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1.Abstract

Locality-sensitive hashing (LSH)  is  a method of performing probabilistic  dimension

reduction of high-dimensional  data.  The basic idea is  to hash the input  items so that

similar  items  are  mapped  to  the  same  buckets  with  high  probability  (the  number  of

buckets being much smaller than the universe of possible input items). The hashing used

in LSH is different from conventional hash functions, such as those used in cryptography,

as in the LSH case the goal is to maximize probability of "collision" of similar items

rather  than  avoid  collisions.  Locality-sensitive  hashing,  in  many  ways,  mirrors  data

clustering and Nearest neighbor search. 

The idea behind LSH is to construct a family of functions that hash objects into buckets

such that objects that are similar will be hashed to the same bucket with high probability.

Here, the type of the objects and the notion of similarity between them determine the par-

ticular  hash  function  family.  Typical  instances  include  the  Jaccard  coefficient  as

similarity  when  the  underlying  objects  are  sets  and  the  ℓ-2  norm  as  distance  (i.e.,

dissimilarity) or the cosine/angle as similarity when the underlying objects are vectors.

LSH in nearest-neighbor applications can improve performance by significant amounts.

Locality Sensitive Hashing (LSH) is widely recognized as one of the most  promising

approaches  to  similarity  search  in  high-dimensional  spaces.  Based  on  LSH,  a

considerable number of nearest neighbor search algorithms have been proposed in the

past, with some of them having been used in many real-life applications. Apart from their

demonstrated superior performance in practice, the popularity of the LSH algorithms is

mainly due to their provable performance bounds on query cost, space consumption and

failure probability.
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                                                   2.Motivation

Locality-sensitive hashing helps to deal with the Curse of Dimensionality. The curse of

dimensionality refers to various phenomena that arise when analyzing and organizing

data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do

not occur in low-dimensional settings such as the three-dimensional physical space of

everyday experience. There are multiple phenomena referred to by this name in domains

such as numerical analysis, sampling, combinatorics, machine learning, data mining and

databases.  The  common  theme  of  these  problems  is  that  when  the  dimensionality

increases, the volume of the space increases so fast that the available data become sparse.

This sparsity is problematic for any method that requires statistical significance. In order

to obtain a statistically sound and reliable result, the amount of data needed to support the

result often grows exponentially with the dimensionality. Also organizing and searching

data often relies on detecting areas where objects form groups with similar properties; in

high dimensional data however all objects appear to be sparse and dissimilar in many

ways which prevents common data organization strategies from being efficient. Thus the

application of Locality-sensitive hashing can be useful in all of the above fields.
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 3.Introduction

The idea behind LSH is to construct a family of functions that hash objects into buckets

such that objects that are similar will be hashed to the same bucket with high probability.

Here, the type of the objects and the notion of similarity between them determine the par-

ticular  hash  function  family.  Typical  instances  include  the  Jaccard  coefficient  as

similarity  when  the  underlying  objects  are  sets  and  the  ℓ-2  norm  as  distance  (i.e.,

dissimilarity) or the cosine/angle as similarity when the underlying objects are vectors.

LSH in nearest-neighbor applications can improve performance by significant amounts.

3.1 Definition:

An LSH family F is defines for a metric space M= (M,d) , a threshold R>0 and an 

approximation factor c>1. This family F is a family of functions h : M → S which map 

elements from the metric space to a bucket s ϵ S. The LSH family of functions satisfies 

the following conditions for any two points p,q ϵ M, using the function h ϵ F which is 

chosen uniformly at random:

• if d(p,q) ≤ R, then h(p)=h(q) (ie, p and q collide) with probablity at least P1,

• if d(p,q) ≥ cR, then h(p)=h(q) with probability at most P2.

A family is interesting when P1> P2. Such a family F is called (R,cR,P1,P2)-sensitive.

Alternatively ,it is defined with respect to a universe of items U that have a similarity 

function Φ : U x U → [0,1]. An LSH scheme is a family of hash functions H coupled 

with a probability distribution D over the functions such that a function h ϵ H chosen 

according to D satisfies the property that Pr [h(a)=h(b)] = Φ(a,b) for any a,b ϵ U.
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3.1.1Amplification:

Given a (d1,d2,p1,p2)-sensitive family F , we can construct new families G by either the

AND-construction or OR-construction of F.

To create an AND-construction,we define a new family G of hash functions g, where

each function g is constructed from k random functions h1,...., hk from F. We then say that

for a hash function g ϵ G, g(x)=g(y) if and only if hi(x)=hi(y) for i = 1,2,...,k.

Since the members of F are independently chosen for any g ϵ G , G is a (d1,d2,p1
k,p2

k)-

sensitive family.

To create an OR-construction,we define a new family G of hash functions g, where each

function g is constructed from k random functions h1,...., hk from F. We then say that for a

hash function g ϵ G, g(x)=g(y) if and only if hi(x)=hi(y) for one or more values of I.

Since the members of F are independently chosen for any g ϵ G , G is a (d1,d2,(1-p1)k,(1-

p2)k)-sensitive family.

                                             Figure 1. Querying using Hash Functions
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3.2 Minhash:

MinHash (or  the  min-wise  independent  permutations locality  sensitive  hashing

scheme) is a technique for quickly estimating how similar two sets are. The scheme was

invented by Andrei Broder in (1997), and initially used in the AltaVista search engine to

detect  duplicate  web pages  and eliminate  them from search  results,  It  has  also  been

applied in large-scale clustering problems, such as clustering documents by the similarity

of their sets of words.

Suppose U is composed of subsets of some ground set of enumerable items S  and the

similarity function of interest is the Jaccard index J. If Π is a permutation on the indices

of S, for A (subset of S) let h(A) = min a ϵA {Π (a)}. Each possible choice of Π defines a

single hash function h mapping input sets to elements of S.

Define the function family H to be the set of all such functions and let D be the uniform

distribution. Given two sets A,B (both subsets of S) the event that h(A)=h(B) corresponds

exactly to the event that the minimizer of Π over AUB lies inside intersection of the sets

A,B. As h was chosen uniformly at random, Pr[h(A)=h(B)]= J(A,B) and (H,D) define an

LSH scheme for Jaccard Index.

Because the symmetric group on n elements has size n!, choosing a truly random 

permutation from the full symmetric group is infeasible for even moderately sized n. 

Because of this fact, there has been significant work on finding a family of permutations 

that is "min-wise independent" - a permutation family for which each element of the 

domain has equal probability of being the minimum under a randomly chosen Π . It has 

been established that a min-wise independent family of permutations is at least of size 

lcm(1,2,...,n)≥ en-o(n) and that this bound is tight.

Because min-wise independent families are too big for practical applications, two variant 

notions of min-wise independence are introduced: restricted min-wise independent 

permutations families, and approximate min-wise independent families. Restricted min-

wise independence is the min-wise independence property restricted to certain sets of 

cardinality at most k. Approximate min-wise independence differs from the property by 

at most a fixed ϵ .
5



3.3 Simhash:

SimHash is an algorithm created by Moses Charikar, from Google. It is an effective tool

to compare easily and very fast two datasets. Computers are very pragmatic. They can

find very fast if two elements are differents or not. It's a binary world: equal or different.

Imagine now that we would like to have an idea of the similarity between these two

elements. That would be a much bigger problem: a computer is not designed to do such

comparison by nature. It's difficult, so it takes resources. o compare fingerprints, we need

an algorithm that generate them using a bigger dataset. The firs idea would be to use hash

(md5,  sha1).  However, these hash change if the input change a bit.  We need another

algorithm that change a bit if the text does not change a lot. Simhash does that.

3.4Nilsimsa Hash:

Nilsimsa is an anti-spam focused locality-sensitive hashing algorithm originally proposed

the cmeclax remailer operator in 2001 and then reviewed by Damiani et al. in their 2004 

paper titled, "An Open Digest-based Technique for Spam Detection". The goal of 

Nilsimsa is to generate a hash digest of an email message such that the digests of two 

similar messages are similar to each other. In comparison with cryptographic hash 

functions such as SHA-1 or MD5, making a small modification to a document does not 

substantially change the resulting hash of the document. Nilsimsa satisfies three 

requirements outlined by the paper's authors:

3.4.1 The digest identifying each message should not vary significantly (sic) for changes 

that can be produced automatically. 

3.4.2 The encoding must be robust against intentional attacks. 

3.4.3 The encoding should support an extremely low risk of false positives. 
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Nilsimsa similarity matching was taken in consideration by Jesse Kornblum when 
developing the fuzzy hashing in 2006, that used the algorithms of spamsum by Andrew 
Tridgell (2002).

Several implementations of Nilsimsa exist as open-source software in languages like c 
and python.

3.5 Random Projection:

The random projection method of LSH (termed arccos by Andoni and Indyk ) is designed

to approximate the cosine distance between vectors. The basic idea of this technique is to 

choose a random hyperplane (defined by a normal unit vector ) at the outset and use the 

hyperplane to hash input vectors.

3.6 TLSH:

TLSH is locality-sensitive hashing algorithm designed for a range of security and digital 

forensic applications.The goal of TLSH is to generate a hash digest of document such 

that if two digests have a low distance between them, then it is likely that the messages 

are similar to each other.

Testing performed in the paper demonstrates that on a range of file types identified the 

Nilsimsa hash as having a significantly higher false positive rate when compared to other 

similarity digest schemes such as TLSH, Ssdeep and Sdhash.

An implementations of TLSH is available as open-source software.

3.7Applications:

LSH has been applied to several problem domains including

• Near-duplicate detection
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• Hierarchical clustering

• Genome-wide association study

• Image similarity identification 

• Gene expression similarity identification

• Audio similarity identification 

• Nearest neighbor search 

• Audio fingerprint

• Digital video fingerprinting 
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4.Minhash

MinHash (or  the  min-wise  independent  permutations locality  sensitive  hashing

scheme) is a technique for quickly estimating how similar two sets are. The scheme was

invented by Andrei Broder (1997), and initially used in the AltaVista search engine to

detect  duplicate  web pages  and eliminate  them from search  results.  It  has  also  been

applied in large-scale clustering problems, such as clustering documents by the similarity

of their sets of words. 

Jaccard Similarity is a number between 0 and 1; it is 0 when the two sets are disjoint, 1 

when they are equal, and strictly between 0 and 1 otherwise. It is a commonly used 

indicator of the similarity between two sets: two sets are more similar when their Jaccard 

index is closer to 1, and more dissimilar when their Jaccard index is closer to 0.

9



                                        Figure 2: Hashing: Big Picture

Let h be a hash function that maps the members of A and B to distinct integers, and for 

any set S define hmin(S) to be the member x of S with the minimum value of h(x). Then 

hmin(A) = hmin(B) exactly when the minimum hash value of the union A  ∪ B lies in the 

intersection A ∩ B. Therefore,

Pr[hmin(A) = hmin(B)] = J(A,B). 

10



                                           Figure 3. Minwise Hashing

In other words, if r is a random variable that is one when hmin(A) = hmin(B) and zero 

otherwise, then r is an unbiased estimator of J(A,B), although it has too high a variance to

be useful on its own. The idea of the MinHash scheme is to reduce the variance by 

averaging together several variables constructed in the same way. 

11



                                Figure 4. Minhash Example
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4.1Variants:

4.1.1Many hash functions

The simplest version of the minhash scheme uses k different hash functions, where k is a 

fixed integer parameter, and represents each set S by the k values of hmin(S) for these k 

functions.

To estimate J(A,B) using this version of the scheme, let y be the number of hash functions

for which hmin(A) = hmin(B), and use y/k as the estimate. This estimate is the average of k 

different 0-1 random variables, each of which is one when hmin(A) = hmin(B) and zero 

otherwise, and each of which is an unbiased estimator of J(A,B). Therefore, their average 

is also an unbiased estimator, and by standard Chernoff bounds for sums of 0-1 random 

variables, its expected error is O(1/√k).

Therefore, for any constant ε > 0 there is a constant k = O(1/ε2) such that the expected 

error of the estimate is at most ε. For example, 400 hashes would be required to estimate 

J(A,B) with an expected error less than or equal to .05.

4.1.2Single hash function

It may be computationally expensive to compute multiple hash functions, but a related 

version of MinHash scheme avoids this penalty by using only a single hash function and 

uses it to select multiple values from each set rather than selecting only a single minimum

value per hash function. Let h be a hash function, and let k be a fixed integer. If S is any 

set of k or more values in the domain of h, define h(k)(S) to be the subset of the k 

members of S that have the smallest values of h. This subset h(k)(S) is used as a signature 

for the set S, and the similarity of any two sets is estimated by comparing their signatures.

Specifically, let A and B be any two sets. Then X = h(k)(h(k)(A)  ∪ h(k)(B)) = h(k)(A  ∪ B) is 

a set of k elements of A  ∪ B, and if h is a random function then any subset of k elements 
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is equally likely to be chosen; that is, X is a simple random sample of A  ∪ B. The subset 

Y = X ∩ h(k)(A) ∩ h(k)(B) is the set of members of X that belong to the intersection A ∩ B.

Therefore, |Y|/k is an unbiased estimator of J(A,B). The difference between this estimator 

and the estimator produced by multiple hash functions is that X always has exactly k 

members, whereas the multiple hash functions may lead to a smaller number of sampled 

elements due to the possibility that two different hash functions may have the same 

minima. However, when k is small relative to the sizes of the sets, this difference is 

negligible.

By standard Chernoff bounds for sampling without replacement, this estimator has 

expected error O(1/√k), matching the performance of the multiple-hash-function scheme.

In  order  to  implement  the  MinHash scheme as  described above,  one  needs  the  hash

function h to define a random permutation on n elements, where n is the total number of

distinct elements in the union of all of the sets to be compared. But because there are n!

different permutations, it would require Ω(n log  n) bits just to specify a truly random

permutation, an infeasibly large number for even moderate values of n. Because of this

fact, by analogy to the theory of universal hashing, there has been significant work on

finding a family of permutations that is "min-wise independent", meaning that for any

subset  of  the  domain,  any element  is  equally likely to  be  the minimum.  It  has  been

established that  a  min-wise independent  family of permutations  must  include at  least

different  permutations,  and  therefore  that  it  needs  Ω(n)  bits  to  specify  a  single

permutation, still infeasibly large.

Because of this impracticality, two variant notions of min-wise independence have been 

introduced: restricted min-wise independent permutations families, and approximate min-

wise independent families. Restricted min-wise independence is the min-wise 

independence property restricted to certain sets of cardinality at most k. Approximate 

min-wise independence has at most a fixed probability ε of varying from full 

independence.
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The  original  applications  for  MinHash  involved  clustering  and  eliminating  near-

duplicates among web documents, represented as sets of the words occurring in those

documents.  Similar  techniques  have  also  been used  for  clustering  and  near-duplicate

elimination for other types of data, such as images: in the case of image data, an image

can be represented as a set of smaller sub-images cropped from it, or as sets of more

complex image feature descriptions.

In data mining, Cohen et al. use MinHash as a tool for association rule learning. Given a 

database in which each entry has multiple attributes (viewed as a 0-1 matrix with a row 

per database entry and a column per attribute) they use MinHash-based approximations to

the Jaccard index to identify candidate pairs of attributes that frequently co-occur, and 

then compute the exact value of the index for only those pairs to determine the ones 

whose frequencies of co-occurrence are below a given strict threshold.

The MinHash scheme may be seen as an instance of locality sensitive hashing, a 

collection of techniques for using hash functions to map large sets of objects down to 

smaller hash values in such a way that, when two objects have a small distance from each

other, their hash values are likely to be the same. In this instance, the signature of a set 

may be seen as its hash value. Other locality sensitive hashing techniques exist for 

Hamming distance between sets and cosine distance between vectors; locality sensitive 

hashing has important applications in nearest neighbor search algorithms. For large 

distributed systems, and in particular MapReduce, there exist modified versions of 

MinHash to help compute similarities with no dependence on the point dimension. 
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4.2Algorithm Used for comparing minhashes:

for each row r do

 begin

 compute h(r)

 for each column c do

  if c has 1 in row r

  if h(r) is smaller than M(i,c) then

   M(i,c)=h(r)

        

           

16



5. Simhash

A hash function usually hashes different values to totally different hash values simhash is

one where  similiar  items  are  hashed to  similiar  hash  values(by similar  we mean  the

bitwise hamming distance between hash values).

Simhash is useful because if the simhash bitwise hamming distance of two phrases is low

then their jaccard coefficient is high. In the case that two numbers have a low bitwise 

hamming distance and the difference in their bits are in the lower order bits then it turns 

out that they will end up close to each other if the list is sorted. 

                                                                 Figure 5. Simhash

SimHash is an algorithm created by Moses Charikar, from Google. It is an effective tool

to compare easily and very fast two datasets. Computers are very pragmatic. They can

find very fast if two elements are differents or not. It's a binary world: equal or different. 
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Imagine now that we would like to have an idea of the similarity between these two

elements. That would be a much bigger problem: a computer is not designed to do such

comparison by nature. It's difficult, so it takes resources. 

The computer will find if the texts are equals (strictly) by browsing the first text and see

if the letter in its current position is the same in the other text. 

But  the point  here is  that  if  the computer  find a difference,  it  stops.  It  does  not  use

anymore resources. It knows that the strings are strictly different. 

That's where similarity is a challenge. If we check for strict equality, we only need to stop
on the first difference. If we want a similarity estimation, we have to check the  entire
text. In math, similarity is: 

     

      

      similarity(A,B)=A∩BA∪B

For big datasets, the part 

A∩B

take some time to compute. That's where SimHash is useful. 

With SimHash, we will create a fingerprint that will replace the datasets A and B: 

simhash(A)∩simhash(A)

Thus we will compare much smaller elements, the comparison time will be dramatically 
reduced. 

To compare fingerprints, we need an algorithm that generate them using a bigger dataset.

The firs idea would be to use hash (md5, sha1). However, these hash change if the input

18



change a bit. We need another algorithm that change a bit if the text does not change a

lot. Simhash does that. 

      

The official SimHash algorithm is: 

• Define a fingerprint size (for instance 32 bits) 

• Create an array V[] filled with this size of zeros 

• For each element in the dataset, we create a unique hash with md5, sha1 of any 
other hash algorithm that give same-sized results 

• For each hash, for each bit i in this hash 

• If the bit is 0, we add 1 to V[i] 

• If the bit is 1, we take 1 to V[i] 

• For each i 

• If V[i] > 0, i = 1 

• If V[i] < 0, i = 0 

It gives us a fingerprint characterizing our text, an approximation of the text data. 

A fingerprint is in fact a binary number, for instance: 

10101011100010001010000101111100. Now, to find 

simhash(A)∩simhash(A)

we only have to use a XOR operation, by example: 

--- 10101011100010001010000101111100

XOR 10101011100010011110000101111110

  = 00000000000000010100000000000010

19



Here, the 1 in the XOR result are the differences between the two fingerprints. To get an 

idea of the difference between the original texts, we juste have to count the number of 1 

and divide it by the total size. 

We have 3 ones for 32 characters, so we have 3 differences per 32 elements : the 

estimation of the difference is 3 / 32 = 0,09375. 

And for the similarity: 1 - 3 / 32 = 0,90625, a bit more than 90%. We have a 

similarity index! 

                                                    Figure 6. Simhash Example
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               Figure 7. 32-bit Simhash for the code fragments
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SimHash is currently used by Google to compare page with its database, to avoid 

duplicate contents.

But the main usage of SimHash is to compare things in a database. For instance, let's 

imagine we want to find the most similar articles of the one we are currently reading. It 

appears complicated at the first sight using only SQL. However with SimHash it's not 

that difficult: we just have to store a fingerprint for each aticle, and use the XOR 

operation in SQL to count the 1s in the binary result. 

Most hash functions are used to separate and obscure data, so that similar data hashes to

very different keys. We propose to use hash functions for the opposite purpose: to detect

similarities between data. Detecting similar and classifying documents is a well-studied

problem, but typically involves complex heuristics and/or O(n2) pair-wise comparisons.

Using  a  hash  function  that  hashed  similar  to  similar  values,  similarity  could  be

determined simply by comparing pre-sorted hash key values. The challenge is to find a

similarity  hash  that  minimizes  false  positives.  We  have  implemented  a  family  of

similarity hash functions with this intent. We have further enhanced their performance by

storing the auxiliary data used to compute our hash keys. This data is used as a second

lteration after a hash key comparison indicates that two are potentially similar. We use

these tests to explore the notion of “similarity”.

As storage capacities become larger it is increasingly difficult to organize and manage 

growing file systems. Identical copies or older versions of file often become separated 

and scattered across a directory structure. Consolidating or removing multiple versions of

a file becomes desirable. However, duplication technologies do not extend well to the 

case where file are not identical. Techniques for identifying similar file could also be 

useful for classification purposes and as an aid to search. A standard technique in 

similarity detection is to map features of a file into some high dimensional space, and 

then use distance within this space as a measure of similarity. Unfortunately, this 

typically involves computing the distance between all pairs of file, which leads to O(n2) 
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similarity detection algorithms. If these file-to-vector mappings could be reduced to a 

one-dimensional space, then the data points could be sorted in O(n log n) time,

greatly increasing detection speed. Typically, hash functions are designed to minimize 

collisions (where two different inputs map to the same key value). With cryptographic 

hash functions, collisions should be nearly impossible, and nearly identical data should 

hash to very different keys."Similarity" is a vague word, and can have numerous 

meanings in the context of computer files. We take the view that in order for two files to 

be similar they must share content. However, there are different ways to define that 

sharing. For example, the content of a file, Take a text file encoded in

rtf as an example. Content could refer to the entire file, just the text portion of the file 

(not including rtf header information), or the semantic meaning of the text portion of the 

file (irrespective of the actual text).Many previous attempts at file similarity detection 

have focused on detecting similarity on the text level. We decided to use binary similarity

as our metric. Two file are similar if only a small percentage of their raw bit patterns are 

different. This often fails to detect other types of similarity. For example, adding a line to 

source code might shift all line numbers within the compiled code. The two source file 

would be detected as similar under our metric; the compiled results would not. We 

decided on binary similarity because we did not want to focus on one particular file type 

(e.g. text documents) or structure. Another issue we do not explore is that of semantic 

similarity. For example, two text files may use different words but contain the same 

content in terms of meaning. Or, two MP3 files of the same song with different encodings

may result in completely different binary content. The focus is on syntactic, not semantic,

similarity. In the words of Udi Manber, no effort is made to understand the contents of 

the files. Broder made clear the distinction between resemblance (when two files 

resemble each other) and containment (when one file is contained inside of another). As 

an example of a containment relationship, take the case where one file consists of 

repeated copies of another smaller file. The focus of SimHash has been on resemblance 

detection. Two file with a size disparity (as in the example above) are implicitly different;

containment relationships between files do not necessarily make two files 'similar' under 

our metric.
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In order for files to be similar under our type 

of metric, they must contain a large number of

common pieces. Another dividing point of 

techniques is the granularity and coverage of 

these pieces. SimHash operates at a very fine 

granularity, specifically byte or word level. 

Complete coverage is not attempted; only care

about the portions of the file which match our 

set of bit patterns. Given some similarity 

metric, there needs to be a threshold to 

determine how close within that metric files 

need to be to count as similar. Focus is on 

files which have a strong degree of     

      Figure 8. Simhash in databases                 similarity,ideally within 1-2% of each other.

Another issue is whether a form of similarity detection is meant to operate on a relative or

absolute level. In other words, is the focus retrieving a set of similar to a given file, or 

retrieving all pairs of similar files. SimHash does both.The problem of identifying 

similarity is not a new one, although no one seems to have discovered a consistently good

general solution. The most relevant paper to SimHash is over ten years old . There has 

also been a body of research focusing on redundancy elimination or deduplication. Much 

of the research on similarity detection since then has focused on very specific 

applications and filetypes. This includes:

# technical documentation 

# software systems 

# plagiarism detection 

# music 

# web pages 

In most cases, the main goal of redundancy elimination is a reduction in either bandwidth

or storage. Redundancy elimination can focus on eliminating multiple copies of the same 
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file, or else preventing repeats of specific blocks shared between files. The standard way 

to identify duplicate blocks is by hashing each block. 

As files are modified, new copies of modified blocks are written to disk, without 

changing references to unmodified blocks. Shared or unmodified blocks are identified by 

comparing hashes of the blocks within a file before writing to disk. 

A natural question when classifying blocks is how to identify block boundaries. The 

options for this include fixed size chunking (for example, filesystem blocks), fixed size 

chunking over a sliding window, or some form of dynamic content-based chunking . 

Content-defined chunking consistently outperforms fixed sized chunking at identifying 

redundancies, but involves larger time and space overheads .Instead of coalescing 

repeated blocks, delta encoding works at a finer granularity. Essentially, it uses the 

difference (or delta) between two files to represent the second one. This is only effective 

when the two files resemble each other closely Different versions in a version control 

system is a good example.
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                                6.Nilsimsa Hash

Nilsimsa is an anti-spam focused locality-sensitive hashing algorithm originally proposed

the cmeclax remailer operator in 2001 and then reviewed by Damiani et al. in their 2004

paper  titled,  "An  Open  Digest-based  Technique  for  Spam  Detection".  The  goal  of

Nilsimsa is to generate a hash digest of an email message such that the digests of two

similar  messages  are  similar  to  each  other.  In  comparison  with  cryptographic  hash

functions such as SHA-1 or MD5, making a small modification to a document does not

substantially  change  the  resulting  hash  of  the  document.  Nilsimsa  satisfies  three

requirements outlined by the paper's authors:

1. The digest identifying each message should not vary significantly (sic) for 

changes that can be produced automatically. 

2. The encoding must be robust against intentional attacks. 

3. The encoding should support an extremely low risk of false positives. 

6.1Origin of requirements:

If a generic hash function like MD5 (or SHA-1) is used to produce the digests of a 

message, the spammer can easily fool this protection measure by inserting into each 

message, in an arbitrary position, a few random characters(called hash busters) that will 

immediately make the message unique, with practically no impact on the user perception 

of the message. This observation gives birth to the first requirement given above which 

is: 

 The digest identifying each message should not vary significantly (sic) for changes that 

can be produced automatically. 

What is needed is a localized hashing function such as those applied in information 

retrieval systems. However, the techniques designed for information retrieval have to be 

carefully adapted since they were not designed to tolerate malicious behavior which must
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instead be considered in our environment. For instance , MIME  encoding is often used 

by spammers to disguise message content while it is in transit, thereby allowing it to 

sneak past content-based spam filtering.

Less often, spammers will use HTML character entity codes to disguise selected 

characters in an HTML body.This originates the second requirement mentioned above 

which is :

               The encoding must be robust against intentional attacks. 

A solution to the spam problem must assume that spammers are technically competent 

and after an analysis of the characteristics of the filtering solutions they may spend 

resources to design tools that are able to automatically produce spam that bypasses the 

checks put in place.

Finally an encoding suitable for use in the framework of an anti-spam filter should not 

put the user at risk of accidental deletion of important messages.Therefore, we have a 

third requirement:

                          The encoding should support an extremely low risk of false positives.

It is worth noting that the risk of classifying a legitimate email as spam ( false positive), 

is far more costly than the risk of missing one spam (false positive).

Nilsimsa similarity matching was taken in consideration by Jesse Kornblum when 

developing the fuzzy hashing in 2006,[that used the algorithms of spam by Andrew 

Tridgell (2002).

A promising anti-spam technique consists in collecting users opinions that given email 

messages are spam and using this collective judgment to block message propagation to 

other users .To be effective, this strategy requires away to identify similarity among 
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email messages, even if the program used by the spammer to generate the messages may 

try to obfuscate their common origin.

Nilsimsa operates by using a window of 5 characters that slides along the text of the 

message one character at a time. When a new character enters the window, the algorithm 

generates the trigrams associated with the window and passes each of them to a hash 

function h().The hash function h() computes a value i = h(trigram) between 0 and 255 

that corresponds to the ith counter in an array of integers of size 255, called 

accumulator ,and whose value is increased by 1. After the text analysis , the accumulator 

will present in the i-th cell the number of trigrams that have been found in the text 

producing i by the application of the hash function. The relative frequency of each bucket

is compared with the average bucket frequency observed for a large collection of 

messages and the value representing this ratio is associated with the bucket. 
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                                                      Figure 9. Nilsimsa Algorithm

Then, the ratio of each bucket is considered and if the i-th ratio is greater than the 

median, the i-th bit of the nilsimsa code is set to 1; it is set to 0 otherwise.In this way a 

32-byte code is produced.

To determine if two messages present the same textual content, their Nilsimsa digests are 

compared, checking the number of bits in the same position that have the same value. 

The Nilsimsa Compare Value is the number of bits that are equal minus 128. The 

maximum value of Nilsimsa Compare Value is 128, for two identical digests.

The use of internet has been extensively increasing over the past decade and it continues 

to be on the ascent. Hence the Internet is gradually becoming an integral part of everyday

life. Internet usage is expected to continue growing and email has become a powerful tool

intended for idea and information exchange. Negligible time delay during transmission, 
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security of the data being transferred, low costs are few of the multifarious advantages 

that email enjoys over other physical methods. However there are few issues that spoil 

the efficient usage of emails. Spam email is one among them. The term spam is used to 

describe any “unwanted” thing. 

Email spam is a set of unwanted electronic spam mail that contains nearly identical 

messages sent to huge number of recipients. Spam mail can be not only annoying but also

dangerous to recipients. Clicking on links contained in spam emails may send users to 

phishing and malware .It also may include malware as scripts or other risky executable 

file attachments.

The problem of spam or Unsolicited Bulk Email (UBE) is becoming a pressing issue. 

Spam email characterized by three main features:

•Anonymity: The address and identity of the sender are concealed.

•Mass Mailing: The email is sent to large groups of people.

•Unsolicited: The email is not requested by the recipients. While no effective and 

complete solution to the spam problem is currently available,several moderately 

successful anti-spam techniques have been proposed, each operating along a different 

line. 

6.2Filters:

List Based Filters: List-based filters attempt to stop spam by categorizing senders as 

spammers or trusted users, and blocking or allowing their messages accordingly.Senders 

in blacklist are considered spammers and all mails sent by them are blocked, where 

senders in whitelist are trustees and all mails sent by them are allowed.
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Content-Based Filters: Rather than enforcing across the board policies for all messages 

from a particular email or IP address, content-based filters evaluate words or phrases 

found in each individual message to determine whether an email is spam or legitimate.

A word-based spam filter is the simplest type of content-based filter. Generally speaking, 

word-based filters simply block any email that contains certain terms.

Heuristic (or rule-based) filters like Spam Assassin take things a step beyond simple 

word-based filters. Rather than blocking messages that contain a suspicious word, 

heuristic filters take multiple terms found in an email into consideration.

Bayesian filters employ the laws of mathematical probability to determine which 

messages are legitimate and which are spam. In order for a Bayesian filter to effectively 

block spam,the end user must initially "train" it by manually flagging each message as 

either junk or legitimate. Over time, the filter takes words and phrases found in legitimate

emails and adds them to a list; it does the same with terms found in spam.
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                                              7.Conclusion

Locality-sensitive hashing (LSH) reduces the dimensionality of high-dimensional data.

LSH hashes  input  items  so that  similar  items  map  to  the  same “buckets”  with  high

probability (the number of buckets being much smaller  than the universe of possible

input items). LSH differs from conventional and cryptographic hash functions because it

aims to maximize the probability of a “collision” for similar items. Locality-sensitive

hashing has much in common with data clustering and nearest neighbor search. 

Locality-sensitive hashing can be used to calculate similarities between files to various

degrees of accuracy.

There has been considerable research and use of similarity digests and Locality Sensitive

Hashing (LSH) schemes - those hashing schemes where small changes in a file result in

small  changes  in  the  digest.  These  schemes  are  useful  in  security  and  forensic

applications. We examine how well three similarity digest schemes (Ssdeep, Sdhash and

TLSH) work when exposed to random change. Various file types are tested by randomly

manipulating  source  code,  Html,  text  and  executable  files.  In  addition,  we  test  for

similarities in modified image files that were generated by cybercriminals to defeat fuzzy

hashing schemes (spam images). The experiments expose shortcomings in the Sdhash

and Ssdeep schemes that can be exploited in straight forward ways. The results suggest

that the TLSH scheme is more robust to the attacks and random changes considered.

Similarity digest schemes exhibit the property that small changes to the file being hashed

results in a small change to the hash. The similarity between two files can be determined

by comparing the digests of the original files.  
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                                            8.Tools and Technologies

 Eclipse IDE for Java:

 Version: Eclipse Luna(4.4)

Eclipse is an integrated development environment (IDE). It contains a base workspace

and an extensible plug-in system for customizing the environment.  Written mostly in

Java, Eclipse can be used to develop applications. By means of various plug-ins, Eclipse

may also be used to develop applications in other programming languages: Ada, Java etc.

can  also  be  used  to  develop  packages  for  the  software  Mathematica.  Development

environments  include  the  Eclipse  Java  development  tools  (JDT)  for  Java  and  Scala,

Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others.

The initial codebase originated from IBM VisualAge.The Eclipse software development 

kit (SDK), which includes the Java development tools, is meant for Java developers. 

Users can extend its abilities by installing plug-ins written for the Eclipse Platform, such 

as development toolkits for other programming languages, and can write and contribute 

their own plug-in modules.

Released under the terms of the Eclipse Public License, Eclipse SDK is free and open 

source software (although it is incompatible with the GNU General Public License). It 

was one of the first IDEs to run under GNU Classpath and it runs without problems under

IcedTea.
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                                       10.Appendices

Appendix A

Minhash:
Class:Minhash1.java:
Imported Files:

import java.io.*;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Random;
import java.util.Set;
Code:

public class minhash1 {
   Set<String> set1 = new HashSet<>();
   Set<String> set2 = new HashSet<>(); 
   Map<String, boolean[]> bitArray = new HashMap<String, boolean[]>();
   int setnum=2,hashNum;
   int minHashValues[][];
   int hash[];
    public void initialize()
          for (int i = 0; i < setnum; i++)
            for (int j = 0; j < hashNum; j++)
                        
                   minHashValues[i][j] = Integer.MAX_VALUE;

       System.out.println("minHashValuesArray");
       for(int i = 0; i < setnum; i++)
            for (int j = 0; j < hashNum; j++)
              
           System.out.print( minHashValues[i][j]+" ");
       System.out.println();
       hash = new int[hashNum];
       
        Random r = new Random(11);

        for (int i = 0; i <hashNum; i++)
            int a = (int) r.nextInt();

            int b = (int) r.nextInt();

            int c = (int) r.nextInt();
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            int x = hash(a * b * c, a, b, c);
            
            hash[i] = x;
            
             
}     
   }
public static void main(String args[])
{ 
  
 
}
public void buildSetsFromFiles()
{
    // Build sets from the two files to be compared for similarity
    
 try{
    File myFile = new File("C:\\Users\\x-Srishti-
x\\Documents\\NetBeansProjects\\JavaApplication1\\src\\javaapplication1\\TextFile1.txt"
);
    FileReader fileReader = new FileReader(myFile);
    BufferedReader br = new BufferedReader(fileReader);
    String line;
    while((line = br.readLine())!=null)
    {
        String[] result = line.split(" ");
        for(String token: result)
        {
            set1.add(token);
          
        }
       
    }
    br.close();
      System.out.println(set1); 
      
      
 

   
 
    File myFile1 = new File("C:\\Users\\x-Srishti-
x\\Documents\\NetBeansProjects\\JavaApplication1\\src\\javaapplication1\\TextFile2.txt"
);
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    FileReader fileReader1 = new FileReader(myFile1);
    BufferedReader br1 = new BufferedReader(fileReader1);
   
    while((line = br1.readLine())!=null)
    {
        String[] result = line.split(" ");
        for(String token: result)
        {
            set2.add(token);
          
        }
       
    }
    br.close();
      System.out.println(set2); 
      hashNum=set1.size()+set2.size();
      System.out.println(hashNum);
      minHashValues = new int[setnum][hashNum];
      initialize();
       
  buildBitmapsFromSets();    
} 
catch(Exception ex)
{
}
 
}
  private static int hash(int x, int a, int b, int c)

    {

        int hashValue = (int) ((a * (x >> 4) + b * x + c)&131071)+5;
        

        return Math.abs(hashValue);

    }
public void buildBitmapsFromSets()
{
  
        

        for (String t : set1)
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        {

            bitArray.put(t, new boolean[] { true, false });

        }

        for (String t : set2)

        {

            if (bitArray.containsKey(t))

            {

                

                bitArray.put(t, new boolean[] { true, true });

            }

            else if (!bitArray.containsKey(t))

            {

                

                bitArray.put(t, new boolean[] { false, true });

            }

        

        }
        System.out.println(bitArray);

}
public void sim()
{
   
    //calculating minhash signatures for the sets
        minhashSig(set1,0);
        minhashSig(set2,1);
        
    int similarMinHash = 0;
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    double similarity;

        for (int i = 0; i < hashNum; i++)

        {

            if (minHashValues[0][i] == minHashValues[1][i])

            {
                System.out.println(minHashValues[0][i]);
                similarMinHash++;

            }

        }   
        System.out.println("similarMinhashes"+similarMinHash+"hashNum"+hashNum);
        
        similarity =(double) similarMinHash/hashNum;
   
        
        System.out.println("Similarity between the two documents is"+similarity 
+"or"+similarity*100+"%" );     
    
}

public void minhashSig(Set<String> set, int in)
{
      int index = 0;
       System.out.println("MINSIG");
        for (String element : bitArray.keySet())

        {

            // for every element 

            for (int i = 0; i < hashNum; i++)

            {

                // for every hash value
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                if (set.contains(element)) 

                {

                    int hindex = hash[index];

                    if (hindex < minHashValues[in][index])

                    {
                       System.out.println(hindex);
                       
                        minHashValues[in][index] = hindex;//if the hash is smaller, replace it

                    }

                }

            }

            index++;

        }
}

}
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Minhash2.java:

package javaapplication1;

import java.util.HashSet;
import java.util.Set;
public class minhash2 {
    public static void main(String args[])
    {
    minhash1 min = new minhash1();
    min.buildSetsFromFiles();
    min.sim();
    
    }
}
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Appendix B

Nilsimsa Hash:
 
 Nilsimsa.java:

import java.io.*;
import java.util.Random;
 

public class Nilsimsa{
int g,g1,g2;//hash functions
 Random r = new Random();
 
 int r1=r.nextInt(2)+1;
 String[] trigrams= 

{"the","and","ing","her","hat","his","tha","ere","for","ent","ion","ter","was","you","ith","
ver","all","wit","thi","tio","eth","dth","men","sth","oft","tis","edt","has","nde","ent"};
      //list of the most common trigrams

int[] avgfreq= new int[256];
int[] accum= new int[256];
int[] ratios= new int[256];
int[] nilsimsaCode=new int[256];

int[] Code1=new int[256];
int[] Code2=new int[256];
int flag=0,check;

//float avgfreq=2;
float median=0;

public Nilsimsa()
{

for(int i=0;i<=255;i++)
{

accum[i]=0;
}

}
 public static void main(String[] args)throws IOException
    {

 
    }
 public void setFlag()
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 {
 flag=1;

 }
  public int h1(String x) {

   char ch[];
   ch = x.toCharArray();
   int i, sum;
   for (sum=0, i=0; i < x.length(); i++)
     sum += ch[i];
   i= (255)*(sum-33000)/(123000);
   return  i;
 }

 public int h2(String x)
 {

 int a=x.hashCode();
    int b= (255)*(a-33000)/(123000);
    
    return b;
 }
 public void hashgen(String x)
 {

//System.out.println("r1:"+r1);
 
 if(r1==1)
 

 g=h1(x)+2*h2(x);
  
 if(r1==2)
    

 g=h1(x)+h2(x)*3;
 
 if(r1==3)
   

 g=h1(x)+h2(x)%5;
  
  if(g<0)

  g=-g;
  if(g>255)

  g=(255);
 
  
  acc(g);

 }
    public void slidewindow()
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    {
       
        
   }
    public void makeTrigrams(String s)
    {
       char a,b,c;
       int i=0;
       

       
       while(i<3)
       {
       
       a=s.charAt(i);
       b=s.charAt(i+1);
       c=s.charAt(i+2);
      //System.out.println(a+""+b+""+c);
      /* if(a>=65&&a<=90){
       int x=a+32;
       a=(char)x;
       }
       if(b>=65 && b<=90){
       int x=b+32;
       b=(char)x;
       }
       if(c>=65&& c<=90){
       int x=c+32;
       c=(char)x;
       }
   
       if((int)a>(int )b)
      {
      temp=a;
      a=b;
      b=temp;
      }
      if((int)a>(int)c)
      {
      temp=a;
      a=c;
      c=temp;
      }
      if((int)b>(int)c)
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      {
      temp=b;
      b=c;
      c=temp;
      }
      //System.out.println(a+" "+b+" "+c);
      */
       String x=""+a+b+c;
       //System.out.println(x); 
      check=checkTrigram(x);
      if(check==1)
      hashgen(x);
       i++;
       }
       //System.out.println("Accumulator");
     for(int f=0;f<256;f++)
     {
    //System.out.print(accum[f]+" ");
     }
     //System.out.println();
       
    }
    public int checkTrigram(String x)
    {
    check=1;
    for(int i=0;i<30;i++)
    {
    if(x.equals(trigrams[i])==true)
    {
    check=0;
    }
    
    }
    return check;
    }
   /* public void multihash(String x)
    {
    //using three hash functions 
    int a=x.hashCode();
    int b= (255)*(a-33000)/(123000);
    
    //System.out.println(b);
    acc(b);
    }*/
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    public void acc(int a)
    {
    accum[a]++;
    }
    public void calcRatio()
    {
    System.out.println();
    System.out.println("Accumulator");
        
    for(int i=0;i<256;i++)
    {
    System.out.print(accum[i]+" ");
        
    }
    System.out.println();
    //System.out.println("ratios");
    for(int i=0;i<256;i++)
    {
    if(avgfreq[i]!=0)
    {
      ratios[i]=(accum[i]/avgfreq[i]);
      
    }
    else
    ratios[i]=0;
    median+=ratios[i];
    //System.out.print(ratios[i]);
    }
    System.out.println();
    median/=256;
    System.out.println();
    System.out.println("median:"+median);
    }
    public void genByteCode()
    {
    System.out.println();
    System.out.println("Nilsimsa Code");
    for(int i=0;i<256;i++)
    {
       if(ratios[i]>median)
      nilsimsaCode[i]=1;
       else
      nilsimsaCode[i]=0;
       if(flag==0)
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       Code1[i]=nilsimsaCode[i];
       else
      Code2[i]=nilsimsaCode[i];
           System.out.print(nilsimsaCode[i]);  
         }
      
    System.out.println();
    
    }
    public void compValue()
    {
    int ctr=0,cmpvalue;
    for(int i=0;i<256;i++)
    {
    if(Code1[i]==Code2[i])
    ctr++;
    }
    cmpvalue=ctr-128;
    System.out.println("Nilsimsa Compare Value:"+cmpvalue);
    }
}
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NilsimsaObject.java:
import java.io.FileReader;

import java.io.IOException;

import java.util.Random;

public class NilsimsaObject {

public static void main(String[] args) throws IOException  {
//AvgBucketFrequency abf= new AvgBucketFrequency();

Nilsimsa nim=new Nilsimsa(); //creating an object of nilsimsa class 
 String win="";   

         int ctr=0;
         Random r = new Random();
         String[] file1= 
{"E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam1.txt","E://EclipseLunaW
orkspace//final//bin//Spam_Catalog//Spam2.txt","E://EclipseLunaWorkspace//final//bin//
Spam_Catalog//Spam3.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spa
m4.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam5.txt","E://EclipseL
unaWorkspace//final//bin//Spam_Catalog//Spam6.txt","E://EclipseLunaWorkspace//final/
/bin//Spam_Catalog//Spam7.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//
Spam8.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam9.txt","E://Ecli
pseLunaWorkspace//final//bin//Spam_Catalog//Spam10.txt","E://EclipseLunaWorkspace/
/final//bin//Spam_Catalog//Spam11.txt","E://EclipseLunaWorkspace//final//bin//Spam_C
atalog//Spam12.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam13.txt"
,"E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam14.txt","E://EclipseLunaW
orkspace//final//bin//Spam_Catalog//Spam15.txt","E://EclipseLunaWorkspace//final//bin/
/Spam_Catalog//Spam16.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Sp
am17.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam18.txt","E://Eclip
seLunaWorkspace//final//bin//Spam_Catalog//Spam19.txt","E://EclipseLunaWorkspace//
final//bin//Spam_Catalog//Spam20.txt"};
     //file1 contains the addresses of all the files in the spam catalog
     int r2=r.nextInt(20);

        FileReader inputStream = null;
        
        try {
            
        inputStream = new 
FileReader("E://EclipseLunaWorkspace//final//bin//Spam.txt"); //Reading the file that 
contains 100 spam emails
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            //outputStream = new FileWriter("characteroutput.txt");

            int c;
            
            while ((c = inputStream.read()) != -1) {
                //outputStream.write(c);
            //System.out.print((char)c);
            ctr++;
            win+=(char)c;
            if(ctr==5)
            {
            ctr=0;
            //System.out.println(win);
            nim.makeTrigrams(win);
            win="";
            }
            }
        } 
        finally {
            
        if (inputStream != null) 
        {
                inputStream.close();
            }
           
            
        }
        System.out.println("Average Bucket Frequency");
        for(int i=0;i<256;i++)
        {
        
        nim.avgfreq[i]=(nim.accum[i]/100);
       // System.out.print(nim1.accum[i]+" ");
        
        System.out.print(nim.avgfreq[i]+" ");
        nim.accum[i]=0;
        
        }
    
      
        try {
            inputStream = new FileReader(file1[r2]);
            //outputStream = new FileWriter("characteroutput.txt");

51



            int c;
            while ((c = inputStream.read()) != -1) {
                //outputStream.write(c);
            //System.out.print((char)c);
            ctr++;
            win+=(char)c;
            if(ctr==5)
            {
            ctr=0;
            //System.out.println(win);
            nim.makeTrigrams(win);
            win="";
            }
            }
        } 
        
        finally {
           
        if (inputStream != null)
        {
                inputStream.close();
            }
           
            
        }
        nim.calcRatio();
        nim.genByteCode();
        for(int i=0;i<=255;i++)
        {
         nim.accum[i]=0;
        }
        System.out.println();
        try {
            
        inputStream = new 
FileReader("E://EclipseLunaWorkspace//final//bin//MyFile2.txt");
            //outputStream = new FileWriter("characteroutput.txt");

            int c;
            while ((c = inputStream.read()) != -1) 
            {
                //outputStream.write(c);
            //System.out.print((char)c);
            ctr++;
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            win+=(char)c;
            
            if(ctr==5)
            {
            ctr=0;
            //System.out.println(win);
            nim.makeTrigrams(win);
            win="";
            }
            }
        } 
        
        finally {
            
        if (inputStream != null) 
        {
                inputStream.close();
            }
           
            
        }
        nim.calcRatio();
        nim.genByteCode();
        nim.compValue();

}

}
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