace: Ai.java, Player.java, PlayerMatcher.java, SharedGame.java. These

classes extend the base classes provided by the framework

30

Furthermore, a GameType for the new game must be created in the database of the

system.

For the example, this can be achieved by executing the following SQL command:

INSERT INTO gametype

(id , d e s c r i p t i o n , l abe l , name , playe r s , roundduration , rounds , workflow ,

plat form)

VALUES

(3 , ’A simple test scenario ’ , ’Test ’ , ’gwapGameTest ’ , 2 , 120 , 1 , NULL, NULL) ;

Please make sure to choose an id that is not yet taken. Longer values for roundduration

can be set if desired.

31

4.3 CODE

Database

import HumanComputation.GWAP.*;

import java.sql.*;

import java.util.concurrent.*;

import java.util.*;

public class Database extends HumanComputation.GWAP.Database{

 //

 //constructors

 //

 public Database(){

 System.out.print("creating database system ... ");

 checkDB();

 connectDB();

 checkTable();

 System.out.println("ok");

 }

 //

 //public methods

 //

 public String getParameter(String s){

 String str = "";

 if(s.equals("GETNEWIMAGE")){

 PconDB();

 //random selection

 String sql;

32

 ResultSet rs;

 int picid = 0;

 String filename = "";

 List<String> label = new ArrayList<String>();

 List<String> candidate = new ArrayList<String>();

 //get id and filename

 sql = "SELECT id, filename FROM pic WHERE isplaying = false ORDER BY

RAND() LIMIT 1";

 rs = querySQL(sql);

 int i = 0;

 try{

 while(rs.next()){

 picid = rs.getInt("id");

 filename = rs.getString("filename");

 i++;

 }

 }catch(SQLException sqle){

 System.out.println("" + sqle);

 VconDB();

 }

 if(i != 1){

 System.out.println("error code : 19, i = " + i + ", picid = " + picid + ", filename

= " + filename);

 VconDB();

 }

 //get label

 sql = "SELECT label.taboo taboo FROM label AS label ";

 sql += "JOIN session AS session ON label.session_id = session.id ";

 sql += "WHERE session.pic_id = " + picid + " ";

 sql += "ORDER BY taboo ASC ";

 rs = querySQL(sql);

 try{

 while(rs.next()){

 label.add(rs.getString("taboo"));

 }

 }catch(SQLException sqle){

 System.out.println("" + sqle);

 VconDB();

 }

 //get candidate

 sql = "SELECT DISTINCT tag FROM pic_metadata ";

33

 sql += "WHERE pic_id = " + picid + " ";

 rs = querySQL(sql);

 try{

 while(rs.next()){

 candidate.add(rs.getString("tag"));

 }

 }catch(SQLException sqle){

 System.out.println("error code : 21 " + sqle);

 VconDB();

 }

 sql = "UPDATE pic SET isplaying = true WHERE id = " + picid;

 //executeSQL(sql);

 VconDB();

 str += "<IMAGEINFORMATION IMAGEID=\"" + picid + "\" URI=\"" +

imagehost + filename + "\">";

 for(i = 0; i < label.size(); i++){

 str += "<LABEL>" + label.get(i) + "</LABEL>";

 }

 for(i = 0; i < candidate.size(); i++){

 str += "<CANDIDATE>" + candidate.get(i) + "</CANDIDATE>";

 }

 str += "</IMAGEINFORMATION>";

 }

 return str;

 }

 public void writeRecord(String s){

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 private void checkDB(){

 try{

 Class.forName("com.mysql.jdbc.Driver");

 }catch(ClassNotFoundException cnfe){

 // can not find mysql driver

34

 System.out.println(cnfe);

 }

 }

 private void checkTable(){

 }

 private void connectDB(){

 try{

 setConnection(DriverManager.getConnection("jdbc:mysql://" + mysqlhost + "/" +

mysqldatabase, mysqlaccount, mysqlpassword));

 }catch(SQLException sqle){

 // can not connect to the database

 System.out.println(sqle);

 }

 }

 private void executeSQL(String sql){

 try{

 Statement statement = getConnection().createStatement();

 statement.executeUpdate(sql);

 }catch(SQLException sqle){

 if(sqle.getSQLState().equals("08S01") || sqle.getSQLState().equals("41000")){

 connectDB();

 executeSQL(sql);

 }else{

 System.out.println(sqle);

 }

 }

 }

 private ResultSet querySQL(String sql){

 try{

 Statement statement = getConnection().createStatement();

 ResultSet rs = statement.executeQuery(sql);

 return rs;

 }catch(SQLException sqle){

 if(sqle.getSQLState().equals("08S01") || sqle.getSQLState().equals("41000")){

 connectDB();

 return querySQL(sql);

 }else{

 System.out.println(sqle);

 return null;

 }

35

 }

 }

 private void PconDB(){

 try{

 conDataBase.acquire();

 }catch(InterruptedException ie){

 System.out.println(ie);

 }

 }

 private void VconDB(){

 conDataBase.release();

 }

 //

 //private attributes

 //

 private Semaphore conDataBase = new Semaphore(1, true);

 private String mysqlaccount = ""; // MySQL account

 private String mysqldatabase = ""; // Database name

 private String mysqlhost = ""; //MySQL host IP or localhost

 private String mysqlpassword = ""; //Password

 private String imagehost = "http:/xxx.xxx.xxx.xxx/.../.../"; //host of images

}

36

Enigma

import java.math.*;

import java.security.*;

public class Enigma{

 //

 //constructors

 //

 public Enigma(){

 }

 //

 //public methods

 //

 public String getPublickey(){

 return "";

 }

 public String decrypt(String msg){

 return "";

 }

 public String encrypt(String msg){

 return "";

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 private void generateKeys(){

37

 p = BigInteger.probablePrime(N, random);

 q = BigInteger.probablePrime(N, random);

 }

 private String normalize(String val){

 return "";

 }

 //

 //private attributes

 //

 SecureRandom random = new SecureRandom();

 BigInteger phi;

 BigInteger n;

 BigInteger p;

 BigInteger q;

 //block size is 2 * N bits

 int N = 16;

}

38

Game

import HumanComputation.GWAP.*;

import java.util.*;

import java.text.*;

import java.util.concurrent.*;

public class Game extends HumanComputation.GWAP.Game{

 //

 //constructors

 //

 public Game(){

 }

 public Game(Player p1, Player p2, HumanComputation.GWAP.Database d,

HumanComputation.GWAP.Log l, HumanComputation.GWAP.Score s){

 addPlayer(p1);

 addPlayer(p2);

 setDatabase(d);

 setLog(l);

 setScore(s);

 p1.setGame(this);

 p2.setGame(this);

 }

 //

 //public methods

 //

 public void close(){

 }

 public void processMessage(HumanComputation.GWAP.Player p,String input){

 PconIP();

 Message msg = new Message(input);

 if(msg.getStringParameter("TYPE").equals("GUESS")){

 System.out.println(1);

 String guess = msg.getStringParameter("VALUE");

 System.out.println(guess);

 if(msg.getStringParameter("ROUNDID").equals("" + getRoundSize())){

39

 boolean agreement = false;

 for(int i = 0; i < thisroundlabelpool.size(); i++){

 if(thisroundlabelpool.get(i).toLowerCase().equals(guess.toLowerCase())){

 agreement = true;

 break;

 }

 }

 if(!agreement){

 boolean findnew = false;

 for(int i = 0; i < thisroundguesspool.size(); i++){

 boolean wordequal =

thisroundguesspool.get(i).toLowerCase().equals(guess.toLowerCase());

 boolean playerequal =

thisroundplayeridguesspool.get(i).equals(p.getInformation("ID"));

 if(wordequal && !playerequal){

 findnew = true;

 break;

 }

 }

 System.out.println("check point 1");

 thisroundplayertrace += "<GUESS PLAYER=\"" + getPlayerIndex(p) + "\"

TIMESTAMP=\"" + getNowTime() + "\">" + guess + "</GUESS>";

 thisroundguesspool.add(guess);

 System.out.println(thisroundplayertrace);

 thisroundplayeridguesspool.add(p.getInformation("ID"));

 if(findnew){

 System.out.println(2);

 thisroundagreement = guess;

 thisroundscore = getScore().getScore(guess);

 System.out.println(thisroundscore);

 totalscore += Integer.parseInt(thisroundscore);

 saveRound("SUCCESS");

 createNewRound();

 }else{

 sendExclusivePlayerMessage(getPlayerIndex(p), "<GUESS

ROUNDID=\"" + getRoundSize() + "\">" + guess + "</GUESS>");

 }

 }

 }

 }else if(msg.getStringParameter("TYPE").equals("PASS")){

 if(!(thisroundispassing.get(getPlayerIndex(p)).booleanValue())){

 thisroundispassing.remove(getPlayerIndex(p));

 thisroundispassing.add(getPlayerIndex(p), new Boolean(true));

 thisroundplayertrace += "<PASS PLAYER=\"" + getPlayerIndex(p) + "\"

timestamp=\"" + getNowTime() + "\" />";

 sendExclusivePlayerMessage(getPlayerIndex(p), "<PASS ROUNDID=\"" +

getRoundSize() + "\" />");

 }

40

 if(isAllPassing()){

 saveRound("PASS");

 createNewRound();

 }

 }else if(msg.getStringParameter("TYPE").equals("TIMEISUP")){

 }else if(msg.getStringParameter("TYPE").equals("ERRORMSG")){

 }else if(msg.getStringParameter("TYPE").equals("NAME")){

 }else if(msg.getStringParameter("TYPE").equals("ENCRYPTED")){

 }

 VconIP();

 }

 public void start(){

 setAllPlayerStage(4);

 gametrace += "<GAMETRACE CREATETIME=\"" + getNowTime() + "\"

NUMBEROFPLAYER=\"" + getPlayerSize() + "\">";

 for(int i = 0; i < getPlayerSize(); i++){

 gametrace += "<PLAYER ID=\"" + i + "\" IP=\"" +

getPlayer(i).getInformation("UserIP") + "\" />";

 }

 String str = "server is creating a game,";

 for(int i = 0; i < getPlayerSize(); i++){

 str += " player" + i + " id = " + getPlayer(i).getInformation("ID") + " ip = " +

getPlayer(i).getInformation("UserIP");

 }

 printlnLog(str);

 createNewRound();

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 private void clearThisRoundInformation(){

 thisroundimageid = "";

 thisroundplayertrace = "";

 thisroundresult = "";

 thisroundscore = "";

 thisroundagreement = "";

41

 thisroundlabelpool.clear();

 thisroundguesspool.clear();

 thisroundplayeridguesspool.clear();

 thisroundispassing.clear();

 for(int i = 0; i < getPlayerSize(); i++){

 thisroundispassing.add(new Boolean(false));

 }

 }

 private void createNewRound(){

 // get new image

 Message msg = new Message(getNewImage());

 //create match element

 String match = "";

 if(thisroundresult.equals("SUCCESS")){

 match = "<MATCH SCORE =\"" + thisroundscore + "\">" + thisroundagreement

+ "</MATCH>";

 }

 clearThisRoundInformation();

 thisroundimageid = msg.getStringParameter("IMAGEID");

 //create image message

 String str = "<IMAGE URI=\"" + msg.getStringParameter("IMAGEURI") + "\"

ROUNDID=\"" + getRoundSize() + "\">";

 str += match;

 if(msg.getListParameter("LABELLIST") != null){

 for(int i = 0; i < msg.getListParameter("LABELLIST").size(); i++){

 str += "<LABEL>" + msg.getListParameter("LABELLIST").get(i) +

"</LABEL>";

 thisroundlabelpool.add(msg.getListParameter("LABELLIST").get(i));

 }

 }

 str += "</IMAGE>";

 sendAllPlayerMessage(str);

 }

 private String getNewImage(){

 return getDatabase().getParameter("GETNEWIMAGE");

 }

 private String getNowTime(){

 Calendar now = Calendar.getInstance();

 DateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 return dateformat.format(now.getTime());

 }

42

 private boolean isAllPassing(){

 boolean passing = true;

 for(int i = 0; i < thisroundispassing.size(); i++){

 if(!(thisroundispassing.get(i).booleanValue())){

 passing = false;

 break;

 }

 }

 return passing;

 }

 private void PconIP(){

 try{

 conInstuctionProcess.acquire();

 }catch(InterruptedException ie){

 System.out.println(ie);

 }

 }

 private void printLog(String s){

 getLog().write(s);

 }

 private void printlnLog(String s){

 getLog().writeLine(s);

 }

 private void saveRound(String result){

 if(result.equals("SUCCESS")){

 thisroundresult = "SUCCESS";

 }else if(result.equals("PASS")){

 thisroundresult = "PASS";

 }else if(result.equals("INTERRUPT")){

 thisroundresult = "INTERRUPT";

 }

 String thisroundtrace = "<ROUND RESULT=\"" + thisroundresult + "\"

ENDTIME=\"" + getNowTime() + "\">";

 if(result.equals("SUCCESS")){

 thisroundtrace += "<AGREEMENT SCORE=\"" + thisroundscore + "\">" +

thisroundagreement + "</AGREEMENT>";

 }

 thisroundtrace += thisroundplayertrace;

 thisroundtrace += "</ROUND>";

 System.out.println(thisroundtrace);

43

 Round temp = new Round();

 temp.setParameter("ROUNDTRACE", thisroundtrace);

 addRound(temp);

 }

 private void setAllPlayerStage(int stage){

 for(int i = 0; i < getPlayerSize(); i++){

 getPlayer(i).setInformation("NowStage", "" + stage);

 }

 }

 private void sendAllPlayerMessage(String msg){

 for(int i = 0; i < getPlayerSize(); i++){

 getPlayer(i).sendMessage(msg);

 }

 }

 private void sendExclusivePlayerMessage(int index, String msg){

 for(int i = 0; i < getPlayerSize(); i++){

 if(i != index){

 getPlayer(i).sendMessage(msg);

 }

 }

 }

 private void sendPlayerMessage(int index, String msg){

 if(index >= 0 && index < getPlayerSize()){

 getPlayer(index).sendMessage(msg);

 }

 }

 private void VconIP(){

 conInstuctionProcess.release();

 }

 //

 //private attributes

 //

 private String gametrace = ""; //game trace

 private int totalscore = 0; //total score

 //semaphore control instruction process

 private Semaphore conInstuctionProcess = new Semaphore(1, true);

 private String thisroundimageid = ""; //this round image id

 private String thisroundplayertrace = ""; //this round player trace

 private String thisroundresult = ""; //this round result

44

 private String thisroundscore = ""; //this round score

 private String thisroundagreement = ""; //this round agreement

 private List<Boolean> thisroundispassing = new ArrayList<Boolean>(); //store player

is passing or not

 private List<String> thisroundlabelpool = new ArrayList<String>(); //this round label

pool

 private List<String> thisroundguesspool = new ArrayList<String>(); //this round guess

pool

 private List<String> thisroundplayeridguesspool = new ArrayList<String>(); //this

round player guess pool

}

45

Log

import HumanComputation.GWAP.*;

import java.io.*;

import java.text.*;

import java.util.*;

public class Log extends HumanComputation.GWAP.Log

{

 //

 //constructors

 //

 public Log(){

 System.out.print("creating log system ... ");

 createLogFile();

 System.out.println("ok");

 }

 //

 //public methods

 //

 public void write(String s)

{

 Calendar now = Calendar.getInstance();

46

 DateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 String msg = dateformat.format(now.getTime()) + " " + s;

 System.out.print(msg);

 //output to log file

 try{

 getBufferedWriter().write(msg);

 getBufferedWriter().flush();

 }catch(IOException ioe){

 //occur error when write data to file

 System.out.println(ioe);

 }

 }

 public void writeLine(String s)

{

 write(s + "\n");

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 private void createLogFile()

{

47

 Calendar now = Calendar.getInstance();

 DateFormat dateformat = new SimpleDateFormat("yyyyMMddHHmmss");

 FileWriter logfile;

 try{

 logfile = new FileWriter(dateformat.format(now.getTime()) + ".log");

setBufferedWriter(new BufferedWriter(logfile));

 }

catch(IOException ioe)

{

 //occur error when open file

 System.out.println(ioe);

 }

 }

 //

 //private attributes

 //

}

48

Main

public class Main

{

public static void main(String[] args)

{

 new Server(new Database(), new Log(), new Score()).start();

 }

}

49

Message

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import java.io.*;

import java.util.*;

public class Message{

 //

 //constructors

 //

 public Message(){

 }

 public Message(String xmlstr){

 parse(xmlstr);

 }

 //

 //public methods

 //

 public String getStringParameter(String str){

 String output = null;

 if(str.equals("CLIENTNAME")){

 output = clientname;

 }else if(str.equals("CLIENTPUBLICKEY")){

 output = clientpublickey;

 }else if(str.equals("IMAGEID")){

 output = imageid;

 }else if(str.equals("IMAGEURI")){

 output = imageuri;

 }else if(str.equals("ROUNDID")){

 output = roundid;

 }else if(str.equals("TYPE")){

 output = type;

 }else if(str.equals("VALUE")){

 output = value;

 }

 return output;

50

 }

 public List<String> getListParameter(String str){

 List<String> l = null;

 if(str.equals("CANDIDATELIST")){

 l = candidatelist;

 }else if(str.equals("LABELLIST")){

 l = labellist;

 }

 return l;

 }

 public void parse(String xmlstr){

 DocumentBuilderFactory dbf = dbf = DocumentBuilderFactory.newInstance();

 DocumentBuilder db = null;

 try{

 db = dbf.newDocumentBuilder();

 }catch(ParserConfigurationException pce){

 System.out.println(pce);

 return;

 }

 Document doc = null;

 try{

 doc = db.parse(new InputSource(new StringReader(xmlstr)));

 }catch(Exception e){

 System.out.println(e);

 return;

 }

 doc.normalize();

 NodeList nl = doc.getChildNodes();

 if(nl.getLength() == 1){

 Node root = nl.item(0);

 Node node;

 NamedNodeMap attrs;

 //check type

 if(root.getNodeName().equals("ECHO")){

 //ESP Lite Protocol

 //<ECHO CLIENTNAME="" CLIENTPUBLICKEY="" />

 //check format

 attrs = root.getAttributes();

 if(!root.hasChildNodes() && attrs != null &&

attrs.getNamedItem("CLIENTNAME") != null &&

attrs.getNamedItem("CLIENTPUBLICKEY") != null){

 type = "ECHO";

 clientname = attrs.getNamedItem("CLIENTNAME").getNodeValue();

 clientpublickey =

attrs.getNamedItem("CLIENTPUBLICKEY").getNodeValue();

 //System.out.println(type);

51

 //System.out.println(clientname);

 //System.out.println(clientpublickey);

 }

 }else if(root.getNodeName().equals("GUESS")){

 //ESP Lite Protocol

 //<GUESS ROUNDID=""></GUESS>

 //check format

 attrs = root.getAttributes();

 if(attrs != null && attrs.getNamedItem("ROUNDID") != null &&

root.getChildNodes().getLength() == 1 && root.getChildNodes().item(0).getNodeType()

== Node.TEXT_NODE){

 type = "GUESS";

 roundid = attrs.getNamedItem("ROUNDID").getNodeValue();

 value = root.getChildNodes().item(0).getNodeValue();

 }

 //check format

 }else if(root.getNodeName().equals("PASS")){

 //ESP Lite Protocol

 //<PASS ROUNDID="" />

 //check format

 attrs = root.getAttributes();

 if(attrs != null && attrs.getNamedItem("ROUNDID") != null &&

!root.hasChildNodes()){

 type = "PASS";

 roundid = attrs.getNamedItem("ROUNDID").getNodeValue();

 }

 }else if(root.getNodeName().equals("TIMEISUP")){

 //ESP Lite Protocol

 //<TIMEISUP />

 //check format

 attrs = root.getAttributes();

 if(attrs == null && !root.hasChildNodes()){

 type = "TIMEISUP";

 }

 }else if(root.getNodeName().equals("ERRORMSG")){

 //ESP Lite Protocol

 //<ERRORMSG></ERRORMSG>

 //check format

 attrs = root.getAttributes();

 if(attrs == null && root.getChildNodes().getLength() == 1 &&

root.getChildNodes().item(0).getNodeType() == Node.TEXT_NODE){

 type = "ERRORMSG";

 value = root.getChildNodes().item(0).getNodeValue();

 }

 }else if(root.getNodeName().equals("NAME")){

 //ESP Lite Protocol

 //<NAME></NAME>

 //check format

 attrs = root.getAttributes();

52

 if(attrs == null && root.getChildNodes().getLength() == 1 &&

root.getChildNodes().item(0).getNodeType() == Node.TEXT_NODE){

 type = "ERRORMSG";

 value = root.getChildNodes().item(0).getNodeValue();

 }

 }else if(root.getNodeName().equals("ENCRYPTED")){

 //ESP Lite Protocol

 //<ENCRYPTED></ENCRYPTED>

 //check format

 attrs = root.getAttributes();

 if(attrs == null && root.getChildNodes().getLength() == 1 &&

root.getChildNodes().item(0).getNodeType() == Node.TEXT_NODE){

 type = "ENCRYPTED";

 value = root.getChildNodes().item(0).getNodeValue();

 }

 }else if(root.getNodeName().equals("IMAGEINFORMATION")){

 //check format

 //System.out.println(xmlstr);

 attrs = root.getAttributes();

 if(attrs != null && attrs.getNamedItem("IMAGEID") != null &&

attrs.getNamedItem("URI") != null){

 type = "IMAGEINFORMATION";

 imageid = attrs.getNamedItem("IMAGEID").getNodeValue();

 imageuri = attrs.getNamedItem("URI").getNodeValue();

 //System.out.println(imageid);

 //System.out.println(imageuri);

 NodeList childs = root.getChildNodes();

 for(int i = 0; i < childs.getLength(); i++){

 if(childs.item(i).getNodeName().equals("LABEL")){

 //System.out.println(childs.item(i).getFirstChild().getNodeValue());

 labellist.add(childs.item(i).getFirstChild().getNodeValue());

 }else if(childs.item(i).getNodeName().equals("CANDIDATE")){

 //System.out.println(childs.item(i).getFirstChild().getNodeValue());

 candidatelist.add(childs.item(i).getFirstChild().getNodeValue());

 }

 }

 }

 //}else if(root.getNodeName().equals("")){

 //check format

 //}else if(root.getNodeName().equals("")){

 //check format

 }else{

 return;

 }

 }else{

 return;

 }

 }

53

 //

 //protected methods

 //

 //

 //private methods

 //

 private void clearAllParameter(){

 }

 //

 //private attributes

 //

 private String clientname = "";

 private String clientpublickey = "";

 private String roundid = "";

 private String type = "";

 private String value = "";

 private String imageid = "";

 private String imageuri = "";

 private List<String> labellist = new ArrayList<String>();

 private List<String> candidatelist = new ArrayList<String>();

/*

<ECHO CLIENTNAME="" CLIENTPUBLICKEY="" />

<GUESS SESSIONID=""></GUESS>

<PASS SESSIONID="" />

<TIMEISUP />

<ERRORMSG></ERRORMSG>

<NAME></NAME>

<ENCRYPTED></ENCRYPTED>

*/

}

54

Player

import HumanComputation.GWAP.*;

import java.io.*;

import java.net.*;

import java.util.concurrent.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.xml.sax.*;

public class Player extends HumanComputation.GWAP.Player{

 //

 //constructors

 //

 public Player(){

 //do nothing

 }

 public Player(int i, Socket sc, Server sv, HumanComputation.GWAP.Log l){

 id = i;

 socket = sc;

 server = sv;

 setLog(l);

 userip = socket.getInetAddress().getHostAddress();

 }

 //

 //public methods

 //

 public String getInformation(String str){

 String info = null;

 if(str.equals("ID")){

 info = "" + id;

 }else if(str.equals("UserIP")){

55

 info = userip;

 }else if(str.equals("NowStage")){

 PconNS();

 info = "" + nowstage;

 VconNS();

 }

 return info;

 }

 public void run(){

 printlnLog("client id " + id + " ip " + userip + " connected");

 createIO();

 //send hello message

 String hellomsg = "<WELCOME SERVERNAME=\"" + getServerName() + "\"

PROTOCOLVER=\"" + getProtocolVersion();

 hellomsg += "\" GAMEDURATION=\"" + getGameDuration() + "\"

SERVERPUBLICKEY=\"" + getServerPublicKey();

 hellomsg += "\" TRANSMITIONENCRYPTED=\"" +

getIsTransmissionEncrypted() + "\" />";

 sendMessage(hellomsg);

 String receivestr = null;

 while(true){

 try{

 receivestr = input.readLine();

 }catch(IOException ioe){

 receivestr = null;

 }

 if(receivestr == null){

 if(nowstage == 3){

 printlnLog("client id " + id + " breaks connection");

 server.removefromWaitPool(this);

 }else if(nowstage == 4){

 printlnLog("client id " + id + " breaks connection");

 }else if(nowstage == 5){

 }else{

 }

 break;

 }else{

 printlnLog("recvive message from connection id " + id + " : '" + receivestr +

"'");

 Message msg = new Message(receivestr);

56

 if(nowstage == 1){

 //flash client auth

 }else if(nowstage == 2){

 //login

 }else if(nowstage == 3){

 //find player

 if(msg.getStringParameter("TYPE").equals("ECHO")){

 if(server.addtoWaitPool(this) == false){

 //add failure

 sendMessage("<ERRORMSG>server is finding your partner

now</ERRORMSG>");

 closeSocket();

 }else{

 sendMessage("<REMAINDER>" + getRemainder() +

"</REMAINDER>");

 }

 }

 }else if(nowstage == 4){

 //playing

 if(msg.getStringParameter("TYPE").equals("GUESS")){

 getGame().processMessage(this, receivestr);

 }else if(msg.getStringParameter("TYPE").equals("PASS")){

 getGame().processMessage(this, receivestr);

 }else if(msg.getStringParameter("TYPE").equals("TIMEISUP")){

 getGame().processMessage(this, receivestr);

 }else{

 }

 }else if(nowstage == 5){

 //ending

 }else{

 }

 }

 }

 }

 public void sendMessage(String msg){

 PconSM();

 printlnLog("sending message to client id " + id + " : " + msg);

 try{

 output.write(msg + "\n");

 output.flush();

57

 }catch(IOException ioe){

 System.out.println(ioe);

 }

 VconSM();

 }

 public void setInformation(String name, String value){

 if(name.equals("NowStage")){

 nowstage = Integer.parseInt(value);

 }

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 private boolean addtoWaitPool(Player p){

 return server.addtoWaitPool(p);

 }

 private void closeSocket(){

 try{

 socket.close();

 }catch(IOException ioe){

 System.out.println(ioe);

 }

 }

 private void createIO(){

 try{

 input = new BufferedReader(new InputStreamReader(socket.getInputStream(),

"UTF-8"));

 output = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream(),

"UTF-8"));

 }catch(IOException ioe){

 //occur error when applying input or output to socket

 System.out.println(ioe);

 }

 }

 private String getGameDuration(){

58

 return server.getGameDuration();

 }

 private int getRemainder(){

 return server.getRemainder();

 }

 private String getServerName(){

 return server.getName();

 }

 private String getServerPublicKey(){

 return "";

 }

 private String getIsTransmissionEncrypted(){

 return server.getIsTransmissionEncrypted();

 }

 private String getProtocolVersion(){

 return server.getProtocolVersion();

 }

 private void printLog(String s){

 getLog().write(s);

 }

 private void printlnLog(String s){

 getLog().writeLine(s);

 }

 private void PconNS(){

 try{

 conNowStage.acquire();

 }catch(InterruptedException ie){

 System.out.println(ie);

 }

 }

 private void PconSM(){

 try{

 conSendMessage.acquire();

 }catch(InterruptedException ie){

 System.out.println(ie);

 }

 }

 private void VconNS(){

 conNowStage.release();

 }

59

 private void VconSM(){

 conSendMessage.release();

 }

 //

 //private attributes

 //

 private Semaphore conNowStage = new Semaphore(1, true);

 private Semaphore conSendMessage = new Semaphore(1, true);

 private Game g;

 private int id;

 //now stage

 private int nowstage = 3;

 //the socket input bufferedreader

 private BufferedReader input;

 //the socket output bufferedwriter

 private BufferedWriter output;

 private Server server;

 private Socket socket;

 private String userip;

}

60

Round

import HumanComputation.GWAP.*;

public class Round extends HumanComputation.GWAP.Round

{

 //

 //constructors

 //

 public Round()

{

 //do nothing

}

 //

 //public methods

 //

 public String getParameter(String str)

{

String temp = "";

 if(str.equals("ROUNDTRACE"))

{

 temp = roundtrace;

 }

 return temp;

}

 public void setParameter(String name, String value){

 if(name.equals("ROUNDTRACE"))

61

{

 roundtrace = value;

 }

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 //

 //private attributes

 //

 private String roundtrace = "";

}

62

Score

import HumanComputation.GWAP.*;

public class Score extends HumanComputation.GWAP.Score

{

 //

 //constructors

 //

 public Score()

{

 System.out.print("creating scoring system ... ");

 System.out.println("ok");

 }

 //

 //public methods

 //

 public String getScore(String input){

 return "100";

 }

 private void loadScoreTable(){

 }

}

63

Server

import HumanComputation.GWAP.*;

import java.io.*;

import java.net.*;

import java.text.*;

import java.util.*;

import java.util.concurrent.*;

public class Server extends HumanComputation.GWAP.Server{

 //

 //constructors

 //

 public Server(){

 }

 public Server(Database db, Log l, Score sc){

 super(db, l, sc);

 }

 //

 //public methods

 //

 public boolean addtoWaitPool(Player p){

 boolean addsuccess = true;

 PconWP();

 for(int i = 0;i < waitpool.size(); i++){

 if(waitpool.get(i).getInformation("UserIP").equals(p.getInformation("UserIP"))){

 addsuccess = false;

 break;

 }

 }

 addsuccess = true;

 if(addsuccess){

 waitpool.add(p);

 }

 VconWP();

 return addsuccess;

 }

64

 public String getGameDuration(){

 return "" + gameduration;

 }

 public String getProtocolVersion(){

 return protocolversion;

 }

 public String getIsTransmissionEncrypted(){

 if(istransmissionencrypted){

 return "1";

 }else{

 return "0";

 }

 }

 public String getName(){

 return name + " " + version;

 }

 public int getRemainder(){

 int temp;

 PconRM();

 temp = remainder;

 VconRM();

 return temp;

 }

 public void removefromWaitPool(Player p){

 PconWP();

 for(int i = 0; i < waitpool.size(); i++){

 if(waitpool.get(i) == p){

 waitpool.remove(i);

 break;

 }

 }

 VconWP();

 }

 //start server

 public void start(){

 printlnLog(getName());

 printlnLog("opening server port ...");

 //open server port

 ServerSocket serversocket = null;

 Socket socket;

65

 try{

 serversocket = new ServerSocket(port, 1024);

 }catch(IOException ioe){

 //occur error when open listing port

 printlnLog("" + ioe);

 }

 //start creating game

 new Timer().schedule(new CreateGame(this), 1 * 1000, 1 * 1000);

 printlnLog("server starting");

 //listening port

 while(true){

 try{

System.out.println("before socket accept");

 socket = serversocket.accept();

System.out.println("socket accepted!!");

 }catch(IOException ioe){

 //occur error

 printlnLog("" + ioe);

 continue;

 }

 try{

 socket.setSoTimeout((gameduration + 30) * 1000);

 }catch(SocketException se){

 //occur error

 printlnLog("" + se);

 continue;

 }

 new Player(idcount, socket, this, getLog()).start();

 idcount++;

 }

 }

 public void triggerRemainder(){

 boolean key = false;

 PconRM();

 remainder--;

 if(remainder == 0){

 remainder = creategameperiod;

 key = true;

66

 }

 VconRM();

 if(key){

 createGame();

 }

 }

 //

 //protected methods

 //

 protected void createGame(){

 PconWP();

 int numberofgame = (int)Math.ceil((double)waitpool.size() / 2.0);

 int waitpoolsize = waitpool.size();

 printlnLog("creating game, there are " + waitpoolsize + " player" + (waitpoolsize >

1 ? "s" : "") + " in waitingpool.");

 if(waitpoolsize % 2 == 0){

 for(int i = 0; i < numberofgame; i++){

 new Game(waitpool.get(i * 2), waitpool.get(i * 2 + 1), getDatabase(), getLog(),

getScore()).start();

 }

 waitpool.clear();

 }

 VconWP();

 }

 //

 //private methods

 //

 //P() control the remainder

 private void PconRM(){

 try{

 conRemainder.acquire();

 }catch(InterruptedException ie){

 System.out.println(ie);

 }

 }

 //P() control the wait pool

 private void PconWP(){

 try{

 conWaitPool.acquire();

67

 }catch(InterruptedException ie){

 System.out.println(ie);

 }

 }

 private void printLog(String s){

 getLog().write(s);

 }

 private void printlnLog(String s){

 getLog().writeLine(s);

 }

 //V() control the remainder

 private void VconRM(){

 conRemainder.release();

 }

 //V() control the wait pool

 private void VconWP(){

 conWaitPool.release();

 }

 //

 //private attributes

 //

 //control the remainder

 private Semaphore conRemainder = new Semaphore(1, true);

 //control the wait pool

 private Semaphore conWaitPool = new Semaphore(1, true);

 //create game period (seconds)

 int creategameperiod = 30;

 //connection id count

 int idcount = 0;

 //is transmission encrypted

 boolean istransmissionencrypted = false;

 //server port

 int port = 56779;

 //protocol version

 String protocolversion = "0.1";

68

 //game duration (seconds)

 int gameduration = 120;

 //server name

 String name = "ESP Lite Server";

 //the remainder time of starting game

 private int remainder = 30;

 //the wait pool

 private List<Player> waitpool = new ArrayList<Player>();

 //server version

 String version = "3.1";

}

class CreateGame extends TimerTask{

 //

 //constructors

 //

 public CreateGame(Server sv){

 server = sv;

 }

 //

 //public methods

 //

 public void run(){

 server.triggerRemainder();

 }

 //

 //protected methods

 //

 //

 //private methods

 //

 //

 //private attributes

 //

 //the server reference

 Server server;

69

CHAPTER 5: Results

 SNAPSHOTS

 Figure4.4.1Client interface1

Explanation

In this screenshot we can see that there are two words which are being guessed by the

user

The time left is shown in the bottom of the page.

As soon as the submit button is pressed the time is stopped

70

Figure4.4.2Client interface 2

Explanation

The second player is now guessing the name .As soon as he presses ok. The time is

stopped and the answer is stored in the database

71

Chapter 6:Conclusion and future work

5.1 Conclusion

The goal of this diploma thesis is to create a novel image labeling game, collecting more

comprehensive tag sets than previous implementations. A short evaluation has shown promising

results, especially for the time-limited mode of the game. However, more assessments are

necessary to conclusively prove the effectiveness of the game.

The scientific contribution of this thesis is a new design of an image labeling game, which can

potentially collect more comprehensive tags sets and has been proven to be fun to play in a

empirical evaluation. The game is publicly accessible at the time of writing and collects valuable

data.

5.2.Future Work

The preliminary evaluation indicates that the game is fun play and collects reasonable data.

However, several possible tasks remain to be completed in the future.

5.2.1. Large Scale Evaluation

Game is designed to collect comprehensive sets of tags. An empirical evaluation of this

design goal should be performed. However,game’s main mechanism of input-similarity

only comes into full effect with reasonably sized collections of images (as there must be a

sufficient number of similar images). Furthermore, the game strives to balance the

number of tags for each image, processing images with few tags first. Thus, a large

number of generic tags have to be applied to all images before more specific labels are

collected. A proper evaluation of the game therefore requires a large number of

participants or a long duration,preferably both.

5.2.2. Improved Data Verification

As described before, game uses a scoring system to assess the validity of any tags entered

by the players. Tags with a score exceeding a given threshold can be considered reliable.

However, there is currently no way to distinguish between tags which have a low score

because they are wrong and tags which have not yet been validated. The game should not

continue to validate tags which seldom or never lead to correct guessing, in order to avoid

72

annoying the Guessers. Similarly, tags which have been verified to be correct should also

be verified no longer, to ensure that new tags can be verified quickly.

The data model of game could be enhanced to keep track of the number of times a given

tag has been replayed. The verification could then be stopped after a tag has been

replayed a certain number of times. However, this would enable malicious players to

remove tags from the verification pool, by deliberately entering wrong tags. Alternative

schemes could use median values of the number of times all tags have been replayed to

balance the verification process.

Designing and implementing a verification scheduling system for large datasets exceeds

the scope of this thesis. However, such a system could be created in the future to improve

the data verification process.

5.2.3. Compiling Compound Tags

During the creation and evaluation of game, a new issue for image labeling games

emerged. While game ensures that its players provide new labels, it does not impose

restrictions on the form in which these labels are applied.

73

Chapter 6:List of References

[1] P. N. Bennett, D. M. Chickering, and A. Mityagin. Picture this: preferences for image

search. In Proceedings of the ACM SIGKDD Workshop on Human

Computation,HCOMP ’09, pages 25–26, New York, NY, USA, 2009. ACM. ISBN

[2] M. Borella. Source models of network game traffic. Computer Communication 23

403–410, Feb. 2000. ISSN 01403664. doi: 10.1016/S0140-3664(99)00197-8.

[3]T. Chen, M. M. Cheng, P. Tan, A. Shamir, and S. M. Hu. Sketch2Photo: internet

 image montage. ACM Trans. Graph., 28(5):1–10, December 2009. ISSN 0730-0301

[4] R. Clarke, J. Burken, J. Bosworth, and J. Bauer. X-29 flight control system: lessons

learned. International Journal of Control, 59(1):199–219, 1994. ISSN 0020-7179. 1

[5]von Ahn, L., and Dabbish, L. Labeling Images with a Computer Game. In ACM

Conference on HumanFactors in Computing Systems (CHI), 2004, pp 319-326.

[6]Barnard, K., and Forsyth, D. A. Learning the Semantics of Words and Pictures.

International Conference of Computer Vision, 2001, pages 408-415.

