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     Genetic Algorithm and The Dynamic Connectivity Problem  
 
 

 

Genetic algorithms are an evolutionary technique that uses crossover and 

mutation operators to solve optimization problems using a survival of the fittest 

idea.  They have been used successfully in a variety of different problems, 

including the traveling salesman problem. 

In the traveling salesman problem we wish to find  a tour  of all nodes  in a 

weighted graph so that  the  total  weight is minimized.  The traveling salesman 

problem is NP-hard but has many real world applications so a good solution would 

be useful. 

Many different crossover and mutation operators have been devised for the 

traveling salesman problem and  each  give  different results.  We compare these 

results and find that operators that use heuristic information or a matrix   

representation of the graph give the best results.



 
CHAPTER 1 
 
 

Introduction 
 
 
 

Genetic  algorithms are a relatively new  optimization technique which  can be applied 

to various problems, including those that are NP-hard. The technique does not ensure an 

optimal solution, however it usually gives good  approximations in a reasonable amount 

of time.  This, therefore, would be a good algorithm to try on the traveling salesman 

problem, one of the most famous NP-hard problems. 

Genetic  algorithms are loosely  based  on natural evolution and  use a “survival of the 

fittest”  technique, where the best solutions survive and  are varied until  we get a good  

result.  We will explain  genetic  algorithms in detail,  including the var- ious methods of 

encoding, crossover, mutation and  evaluation in chapter 2. This will also include the 

operations used  for the traveling salesman problem. 

In chapter 3 we  will  explore  the  traveling salesman problem, what  it is, real world 

applications, different variations of the problem and  other  algorithms and methods that 

have been tried. 

Finally, in chapter 4 we will compare and  contrast the different applications of 

genetic  algorithms to the traveling salesman problem. In particular we will com- pare, 

where possible, their results for problems of specific sizes.



 
 
 

Genetic Algorithms 
 
 
 

2.1   Introduction 
 
 

In the field of artificial intelligence, a genetic algorithm (GA) is a search heuristic that mimics 
the process of natural selection. This heuristic (also sometimes called a metaheuristic) is 
routinely used to generate useful solutions to optimization and search problems.[1] Genetic 
algorithms belong to the larger class of evolutionary algorithms (EA), which generate solutions 
to optimization problems using techniques inspired by natural evolution, such 
asinheritance, mutation, selection, and crossover. 

Genetic algorithms find application in bioinformatics, phylogenetics, computational 
science, engineering, economics, chemistry, manufacturing,mathematics, physics, pharmacome
trics and other fields. 

 

The genetic  algorithm process  consists  of the following steps: 
 
 

•  Encoding 
 

•  Evaluation 
 

•  Crossover 
 

•  Mutation 
 

•  Decoding 
 

A suitable encoding is found for the solution to our problem so that  each pos- 

sible solution has a unique encoding and  the encoding is some  form  of a string. 

The initial population is then  selected,  usually at random though alternative tech-



3  
 
 
 

niques using  heuristics have  also been  proposed.  The fitness  of each  individual 

in the population is then  computed; that is, how well the individual fits the prob- 

lem and  whether it is near  the optimum compared to the other  individuals in the 

population. This fitness is used  to find the individual’s probability of crossover. If 

an individual has a high  probability (which  indicates that  it is significantly closer 

to the  optimum than  the  rest  of its generation) then  it is more  likely  to be cho- 

sen to crossover. Crossover is where the two individuals are recombined to create 

new individuals which  are copied  into the new generation. Next mutation occurs. 

Some individuals are chosen  randomly to be mutated and  then  a mutation point 

is randomly chosen.   The character in the corresponding position of the string  is 

changed. Once this is done,  a new generation has been formed and  the process  is 

repeated until some stopping criteria has been reached. At this point the individual 

which  is closest to the optimum is decoded and the process  is complete. 
 
 

2.2   Basic Explanation 
 
 

In a genetic algorithm, a population of candidate solutions (called individuals, 
creatures, or phenotypes) to an optimization problem is evolved toward better 
solutions. Each candidate solution has a set of properties 
(its chromosomes or genotype) which can be mutated and altered; traditionally, 
solutions are represented in binary as strings of 0s and 1s, but other encodings are also 
possible.  

The evolution usually starts from a population of randomly generated individuals, and 
is an iterative process, with the population in each iteration called a generation. In 
each generation, the fitnessof every individual in the population is evaluated; the 
fitness is usually the value of the objective function in the optimization problem being 
solved. The more fit individuals are stochastically selected from the current 
population, and each individual's genome is modified (recombined and possibly 
randomly mutated) to form a new generation. The new generation of candidate 
solutions is then used in the next iteration of the algorithm. Commonly, the algorithm 
terminates when either a maximum number of generations has been produced, or a 
satisfactory fitness level has been reached for the population. 
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A standard representation of each candidate solution is as an array of bits.[2] Arrays 
of other types and structures can be used in essentially the same way. The main 
property that makes these genetic representations convenient is that their parts are 
easily aligned due to their fixed size, which facilitates simple crossover operations. 
Variable length representations may also be used, but crossover implementation is 
more complex in this case. Tree-like representations are explored in genetic 
programming and graph-form representations are explored in evolutionary 
programming; a mix of both linear chromosomes and trees is explored in gene 
expression programming. 

Once the genetic representation and the fitness function are defined, a GA proceeds 
to initialize a population of solutions and then to improve it through repetitive 
application of the mutation, crossover, inversion and selection operators. 
 
 
 

2.2.1   Encoding 
 
 

The encoding process  is often the most difficult  aspect  of solving  a problem using 

genetic  algorithms. When  applying them  to a specific problem it is often hard  to 

find  an appropriate representation of the  solution that  will be easy  to use  in the 

crossover process.  Remember that  we need  to encode  many  possible  solutions to
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create a population. The traditional way to represent a solution is with  a string  of 

zeros and ones.  However genetic  algorithms are not restricted to this encoding, as 

we will see in section 2.4. For now we will use a binary string  representation. 

Consider the problem defined above.  Our possible  solutions are obviously just 

numbers, so our  representation is simply  the  binary form  of each  number.  For 

instance, the  binary representations of 12 and  7 are  1100 and  0111 respectively. 

Note  that  we added a zero to the beginning of the string  0111 even  though it has 

no real meaning. We did this so that all the numbers in the set {0, . . . , 15} have the 

same length. These strings are called chromosomes and each element (or bit) of the 

string  is called a gene. 

We now  randomly generate many  chromosomes and  together they  are called 

the population. 
 
 

2.2.2   Evaluation 
 
 

The evaluation function plays  an important role in genetic  algorithms. We use the 

evaluation function to decide  how  ’good’ a chromosome is. The evaluation func- 

tion usually comes straight from the problem. In our case the evaluation function 

would simply  be the function f  = −2x2 + 4x − 5, and  because  we are trying  to 

maximize the function, the larger  the value  for f , the better.   So, in our  case, we 

would evaluate the function with the two values  7 and 12. 
 

f (7) = −71 
 

 
f (12) = −241 

 
Obviously 7 is a better  solution than 12, and would therefore have a higher fitness. 

This fitness  is then  used  to decide  the  probability that  a particular chromosome 

would be chosen  to contribute to the  next  generation.  We would normalize the 

scores that we found and then create a cumulative probability distribution. This is 

then used  in the crossover process.
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The stopping criteria  is used  in the evaluation process  to determine whether or 

not the current generation and the best solution found so far are close to the global 

optimum.  Various  stopping criteria  can be used,  and  usually more  than  one  is 

employed to account for different possibilities during the running of the program: 

the optimal solution is found, the optimal solution is not found, a local optimum 

is found, etc. The standard stopping criteria  that is used  stops  the procedure after 

a given number of iterations. This is so that if we do not find a local optimum or a 

global optimum and do not converge to any one point,  the procedure will still stop 

at some given time. Another stopping criteria is to stop after the “best” solution has 

not changed over a specified  number of iterations. This will usually happen when 

we have  found an optimum - either  local or global - or a point  near the optimum. 

Another stopping criteria  is when  the average fitness of the generation is the same 

or close to the fitness of the ’best’ solution. 
 
 

2.2.3   Crossover 
 
 

Crossover can be a fairly straightforward procedure. In our example, which  uses 

the simplest case of crossover, we randomly choose two chromosomes to crossover, 

randomly pick a crossover point,  and  then  switch  all genes  after  that  point.   For 

example, using  our chromosomes 

 
v1     =  0111 

 
v2     =  1100 

 
 

we could randomly choose the crossover point  after the second  gene 
 
 

v1     =  01 | 11 
 

v2     =  11 | 00



7  

 

 

 
 
 

. Switching the genes after the crossover point  would give 
 
 

1     =  0100 = 4 
 

2     =  1111 = 15 
 
 

We now have two new chromosomes which  would be moved into the next popu- 

lation, called the next generation. 

Not every chromosome is used in crossover. The evaluation function gives each 

chromosome a ’score’ which  is used  to decide  that  chromosome’s probability of 

crossover.  The chromosomes are chosen  to crossover randomly and  the chromo- 

somes with the highest scores are more likely to be chosen.  We use the cumulative 

distribution created in the evaluation stage to choose the chromosomes. We gener- 

ate a random number between zero and  one and  then  choose which  chromosome 

this  corresponds to in our  distribution.  We do  this  again  to get a pair,  then  the 

crossover is performed and  both new chromosomes are moved into the new gen- 

eration. This will hopefully mean  that  the next generation will be better  than  the 

last - because  only the best chromosomes from the previous generation were used 

to create this generation. Crossover continues until the new generation is full. 

A population of individualsare is maintained within search space for a GA, each representing a 
possible solution to a given problem. Each individual is coded as a finite length vector of 
components, or variables, in terms of some alphabet, usually the binary alphabet {0,1}. To 
continue the genetic analogy these individuals are likened to chromosomes and the variables 
are analogous to genes. Thus a chromosome (solution) is composed of several genes 
(variables). A fitness score is assigned to each solution representing the abilities of an 
individual to `compete'. The individual with the optimal (or generally near optimal) fitness 
score is sought. The GA aims to use selective `breeding' of the solutions to produce `offspring' 
better than the parents by combining information from the chromosomes. 

 

We can also have  two  point  crossover.  In this  case we randomly choose  two
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crossover points  and switch  the genes between the two points.  In our problem we 
 

could pick the points  after the first gene and after the third  gene. 
 
 

v1 = 0 | 11 | 1 

v2 = 1 | 10 | 0 
 

to get 
 
 

1     =  0101 = 5 
 

2     =  1110 = 14 
 
 

There  are many  different crossover routines, some  of which  will be explored 

later.  We often need  to change  the crossover routine to make  sure  that  we do not 

finish  with  an  illegal  chromosome - that  is, an  infeasible solution.  In this  way, 

crossover is very problem specific. 
 
 

2.2.4   Mutation 
 
 

Mutation is used  so that  we do not  get trapped in a local optimum.  Due  to the 

randomness of the  process  we  will  occasionally have  chromosomes near  a local 

optimum but none near the global optimum. Therefore the chromosomes near the 

local optimum will be chosen to crossover because  they will have the better  fitness 

and there will be very little chance of finding the global optimum. So mutation is a 

completely random way of getting to possible  solutions that would otherwise not 

be found. 

Mutation is performed after crossover by randomly choosing a chromosome in 

the new  generation to mutate.  We then  randomly choose  a point  to mutate and 

switch  that point.  For instance, in our example we had 

 
v1 = 0111
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If we chose the mutation point  to be gene three, v1 would become 
 
 

1  = 0101 
 

We simply  changed the 1 in position three  to a 0. If there  had  been a 0 in position 

three then we would have changed it to a 1. This is extremely easy in our example 

but  we  do  not  always use  a string  of zeros  and  ones  as our  chromosome.  Like 

crossover, mutation is designed specifically  for the problem that  it is being  used 

on. 
 

Inversion is a different form  of mutation [1].  It is sometimes used  in appro- 

priate  cases and  we will investigate some  of these  later.  Here  we will explain  the 

inversion operator on our basic example. 

The inversion operator consists  of randomly choosing two inversion points  in 

the string  and then inverting the bits between the two points.  For example 
 

v2 = 1100 
 
 

We could choose the two points  after gene one and after gene three. 
 
 

v2 = 1 | 10 | 0 
 

Now, since there are only two genes between our inversion points,  we then switch 

these two genes to give 
 
 

2  = 1010 
 

 
If we had a larger  chromosome, say 

 
 

v3 = 110100101001111 
 
 

we could  choose  the inversion points  after  the third  point  and  after  the eleventh 

point. 
 

v3 = 110 | 10010100 | 1111
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Now,  we start  at the  ends  of the  ’cut’ region  and  switch  the  genes  at either  end 
 

moving in. So we get 
 
 

3  = 110001010011111 
 
 

Essentially we are just reversing (or inverting) the order  of the genes  in between 

the two chosen points. 
 
 

2.3   Prisoner’s Dilemma 
 
 

Another completely different application of genetic  algorithms is the  prisoners’ 
 

dilemma given in [7]. 
 

The prisoners’ dilemma is a game where two prisoners are held in separate cells 

and  cannot  communicate. Each is asked  to defect  and  betray  the other  and  must 

decide  whether to do so rather than  cooperating with  the  other  prisoner.  If one 

prisoner defects  he receives  five points  and  the other  receives  zero.   However,  if 

both  prisoners defect  they  each receive  only one point.   If both  players cooperate 

they  each receive  three  points.   The problem that  we wish  to solve is to come up 

with  a strategy to play  the  game  successfully.  Michalewicz ([7]) has  devised an 

algorithm to do  this.   He  uses  the  past  three  plays  to decide  what  to do  for the 

current play.  Each history then  consists  of three  combinations of C and D, ie, C C , 

C D, DC  or DD,  so there  are 4 × 4 × 4 = 64 different histories.  Each player  has 

a particular set play  for each of these  different histories, and  together these  plays 

will give a strategy (or chromosome) also of length  64. For instance, if we had the 

histories 

 
. . . , (C D)(DC )(C C ), (DD)(DC )(C D), (C D)(C D)(C D), . . . 

 
 

then the chromosome could look like 
 
 

. . . , C, C, D, . . .
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meaning that  if the history happened to be (C D)(DC )(C C ) this player  would co- 

operate on the next turn.  If the history was (DD)(DC )(C D) the player  would also 

cooperate on the next turn, but if the history was (C D)(C D)(C D) the player  would 

defect on the next turn. 

Now we can find a play for each different history but what  happens at the start 

of the game  when  there  is no history?  Each different player  (or chromosome) is 

given  an hypothetical history so that  it can generate its first play.  That is, we add 

six more  genes  to the start  of the chromosome to act as the ’last’ three  plays.  The 

player  then  uses the play  that  has been assigned to that  particular history. So we 

end up with a string  of 70 genes as our chromosome. 

The fitness of each chromosome is found by playing against other players. The 

usual  one or two  point  crossover works  for these  chromosomes and  mutation is 

also just the usual  mutation routine. Notice  that  the chromosomes are simply  bi- 

nary  strings but  we have  the letters  C and  D rather than  the binary digits  0 and 

1. 
 
 
 

2.4   Encoding 
 
 

In this section  we will investigate possible  ways  to encode  different problems. In 

particular, the traveling salesman problem will be examined. 

We have  already seen  the  basic way  of encoding a problem using  a string  of 

zeros  and  ones,  which  represent a number in its binary form.  We can also use a 

string of letters, for example ABCDE, or a string of integers, 12345, or just about any 

string of symbols  as long as they can be decoded into something more meaningful. 

Imagine we  had  a problem involving a graph and  we  needed to encode  the 

adjacency list of the graph. We could  create  the adjacency matrix,  which  consists 

of a one in the  i, jth position if there  is an arc from  node  i to node  j and  a zero 

otherwise.  We could  then  use  the  matrix  as is or we else could  concatenate the
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rows  of the matrix  to create  one long  string  of zeros  and  ones.  Notice  this  time, 

however, the string  is not a binary representation of a number. 

This leads  us to the first method of encoding a tour  of the traveling salesman 

problem. We do have a graph such as the one described above and we can encode 

it in the same way, only our matrix  will have  a one in the i, jth position if there  is 

an arc from  node  i to node  j in the tour  and  a zero  otherwise.  For example, the 
�                � 

represents the tour that goes from city 1 to city 3, city 3 to city 2 and city 2 to city 1. 

This encoding is known as matrix  representation and is given in [3] and [7]. 

The traveling salesman problem can also be represented by a string  of integers 

in two different ways.  The first (given in [9], [3], [2] and [7]) is by the string 
 

v = a1a2  . . . an 

 
which implies  that the tour goes from a1  to a2  to a3 , etc and from an back to a1 . No- 

tice that the strings v1 = 1234 and v2 = 2341 are equivalent in this representation. 

The second  way  to represent the traveling salesman problem is with  cycle no- 

tation  ([7]), with an integer string 
 

v = b1b2 . . . bn 

 
where the tour  goes from city i to city bi.  That is, the string  v1  = 3421 means  that 

the tour goes from city 1 to city 3, city 3 to city 2, city 2 to city 4 and city 4 to city 1. 

Note that not every possible string here represents a legal tour, where a legal tour is 

a tour that goes to every city exactly once and returns to the first city. It is possible 

for us to have a string that represents disjoint cycles, for example, v2 = 3412 implies 

that we go from city 1 to city 3 and back to city 1 and from city 2 to city 4 and back 

to city 2.
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2.5   Crossover 
 
 

Several crossover methods have  been developed for the traveling salesman prob- 

lem.  In this section we describe several  of them.  We shall compare these methods 

in chapter 4. 

We start  by looking  at partially matched crossover (PMX) ([4], [1], [2] and  [7]). 

Recall the  two-point crossover and  assume we were  to use  this  with  the  integer 

representation defined for the  traveling salesman problem in section  2.4.  If we 

performed a two-point crossover on the chromosomes 
 

v1 = 1234 | 567 | 8 

v2 = 8521 | 364 | 7 
 

we would get 
 

1     =  1234 | 364 | 8 
 

2     =  8521 | 567 | 7 
which  are obviously illegal because  v0 does not visit cities 5 or 7 and visits cities 4

 

and  3 twice.  Similarly  v0 
 

does  not visit cities 4 or 3 and  visits cities 5 and  7 twice.

PMX fixes this problem by noting that we made  the swaps 3 ↔ 5, 6 ↔ 6 and 4 ↔ 7 

and  then  repeating these  swaps on the genes  outside the crossover points,  giving 

us 
 

1     =  12573648 
 

2     =  83215674 

In other  words, we made  the swaps, 3 ↔ 5, 6 ↔ 6, 4 ↔ 7 and  the other  elements 

stayed the same.  v00  and v00  still consist of parts  from both the parents v1 and v2 and 
1                2 

 

are now both legal. 
 

This crossover would make  more  sense  when  used  with  the cycle representa- 

tion, since in this case it would preserve more of the structure from the parents. If,
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as in our example, we used  the first integer representation, the order  that the cities 

were  visited  would have  changed greatly from  the parents to the children - only 

a few of the same edges  would have  been kept.  With cycle notation a lot more  of 

the edges  would have  been transfered. However, if we use this crossover routine 

with  cycle representation we  do  not  necessarily get a legal  tour  as a result.   We 

would need  to devise  a repair routine to create a legal tour  from the solution that 

the crossover gives us, by changing as little as possible  in order  to keep  a similar 

structure. 

Cycle crossover (CX) ([4], [2] and [7]) works  in a very different way.  First of all, 

this crossover can only be used with the first representation we defined, that is, the 

chromosome v = 1234 implies  that  we go from  city 1 to city 2 to city 3 to city 4. 

This time we do not pick a crossover point at all. We choose the first gene from one 

of the parents 
 

v1     =  12345678 
 

v2     =  85213647 
say we pick 1 from v1  

 
1  = 1 − − − − − −−

 
We must  pick every  element from one of the parents and place it in the position it 

was previously in.  Since the first position is occupied by 1, the number 8 from v2 

cannot  go there.  So we must  now pick the 8 from v1 . 
 

1  = 1 − − − − − −8 
 

This forces us to put the 7 in position 7 and the 4 in position 4, as in v1. 
 

1  = 1 − −4 − −78 

Since the same  set of positions is occupied by 1, 4, 7, 8 in v1  and  v2, we finish by 

filling in the blank positions with the elements of those positions in v2. Thus 
 

1  = 15243678
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2                                                                     1 
 
 

2  = 82315647 
 
 

This process  ensures that each chromosome is legal. Notice that it is possible  for us 

to end up with  the offspring being  the same as the parents. This is not a problem 

since it will usually only occur if the parents have  high fitnesses,  in which  case, it 

could still be a good choice. 

Order crossover (OX) ([2] and  [7]) is more  like  PMX in that  we  choose  two 

crossover points and crossover the genes between the two points.  However instead 

of repairing the chromosome by swapping the repeats of each node also, we simply 

rearrange the rest of the genes to give a legal tour.  With the chromosomes 
 

v1     =  135 | 762 | 48 
 

v2     =  563 | 821 | 47 
 
 

we would start by switching the genes between the two crossover points. 
 
 

1     =  − − − | 821 | − − 
 

2     =  − − − | 762 | −− 
 
 

We then  write  down the  genes  from  each  parent chromosome starting from  the 

second  crossover point. 
 

v1 :   48135762 
 

v2 :   47563821 
 
 

then  the  genes  that  were  between the  crossover points  are  deleted.  That  is, we 

would delete  8, 2 and 1 from the v1 list and 7, 6 and 2 from the v2 list to give 
 

v1 :   43576 
 

v2 :   45381



16  

 

 

 
 
 

which are then replaced into the child chromosomes, starting at the second crossover 
 

point. 
 
 

1     =  57682143 
 

2     =  38176245 
 

Next we consider matrix  crossover (MX) ([7] and [3]). For this we have a matrix 

representation where the element i, j is 1 if there  is an edge  from node  i to node  j 

and 0 otherwise. Matrix crossover is the same as one- or two-point crossover. If we 

have the matrices
 

we choose the crossover points  after the first column and after the second  column 
 

and crossover the columns to give 
 
 

We now have multiple 1’s in some rows and some rows without any 1’s at all. We 

fix this by moving one of the 1’s from the row wth  the multiples to a row without
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any 1’s. We choose which  1 to move randomly. 
 
 

Now  notice in A00  we have a → a and b → c → b. So we have two different cycles. 

We can fix this by cutting and  reconnecting the cycles.  Obviously we would cut 

the edge from a to a and one of the edges between b and c and connect  a to b and a 

to c. When we have a choice as to which nodes  we connect  (our example was small 

enough so that we do not have a choice) we choose the ones that exist in one of the 

parents to try to maintain the structure as much  as possible. 

Modified order  crossover (MOX) ([9]) is similar  to order  crossover.  We ran- 

domly choose one crossover point  in the parents and as usual,  leave the genes be- 

fore the crossover point  as they are.  We then  reorder the genes after the crossover 

point  in the order  that they appear in the second  parent chromosome. If we have 
 
 

v1 = 123 | 456 

v2 = 364 | 215 
 

we would get 
 
 

1     =  123 | 645 
 

2     =  364 | 125 
 
 

The crossovers explored so far concentrate on the  position of the  city in the 

tour whereas it is really the edges that are the most important part of the traveling
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salesman’s tour, since they define the costs. So what  we really want  is to deal with 

edges  rather than  the positions of each city. 

Grefenstette(1981, cited in [4]) has devised a crossover routine which picks each 

node from one of those which  is incident to the current node in one of the parents. 

We do this by creating an edge list for each node.  The chromosomes 
 

v1     =  123456 
 

v2     =  364215 
 

have edge list  
node  1 :   256 

node  2 :   134 

node  3 :   2456 

node  4 :   2356 

node  5 :   1346 

node  6 :   1345
 

We first choose  one of the initial  nodes  from one of the parents, i.e., 1 or 3 in this 

example.  We choose  the  one  that  has  the  least  number of incident nodes,  or if 

they have the same number we randomly choose one. We then consider the nodes 

incident to node  1 since this is the node  we first chose.  Again  we choose the node 

with  the least number of previously unchosen incident nodes.  So we choose node 

2. We continue this process  of considering nodes  which  have  not previously been 

selected.   If we encounter a situation in which  we cannot  choose  a node  that  has 

not previously been  selected  we randomly choose  a previously unselected node. 

This means  that we will get a node which is not incident to our current node in one 

of the parents, but unfortunately this is unavoidable. So our parent chromosomes 

could give the offspring 
 

1  = 124365 
 

Notice that we were successful in being able to choose nodes  that were incident in
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one of the parents at all times.  We also only get one offspring from this crossover 

so we need to do twice as many  crossovers to create the new generation. 

We also have  crossover operators that  use heuristic information. The heuristic 

crossover ([4]) chooses a random node to start at and then considers the two edges 

leaving  the current node  in the parent chromosomes and  picks  the shortest edge 

that does not introduce a cycle. If both edges introduce a cycle we choose a random 

edge that does not do so. 
 
 

2.6   Mutation 
 
 

First we will look at the 2-opt operator ([4]). We randomly select two edges  (a, b) 

and (c, d) from our tour and check if we can connect  these four nodes  in a different 

manner that will give us a lower  cost. To do this we check if 
 

cab + ccd > cac + cdb 
 
 

If this  is the  case we replace  the  edges  (a, b) and  (c, d) with  the  edges  (a, c) and 

(d, b). Note that we assume that a, b, c and d appear in that specific order  in the tour 

even if b and c are not connected. 

We also have  a 3-opt operator ([4]) which  looks at three  random edges  instead 

of two.  If we have edges  (a, b), (c, d) and (e, f ), we check if 
 

cab + ccd + cef  > cac + cbe + cdf 
 
 

If it is we replace  (a, b), (c, d) and (e, f ) with the edges  (a, c), (b, e) and (d, f ). 
 

The Or-opt  operator ([4]) is similar  to the 3-opt.  We randomly choose  a set of 

connected nodes  and  check if this string  can be inserted between two  other  con- 

nected  nodes  to give us a reduced cost.  We can calculate  this by finding the total 

cost of the edges  being  inserted and  the total cost of the edges  being  removed. If 

the cost of the edges being removed is greater than the cost of those being inserted 

the switch  is made.
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Another three  mutation operators (given  in [7]) are  insertion where we  ran- 

domly select  a city and  insert  it in a random place.   Displacement is where we 

select a subtour and insert  it in a random place.  We also have reciprocal exchange 

where we choose two random cities and swap  them.
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Chapter 3 
 
 

The Traveling Salesman Problem 
 
 
 

3.1   Introduction 
 
 

The Travelling Salesman Problem (TSP) asks the following question: Given a list of cities and 
the distances between each pair of cities, what is the shortest possible route that visits each city 
exactly once and returns to the origin city? It is an NP-hard problem in combinatorial 
optimization, important in operations research and theoretical computer science. 

TSP is a special case of the travelling purchaser problem. 

In the theory of computational complexity, the decision version of the TSP (where, given a 
length L, the task is to decide whether the graph has any tour shorter than L) belongs to the 
class of NP-complete problems. Thus, it is possible that the worst-case running time for any 
algorithm for the TSP increases superpolynomially (or perhaps exponentially) with the number 
of cities. 

The problem was first formulated in 1930 and is one of the most intensively studied problems 
in optimization. It is used as a benchmark for many optimization methods. Even though the 
problem is computationally difficult, a large number of heuristics and exact methods are 
known, so that some instances with tens of thousands of cities can be solved completely and 
even problems with millions of cities can be approximated within a small fraction of 1%.[1] 

The TSP has several applications even in its purest formulation, such as planning, logistics, and 
the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, 
such as DNA sequencing. In these applications, the concept city represents, for example, 
customers, soldering points, or DNA fragments, and the concept distance represents travelling 
times or cost, or a similarity measure between DNA fragments. In many applications, 
additional constraints such as limited resources or time windows may be imposed. 
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3.2   Applications 

 
 

The traveling salesman problem has many  different real world applications, mak- 

ing it a very  popular problem to solve.  Here  we explain  a few of these  given  in 

[8] and  [6].  For example, some  instances of the  vehicle  routing problem can be 

modelled as a traveling salesman problem. Here the problem is to find which  cus- 

tomers  should be served by which  vehicles  and  the minimum number of vehicles 

needed to serve  each customer. There  are different variations of this problem in- 

cluding finding the minimum time  to serve  all customers. We can solve some  of 

these problems as the TSP. 

The problem of computer wiring can also be modelled as a TSP. We have several 

modules each with  a number of pins.  We need  to connect  a subset  of these  pins 

with  wires  in such  a way  that  no pin has more  than  two  wires  attached to it and 

the length  of the wire is minimized. 

An application found by Plate, Lowe and Chandrasekaran (cited in [8]) is over- 

hauling gas turbine engines in aircraft.  Nozzle-guide vane  assemblies, consisting 

of nozzle  guide  vanes  fixed to the circumference, are located  at each turbine stage 

to ensure uniform gas flow.  The placement of the vanes  in order  to minimize fuel 

consumption can be modelled as a symmetric TSP. 

The scheduling of jobs on a single machine given  the time it takes for each job 

and  the  time  it takes  to prepare the  machine for each  job is also  TSP. We try  to 

minimize the total time to process  each job. 

A robot must  perform many  different operations to complete a process.  In this
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application, as opposed to the  scheduling of jobs on a machine, we have  prece- 

dence  constraints. This is an example of a problem that  cannot  be modelled by a 

TSP but methods used  to solve the TSP may be adapted to solve this problem. 
 
 

3.3   Different Forms of the Problem 
 
 

There  are many  different variations of the traveling salesman problem.  First we 

have the shortest Hamiltonian path problem ([6] and [8]). If we have a graph where 

each edge has a weight and two nodes  vs  and vt  are given we must  find the short- 

est Hamiltonian path  from  vs  to vt.  If we add  an edge  from  vt  to vs  and  give  it 

weight −M where M is large  and  positive, our  optimal TSP tour  will always in- 

clude this edge (because  it will reduce the cost of the tour) and will therefore solve 

the Hamiltonian problem. 

The asymmetric traveling salesman problem ([8]) is when  the cost of traveling 

from  city i to city j is not  the  same  as the  cost from  city j to city i.  This can be 

solved  in the same way as the standard TSP if we apply certain  edge weights that 

ensure that there is a Hamiltonian cycle in the graph. 

The multisalesmen problem ([8] and [6]) is the same as the standard TSP except 

that  we  have  more  than  one  salesman.  We need  to decide  where to send  each 

salesman so that every city is visited  exactly once and each salesman returns to the 

original city. 

The bottleneck traveling salesman problem ([8] and  [6]) is where we want  to 

minimize the largest  edge cost in the tour instead of the total cost. That is, we want 

to minimize the maximum distance the salesman travels  between any two adjacent 

cities. 

The time  dependent traveling salesman problem ([6]) is the same  as the stan- 

dard traveling salesman problem except we now have time periods. The cost cijt  is 

the cost of traveling from node  i to node  j in time period t. We want  to minimize
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3.4   Methods  of Solving the TSP 
 
 

Homaifar ([3]) states  that  “one  approach which  would certainly find the optimal 

solution of any TSP is the application of exhaustive enumeration and  evaluation. 

The procedure consists  of generating all possible  tours  and  evaluating their  cor- 

responding tour  length. The tour  with  the smallest length  is selected  as the best, 

which  is guaranteed to be optimal. If we could  identify and evaluate one tour  per 

nanosecond (or one billion  tours  per second),  it would require almost  ten million 

years (number of possible  tours  = 3.2 × 1023 ) to evaluate all of the tours  in a 25-city 

TSP.” 

Obviously we need to find an algorithm that will give us a solution in a shorter 

amount of time.  As we said before, the traveling salesman problem is NP-hard so 

there is no known algorithm that will solve it in polynomial time. We will probably 

have to sacrifice optimality in order  to get a good  answer in a shorter time.  Many 

algorithms have  been tried  for the traveling salesman problem. We will explore  a 

few of these in this section.
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Greedy Algorithms ([8]) are a method of finding a feasible solution to the trav- 

eling salesman problem. The algorithm creates  a list of all edges  in the graph and 

then  orders them  from smallest cost to largest  cost. It then  chooses  the edges  with 

smallest cost first, providing they do not create a cycle. The greedy algorithm gives 

feasible solutions however they are not always good. 

The Nearest Neighbor ([8]) algorithm is similar  to the greedy algorithm in its 

simple  approach. We arbitrarily choose  a starting city and  then  travel  to the city 

closest to it that  does not create cycle. We continue to do this until  all cities are in 

the tour.   This algorithm also does  not always give good  solutions because  often 

the last edge added to the tour (that is, the edge en1 where n is the number of cities) 

can be quite large. 

A minimum spanning tree ([8] and  [6]) is a set of n − 1 edges  (where again  n 

is the number of cities) that connect  all cities so that the sum  of all the edges  used 

is minimized. Once  we have  found a minimum spanning tree for our  graph we 

can create a tour  by treating the edges  in our spanning tree as bidirectional edges. 

We then  start  from  a city that  is only  connected to one other  city (this  is known 

as a ’leaf’ city) and  continue following untraversed edges  to new  cities.  If there 

is no untraversed edge  we go back along  the  previous edge.   We continue to do 

this until  we return to the starting city.  This will give us an upper bound for the 

optimal traveling salesman tour.  Note, however, that we will visit some cities more 

than once. We are able to fix this if whenever we need to traverse back to a city we 

have already been to, we instead go to the next unvisited city. When all cities have 

been visited  we go directly back to the starting city.



 

 
 
 
 
 
 
 
 

Chapter 4 
 
 

Genetic Algorithms as a Method of Solving the Traveling 
 

Salesman Problem 
 
 
 

4.1   Introduction 
 
 

The different forms  of encoding, crossover and  mutation that  we have  seen so far 

can be combined to give various genetic  algorithms that  can be used  to solve the 

traveling salesman problem. Obviously some crossover routines can only be used 

with  a certain  form  of encoding so we  do  not  have  too  many  different genetic 

algorithms to explore.   Also,  only  certain  methods have  been  attempted, so we 

will only  look at these.   Finally,  we will keep  in mind  that  these  programs have 

been tested on different problems and it will therefore be difficult to compare them 

to each other. 
 
 

4.2   Comparison  of Methods 
 
 

First we will note  the best known solutions for particular problems given  in [3]. 

For the 25 city problem the best known solution is 1,711, the 30 city problem is 420, 

the 42 city problem is 699, the 50 city problem is 425, the 75 city problem is 535, the 

100 city problem is 627, the 105 city problem is 14,383 and  the 318 city problem is 
 

41,345. These problems are standard problems with set edge costs that can be used 

to test new algorithms. 

We will  now  consider pure  genetic  algorithms with  no heuristic information 

used.
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Consider the partially modified crossover (PMX) with the tour notation and no 

mutation operator. Jog ([4]) found that this algorithm gave a tour who’s length  was 

ten percent larger than the known optimum for the 33 city problem. For the 100 city 

problem, the  result  was  210 percent larger  than  the  known optimum.  Homaifar 

([3]) states  that  the  best  tour  length  of this  same  algorithm is 498 for the  30 city 

problem. 

The algorithm using order  crossover gives a better  performance, giving a result 

of length  425 for the  30 city problem, while  cycle crossover only  gives  a tour  of 

length  517 for the same problem. The best known solution for the 30 city problem 

is 420 so order  crossover seems to be the best so far ([3]). 

Now  we will consider the matrix  crossover method ([3]). We will use the two 

point  matrix  crossover method as well  as inversion.  Homaifar found that  this 

method performed well  with  30, 50, 75, 100 and  318 city problems giving  tours 

of lengths 420, 426, 535, 629 and 42154 respectively, which are all less then two per- 

cent above the best known solution. So it seems that the idea of using edges rather 

than  the position of cities as our  variable is promising. This makes  sense,  as it is 

the edge which  holds  the costs and we want  to pick which  edges  to use to connect 

all cities.  Note  however, that  the matrix  representation takes  more  space  to store 

and also more computation time for the crossover and mutation processes than the 

integer representation and basic crossovers. 

Homaifar ([3]) also tested an algorithm that  uses  only the 2-opt mutation op- 

erator  and no crossover. This also performed decently, however not as well as the 

previous case where we used  matrix  crossover. In particular, it performed worse 

with problems where the number of cities is large. 

Jog’s ([4]) heuristic algorithms also  performed well.   The heuristic crossover, 

when combined with the 2-opt and Or-opt mutation operators sometimes gives the 

best known solution for that particular problem, and  otherwise returns a solution 

very  close to that  value.   



 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

 
Chapter 5 

      
 Conclusion 
 
 
 

Genetic  algorithms appear to find  good  solutions for the  traveling salesman 

problem, however it depends very much  on the way  the problem is encoded and 

which  crossover and  mutation methods are used.   It seems  that  the methods that 

use heuristic information or encode  the edges  of the tour  (such as the matrix  rep- 

resentation and  crossover) perform the best and  give good  indications for future 

work  in this area. 

Overall,  it seems  that  genetic  algorithms have  proved suitable for solving  the 

traveling salesman problem.  As yet, genetic  algorithms have  not  found a better 

solution to the traveling salesman problem than is already known, but many  of the 

already known best solutions have been found by some genetic  algorithm method 

also. 

It seems  that  the biggest  problem with  the genetic  algorithms devised for the 

traveling salesman problem is that it is difficult to maintain structure from the par- 

ent chromosomes and still end up with a legal tour in the child chromosomes. Per- 

haps  a better  crossover or mutation routine that  retains structure from the parent 

chromosomes would give a better  solution than  we have  already found for some 

traveling salesman problems.



 

 
 
 
 
 
 
                                            References 
 
[1]  C.H. Papadimitriou and K. Steglitz. “Combinatorial Optimization: Algorithms  
      Complexity”. Prentice Hall of India Private Limited, India, 2007. 
 
[2]  C.P. Ravikumar. "Solving Large-scale Travelling Salesperson Problems on  

    Parallel Machines”. Microprocessors and Microsystems 16(3), pp. 149-158,   2009. 
 
[3]  Abdollah Homaifar, Shanguchuan Guan, and Gunar E. Liepins. Schema analysis 

     of the traveling salesman problem using genetic algorithms. Complex Systems, 
     6(2):183–217, 2005. 

 
[4] Prasanna Jog, Jung Y. Suh, and Dirk Van Gucht. Parallel genetic algorithms    salesman 

problem. SIAM Journal of Optimization, 1(4):515– 
529, 2012. 

 
[5] Z.H. Ahmed and S.N.N. Pandit. “The travelling salesman problem with          precedence 

constraints”. Opsearch 38, pp. 299-318, 2001 [6] E.L. Lawler, J.K. Lenstra, A.H.G. 
Rinnooy Kan, and D.B. Shmoys. The Traveling 
Salesman. JohnWiley and Sons, 2000. 

[ 
 
 

 


