
i

Hybrid Lossless Compression

Technique

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology.

in

 Information Technology

Under the Supervision of

 AMIT KUMAR SINGH

By

 JASJYOT SINGH KOHLI (111443)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Hybrid Lossless Compression

Technique”, submitted by JASJYOT SINGH KOHLI in partial fulfillment for the

award of degree of Bachelor of Technology in Information Technology Engineering

to Jaypee University of Information Technology, Waknaghat, Solan has been carried

out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

AMIT KUMAR SINGH

Assistant Professor

Date: 15-5-2015

iii

Acknowledgement

I have taken efforts in this project. However, it would not have been possible without

the kind support and help of many individuals and organizations. I would like to

extend my sincere thanks to all of them.

I am highly indebted to Mr. AMIT KUMAR SINGH for their guidance and constant

supervision as well as for providing necessary information regarding the project &

also for their support in completing the project.

I would like to express my gratitude towards my parents & friends for their kind co-

operation and encouragement which help me in completion of this project.

I would like to express my special gratitude and thanks to industry persons for giving

me such attention and time.

.

Date: 15-5-2015 Jasjyot Singh Kohli

iv

Table of Content

S. No. Topic Page No.

1. Chapter 1

 Compression Techniques: An Overview

 1.1 Introduction 1

 1.2 Lossy Compression 1

 1.3 Lossless Compression 2

 1.4 Overall Description 5

2. Chapter 2

 Literature Review 7

3. Chapter 3

 A Hybrid Compression Technique Using Huffman and RLE

 3.1 Run length Encoding Algorithm 10

 3.2 Huffman Coding Algorithm 11

 3.3 Experimental Results and Analysis 11

4. Chapter 4

 Project Requirements

 4.1 Design 16

 4.2 Software Requirements 18

 4.3 Hardware Requirements 19

 4.4 User Characteristics 19

 4.5 Constraints 19

5. Chapter 5

 Implementation

 5.1 Snapshots 20

6. Chapter 6

 Conclusion and Future Work 30

7. References 32

8. Appendix 34

v

List of Figures

S.No. Title Page No.

1. ER- diagram 16

 2. USE case diagram 17

 3. Flow Chart 18

vi

List of Tables

S.No. Title Page No.

1. Table 2.1 9

2. Table 3.1 13

3. Table 3.2 13

4. Table 3.3 14

5. Table 3.4 14

6. Table 3.5 15

7. Table 3.6 15

vii

Abstract

This project creates software of one of the image processing application for image

compression. It has been explicitly made for the image resizing. It manages space

acquisition of computer hard disk. It includes the option to choose your image file and

also save that image. The project also lets you compress and decompress the selected

image. It also provides an option to make your image compress with three different

algorithms. The algorithms include Huffman and Run Length Encoding and a Hybrid

algorithm including features of both Huffman and Run Length Encoding.

 It has capacity to show compressed and decompressed file on UI. In the UI, we pick

image that user selects on which compression is to be performed. We save all files

with save option and use write function.

The interface has been made very user friendly. The UI is created to perform one

complete cycle for compression and decompression. We use image to binary and

binary to image for compression. Overall objective of application is to reduce the size

of image.

1

CHAPTER 1

 COMPRESSION TECHNIQUES:

AN OVERVIEW

1.1 INTRODUCTION

Compression is useful because it helps reduce resource usage, such as data storage

space and increases transmission capacity. Data compression involves encoding

information using fewer bits than the original representation. It works by finding

patterns in data that occur frequently, and changing their representation to something

short, so that the total amount of data is reduced without sacrificing any useful

information. There are two types of compressions:

 1) Lossy Compression

 2) Lossless Compression

1.2 Lossy compression techniques reconstruct the original message with loss of some

information. It reduces bits by identifying unnecessary information and removing it. It

is also called irreversible compression. Lossy data compression schemes are informed

by research on how people perceive the data in question. For example, the human eye

is more sensitive to subtle variations in luminance than it is to variations in color.

Data of some ranges which could not be recognized by the human brain can be

neglected. Lossy compression is most commonly used to compress multimedia data

like audio, video and still images.

The Lossy Techniques that are commonly used are:

1. JPEG

2. Fractal Compression

3. Block Truncation Coding

2

1.2.1 JPEG is a commonly used method of lossy compression for digital images,

particularly for those images produced by digital photography. The degree of

compression can be adjusted, allowing a selectable tradeoff between storage size and

image quality. JPEG compression is used in a number of image file formats.

JPEG/Exif is the most common image format used by digital cameras and other

photographic image capture devices; along with JPEG/JFIF, it is the most common

format for storing and transmitting photographic images on the World Wide Web.

1.2.2 Fractal compression is a lossy compression method for digital images, based

on fractals. The method is best suited for textures and natural images, relying on the

fact that parts of an image often resemble other parts of the same image.

Fractal

algorithms convert these parts into mathematical data called "fractal codes" which are

used to recreate the encoded image.

1.2.3 Block Truncation Coding (BTC) is a type of lossy image compression

technique for greyscale images. It divides the original images into blocks and then

uses a quantiser to reduce the number of grey levels in each block whilst maintaining

the same mean and standard deviation. BTC was first proposed by Robert Mitshell at

Purdue University. Another variation of BTC is Absolute Moment Block Truncation

Coding or AMBTC, in which instead of using the standard deviation the first absolute

moment is preserved along with the mean.

1.3 Lossless compression techniques reconstruct the original data from the

compressed file without any loss of data. It is also called reversible compression.

Lossless data compression algorithms usually exploit statistical redundancy to

represent data more concisely without losing information, so that the process is

reversible. Lossless compression is possible because most real-world data has

statistical redundancy. Lossless compression techniques are used to compress medical

images, text, computer executable file and images preserved for legal reasons.

Lossless compression results in a closer representation of the original media, and thus

a higher quality end product. Lossy compression can give you a smaller file size, but

the resulting end product may be in some ways inferior to the original. Run length

encoding(RLE), Huffman, Arithmetic and Lempel Ziv Welch(LZW) Coding are the

important lossless compression techniques.

3

The important applications of Lossless Compression Techniques are:

1. To compress medical images where loss of data can be a matter of concern.

2. To compress computer executable file.

3. Compressing images preserved for legal reasons.

4. Used in the ZIP file format and in the GNU tool gzip.

1.3.1 Run Length Encoding (RLE) is the simplest of the lossless compression

algorithms. It replaces runs of two or more of the same character with a number which

represents the length of the run, followed by the original character. Run-length

encoding performs lossless data compression and is well suited to palette-based

bitmapped images such as computer icons. It does not work well at all on continuous-

tone images such as photographs, although JPEG uses it quite effectively on the

coefficients that remain after transforming and quantizing image blocks.

Example of RLE:

 Input: AAABBCCCCD

 Output: 3A2B4C1D

1.3.2 Huffman coding algorithm was developed by David Huffman in 1951. In this

algorithm fixed length codes are replaced by variable length codes. Huffman

procedure works as follows:

1) Symbols with a high frequency are expressed using shorter encodings than

symbols which occur less frequently.

2) The two symbols that occur least frequently will have the same length.

A binary tree is built up from the bottom up. Assume that the characters in a file to be

compressed have the following frequencies:

A: 25 B: 10 C: 99 D: 87 E: 9 F: 66

C=00 D=01 F=10 A=110 B=1110 E=1111

4

1.3.3 Arithmetic Coding is useful for small alphabets with highly skewed

probabilities. In this method, a code word is not used to represent a symbol of the text.

Instead, it produces a code for an entire message. Arithmetic Coding assigns an

interval to each symbol. The interval is then divided into sub-intervals. The number of

sub-intervals is identical to the number of symbols in the current set and size is

proportional to their probability of appearance. For each symbol a new internal,

division takes place based on the last sub interval.

ARBER is coded as [0.14432, 0.1456)

1.3.4 Lempel Ziv Welch (LZW) uses fixed-length code words to represent variable-

length strings of symbols that commonly occur together. The LZW encoder and

decoder build up the same dictionary dynamically while receiving the data. It places

longer and longer repeated entries into a dictionary, and then emits the code for an

element, rather than the string itself, if the element has already been placed in the

dictionary. LZW coding does not give efficient results for large data files but it gives

good compression rates for small sized files. It cannot handle large files because of

the increasing size of the dynamic dictionary involved.

The project includes implementation of both Huffman Coding and Run length

Encoding.

5

1.4 OVERALL DESCRIPTION

GOALS OF THE PROPOSED SYSTEM:

 Planned approach towards working: The working in the application will

be well planned and organized. The data (Image) will be stored efficiently

with optimal disk space consumption in user selected location which will

help in retrieval of image while decompression.

 Accuracy: The level of accuracy in the proposed system will be higher.

All operations would conform to integrity constraints and correctness and

it will be ensured that whatever data is received at or sent from the centre

is accurate.

 Reliability: The reliability of the proposed system will be high due to the

above mentioned reasons. This comes from the fact that only the image

which conforms to the accuracy clause would be allowed to commit back

to the disk.

 No redundancy: In the proposed system it will be ensured that no

repetition of information occurs; neither on a physical storage nor on a

logical implementation level. This economizes on resource utilization in

terms of storage space. Also even in case of concurrent access no

anomalies occur and consistency is maintained.

6

 Immediate retrieval of information: the main objective of the proposed

system is to provide a quick and efficient platform for retrieval of

information. Data of images which is in side memory object is handled by

image to binary and binary to image function for conversion .

 Ease of operation: The system should be simplistic in design and use. It is

such that it can be easily developed within a short period of time and can

conform to the financial and resource-related constraints of the

organization.

7

 CHAPTER 2

 LITERATURE REVIEW

A large number of data compression algorithms have been developed and used

throughout the years. Some of which are of general use and can be used to compress

files of different types. Others are developed to compress efficiently a particular type

of files. It has been realized that, according to the representation form of the data at

which the compression process is performed, below is reviewing some of the

literature review in this field.

Alarabeyyat et al. [1] proposed a method to design an efficient and effective lossless

image compression scheme. It deals with the design of a lossless image compression

method and is based on LZW algorithm and the BCH algorithm an error correcting

technique, in order to improve the compression ratio of the image. It is a lossless

image compression scheme which is applied to all types of image based on LZW

algorithm that reduce the repeated value in image and BCH codes that detect/correct

the errors. The BCH algorithm works by adding extra bits called parity bits, whose

role is to verify the correctness of the original message sent to the receiver.

Chakraborty et al. [2] presented an approach in which image information had been

firstly scanned for statistical redundancy following Run length encoding schemes.

Then, the frequency-pixel pairs, thus generated, were encoded using Extended ASCII

character-set (8 bit) using an efficient approach. The corresponding symbol-

information pairs had been stored in dictionary format that was created and deployed

individually with each image. No permanent storage of the dictionary was required.

The compression algorithm had two interrelated procedures to facilitate the entire

compression process. They were Run Length Encoding and Character Replacement

scheme.

AlHashemi et al. [3] proposed a model based on BCH codes, for detecting/correcting

errors in data transmission. The BCH code algorithm adds extra bits, called parity

bits, whose role is to verify the correctness of the original message sent upon receipt.

This BCH method converts the block of size k bits into n by adding m parity bits,

depending upon the size of the message k, which is encoded into a codeword of length

n.

8

Talu et al. [4] presented a lossless compression scheme for binary images which

consists of a novel encoding algorithm which uses a new edge tracking algorithm. It

has two sub-stages:

(i) Encoding binary image data using the proposed encoding method

(ii) Compression the encoded image data using any well-known image

compression method such as Huffman, Run-Length or Lempel-Ziv-Welch

(LZW).

 The proposed encoding method contains two subsequent processes:

(i) Determining the starting points of independent objects.

(ii) Obtaining their edge points and geometrical shapes information.

Kaur et al. [5] proposed a Hybrid compression technique using the two lossless

methodologies Huffman coding and Lempel Ziv Welch coding to compress data

image. In the first stage, the image is compressed with Huffman coding and calculates

the MSE, PSNR, CR and elapsed time of a data image. After that apply the LZW

compression on same image and further we can use the both algorithms and recover

the data image reduced the size of data image and calculate same results.

Abdmouleh et al. [6] proposed that compression is the coding of the data to minimize

their representation by removing the redundancy present in them, keeping only

sufficient information that can be effectively used in the decompressing phase to

reconstruct the original data. The compression of images is motivated by the

economic and logistic needs to conserve space in storage media and save bandwidth

in communication.

Chaudhari et al. [7] proposed that frequently occurring and repetitive patterns are

assigned to a shorter codeword. The less efficient codeword is assigned to the others.

Based on this principle, the codeword table should be constructed to provide the fixed

mapping relationship. Many famous methods, including Huffman coding, Run length

coding , arithmetic coding, and LZW have been widely developed, and some of them

are further applied in lossy compression standards.

9

Table 2.1: Existing compression based methods

S.No Author Name Technique Used

Result (Average

Compression

Ratio)

1
A. Alarabeyyat,

S. Al-Hashemi, T. Khdour

Hybrid of LZW and

BCH
1.67

2
Debashis Chakraborty,

Soumik Banerjee

RLE and Character

Replacement Scheme
1.292

3
Rafeeq Al-Hashemi, Israa

Wahbi Kamal
BCH Codes 1.417

4
M. Fatih TALU, İbrahim

TÜRKOĞLU

Edge Tracking

algorithm with

Huffman

1.364

5 Dalvir Kaur, Kamaljeet Kaur
Hybrid of Huffman

and LZW
1.713

10

CHAPTER 3

A HYBRID COMPRESSION TECHNIQUE USING

HUFFMAN AND RLE

The proposed method is based on two most important compression techniques:

Huffman Coding and Run length encoding (RLE). The single compression technique

can only save a limited purpose. In this work, we have combined the above two

compression techniques to improve the performance of the proposed method in terms

of compression factor. The theoretical background of the Huffman and RLE

compression methods are given below:

3.1 RUN LENGTH ENCODING ALGORITHM

set color to 0

set count to 0

for each pixel in the image

 if current pixel not equal to color

 write count

 set color to current pixel color

 set count to 1

 else

 increment count by 1

 if count not equal to 0

 write count

11

3.2 HUFFMAN CODING ALGORITHM

 Huffman (W, n)

 Input: A list W of n (positive) weights.

 Output: An extended binary tree T with weights taken from W that gives the

minimum weighted path length.

 Procedure:

 Create list F from singleton trees formed from elements of W

 WHILE (F has more than one element) DO

 Find T1, T2 in F that have minimum values associated with their roots

 Construct new tree T by creating a new node and setting T1 and T2 as

 its children

 Let the sum of the values associated with the roots of T1 and T2 be associated

 with the root of T

 Add T to F

 OD

 Huffman: = tree stored in F

3.3 EXPERIMENTAL RESULTS AND ANALYSIS:

A data set of images of different formats is gathered to test and compare the

compression factors of the individual compression techniques and also the hybrid

compression technique. The results are recorded in a tabular form to get a better

understanding of the various methods used.

12

Table 3.1 shows the performance of the proposed method for png images using

Huffman compression method. In this table, the highest compression factor has been

found for Beach image. However, the least was found out to be for Portgas image.

The average compression factor for the Huffman compression was calculated at 14.19

Table 3.2 shows the performance of the proposed method for png images using Run

length encoding method. In this table, the highest compression factor has been found

for Portgas image. However, the least was found out to be for Stream image. The

average compression factor for the Huffman compression was calculated at 7.4

Table 3.3 shows the performance of the proposed method for png images using

Hybrid compression method. In this table, the highest compression factor has been

found for Beach image. However, the least was found out to be for Portgas image.

The average compression factor for the Huffman compression was calculated at 16.37

Table 3.4 shows the performance of the proposed method for jpg images using

Huffman compression method. In this table, the highest compression factor has been

found for Desert image. However, the least was found out to be for Lighthouse image.

The average compression factor for the Huffman compression was calculated at 7.82

Table 3.5 shows the performance of the proposed method for jpg images using Run

length encoding compression method. In this table, the highest compression factor has

been found for Desert image. However, the least was found out to be for Koala image.

The average compression factor for the Huffman compression was calculated at 8.7

Table 3.6 shows the performance of the proposed method for jpg images using

Hybrid compression method. In this table, the highest compression factor has been

found for Desert image. However, the least was found out to be for Koala image. The

average compression factor for the Huffman compression was calculated at 11.14

13

The results show that Huffman Compression provides better compression factors than

Run length encoding technique for png images. However, for the jpg images Run

length encoding shows better compression factor than the Huffman Compression

technique. The Hybrid method provided better results for both types of images and

has proved to be more efficient than the original techniques.

Table 3.1: Performance of the proposed method using Huffman compression

technique for png files

S.No. Name

Size Before

Compression

(kb)

Size after

Compression

(kb)

Compression

Factor

1 Beach.png 2885 179 16.07

2 Portgas.png 2146.6 195 10.98

3 Car.png 3725.9 262 14.20

4 Stream.png 2858.8 184 15.51

Average Compression Factor = 14.19

Table 3.2: Performance of the proposed method using Run length Encoding

technique for png files.

S.No. Name

Size Before

Compression

(Mb)

Size after

Compression

(kb)

Compressi

on Factor

1 Beach.png 2885 387 7.45

2 Portgas.png 2146.6 228 9.38

3 Car.png 3725.9 553 6.73

4 Stream.png 2858.8 472 6.04

Average Compression Factor = 7.4

14

Table 3.3: Performance of the proposed method using Hybrid compression

technique for png files.

S.No.

Name

Size Before

Compression

(kb)

Size after

Compression

(kb)

Compression

Factor

1 Beach.png 2885 161 17.92

2 Portgas.png 2146.6 148 14.5

3 Car.png 3725.9 240 15.52

4 Stream.png 2858.8 163 17.54

Average Compression Factor = 16.37

Table 3.4: Performance of the proposed method using Huffman compression

technique for jpg files

S.No. Name

Size Before

Compression

(kb)

Size after

Compression

(kb)

Compression

Factor

1 Desert.jpg 826 84 9.83

2 Hydrangeas.jpg 581 72.4 8.02

3 Koala.jpg 762 107 7.12

4 Lighthouse.jpg 548 86.7 6.32

Average Compression Factor = 7.82

15

Table 3.5: Performance of the proposed method using Run length Encoding

compression technique for jpg files

S.No. Name

Size Before

Compression

(kb)

Size after

Compression

(kb)

Compression

Factor

1 Desert.jpg 826 66.2 12.48

2 Hydrangeas.jpg 581 79 7.35

3 Koala.jpg 762 183 4.16

4 Lighthouse.jpg 548 50.8 10.79

Average Compression Factor = 8.7

Table 3.6: Performance of the proposed method using Hybrid compression

technique for jpg files

S.No. Name

Size Before

Compression

(kb)

Size after

Compression

(kb)

Compression

Factor

1 Desert.jpg 826 52.1 15.85

2 Hydrangeas.jpg 581 62.3 9.33

3 Koala.jpg 762 92 8.28

4 Lighthouse.jpg 548 49.4 11.09

Average Compression Factor = 11.14

16

CHAPTER 4:

PROJECT REQUIREMENTS

4.1 DESIGN

Figure 1: ER Diagram

An entity-relationship (ER) diagram is a graphical representation of entities and their

relationships to each other, typically used in computing in regard to the organization

of data within databases or information systems. An entity is a piece of data-

an object or concept about which data is stored.

17

FIGURE 2: Use Case Diagram

Use case diagram is the representation of a user’s interaction with the system and

depicting the specifications of the use case. It can portray the different types of users

of a system and the cases. It is a simple graphical formalism that can be used to

represent a system in terms of the input data to the system, various processing carried

out on these data, and the output data is generated by the system.

18

FIGURE 3: FLOW CHART

A flowchart is a formalized graphic representation of a logic sequence, work or

manufacturing process, organization chart, or similar formalized structure. The

purpose of a flow chart is to provide people with a common language or reference

point when dealing with a project or process.

4.2 SOFTWARE SPECIFICATION

 Operating System: Windows 7/8

 Technology : MATLAB

 Tools : MATLAB 2014

19

4.3 HARDWARE SPECIFICATION

 Processor: x86 compatible processor

 RAM: 512 MB or greater

 Hard Disk: 20 GB or greater

 Monitor: VGA/SVGA

 Keyboard: 104 keys standard

 Mouse: 2/3 button. Optical/ Mechanical.

4.4 USER CHARACTERISTICS

Every user:

 Should be comfortable with basic working of the computer.

 Must have basic knowledge of English.

 Must carry a png image.

4.5 CONSTRAINTS

 The GUI is restricted to English

 PNG and JPG image is must.

 The application is applicable only to the images.

20

CHAPTER 5

IMPLEMENTATION

5.1 SNAPSHOTS

This gives the First view of the Application. It has options like Select image and

applies Huffman, Select image and applies RLE and Select image and applies

Hybrid Technique. Right side buttons are for removing Huffman coding, RLE

coding and Hybrid Technique.

21

The selected button is for choosing the image and to apply Huffman coding

algorithm to compress

This is the browse picture dialog box which helps us to choose the image to be

compressed.

22

This window shows the original picture and the compressed image through

Huffman coding algorithm.

This window shows the decompressed image on which Huffman coding was

applied.

23

This window shows the compressed file which is saved at the same spot from

where the image was taken.

24

The selected button is for choosing the image and to apply RLE algorithm to

compress it.

25

The window shows the original image which is to be compressed.

This window shows the compressed image after applying RLE algorithm.

26

This window shows the decompressed image on which RLE algorithm was

applied earlier.

This window shows that the compressed image is saved at the same location as

that of the source image.

27

The selected button is for choosing the image and to apply the Hybrid algorithm

to compress it.

28

This window shows the original image and also the image compressed with the

Hybrid algorithm.

29

This window shows the decompressed image on which the Hybrid algorithm was

applied.

This window shows that the compressed image is saved at the same location as

that of the source file.

30

CHAPTER 6

CONCLUSION

This project was motivated by the desire of improving the effectiveness of lossless

image compression by improving the Huffman and RLE. We provided an overview of

various existing coding standards lossless image compression techniques. We have

proposed a high efficient algorithm which is implemented using the Huffman coding

approach. The proposed method takes the advantages of the Huffman algorithm with

the advantages of the RLE algorithm which is known for its simplicity and speed. The

ultimate goal is to give a relatively good compression ratio and keep the time and

space complexity minimum. The application software has been developed using

MATLAB so as to meet the requirements of an image compression application,

thereby ensuring quality performance. The image can be accessed, manipulated and

retrieved very easily. To conclude this software has proved to be a user friendly

interface. The application can be proved to be of great use to compress and

decompression of the image.

31

FUTURE WORK

We suggest for future work to use Huffman with another compression method and

that enable to repeat the compression more than three times, and to investigate how to

provide a high compression ratio for given images and to find an algorithm that

decrease file. The experiment dataset in this project was somehow limited so applying

the developed methods on a larger dataset could be a subject for future research and

finally extending the work to the video compression is also very interesting. The

application deals with all existing formats of images. This application is currently for

windows OS we can also make it for MAC and Linux. I would be extending the

application for some other doc format also and would be working more on

compression algorithms. An android app can also be created to compress images in a

mobile.

32

REFERENCES

[1] A. Alarabeyyat, S. Al-Hashemi, T. Khdour, “Lossless Image Compression

Technique Using Combination Methods”, Journal of Software Engineering and

Applications, Vol-5, No.4, pp. 42-46, 2012.

[2] Debashis Chakraborty, Soumik Banerjee,, “Efficient Lossless Colour Image

Compression Using Run Length Encoding and Special Character Replacement”,

International Journal on Computer Science and Engineering, Vol-3, No.6,

pp. 21-23, 2011.

[3] Rafeeq Al-Hashemi, Israa Wahbi Kamal, “A New Lossless Image Compression

Technique Based on Bose, Chandhuri and Hocquengham (BCH) Codes”,

International Journal of Software Engineering and Its Applications Vol-5, No. 3,

pp.34-36, 2011.

 [4] M. Fatih TALU, İbrahim TÜRKOĞLU, “Hybrid Lossless Compression Method

For Binary Images”, IU-JEEE Vol-11, No. 2, pp. 12-14, 2011.

 [5] Dalvir Kaur, Kamaljeet Kaur, “Data Compression on Columnar-Database Using

Hybrid Approach (Huffman and Lempel-Ziv Welch Algorithm)”, International

Journal of Advanced Research in Computer Science and Software Engineering,

Vol-3, No. 11, pp. 47-50, 2013.

 [6] Med Karim Abdmouleh, Atef Masmoudi, Med Salim Bouhlel, “A New Method

Which Combines Arithmetic Coding with RLE for Lossless Image

Compression”, Journal of Software Engineering and Applications, Vol-5, No. 6,

pp. 41-44, 2012.

33

 [7] Prof.Megha S.Chaudhari, Prof.S.S.Shirgan, “ Implementation and Analysis of

Efficient Lossless Image Compression Algorithm”, International Journal of

Engineering and Technical Research, Vol-2, No.6, pp.-37-39, 2014.

 [8] R. C. Gonzalez, R. E. Woods and S. L. Eddins, “Digital Image Processing Using

MATLAB,” Pearson Prentice Hall, Upper Saddle River, 2003.

 [9] www.dspguide.com/ch27/7.htm

 [10] www.ou.edu/class/digitalmaedia/articles/Compressionmethods.htm

34

APPENDIX

CODE

GUI

function varargout = GUI(varargin)

% GUI MATLAB code for GUI.fig

% GUI, by itself, creates a new GUI or raises the existing

% singleton*.

%

% H = GUI returns the handle to a new GUI or the handle to

% the existing singleton*.

%

% GUI('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in GUI.M with the given input arguments.

%

% GUI('Property','Value',...) creates a new GUI or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before GUI_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to GUI_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GUI

% Last Modified by GUIDE v2.5 15-Apr-2015 09:56:47

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @GUI_OpeningFcn, ...

 'gui_OutputFcn', @GUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

35

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before GUI is made visible.

function GUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = GUI_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[filename,pathname] = uigetfile('*.*');

if isequal(filename,0)

else

im=imread(fullfile(pathname, filename));

imfinfo(fullfile(pathname, filename))

im=imread(fullfile(pathname, filename));

jb=copyfile(fullfile(pathname,filename),fullfile(tempdir,filename));

set(handles.edit1,'String',filename);

36

im = double(im)/255;

I = rgb2gray(im);

subplot(211)

imshow(im)

size(im)

title('Original image');

img_dct=dct2(I);

img_pow=(img_dct).^2;

img_pow=img_pow(:);

[B,index]=sort(img_pow);%no zig-zag

B=flipud(B);

index=flipud(index);

compressed_dct=zeros(size(I));

coeff = 20000;% maybe change the value

for k=1:coeff

compressed_dct(index(k))=img_dct(index(k));

end

im_dct=idct2(compressed_dct);

subplot(212)

figure;imshow(im_dct);

title('huffman Compress Image');

Level=8;

Speed=0;

xC=cell(15,1);

[y, Res]=Huff06(xC, Level, Speed);

imwrite(im_dct,fullfile(pathname, 'HuffCompressed.jpg'));

imfinfo(fullfile(pathname, 'HuffCompressed.jpg'))

end

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%figure;imshow(fullfile(tempdir,get(handles.edit1,'String')));title('De-compressed

image');

input=get(handles.edit1,'String');

if (strcmp(input,'Selected File')==1)

else

path=fullfile(tempdir,get(handles.edit1,'String'));

img=imread(path);

imfinfo(path);

x=im2bw(img);

%copyfile(fullfile(tempdir,get(handles.edit1,'String')),fullfile('/Decompress/',get(hand

les.edit1,'String')));

% if iscell(x) % decoding

% i = cumsum([1 x{2}]);

% j = zeros(1, i(end)-1);

37

% j(i(1:end-1)) = 1;

% data = x{1}(cumsum(j));

% Huff04(x);

% end

figure;imshow(fullfile(tempdir,get(handles.edit1,'String')));title('De-compressed

image');

imwrite(img,get(handles.edit1,'String'));

end

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

[filename,pathname] = uigetfile('*.*');

if isequal(filename,0)

else

I=imread(fullfile(pathname, filename));

imfinfo(fullfile(pathname, filename))

jb=copyfile(fullfile(pathname,filename),fullfile(tempdir,filename));

set(handles.edit2,'String',filename);

%I=imread('c:/gis4.jpg','jpg');

figure;imshow(I);title('original image');

level=graythresh(I);

imshow(I);title('Original')

bw=im2bw(I,level);

figure;imshow(bw);title('binary image');

a=bw'; a=a(:); a=a';

a=double(a);

rle(1)=a(1); m=2; rle(m)=1;

for i=1:length(a)-1

if a(i)==a(i+1)

rle(m)=rle(m)+1;

else

m=m+1; rle(m)=1; %dynamic allocation and initialization of next element of rle

end

end

display(rle);

imshow(bw);title('Compressed image');

imwrite(bw,fullfile(pathname, 'RleCompressed.jpg'));

imfinfo(fullfile(pathname, 'RleCompressed.jpg'));

end

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

38

%figure;imshow(fullfile(tempdir,get(handles.edit2,'String')));title('De-compressed

image');

input=get(handles.edit2,'String');

if (strcmp(input,'Selected File')==1)

else

it=imread(fullfile(tempdir,get(handles.edit2,'String')));

imfinfo(fullfile(tempdir,get(handles.edit2,'String')));

x=im2bw(it);

%copyfile(fullfile(tempdir,get(handles.edit2,'String')),fullfile('Decompress',get(handle

s.edit2,'String')));

if iscell(x) % decoding

 i = cumsum([1 x{2}]);

 j = zeros(1, i(end)-1);

 j(i(1:end-1)) = 1;

 data = x{1}(cumsum(j));

end

figure;imshow(fullfile(tempdir,get(handles.edit2,'String')));title('De-compressed

image');

imwrite(it,get(handles.edit2,'String'));

end

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

39

% Hints: get(hObject,'String') returns contents of edit2 as text

% str2double(get(hObject,'String')) returns contents of edit2 as a double

% --- Executes during object creation, after setting all properties.

function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton5.

function pushbutton5_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[filename,pathname] = uigetfile('*.*');

if isequal(filename,0)

else

im=imread(fullfile(pathname, filename));

imfinfo(fullfile(pathname, filename))

im=imread(fullfile(pathname, filename));

jb=copyfile(fullfile(pathname,filename),fullfile(tempdir,filename));

set(handles.edit1,'String',filename);

im = double(im)/255;

I = rgb2gray(im);

subplot(211)

imshow(im)

size(im)

title('Original image');

img_dct=dct2(I);

img_pow=(img_dct).^2;

img_pow=img_pow(:);

[B,index]=sort(img_pow);%no zig-zag

B=flipud(B);

index=flipud(index);

compressed_dct=zeros(size(I));

coeff = 20000;% maybe change the value

for k=1:coeff

compressed_dct(index(k))=img_dct(index(k));

end

40

im_dct=dct2(compressed_dct);

subplot(212)

figure;imshow(im_dct);

title('huffman and RLE Compress Image');

Level=8;

Speed=0;

xC=cell(15,1);

[y, Res]=Huff06(xC, Level, Speed);

imwrite(im_dct,fullfile(pathname, 'HuffAndRLECompressed.jpg'));

imfinfo(fullfile(pathname, 'HuffAndRLECompressed.jpg'))

end

% --- Executes on button press in pushbutton7.

function pushbutton7_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

input=get(handles.edit1,'String');

if (strcmp(input,'Selected File')==1)

else

path=fullfile(tempdir,get(handles.edit1,'String'));

img=imread(path);

imfinfo(path);

x=im2bw(img);

%copyfile(fullfile(tempdir,get(handles.edit1,'String')),fullfile('/Decompress/',get(hand

les.edit1,'String')));

% if iscell(x) % decoding

% i = cumsum([1 x{2}]);

% j = zeros(1, i(end)-1);

% j(i(1:end-1)) = 1;

% data = x{1}(cumsum(j));

% Huff04(x);

% end
figure;imshow(fullfile(tempdir,get(handles.edit1,'String')));title('D

e-compressed image');
imwrite(img,get(handles.edit1,'String'));
end

41

HUFFMAN

function HK = HuffCode(HL,Display)

% HuffCode Based on the codeword lengths this function find the Huffman

codewords

%

% HK = HuffCode(HL,Display);

% HK = HuffCode(HL);

% --

% Arguments:

% HL length (bits) for the codeword for each symbol

% This is usually found by the hufflen function

% HK The Huffman codewords, a matrix of ones or zeros

% the code for each symbol is a row in the matrix

% Code for symbol S(i) is: HK(i,1:HL(i))

% ex: HK(i,1:L)=[0,1,1,0,1,0,0,0] and HL(i)=6 ==>

% Codeword for symbol S(i) = '011010'

% Display==1 ==> Codewords are displayed on screen, Default=0

% --

if nargin<1

 error('huffcode: see help.')

end

if nargin<2

 Display = 0;

end

if (Display ~= 1)

 Display = 0;

end

N=length(HL);

L=max(HL);

HK=zeros(N,L);

[HLs,HLi] = sort(HL);

Code=zeros(1,L);

for n=1:N

 if (HLs(n)>0)

 HK(HLi(n),:) = Code;

 k = HLs(n);

 while (k>0) % actually always! break ends loop

 Code(k) = Code(k) + 1;

 if (Code(k)==2)

 Code(k) = 0;

 k=k-1;

 else

 break

 end

 end

 end

42

end

if Display

 for n=1:N

 Linje = [' Symbol ',int2str(n)];

 for i=length(Linje):15

 Linje = [Linje,' '];

 end

 Linje = [Linje,' gets code: '];

 for i=1:HL(n)

 if (HK(n,i)==0)

 Linje = [Linje,'0'];

 else

 Linje = [Linje,'1'];

 end

 end

 disp(Linje);

 end

end

return;

43

RLE

function data = rle(x)

% data = rle(x) (de)compresses the data with the RLE-Algorithm

% Compression:

% if x is a numbervector data{1} contains the values

% and data{2} contains the run lenths

%

if iscell(x) % decoding

 i = cumsum([1 x{2}]);

 j = zeros(1, i(end)-1);

 j(i(1:end-1)) = 1;

 data = x{1}(cumsum(j));

else % encoding

 if size(x,1) > size(x,2), x = x'; end % if x is a column vector, tronspose

 i = [find(x(1:end-1) ~= x(2:end)) length(x)];

 data{2} = diff([0 i]);

 data{1} = x(i);

end

HYBRID
function varargout = Huff06(xC, ArgLevel, ArgSpeed)

% Huff06 Huffman encoder/decoder with (or without) recursive splitting

% Vectors of integers are Huffman encoded,

% these vectors are collected in a cell array, xC.

% If first argument is a cell array the function do encoding,

% else decoding is done.

%

% [y, Res] = Huff06(xC, Level, Speed); % encoding

% y = Huff06(xC); % encoding

% xC = Huff06(y); % decoding

% --

% Arguments:

% y a column vector of non-negative integers (bytes) representing

% the code, 0 <= y(i) <= 255.

% Res a matrix that sum up the results, size is (NumOfX+1)x4

% one line for each of the input sequences, the columns are

% Res(:,1) - number of elements in the sequence

% Res(:,2) - zero-order entropy of the sequence

% Res(:,3) - bits needed to code the sequence

% Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

% Then the last line is total (which include bits needed to store NumOfX)

% xC a cell array of column vectors of integers representing the

% symbol sequences. (should not be to large integers)

44

% If only one sequence is to be coded, we must make the cell array

% like: xC=cell(2,1); xC{1}=x; % where x is the sequence

% Level How many levels of splitting that is allowed, legal values 1-8

% If Level=1, no further splitting of the sequences will be done

% and there will be no recursive splitting.

% Speed For complete coding set Speed to 0. Set Speed to 1 to cheat

% during encoding, y will then be a sequence of zeros only,

% but it will be of correct length and the other output

% arguments will be correct.

% --

% SOME NOTES ON THE FUNCTION

% huff06 depends on other functions for Huffman code, and the functions in this file

% HuffLen - find length of codewords (HL)

% HuffTabLen - find bits needed to store Huffman table information (HL)

% HuffCode - find huffman codewords

% HuffTree - find huffman tree

global y Byte BitPos Speed Level

Mfile='Huff06';

Debug=0; % note Debug is defined in EncodeVector and DecodeVector too

% check input and output arguments, and assign values to arguments

if (nargin < 1);

 error([Mfile,': function must have input arguments, see help.']);

end

if (nargout < 1);

 error([Mfile,': function must have output arguments, see help.']);

end

if (~iscell(xC))

 Encode=0;Decode=1;

 y=xC(:); % first argument is y

else

 Encode=1;Decode=0;

 if (nargin < 3); Speed=0; else Speed=ArgSpeed; end;

 if (nargin < 2); Level=8; else Level=ArgLevel; end;

 if ((length(Speed(:))~=1));

 error([Mfile,': Speed argument is not scalar, see help.']);

 end

 if Speed; Speed=1; end;

 if ((length(Level(:))~=1));

 error([Mfile,': Level argument is not scalar, see help.']);

 end

 Level=floor(Level);

 if (Level < 1); Level=1; end;

 if (Level > 8); Level=8; end;

 NumOfX = length(xC);

45

end

if Encode

 Res=zeros(NumOfX,4);

 % initalize the global variables

 y=zeros(10,1); % put some zeros into y initially

 Byte=0;BitPos=1; % ready to write into first position

 % start encoding, first write VLIC to give number of sequences

 PutVLIC(NumOfX);

 if Debug

 disp([Mfile,' (Encode): Level=',int2str(Level),' Speed=',int2str(Speed),...

 ' NumOfX=',int2str(NumOfX)]);

 end

 % now encode each sequence continuously

 Ltot=0;

 for num=1:NumOfX

 x=xC{num};

 x=full(x(:)); % make sure x is a non-sparse column vector

 L=length(x);Ltot=Ltot+L;

 y=[y(1:Byte);zeros(50+2*L,1)]; % make more space available in y

 % now find some info about x to better code it

 if (L>0)

 maxx=max(x); maxx=maxx(1);

 minx=min(x); minx=minx(1);

 else

 maxx=0;

 minx=0;

 end

 if (minx<0)

 Negative=1;

 else

 Negative=0;

 end

 if ((((maxx*4)>L) || (maxx>1023)) && (L>1) && (maxx>minx))

 % the test for LogCode could be better, I think, (ver. 1.3)

 LogCode=1; % this could be 0 if LogCode is not wanted

 else

 LogCode=0;

 end

 PutBit(LogCode);

 PutBit(Negative);

 I=find(x); % non-zero entries in x

 Sg=(sign(x(I))+1)/2; % the signs may be needed later, 0/1

 x=abs(x);

 if LogCode

 xa=x; % additional bits

 x(I)=floor(log2(x(I)));

 xa(I)=xa(I)-2.^x(I);

 x(I)=x(I)+1;

 end

46

 [bits, ent]=EncodeVector(x); % store the (abs and/or log) values

 if Negative % store the signs

 for i=1:length(Sg); PutBit(Sg(i)); end;

 bits=bits+length(Sg);

 ent=ent+length(Sg)/L;

 end

 if LogCode % store the additional bits

 for i=1:L

 for ii=(x(i)-1):(-1):1

 PutBit(bitget(xa(i),ii));

 end

 end

 bits=bits+sum(x)-length(I);

 ent=ent+(sum(x)-length(I))/L;

 end

 if L>0; Res(num,1)=L; else Res(num,1)=1; end;

 Res(num,2)=ent;

 Res(num,3)=bits;

 end

 y=y(1:Byte);

 varargout(1) = {y};

 if (nargout >= 2)

 % now calculate results for the total

 if Ltot<1; Ltot=1; end; % we do not want Ltot to be zero

 Res(NumOfX+1,3)=Byte*8;

 Res(NumOfX+1,1)=Ltot;

 Res(NumOfX+1,2)=sum(Res(1:NumOfX,1).*Res(1:NumOfX,2))/Ltot;

 Res(:,4)=Res(:,3)./Res(:,1);

 varargout(2) = {Res};

 end

end

if Decode

 % initalize the global variables, y is set earlier

 Byte=0;BitPos=1; % ready to read from first position

 NumOfX=GetVLIC; % first read number of sequences

 if Debug

 disp([Mfile,'(Decode): NumOfX=',int2str(NumOfX),'

length(y)=',int2str(length(y))]);

 end

 xC=cell(NumOfX,1);

 for num=1:NumOfX

 LogCode=GetBit;

 Negative=GetBit;

 x=DecodeVector; % get the (abs and/or log) values

 L=length(x);

 I=find(x);

 if Negative

 Sg=zeros(size(I));

 for i=1:length(I); Sg(i)=GetBit; end; % and the signs (0/1)

47

 Sg=Sg*2-1; % (-1/1)

 else

 Sg=ones(size(I));

 end

 if LogCode % read additional bits too

 xa=zeros(L,1);

 for i=1:L

 for ii=2:x(i)

 xa(i)=2*xa(i)+GetBit;

 end

 end

 x(I)=2.^(x(I)-1);

 x=x+xa;

 end

 x(I)=x(I).*Sg;

 xC{num}=x;

 end

 varargout(1) = {xC};

end

return % end of main function, huff06

% the EncodeVector and DecodeVector functions are the ones

% where actual coding is going on.

% This function calls itself recursively

function [bits, ent] = EncodeVector(x, bits, HL, Maxx, Meanx)

global y Byte BitPos Speed Level

Debug=0;

Level = Level - 1;

MaxL=50000; % longer sequences is split in the middle

L=length(x);

% first handle some special possible exceptions,

if L==0

 PutBit(0); % indicate that a sequence is coded

 PutVLIC(L); % with length 0 (0 is 6 bits)

 PutBit(0); % 'confirm' this by a '0', Run + Value is indicated by a '1'

 bits=2+6;

 ent=0;

 Level = Level + 1;

 return % end of EncodeVector

end

if L==1

 PutBit(0); % indicate that a sequence is coded

 PutVLIC(L); % with length 1 (6 bits)

 PutVLIC(x(1)); % containing this integer

 bits=1+2*6;

 if (x(1)>=16); bits=bits+4; end;

 if (x(1)>=272); bits=bits+4; end;

 if (x(1)>=4368); bits=bits+5; end;

 if (x(1)>=69904); bits=bits+5; end;

48

 if (x(1)>=1118480); bits=bits+4; end;

 ent=0;

 Level = Level + 1;

 return % end of EncodeVector

end

if max(x)==min(x)

 PutBit(0); % indicate that a sequence is coded

 PutVLIC(L); % with length L

 for i=1:7; PutBit(1); end; % write end of Huffman Table

 PutVLIC(x(1)); % containing this integer

 bits=1+6+7+6;

 if (x(1)>=16); bits=bits+4; end;

 if (x(1)>=272); bits=bits+4; end;

 if (x(1)>=4368); bits=bits+5; end;

 if (x(1)>=69904); bits=bits+5; end;

 if (x(1)>=1118480); bits=bits+4; end;

 if (L>=16); bits=bits+4; end;

 if (L>=272); bits=bits+4; end;

 if (L>=4368); bits=bits+5; end;

 if (L>=69904); bits=bits+5; end;

 if (L>=1118480); bits=bits+4; end;

 ent=0;

 Level = Level + 1;

 return % end of EncodeVector

end

if (L <= 5) % ver. 1.9 feb. 2010 KS

 PutBit(0); % indicate that a sequence is coded

 PutVLIC(L); % with length 1 (6 bits)

 bits=1+6;

 for i=1:L

 PutVLIC(x(i)); % containing this integer

 bits=bits+6;

 if (x(i)>=16); bits=bits+4; end;

 if (x(i)>=272); bits=bits+4; end;

 if (x(i)>=4368); bits=bits+5; end;

 if (x(i)>=69904); bits=bits+5; end;

 if (x(i)>=1118480); bits=bits+4; end;

 end

 ent=0;

 Level = Level + 1;

 return % end of EncodeVector

end

% here we test if Run + Value coding should be done

I=find(x); % the non-zero indices of x

if (L/2-length(I))>50

 Maxx=max(x);

 Hi=IntHist(x,0,Maxx); % find the histogram

 Hinz=nonzeros(Hi);

 ent=log2(L)-sum(Hinz.*log2(Hinz))/L; % find entropy

 % there are few non-zero indices => Run+Value coding of x

49

 x2=x(I); % the values

 I=[I(:);L+1]; % include length of x

 for i=length(I):(-1):2; I(i)=I(i)-I(i-1); end;

 x1=I-1; % the runs

 % code this as an unconditional split (like if L is large)

 if Speed

 Byte=Byte+1; % since we add 8 bits

 else

 PutBit(0); % this is idicated like when a sequence

 PutVLIC(0); % of length 0 is coded, but we add one extra bit

 PutBit(1); % Run + Value is indicated by a '1'

 end;

 [bits1, temp] = EncodeVector(x1);

 [bits2, temp] = EncodeVector(x2);

 bits=bits1+bits2+8;

 Level = Level + 1;

 return % end of EncodeVector

end

if (nargin==1)

 Maxx=max(x);

 Meanx=mean(x);

 Hi=IntHist(x,0,Maxx); % find the histogram

 Hinz=nonzeros(Hi);

 ent=log2(L)-sum(Hinz.*log2(Hinz))/L; % find entropy

 HL=HuffLen(Hi);

 HLlen=HuffTabLen(HL);

 % find number of bits to use, store L, HL and x

 bits=6+HLlen+sum(HL.*Hi);

 if (L>=16); bits=bits+4; end;

 if (L>=272); bits=bits+4; end;

 if (L>=4368); bits=bits+5; end;

 if (L>=69904); bits=bits+5; end;

 if (L>=1118480); bits=bits+4; end;

 if Debug

 disp(['bits=',int2str(bits),' HLlen=',int2str(HLlen),...

 ' HClen=',int2str(sum(HL.*Hi))]);

 end

else % arguments are given, do not need to be calculated

 ent=0;

end

%

% Here we have: x, bits, L, HL, Maxx, Meanx, ent

if (L>MaxL) % we split sequence anyway (and the easy way; in the middle)

 L1=ceil(L/2);L2=L-L1;

 x1=x(1:L1);x2=x((L1+1):L);

elseif ((Level > 0) & (L>10))

 xm=median(x); % median in MatLab is slow, could be calulated faster by using the

histogram

 x1=zeros(L,1);x2=zeros(L,1);

50

 x2(1)=x(1);i1=0;i2=1;

 for i=2:L

 if (x(i-1) <= xm)

 i1=i1+1; x1(i1)=x(i);

 else

 i2=i2+1; x2(i2)=x(i);

 end

 end

 x1=x1(1:i1);x2=x2(1:i2);

 % find bits1 and bits2 for x1 and x2

 L1=length(x1);L2=length(x2);

 Maxx1=max(x1);Maxx2=max(x2);

 Meanx1=mean(x1);Meanx2=mean(x2);

 Hi1=IntHist(x1,0,Maxx1); % find the histogram

 Hi2=IntHist(x2,0,Maxx2); % find the histogram

 HL1=HuffLen(Hi1);HL2=HuffLen(Hi2);

 HLlen1=HuffTabLen(HL1);

 HLlen2=HuffTabLen(HL2);

 bits1=6+HLlen1+sum(HL1.*Hi1);

 bits2=6+HLlen2+sum(HL2.*Hi2);

 if (L1>=16); bits1=bits1+4; end;

 if (L1>=272); bits1=bits1+4; end;

 if (L1>=4368); bits1=bits1+5; end;

 if (L1>=69904); bits1=bits1+5; end;

 if (L1>=1118480); bits1=bits1+4; end;

 if (L2>=16); bits2=bits2+4; end;

 if (L2>=272); bits2=bits2+4; end;

 if (L2>=4368); bits2=bits2+5; end;

 if (L2>=69904); bits2=bits2+5; end;

 if (L2>=1118480); bits2=bits2+4; end;

else

 bits1=bits;bits2=bits;

end

% Here we may have: x1, bits1, L1, HL1, Maxx1, Meanx1

% and x2, bits2, L2, HL2, Maxx2, Meanx2

% but at least we have bits1 and bits2 (and bits)

if Debug

 disp(['Level=',int2str(Level),' bits=',int2str(bits),' bits1=',int2str(bits1),...

 ' bits2=',int2str(bits2),' sum=',int2str(bits1+bits2)]);

end

if (L>MaxL)

 if Speed

 BitPos=BitPos-1;

 if (~BitPos); Byte=Byte+1; BitPos=8; end;

 else

 PutBit(1); % indicate sequence is splitted into two

 end;

 [bits1, temp] = EncodeVector(x1);

 [bits2, temp] = EncodeVector(x2);

51

 bits=bits1+bits2+1;

elseif ((bits1+bits2) < bits)

 if Speed

 BitPos=BitPos-1;

 if (~BitPos); Byte=Byte+1; BitPos=8; end;

 else

 PutBit(1); % indicate sequence is splitted into two

 end;

 [bits1, temp] = EncodeVector(x1, bits1, HL1, Maxx1, Meanx1);

 [bits2, temp] = EncodeVector(x2, bits2, HL2, Maxx2, Meanx2);

 bits=bits1+bits2+1;

else

 bits=bits+1; % this is how many bits we are going to write

 if Debug

 disp(['EncodeVector: Level=',int2str(Level),' ',int2str(L),...

 ' sybols stored in ',int2str(bits),' bits.']);

 end

 if Speed

 % advance Byte and BitPos without writing to y

 Byte=Byte+floor(bits/8);

 BitPos=BitPos-mod(bits,8);

 if (BitPos<=0); BitPos=BitPos+8; Byte=Byte+1; end;

 else

 % put the bits into y

 StartPos=Byte*8-BitPos; % control variable

 PutBit(0); % indicate that a sequence is coded

 PutVLIC(L);

 PutHuffTab(HL);

 HK=HuffCode(HL);

 for i=1:L;

 n=x(i)+1; % symbol number (value 0 is first symbol, symbol 1)

 for k=1:HL(n)

 PutBit(HK(n,k));

 end

 end

 % check if one has used as many bits as calculated

 BitsUsed=Byte*8-BitPos-StartPos;

 if (BitsUsed~=bits)

 disp(['L=',int2str(L),' max(x)=',int2str(max(x)),' min(x)=',int2str(min(x))]);

 disp(['BitsUsed=',int2str(BitsUsed),' bits=',int2str(bits)]);

 error(['Huff06-EncodeVector: Logical error, (BitsUsed~=bits).']);

 end

 end

end

Level = Level + 1;

return % end of EncodeVector

function x = DecodeVector

global y Byte BitPos

MaxL=50000; % as in the EncodeVector function (line 216)

52

if GetBit

 x1=DecodeVector;

 x2=DecodeVector;

 L=length(x1)+length(x2);

 if (L>MaxL)

 x=[x1(:);x2(:)];

 else

 xm=median([x1;x2]);

 x=zeros(L,1);

 x(1)=x2(1);

 i1=0;i2=1;

 for i=2:L

 if (x(i-1) <= xm)

 i1=i1+1; x(i)=x1(i1);

 else

 i2=i2+1; x(i)=x2(i2);

 end

 end

 end

else

 L=GetVLIC;

 if (L>5)

 x=zeros(L,1);

 HL=GetHuffTab;

 if length(HL)

 Htree=HuffTree(HL);

 root=1;pos=root;

 l=0; % number of symbols decoded so far

 while l<L

 if GetBit

 pos=Htree(pos,3);

 else

 pos=Htree(pos,2);

 end

 if Htree(pos,1) % we have arrived at a leaf

 l=l+1;

 x(l)=Htree(pos,2)-1; % value is one less than symbol number

 pos=root; % start at root again

 end

 end

 else % HL has length 0, that is empty Huffman table

 x=x+GetVLIC;

 end

 elseif L>1 % ver 1.9 feb. 2010 KS

 x=zeros(L,1);

 for i=1:L

 x(i) = GetVLIC;

 end

 elseif L==0

 if GetBit

53

 % this is a Run + Value coded sequence

 x1=DecodeVector;

 x2=DecodeVector;

 % now build the actual sequence

 I=x1; % runs

 I=I+1;

 L=length(I); % one more than the number of values in x

 for i=2:L;I(i)=I(i-1)+I(i); end;

 x=zeros(I(L)-1,1);

 x(I(1:(L-1)))=x2; % values

 else

 x=[]; % this was really a length 0 sequence

 end

 elseif L==1

 x=GetVLIC;

 else

 error('DecodeVector: illegal length of sequence.');

 end

end

return % end of DecodeVector

% Functions to write and read the Huffman Table Information

% The format is defined in HuffTabLen, we repeat it here

% Function assume that the table information is stored in the following format

% previous symbol is set to the initial value 2, Prev=2

% Then we have for each symbol a code word to tell its length

% '0' - same length as previous symbol

% '10' - increase length by 1, and 17->1

% '1100' - decrease length by 1, and 0->16

% '11010' - increase length by 2, and 17->1, 18->2

% '11011' - One zero, unused symbol (twice for two zeros)

% '111xxxx' - set code length to CL=Prev+x (where 3 <= x <= 14)

% and if CL>16; CL=CL-16

% we have 4 unused 7 bit code words, which we give the meaning

% '1110000'+4bits - 3-18 zeros

% '1110001'+8bits - 19-274 zeros, zeros do not change previous value

% '1110010'+4bits - for CL=17,18,...,32, do not change previous value

% '1111111' - End Of Table

function PutHuffTab(HL)

global y Byte BitPos

HL=HL(:);

% if (max(HL) > 32)

% disp(['PutHuffTab: To large value in HL, max(HL)=',int2str(max(HL))]);

% end

% if (min(HL) < 0)

% disp(['PutHuffTab: To small value in HL, min(HL)=',int2str(min(HL))]);

% end

Prev=2;

54

ZeroCount=0;

L=length(HL);

for l=1:L

 if HL(l)==0

 ZeroCount=ZeroCount+1;

 else

 while (ZeroCount > 0)

 if ZeroCount<3

 for i=1:ZeroCount

 PutBit(1);PutBit(1);PutBit(0);PutBit(1);PutBit(1);

 end

 ZeroCount=0;

 elseif ZeroCount<19

 PutBit(1);PutBit(1);PutBit(1);PutBit(0);PutBit(0);PutBit(0);PutBit(0);

 for (i=4:-1:1); PutBit(bitget(ZeroCount-3,i)); end;

 ZeroCount=0;

 elseif ZeroCount<275

 PutBit(1);PutBit(1);PutBit(1);PutBit(0);PutBit(0);PutBit(0);PutBit(1);

 for (i=8:-1:1); PutBit(bitget(ZeroCount-19,i)); end;

 ZeroCount=0;

 else

 PutBit(1);PutBit(1);PutBit(1);PutBit(0);PutBit(0);PutBit(0);PutBit(1);

 for (i=8:-1:1); PutBit(1); end;

 ZeroCount=ZeroCount-274;

 end

 end

 if HL(l)>16

 PutBit(1);PutBit(1);PutBit(1);PutBit(0);PutBit(0);PutBit(1);PutBit(0);

 for (i=4:-1:1); PutBit(bitget(HL(l)-17,i)); end;

 else

 Inc=HL(l)-Prev;

 if Inc<0; Inc=Inc+16; end;

 if (Inc==0)

 PutBit(0);

 elseif (Inc==1)

 PutBit(1);PutBit(0);

 elseif (Inc==2)

 PutBit(1);PutBit(1);PutBit(0);PutBit(1);PutBit(0);

 elseif (Inc==15)

 PutBit(1);PutBit(1);PutBit(0);PutBit(0);

 else

 PutBit(1);PutBit(1);PutBit(1);

 for (i=4:-1:1); PutBit(bitget(Inc,i)); end;

 end

 Prev=HL(l);

 end

 end

end

for (i=7:-1:1); PutBit(1); end; % the EOT codeword

55

return; % end of PutHuffTab

function HL=GetHuffTab

global y Byte BitPos

Debug=0;

Prev=2;

ZeroCount=0;

HL=zeros(10000,1);

HLi=0;

EndOfTable=0;

while ~EndOfTable

 if GetBit

 if GetBit

 if GetBit

 Inc=0;

 for (i=1:4); Inc=Inc*2+GetBit; end;

 if Inc==0

 ZeroCount=0;

 for (i=1:4); ZeroCount=ZeroCount*2+GetBit; end;

 HLi=HLi+ZeroCount+3;

 elseif Inc==1

 ZeroCount=0;

 for (i=1:8); ZeroCount=ZeroCount*2+GetBit; end;

 HLi=HLi+ZeroCount+19;

 elseif Inc==2 % HL(l) is large, >16

 HLi=HLi+1;

 HL(HLi)=0;

 for (i=1:4); HL(HLi)=HL(HLi)*2+GetBit; end;

 HL(HLi)=HL(HLi)+17;

 elseif Inc==15

 EndOfTable=1;

 else

 Prev=Prev+Inc;

 if Prev>16; Prev=Prev-16; end;

 HLi=HLi+1;HL(HLi)=Prev;

 end

 else

 if GetBit

 if GetBit

 HLi=HLi+1;

 else

 Prev=Prev+2;

 if Prev>16; Prev=Prev-16; end;

 HLi=HLi+1;HL(HLi)=Prev;

 end

 else

 Prev=Prev-1;

56

 if Prev<1; Prev=16; end;

 HLi=HLi+1;HL(HLi)=Prev;

 end

 end

 else

 Prev=Prev+1;

 if Prev>16; Prev=1; end;

 HLi=HLi+1;HL(HLi)=Prev;

 end

 else

 HLi=HLi+1;HL(HLi)=Prev;

 end

end

if HLi>0

 HL=HL(1:HLi);

else

 HL=[];

end

if Debug

 % check if this is a valid Huffman table

 temp=sum(2.^(-nonzeros(HL)));

 if temp ~=1

 error(['GetHuffTab: HL table is no good, temp=',num2str(temp)]);

 end

end

return; % end of GetHuffTab

% Functions to write and read a Variable Length Integer Code word

% This is a way of coding non-negative integers that uses fewer

% bits for small integers than for large ones. The scheme is:

% '00' + 4 bit - integers from 0 to 15

% '01' + 8 bit - integers from 16 to 271

% '10' + 12 bit - integers from 272 to 4367

% '110' + 16 bit - integers from 4368 to 69903

% '1110' + 20 bit - integers from 69940 to 1118479

% '1111' + 24 bit - integers from 1118480 to 17895695

% not supported - integers >= 17895696 (=2^4+2^8+2^12+2^16+2^20+2^24)

function PutVLIC(N)

global y Byte BitPos

if (N<0)

 error('Huff06-PutVLIC: Number is negative.');

elseif (N<16)

 PutBit(0);PutBit(0);

 for (i=4:-1:1); PutBit(bitget(N,i)); end;

elseif (N<272)

 PutBit(0);PutBit(1);

 N=N-16;

 for (i=8:-1:1); PutBit(bitget(N,i)); end;

57

elseif (N<4368)

 PutBit(1);PutBit(0);

 N=N-272;

 for (i=12:-1:1); PutBit(bitget(N,i)); end;

elseif (N<69940)

 PutBit(1);PutBit(1);PutBit(0);

 N=N-4368;

 for (i=16:-1:1); PutBit(bitget(N,i)); end;

elseif (N<1118480)

 PutBit(1);PutBit(1);PutBit(1);PutBit(0);

 N=N-69940;

 for (i=20:-1:1); PutBit(bitget(N,i)); end;

elseif (N<17895696)

 PutBit(1);PutBit(1);PutBit(1);PutBit(1);

 N=N-1118480;

 for (i=24:-1:1); PutBit(bitget(N,i)); end;

else

 error('Huff06-PutVLIC: Number is too large.');

end

return

function N=GetVLIC

global y Byte BitPos

N=0;

if GetBit

 if GetBit

 if GetBit

 if GetBit

 for (i=1:24); N=N*2+GetBit; end;

 N=N+1118480;

 else

 for (i=1:20); N=N*2+GetBit; end;

 N=N+69940;

 end

 else

 for (i=1:16); N=N*2+GetBit; end;

 N=N+4368;

 end

 else

 for (i=1:12); N=N*2+GetBit; end;

 N=N+272;

 end

else

 if GetBit

 for (i=1:8); N=N*2+GetBit; end;

 N=N+16;

 else

 for (i=1:4); N=N*2+GetBit; end;

 end

end

58

return

% Functions to write and read a Bit

function PutBit(Bit)

global y Byte BitPos

BitPos=BitPos-1;

if (~BitPos); Byte=Byte+1; BitPos=8; end;

y(Byte) = bitset(y(Byte),BitPos,Bit);

return

function Bit=GetBit

global y Byte BitPos

BitPos=BitPos-1;

if (~BitPos); Byte=Byte+1; BitPos=8; end;

Bit=bitget(y(Byte),BitPos);

return;

% this function is a variant of the standard hist function

function Hi=IntHist(W,i1,i2)

W=W(:);

%if (rem(i1,1) | rem(i2,1)); error('Non integers'); end;

L=length(W);

Hi=zeros(i2-i1+1,1);

if (i2-i1)>50

 for l=1:L

 i=W(l)-i1+1;

 Hi(i)=Hi(i)+1;

 end

else

 for i=i1:i2

 I=find(W==i);

 Hi(i-i1+1)=length(I);

 end

end

return;

59

MATRIX TO VECTOR

function xC = Mat2Vec(W, Method, K, L)

% Mat2Vec Convert an integer matrix to a cell array of vectors,

% several different methods are possible, most of them are non-linear.

% The inverse function is also performed by this function,

% to use this first argument should be a cell array instead of a matrix.

%

Mfile='Mat2Vec';

Debug=0;

% check input and output arguments, and assign values to arguments

if (nargin < 2);

 error([Mfile,': function must have two input arguments, see help.']);

end

if (nargout ~= 1);

 error([Mfile,': function must have one output arguments, see help.']);

end

if (~iscell(W))

 ToSeq=1; % transform matrix W to xC

 if (nargin < 3); K=size(W,1); end;

 if (nargin < 4); L=size(W,2); end;

else

 ToSeq=0; % transform cell array xC to W

 xC=W;

 clear W

 if (nargin < 4)

 error([Mfile,': function must have four input arguments, see help.']);

 end

end

% check given Method

Method=floor(Method);

if Method<0; Method=0; end;

if Method>19; Method=0; end;

% find number of sequences in xC from Method

if (Method== 0); xCno=1;

elseif (Method== 1); xCno=2;

elseif (Method== 2); xCno=1;

elseif (Method== 3); xCno=2;

elseif (Method== 4); xCno=1;

elseif (Method== 5); xCno=3;

elseif (Method== 6); xCno=2;

elseif (Method== 7); xCno=2;

elseif (Method== 8); xCno=K;

elseif (Method== 9); xCno=2*K;

elseif (Method==10); xCno=log2(K)+1;

elseif (Method==11); xCno=2*log2(K)+2;

60

elseif (Method==12); xCno=K;

elseif (Method==13); xCno=2*K;

elseif (Method==14); xCno=log2(K)+1;

elseif (Method==15); xCno=2*log2(K)+2;

elseif (Method==16); xCno=1+(3/2)*log2(K);

elseif (Method==17); xCno=2+3*log2(K);

elseif (Method==18); xCno=1+(3/2)*log2(K);

elseif (Method==19); xCno=2+3*log2(K);

else xCno=0;

end;

%

if ToSeq

 [k,l]=size(W);

 if ((k~=K) || (l~=L))

 error([Mfile,': illegal size of W matrix, see help.']);

 end

 xC=cell(xCno,1);

 if sum(Method==[4:7,12:15,18,19])

 % make W with only positive values

 W=W*2;

 I=find(W<0);

 W(I)=-W(I)-1;

 end

else

 temp=length(xC);

 if temp~=xCno

 error([Mfile,': size of xC does not correspond to Method, see help.']);

 end

 W=zeros(K,L);

end

if Method==0 % direct by columns

 if ToSeq

 xC{1}=W(:);

 else

 W=reshape(xC{1},K,L);

 end

elseif ((Method==1) || (Method==6)) % runs and values, column by column

 if ToSeq

 I=find(W(:));

 xC{2}=W(I); % values

 for i=length(I):(-1):2; I(i)=I(i)-I(i-1); end;

 xC{1}=I-1; % runs

 else

 I=xC{1}; % runs

 I=I+1;

 for i=2:length(I);I(i)=I(i-1)+I(i); end;

 W(I)=xC{2}; % values

 end

end

61

if Method==2 % direct by rows

 if ToSeq

 W=W';

 xC{1}=W(:);

 W=W';

 else

 W=reshape(xC{1},L,K)';

 end

end

if ((Method==3) || (Method==7)) % runs and values, row by row

 if ToSeq

 W=W';

 I=find(W(:));

 xC{2}=W(I); % values

 for i=length(I):(-1):2; I(i)=I(i)-I(i-1); end;

 xC{1}=I-1; % runs

 W=W';

 else

 W=zeros(L,K);

 I=xC{1}; % runs

 I=I+1;

 for i=2:length(I);I(i)=I(i-1)+I(i); end;

 W(I)=xC{2}; % values

 W=W';

 end

end

if Method==4 % EOB coded

 if ToSeq

 xC{1}=eob3(W);

 else

 W=eob3(xC{1},K);

 end

end

if Method==5 % EOB coded, three sequences

 if ToSeq

 [xC{1},xC{2},xC{3}]=eob3(W);

 else

 W=eob3(xC{1},xC{2},xC{3},K);

 end

end

if ((Method==8) || (Method==12)) % each row coded as one sequence

 if ToSeq

 for k=1:K

 xC{k}=W(k,:)';

 end

 else

 for k=1:K

 W(k,:)=xC{k}';

 end

 end

62

end

if ((Method==9) || (Method==13)) % each row coded as runs and values

 if ToSeq

 for k=1:K

 I=find(W(k,:));

 if ~isempty(I)

 xC{2*k}=W(k,I)'; % values

 for i=length(I):(-1):2; I(i)=I(i)-I(i-1); end;

 xC{2*k-1}=(I-1)'; % runs

 else

 if Debug

 display('empty sequence.');

 end

 xC{2*k}=[];

 xC{2*k-1}=[];

 end

 end

 else

 for k=1:K

 I=xC{2*k-1}; % runs

 I=I+1;

 for i=2:length(I);I(i)=I(i-1)+I(i); end;

 W(k,I)=xC{2*k}'; % values

 end

 end

end

if ((Method==10) || (Method==14)) % each subband is coded as one sequence

 if rem(log2(K),1)

 error('Logical error: K is not a power of 2.');

 end

 i1=1;i2=1;

 if ToSeq

 for k=1:(log2(K)+1)

 xC{k}=reshape(W(i1:i2,:),L*(i2-i1+1),1);

 i1=i2+1;

 i2=i2*2;

 end

 else

 for k=1:(log2(K)+1)

 W(i1:i2,:)=reshape(xC{k},i2-i1+1,L);

 i1=i2+1;

 i2=i2*2;

 end

 end

end

if ((Method==11) || (Method==15)) % each subband is coded as runs and values

 if rem(log2(K),1)

 error('Logical error: K is not a power of 2.');

 end

 i1=1;i2=1;

63

 if ToSeq

 for k=1:(log2(K)+1)

 temp=reshape(W(i1:i2,:),L*(i2-i1+1),1);

 I=find(temp);

 xC{2*k}=(temp(I))'; % values

 for i=length(I):(-1):2; I(i)=I(i)-I(i-1); end;

 xC{2*k-1}=(I-1)'; % runs

 i1=i2+1;

 i2=i2*2;

 end

 else

 for k=1:(log2(K)+1)

 I=xC{2*k-1}; % runs

 I=I+1;

 for i=2:length(I);I(i)=I(i-1)+I(i); end;

 temp=zeros(i2-i1+1,L);

 temp(I)=xC{2*k}; % values

 W(i1:i2,:)=temp;

 i1=i2+1;

 i2=i2*2;

 end

 end

end

% new methods June 5. 2009

if ((Method==16) || (Method==18)) % each subband is coded as one sequence

 if rem(log2(K),2)

 error('Logical error: K is not a power of 4.');

 end

 nivaa = log2(K)/2;

 v = [1,2; 3,4]; vm = 4;

 for i = 1:(nivaa-1)

 v = [v, (vm+1)*ones(size(v)); (vm+2)*ones(size(v)), (vm+3)*ones(size(v))];

 vm = vm+3;

 end

 if ToSeq

 for k=1:vm

 xC{k} = reshape(W(find(v(:)==k),:), L*sum(v(:)==k), 1);

 end

 else

 for k=1:vm

 W(find(v(:)==k),:) = reshape(xC{k}, sum(v(:)==k), L);

 end

 end

end

if ((Method==17) || (Method==19)) % each subband is coded as runs and values

 if rem(log2(K),2)

 error('Logical error: K is not a power of 4.');

 end

 nivaa = log2(K)/2;

 v = [1,2; 3,4]; vm = 4;

64

 for i = 1:(nivaa-1)

 v = [v, (vm+1)*ones(size(v)); (vm+2)*ones(size(v)), (vm+3)*ones(size(v))];

 vm = vm+3;

 end

 if ToSeq

 for k=1:vm

 temp = reshape(W(find(v(:)==k),:), L*sum(v(:)==k), 1);

 I=find(temp);

 xC{2*k}=(temp(I))'; % values

 for i=length(I):(-1):2; I(i)=I(i)-I(i-1); end;

 xC{2*k-1}=(I-1)'; % runs

 end

 else

 for k=1:vm

 I=xC{2*k-1}; % runs

 I=I+1;

 for i=2:length(I);I(i)=I(i-1)+I(i); end;

 temp=zeros(i2-i1+1,L);

 temp(I) = xC{2*k}; % values

 W(find(v(:)==k),:) = reshape(temp, sum(v(:)==k), L);

 end

 end

end

if ~ToSeq

 if sum(Method==[4:7,12:15])

 W=W/2;

 I=find(rem(W,1));

 W(I)=-W(I)-0.5; % make negative values in W appear again

 end

 xC=W; % must return with W

end

return

