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Abstract

The objective of this thesis entitled, “On Complex Ezxtensions and Information Mea-
sures of Neutrosophic, Hesitant € Picture Fuzzy Sets in Decision Making” is to
study the concept of fuzzy extensions on real and complex planes along with various
applications in detail. The work presented in this thesis has been carried out in
order to fulfill the objective to propose the notion of cohesive fuzzy set, complex
neutrosophic matrix, energy of picture fuzzy graphs with their various important

operations & applications in the field of decision-making.

In literature, the notion of fuzzy sets and its generalized extensions have made
a large amount of contribution in the progress of scientific and engineering research
area. It has large number of applications in the areas (theoretical as well as prac-
tical) related to engineering, arts, humanities, computer science, health sciences,
life sciences, physical sciences etc due to its ability of dealing with the uncertainty
factor. In the current work, these concepts have been explained in detail and brief

structure of the format of the presented work is presented below:

We have presented the fundamental background of hesitant, neutrosophic, picture
and complex fuzzy sets with their mathematical form, definitions, operations and

literature survey in Chapter 1.

In Chapter 2, a novel concept of Cohesive fuzzy set (CHFS) has been proposed as a
synchronized generalization from innovative notions of complex fuzzy set and hesi-
tant fuzzy set. We have also studied the relationship and connections between the
Cohesive Fuzzy Set and Complex Intuitionistic Fuzzy Set along with the validation
of the obtained results. Based on the proposed notion, various properties, operations
and identities have been established with their necessary proof. The applications of
CHE'S in the process of filtering the signals for getting the reference signal using the
necessary Fourier cosine transform (FCT)/inverse FCT and identifying maximum
number of sunspots in a particular interval under a solar activity have been suitably
discussed with illustrative numerical examples. Some advantages of incorporating

the proposed notion have also been tabulated for the sake of better understanding.

In Chapter 3, a new concept of the complex neutrosophic matrix has been intro-

viil



duced to solve different problems related to uncertainties. Based on the proposed
matrix, we have provided various algebraic operations like addition, subtraction,
union many others which will be of great help in establishing the fundamental con-
cepts. The matrix norm convergence of the proposed matrix has also been studied
for the necessary foundation of the complex neutrosophic matrix. The two different
types of new similarity measure matrices for complex neutrosophic matrices have
been proposed and validated the axiomatic definition of the similarity measure. In
addition to this, a new similarity measure has also been proposed for complex fuzzy
matrices along with detailed explanatory numerical example. The application in the

area of identification of reference signal has also been described.

In Chapter 4, four new similarity measures in their exponential form have been
proposed for the case of single valued neutrosophic set. Numerical examples for the
classification problem and the decision-making problem have also been presented and
compared the obtained results with the well established existing approaches. Later,
a novel concept of single valued neutrosophic information measure based on utility
distribution and probabilistic randomness has also been proposed. The proposed
concept has been obtained by integrating the uncertainties caused by neutrosophic
information, useful information (utility based) and probabilistic information. Fur-
ther, in a similar integrating way, the divergence measure of the ‘useful” information
has also been proposed for the study of applicable mutual information. Conse-
quently, the hybrid ambiguity and neutrosophic information improvement measures

have been studied with the help of the proposed ‘useful’ information measures.

In Chapter 5, the notion of energy and Laplacian energy of Picture fuzzy graph and
directed Picture fuzzy graph have been proposed with the help of adjacency matrix.
and the results on lower and upper bounds. On the basis of the proposed energy of
picture fuzzy graph, a methodology for the ranking in a decision-making problem
of site selection has been proposed. In order to illustrate the implementation of
the proposed methodology, a hydro-power plant site selection problem has been
considered. The novelty of the proposed approach, comparative analysis, advantages

have also been studied.

Finally, the proposed work has been concluded in Chapter 6 of the current thesis

along with some possible scope of future work.
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Chapter 1
Introduction

Various tools have been designed by different researchers to solve the problem of un-
certainty inherited in our day today life among which the probability theory and the
theory of fuzzy sets are the most popular as well as widely applicable theories. It
may be noted that the information regarding the relative frequency is having a due
concern with the probability theory whereas in case of imprecise and inexact infor-
mation having uncertainty for the decision makers, the fuzzy set theory is utilized.
Zadeh introduced the concept of fuzzy sets (FSs) [72] which is found to be more ef-
ficient decision aid techniques providing the ability to deal with the uncertainty and
the vagueness present in our real-life problems. In literature, it is prominently visible
that the notion of fuzzy set theory plays a vital role in the areas of medical science
[100], engineering applications [45], optimization [95], decision science [138], biologi-
cal characterization problems [26], econometric [103], image analysis [105] etc. Due
to the increasing componential factor, Atanassov [64] introduced the concept of in-
tuitionistic fuzzy set (IFS) which includes the membership, non-membership and the

hesitant function.

In an another extensional way, Torra [141] first introduced the notion of hesitant
fuzzy set (HFS) along with various operations (complement, union and intersection
etc.) which provided new dimensions to the research especially in the field of group
decision making where the problem of multi-favorable situation can be better han-
dled. For the sake of better understanding on some of the existing extensions and

generalizations available in literature, we present an explanatory diagram given in



the following Figure 1.1:

Intuitionistic Fuzzy Set Intuitionistic
Intuitionistic of Second Type Fuzzy Set of
Fuzzy Set —> KT Atanasov (1989) or —> n-th Type
KT. Atanasov (1983) Pythagorean Fuzzy Set KT. Atanasov et.al.
RR. Yager (2013) (2018)
Fuzzy Sets Hesitant Fuzzy Set > Dual Hesitant Fuzzy Set
L.A. Zadeh (1965) V.Torra (2010) Zhu (2012)
Complex Intuitionistic
Complex Fuzzy Set ‘ R Fuzzy Set
Ramot et al. (2002) | "l Abdulzeez et. al. (2012)
v Intuitionistic Pythagorean
Soft Set Soft Matrix Fuzzy S'oft Fuzzy Soft Fuzzy Soft
D.Molodstov ~ —>  Naim Cagman —> Moty ] Matrix — Matrix
(1999) et.al 2010 LA B. Chetia A.Guleria
— et. al. (2012) et. al. (2018)
A4 g . .
Fuzzy Soft Set ;:;:'t::}:sg:t Picture Fuzzy T-spherical Fuzzy
PK Maji et.all. ——> Y ——>  SoftSet —* Soft Set
(2001) il e B. Coung (2013) (Guleria & Bajaj 2019)

(2001)

Figure 1.1: Generalizations and Extensions of Fuzzy Sets

In the hesitant fuzzy set, the decision makers provide a set of various favorable
(multi-favorable situations) membership values for expressing their preferences/ as-
sessments at the same time. On the other hand, the complex fuzzy set provides
freedom to add a phase component which enables us to gain for information regard-
ing a particular higher dimensional periodic problem. Further, Rezaei et al. [14]
proposed the concept of hesitant fuzzy filters with few results on BE-algebra. In ad-
dition to this the connection between the - inclusive sets and hesitant fuzzy filters
are also presented in detail. Further, the authors [15] have extended the concept to

neutrosophic set and proposed a concept of neutrosophic filters in BE-algebra.

Further, Smarandache [32] contributed the unique concept of indeterminacy to
the above-mentioned theories, which plays a vital role in obtaining solutions to var-
ious uncertain situations. This novel concept is known as the neutrosophic set, this
concept of the neutrosophic set not only increase the clarity but also increase the basic
information related to neutrality. “Neutrosophic set is the branch of philosophy that
deals with neutrality and its interaction with the different philosophical spectra.[32]”
Different generalized extensions of the theory of neutrosophic sets are available in

literature. Some of them have been listed through the following Figure 1.2.



Intuitionistic Interval valued Single valued

Neutrosoz:ichet Neutrosophic Set Neutrosophic Set Neutrosophic Set Ne:;;s:::]lc(;;g)set
sz(l;;;j)c e Bhowmik et al.(2009) Wang et al.(2010) Wang et al.(2010) yrecak
Neutrosophic Crisp Set
Complex Complex neutrosophic Salama et al.(2014)
neutrosophic Set e
Smarandache Broumi et al.(2017)
eral. (2015)
Bipolar Neutrosophic
Set
Fuzzy Set Deli e al.(2015)
Zadeh (1965)
rafi Multi valued
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Matrix H Matrix Wang et al.(2015)
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Deli et al. (2014,
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Dhavaseelan et Graph k:raph . Hesitant Fuzzy Set
al.(2015) Akram (2016) A () Awang et al. (2019) @) )

Figure 1.2: Literature Survey of Neutrosophic Theory

It may be noted that the application of neutrosophic set enhances the capability
to study different types of information-based decision making problems more effec-
tively. The generalization of fuzzy set to neutrosophic set with their information span

may be understood by the geometric presentation given by the following Figure 1.3:

PYFS Ns

. IFS

PFS
SFS

Constraint Conditions
IFS: 0<p,+v,;<1
PYyFS: 0 < py +vi <1
NS: O0<puy+tvy+my<3
PFS: 0<pus,+mp+vy<1
SFS: o<pi+ni+vi<i

n (0,0,1)
Figure 1.3: Extension of Fuzzy Set to Neutrosophic Set

Further, Cuong [16] proposed the concept of picture fuzzy set (PFS), where in all

the four components, i.e., “degree of membership, degree of indeterminacy (neutral),

3



degree of nonmembership and the degree of refusal have been taken into account”. For
the sake of better understanding the implementation of picture fuzzy information, we
narrate an example of a voting system [16] - “Suppose the voters have been categorized
into four different classes: one who votes for (yes), one who votes against (no), one
who neither vote for nor against (abstain) and one who refused for voting (refusal). It
may be noted that the concept of ‘refusal’ is found to be an additional component which
was not being taken into account by any of the sets or by their generalizations (fuzzy

set, intuitionistic fuzzy set, Pythagorean fuzzy set, neutrosophic set) stated above”.

Kifayat et al. [140] presented the geometrical aspects and features of these gen-
eralizations - “fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and picture
fuzzy sets”. It may be noted that the phenomenon of the voting system stated above
can not be represented closely and sufficiently by utilizing the Pythagorean fuzzy grap
-hs/sets. For capturing the information content and utilizing the flexibility in a more
broader sense, the graph-theoretic literature of picture fuzzy set, picture fuzzy graph

and its applications have been introduced.

1.1 Fundamental Notions and Preliminaries

In this section, some fundamental notion related to the hesitant fuzzy set, neutro-
sophic set, complex fuzzy set, fuzzy matrix and picture fuzzy sets/graphs along with

their binary operations have been explained in detail.

1.1.1 Hesitant Fuzzy Set

Consider a fuzzy set M over a universe of discourse X characterized by the degree of
membership function gy (z)(ua : X — [0, 1]) . The value of p; represents the grade
of degree to which the given element of the set X belongs to the set M. A new ex-
tension to fuzzy set has been firstly presented by Torra [141] in 2010 and named
as Hesitant fuzzy set, which has various advantageous properties over the other ex-
tensions present in literature. This motivated a large amount of mathematicians to
study the hesitant concept in detail, which yields various meaningful studies for ex-

tracting solutions of the problems related to uncertainty in decision making process.
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The mathematical form of the hesitant fuzzy set in form of hesitant fuzzy element is

given below:

Definition 1 [141] “Suppose a universe of discourse X, then the hesitant fuzzy set
over X is defined by a hesitant fuzzy element h such that when it is applied to X it

again returns a subset in interval [0,1]. The hesitant fuzzy set M is represented as:

M ={<z,hy (z) > |x € X}; where hy is the hesitant element.”

Later, Qian et al. [35] presented the concept of the generalized hesitant fuzzy set
which defines its connection with the intuitionistic fuzzy set and also explained its
application in case of decision support system. Some of the properties related to the

hesitant fuzzy set are explained below:

Definition 2 [1/1]“Some of the hesitant fuzzy set are given below:
e Empty Set: h(z) =0,Vx € X.
e Full Set: h(z) =1,V € X.

e Complement Ignorance Set: h(z) = [0, 1].

e Nonsense Set for element x: h(z) = ¢.”

Definition 3 [141]“Suppose the lower and the upper bound in case of hesitant fuzzy
set h(x) is defined as

e Lower Bound: h™(x) = minh(z) and
e Upper Bound: h™(x) = maxh(z).”
Definition 4 [1/1] “Consider two hesitant fuzzy sets ha and hg over the universe of

discourse set X. The binary operations defined over the hesitant fuzzy sets are given

e Intersection: ha(z) Nhp(z) ={h € (ha(z) Uhg(z))|h < min (h},hf)}.
o Union: h(z) U hp(z) = {h € (ha(z) Nhp(z))|h > min (hy, hj)}.

o Complement: h(x) = Uycpm{l —7}.”



1.1.2 Neutrosophic Set

Smarandache stated that the term neurtosophic obtained from the combination of
two Latin words Neuter and Sophia which means neutral skill which definitely re-
lated to the third independent component of neutrosophic set which is the important

contribution of the presented concept.

Definition 5 [32] “Suppose the neutrosophic set A in universe X is characterized by
three independent membership functions of truth (Ty4), neutrality (14) and falsity (Fa),
where Ty, 14 & Fy lie in interval |07, 17[. The mathematical form of the definition is

guen as
A= {< X, (TA,IA,FA) > |.I € X},

and it must also satisfy the condition: 0~ < sup(Ta) + sup(la) + sup(Fa) < 31.7

Definition 6 [47] “Suppose A and B be two neutrosophic sets over the universe X.

Then, the binary operation defined over the two NSs are given as;

e Intersection: For truth function Tang = Ta(z) X Tg(x),

— For neutrality function Iang = Ia(x) X T(z),

— For falsity function Fanp = Fa(z) X Fp(z).
e Union: For truth function Taup = Ta(x) +Tp —Ta x Tg,

— For neutrality function Iaop = Ia(x) + Ip — 14 X Ip,

— For falsity function Faup = Fa(z) + Fp — Fa X Fp.
e Complement: For truth function TS = {11} — Ta(z),

— For neutrality function 19 = {11} — Ia(x),

— For falsity function F§ = {17} — Fa(x).”

However, it is very difficult to apply the concept of non-standard NS to practical life
problems. Therefore, the concept of three independent functions in NS is bounded

in the range of unit interval [0, 1] to extract the solution of real life problems. This

6



leads to the concepts of a single valued neutrosophic set (SVNS) [47] and an inter-
val neutrosophic set (INS) [48] which are known as the branches of a neutrosophic

theory/set. The formal definition for the case of SVNS is given as:

Definition 7 [47] “Consider a single valued neutrosophic set A in X (universe of dis-
course) and is characterized by three membership function truth (T4), indeterminacy

(14) and falsity (Fa). The mathematical form is represented as

A— {/X < T(2), I(x), F(z) > Ja|z € X}:

when the universe X 1s continuous.
A={)_ < T(xi), I(xi), F(xi) > [xilxi € X};
i=1

when the universe X 1is discrete. All the functions must satisfy, i.e., Ta, 14, Fy €
[0,1].”

Definition 8 [/7] “Suppose A and B be two single valued neutrosophic sets over the

universe X. The, the binary operation defined over the two NSs are given as;

e Intersection: For truth function Tanp = min (Tx(x), Ts(x)),

— For neutrality function 14np = min (14(z), T(z)),

— For falsity function Fanp = max (Fa(x), Fp(x)).
e Union: For truth function Tayp = max (Ta(x), Ts(x)),

— For neutrality function 14, = max (14(z), Ts(z)),

— For falsity function Fa,p = min (Fa(x), Fp(x)).
e Complement: For truth function TS = Fa(z),

— For neutrality function 1§ = {1} — I4(x),

— For falsity function F§ = Ta(x).”



1.1.3 Complex Fuzzy Set

Later, the fuzzy set is extended from the unit interval of [0, 1] on real plane to unit
disc in complex plane by Ramot[28] in 2002. The complex fuzzy set added the phase
term to the amplitude term present in the Zadeh’s theory of fuzzy set and this prove
to be very useful in tracking the cycle or the pattern of occurrence of the uncertainty

events. The mathematical form of the complex fuzzy set is explained below:

Definition 9 [28] “A complex fuzzy set M in the universe of discourse X, is char-
acterized by the complex valued form of membership function py(z), i.e., ppy(x) =
ans (2)e® @) where ayy(x) & by (x) are real valued functions and ay(z) € [0,1]. The

mathematical representation of the complex fuzzy set M is given as:
M={<z,pyu(x)>|re X}

Definition 10 /28] “Some of the binary operations between two CFSs M and N are

given below:

e Intersection: pyun(7) = [an(z) @ ay(x)]ebyon @),
e Complement: yc(z) = (1 — apy(z)) ei(2m—bp(z)) »

Thomason [91] proposed the concept of matrix in case of fuzzy set and explained it

with the help of the various properties of convergence.

Definition 11 [91] “Let fuzzy matriz is denoted by P, defined on a universe X con-

sists of fuzzy element a;; and is represented by

P = [a;] ; where a;; €[0,1], (1<i<m, 1<j<n).”

mxn’

Definition 12 [91] “Some of the algebraic operations between two fuzzy matrices A

and B are given below:

Qij, fo A>B

0, otherwise .

e Subtraction: A — B = {
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o Addition: A + B = max (aij7 bZ]) .

”

e Multiplication: A.B = min (a;;,b;;).

Definition 13 [158] “The complex fuzzy matriz denoted by P, is defined as

P = aj; (v) + ib; ()]

mxn’

where (a;;,b;;) € [0,1], (1<i<m, 1<j<n).”

1.1.4 Picture Fuzzy Set and Picture Fuzzy Graph

Picture fuzzy set [16] are direct extensions of fuzzy sets and intuitionistic fuzzy sets
which additionally incorporates the concept of positive, negative, neutral membership
and degree of refusal in the decision making problems related to human opinions. One
of the most common example to understand the concept more clearly has been pre-
sented in case of voting where we have to deal with four categories (vote for/ abstain/ vote
against/ refusal of the voting). This theory of picture fuzzy set has been further ex-
tended by Zuo[24] for the case of fuzzy graph and the author presented the concept
of picture fuzzy graph with several types. The researchers utilized the concepts of
picture fuzzy set/ graph to solve various complex situations created in real life under
uncertain environment. The detailed definition for both the concepts are presented

below:

Definition 14 [16/“A picture fuzzy set A in U (universe of discourse) is given by
A={<z, (pa(z),na(z),valz)) >z € U};

where py U — [0,1], na : U — [0,1] and va : U — [0,1] denote the degree of
membership, degree of neutral membership (abstain) and degree of non-membership

respectively and for every o € U satisfy the condition
pa() +na(x) +valz) < 1.

The degree of refusal for any picture fuzzy set A and x € U is given by ra(zx) =
1= (a(z) + na(@) + va(@)).”



Definition 15 [16] “Suppose A and B be two picture fuzzy sets over the universe X.

The, the binary operation defined over the two PFSs are given as;

e Intersection: For truth function panp = min (ua(z), up(z)),
— For neutrality function nanp = min (na(x),ns(zx)),
— For falsity function vanp = max (va(x),vp(x)).
e Union: For truth function pa,p = max (ua(z), pp(x)),
— For neutrality function naup = min (na(z),np(x)),
— For falsity function va,p = min (v4(x), vg(x)).
e Complement: For truth function p$ = va(z),

— For neutrality function n5 = na(x),

— For falsity function v§ = va(z).”

Definition 16 [24] “A picture fuzzy graph on (S, R), denoted by G = (M, N), where
M is a picture fuzzy set on S and N is a picture fuzzy relation in R = S x S such
that

pn(z,y) < minfua (), par(y)},
nn(w,y) > max{nu (), nu(y)},

vn (2, y) = min{va (), v (y)};

satisfying the constraint condition 0 < pn(z,y) +nn(z,y) + vy (z,y) <1, Vo,y € S.
The set M 1is called the picture fuzzy vertex set of the graph G and N is called the
picture fuzzy edge set of the graph G.”

1.2 Literature Survey

A brief literature survey related to our present work has been summarized below:
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1.2.1 Complex Extensions of Fuzzy Sets & Neutrosophic Sets

In due course of time, several types of complexities got added upon and researchers
proposed various other generalizations of fuzzy sets and intuitionistic fuzzy sets. One
of the major limitation of the application of FSs and IFSs that these sets are not ca-
pable to address the periodicity occurring in some uncertain and incomplete/inexact
information. In addition to this, various other problems having two dimensional
framework can not be modeled with FSs and IFSs. In order to encounter this defi-
ciency, Ramot et al.[28] extended the existing structure of fuzzy set to complex fuzzy
set (CFS) which added the phase variable and also extended the range from [0,1]
to the unit circle in the complex plane which spans the information in a wider sense.

ws() in the complex fuzzy set implies that

The membership function ug (r) = rs (z)e
all the membership values must lie inside the unit circle on the complex plane. There
is a kind of specific mapping between a CFS and Fourier transform which can be
observed by restricting the range to a complex unit disk and henceforth having vari-
ous applications in the field of communication system, geological phenomena, optical
systems etc. The CFS has been extended to complex intuitionistic fuzzy set (CIFS)
by Abdulzeez et. al. [7] which added the complex membership and non-membership
function. Garg & Rani [41] [42] contributed two studies in the field of CIFS. First,
they developed correlation/weighted correlation coefficients under the CIFS setup
where the membership degrees were utilized to represent the two-dimensional infor-
mation. Secondly, they introduced and discussed the transformation relationships
among the similarity, distance, entropies, and inclusion measures. Yaqoob et.al [102]
introduced the notion of complex intuitionistic fuzzy graphs by combining two effi-
cient theories (CIFS and graph theory) and also explained their advantage with the

help of examples in the field of cellular network.

Besides various generalizations of fuzzy sets and their respective measures avail-
able in literature, Xu & Xia [160] presented various distance measures, similarity
measures and correlation coefficients for hesitant fuzzy sets. Also, Torra [141] es-
tablished a relation between HFS and IFS stating the enveloping procedure of IFS
over HF'S. Xu et.al [161] elaborated the hesitant fuzzy sets theoretically with differ-
ent support system and methodologies which have some kind of special advantageous

features in the group decision making processes. They also described the consensus
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process in hesitant fuzzy setup to complete the decision making process. Ren et.al.
[159] extended the concept of HFS to normal wiggly hesitant fuzzy sets to improve
the rationality of decision making process and also proposed two introductory ag-
gregation operators. The another important contribution made in the study of HF'S
is dual hesitant fuzzy set (DHFS) which was proposed by Xu et.al [19] in which
the membership hesitancy function and non-membership hesitancy function are used
to support a more flexible access to assign the values to each element in the domain.
It may be noted that FS, IFS & HFS can be treated as the special cases of DHFS.
Further, Garg et.al. [40] added the probability factor to DHF'S and proposed the coef-
ficients along with the weighted correlation coefficients for probabilistic dual hesitant
fuzzy sets (PDHFSs).

Further, the application of the cosine similarity measure to show the connectivity
between the CFSs is also displayed by Guo [145]. Then, Mahmood and Rehman [136]
extended the concept of CF'S towards a bipolar complex fuzzy set and presented some
basic operators with two real-life applications in pattern recognition and medicine.
Further, Qudah and Hasan [150] presented a hybrid model known as a complex multi-
fuzzy set by adding the properties of both complex fuzzy set and multi fuzzy set. This
concept is further extended by Alkouri and Salleh [7] which contains the properties of
complex-valued membership and non-membership functions and the basic operators
(Union, Intersection and Complement), which have been explained in detail for the
basic understanding of the concept. Later, Rani and Garg [29] introduced a distance
measure under the environment of a series of distance measures (Hamming, Euclidean,
and Hausdorff metrics) present in literature and validated this theory with the help

of decision-making problems.

Ali and Smarandache [87] extended this concept of complex value to neutro-
sophic and named it as Complex Neutrosophic Fuzzy Set (CNF'S) which contains the
properties of both the complex fuzzy set and neutrosophic set. The complex neu-
trosophic fuzzy set has been studied in detail with the basic operations (Union, In-
tersection, complement etc) and the concept has been validated with the help of the
suitable application. Further, Ali and Mahmood [155] proposed a dice similarity mea-
sure for two complex neutrosophic sets and explained the proposed concept by using

it to solve the pattern recognition problem.
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1.2.2 Fuzzy Matrix, Neutrosophic & Complex Fuzzy Matrix

Thomason [91] introduced the concept of fuzzy matrix and studied its convergence
with respect to matrix norms. Later, the determinant of the intuitionistic fuzzy ma-
trix was proposed by Pal [93] and then the notion of interval-valued intuitionistic
fuzzy matrix was introduced by Khan and Pal [123]. Dhar et al. [88] introduced the
matrix form of the neutrosophic set which plays a significant role in dealing with a
big database of information which was extended by Kandasamy et al. [148] who
proposed the concept of neutrosophic interval matrices with its application. Vari-
ous researchers have extended their study in the direction of extension of fuzzy the-
ories, which later turned to complex fuzzy matrices by Zhao and Ma [158] in 2016.
They defined the complex fuzzy matrices in the form of C' = (A4;;(x) + iB;;(z)) and
also explained the norm convergence. Khan et al. [147] extended the concept of
complex fuzzy matrices to complex fuzzy soft matrices in 2020 and also proposed
some theorems, which have been explained with the help of its application in Decision-

Making Problems.

Various other mathematicians like Abobala [81] in 2021, presented the refined
neutrosophic matrices and their algebraic operations with their application in the
refined algebraic equation. Deli et al. [52] contributed the neutrosophic soft ma-
trices and gave a methodology for storing the concept of the neutrosophic soft set
to the memory of the computer. Further, the concept of convergence was discussed
by many researchers [[146]-[69]] for a better understanding of the concept. This also
proves the advantage of matrix form over the set form for the uncertainty parameter
where one event can be taken at an interval of time instead of one problem. Ragab
et al. [97]discussed the determinant and adjoint of the square fuzzy matrix in detail.
Various other properties like the canonical form of transitive and strongly transitive
matrices are studied [[43],[146]]. In Kamaci [44] proposed various similarity measures
in case of soft matrices and also explained the advantages of soft matrices in many
computational process. Das [118] introduced the novel concept of intuitionistic fuzzy
matrix and studied various operators. The author also presented several similarity
measure and validated the theory with the help of application in case of proposed
similarity measure. The adjoint and determinant of square intuitionistic fuzzy matri-
ces were discussed by Le and Park [[151]-[152]]. Further, Muthuraji and Lalitha [137]
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discussed the unitary and binary operators for intuitionistic fuzzy matrices.

1.2.3 Information Measures of Neutrosophic Sets

The concept of similarity plays a fundamental role in solving various complex in-
determinate matters in human life. The theory of similarity is very efficient in the
fields of taxonomy, recognition, case-based reasoning and many others. Pramanik and
Mondal [63] introduced weighted fuzzy similarity measures based on tangent function
and explained its importance through its application to medical diagnosis. Peng and
Smarandache [149] in 2019 generated multi-similarity model for the neutrosophic set
in order to brief the detailed process in decision-making problems in the economic

sector.

Wang [47] restricted the benefits of the neutrosophic set to a Single Value Neutro-
sophic Set (SVNS) to increase its applicability in solving the problems. The similarity
and entropy measures play a critical role in the study of measuring uncertain infor-
mation related to the data available for fuzzy sets and their hybrid structures. The
necessary axioms for fuzzy entropy were introduced and explained by De Luca and
Termini [1]. On the other hand, the similarity measure is considered an important
tool in comparison with the entropy measure due to its ability to calculate the simi-

larity between the sets according to the data present in the literature.

Mehmet et al.[125] have proposed the transformations between single-valued neu-
trosophic values based on the centroid points and the values are according to the
truth, indeterminacy and falsity values of SVNS. The authors have also proposed a
new similarity measure based on the falsity function and presented its applicability
in the case of pattern recognition. Ulucay et al.[143] proposed some new similarity
measures (Dice similarity measure, weighted dice similarity measure, Hybrid vector)
for the case of bipolar neutrosophic sets. Later, Ulucay et al. [144] proposed some
distance, similarity and entropy measures between the two bipolar neutrosophic sets
after careful consideration of positive and negative membership functions. Finally,
the results obtained have been validated in accordance with the proposed methodol-
ogy. Also, Shahzadi et al. [37] have used the distance and similarity measures in the

case of single-valued neutrosophic sets to propose two algorithms in the field of medi-
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cal diagnosis and validated the algorithms with help of numerical examples. Further,
Pamucar et al. [30] have proposed a fuzzy decision-making approach in the case of
a construction company by using a new weight aggregation operator that uses pair-
wise comparison. In addition, a novel fuzzy neutrosophic based approach for resilient
supplier selection has also been proposed, which mainly contributes to the design,
implementation and analysis of a multi-attribute evaluation system concerning fuzzy

neutrosophic values.

Majumdar and Samanta [108] presented the similarity and entropy measure be-
tween the two single-valued neutrosophic sets. Later, Pappis et al. [21], [22] presented
an axiomatic view of similarity measure for a better understanding of the similarity
measure concept. Various researchers have published many research articles on sim-
ilarity and entropy measures and utilized it in many applications like in the case of
fuzzy soft sets [157], intuitionistic soft sets [109] and interval-valued fuzzy sets [51] so

on.

Various authors compared their algorithms with the similarity measures present
in the literature. The advancement in the case of similarity measures has been ex-

plained through the following sequential development given in Figure 1.4:

Comparison of
SM on FS by

Chen & Hsiao

(1995)

similarity on FS
is introduced by
Pappis (1993)

SM on IFS by
Hwang & Yang
(2013)

SM on IVIFS by
Kumar & Bajaj
(2014)

Tangent SM on
IFS by Mondal &
Rramanik (2015

SM on NS by
Broumi &
Smarandache
(2013)

Cosine SM on IVNS
by Broumi&
Smarandache (2014

Dice SM on
SVNS by Shan &
Jun (2014)

Tangent SM on SM on NS by
NS by Kalyan & Je—{ Majumdar &
ondal (2015 Samanta (2014)

Logarithmic
SM on SVNS by
Mondal et al.
(2018)

SM on NS by
Peng &
Smarandache
(2020)

SM on NS by
Poonia & Bajaj
(2021)

SM on CNS by
Mondal et al.
(2020)

Divergence SM
by Guleria et
al.(2019)

Figure 1.4: Methodologies using Similarity Measures

Different kinds of similarity/distance measures of NSs have been well studied by
Broumi & Smarandache [117]. Utilizing the distance measure between two SVNSs,

Majumdar and Samanta [108] defined some important measures of similarity along
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with their characteristics. Ye [59] presented the three different similarity measures
between SVNSs as an extension of the Jaccard, Dice, and cosine similarity measures
in vector space and utilized then to solve the MCDM problem under simplified neu-
trosophic information. Mondal and Pramanik [63] proposed a new trigonometric mea-
sure called tangent similarity measure as an improvement of cosine similarity and used
this to solve the applications problem of selection of educational stream and medi-
cal diagnosis. Ye [60] has given different similarity measures for the interval neutrosop
-hic sets based on distance measures with application in decision processes. Next, Ye
et al. [61] [134] and Wu et al. [49] discussed the problem of diagnosis based on the

similarity measures for SVNSs.

Thao and Smarandache [101] proposed new divergence measure for neutrosophic
set with some properties and utilized to solve the medical diagnosis problem and the
classification problem. Abdel-Basset et al. [73] developed a new model to handle
the hospital medical care evaluation system based on plithogenic sets and also stud-
ied intelligent medical decision support model [74] based on soft computing and intern
-et of things. In addition to this, a hybrid plithogenic approach [75] by utilizing the
quality function in the supply chain management has also been developed. Further,
a new systematic framework for providing aid and support to the cancer patients by
using neutrosophic sets has been successfully suggested by Abdel-Basset et al. [76].
Based on neutrosophic sets, some new decision-making models have also been success-
fully presented for project selection [77] and heart disease diagnosis [78] with advan-
tages and defined limitations. In subsequent research, Abdel-Basset et al. [79] have
proposed a modified forecasting model based on neutrosophic time series analysis and
a new model for linear fractional programming based on triangular neutrosophic numb
-ers [80]. Also, Yang et al. [50] have studied some new similarity and entropy measures
of the interval neutrosophic sets on the basis of new axiomatic definition along with

its application in MCDM problem.

A new integrated method based on the Weighted Aggregated Sum Product As-
sessment (WASPAS) approach has also been proposed by Mishra et al. [8] to solve
a decision-making problem with hesitant fuzzy information. The applicability of the
proposed technique has been presented in the case of the green supplier selection prob-

lem and the results obtained have been duly compared with the result that exists in
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the literature. Further, Mishra et al.[9] studied IVIF-divergence and entropy mea-
sures and proposed a new technique for solving the classical interactive multi-criteria
decision making by calculating the dominance degrees along with its applicability

with vehicle company example.

In 1972, Luca and Termini [1] introduced a new measure of fuzzy entropy based on
the Shannon function [23] and with the help of these two theories a new set of prop-
erties have been designed. These properties play a significant role in describing the
fuzzy entropy. The fuzzy entropy by Luca et al. [1] is one of the simplest forms of

entropy present in the literature and is defined as,

n

M'(A) = =) [Caly) log Taly:) + (1 = La(y:)) log(1 — Laly)): (1.2.1)

i=1
where ' 4(y;) denotes the degree of membership function and the properties of entropy

measure are given below:
o M'(A)=0iff I'4(y) =0 or 1.
e M'(A) is maximum when I'4(y) = 0.5.

o M'(A) = M'(A"), where the sharpen version of A is A, i.e.

o M'(A) = M'(A) where A is complement of A.

These properties are the necessary and sufficient conditions to form the fuzzy entropy
measure. The Luca and Termini measure given by equation 1.2.1 also fulfills these
conditions. In 1980, Kaufmann [5] proposed an entropy measure which played the

basic for various new entropies in literature and is of form,

1

M'(A) = “Toan Z Ta(y:) log Ta(ys)- (1.2.2)

In 1967, Havrda and Charvat [56] extended the concept of Kaufmann [5] and

defined the following entropy measure;

M) = 1 S ) + (1 - (Calw)) — 1] (123)
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Thus, with the help of fuzzy entropy, the quantity of information is obtained from the
systems of fuzzy theory and the measure of information collected from this fuzziness
is known as fuzzy information measure. This concept of information measure was
further used by Joshi [111] in 2019 to generate a new measure based on Tsallis-Havrda-
Charvat entropy. Later, in 2020, Li et al. [156] and Mahmood et al. [136] studied
this concept using the structures of Gaussian kernels and Complex g-rung orthopair
fuzzy set respectively. The entropy was first proposed by Shannon[23] in 1948, which
is a probabilistic theory and contributes majorly to the communication sector. As
per deliberation given by Robert et al. [13], the defined quantity of information
conveyed is directly proportional to the probability of the probabilistic task. This
implies that the information quantity defines the log of the event probability of A, i.e.,
M'(A) = —log p(A); where p(A) denotes the probability and the average information

over all the events is known as Shannon entropy.

Further, the concept of information entropy measure was extended to ‘useful’
information measure by Bhaker and Hooda [139] in 1993, who defined the generalized
mean value characteristic measure for incomplete probability measure. This theory
was later used by Hooda and Bajaj [31] in 2010 and they introduced a new ‘use-
ful’ information measure for directed divergence of Zadeh’s theory. Then, in 2016
the briefly description related to the overview of fuzzy information measure and gen-
eralized form of fuzzy entropy was presented by Ohlan [11] and in the same year
Arora and Dhiman [38] contributed a new measure of fuzzy directed divergence and
its applications in decision making problems in the literature. Sharma et al. [114]
established the primary decomposition of k-ideals of semirings with its uniqueness
and also generalized it for fuzzy k-ideals of the semirings. In 2018 & 2019, Sofi et al.
[130]-[131] used the concept of parametric ‘useful’ fuzzy information measure for R -

norm and obtained new properties with numerical examples respectively.

1.2.4 Various Fuzzy Graphs and Notion of Energy

Meenakshi et al. [124] explained that energy of graph connects the graph more closely
to the chemical quantity known as 7- electron energy of conjugated hydro carbon mole

-cule. The concept of energy of a graph [53] [55] [110] has been utilized in chemi-
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cal engineering applications- the molecular orbital theory of conjugated molecules [4]
[54] [46]. Sridhara and Khanna [36] studied the bounds on energy and Laplacian en-
ergy of graphs with various important observations and results. The concept of energy
to fuzzy graphs has been extended by Narayanan and Mathew [10] with some bounds
on the energy of fuzzy graphs. Further, Praba et al. [18] extended the energy concept
for intuitionistic fuzzy graph with important results. Recently, the application of en-
ergy of Pythagorean fuzzy graphs has been studied in the decision making example
of a satellite communication system and in the evaluation of the schemes of reser-

voir operation [86].

Based on the fuzzy relation [71], Kaufmann [6] proposed the concept of fuzzy
graphs and Rosenfeld [12] subsequently developed the concept of fuzzy vertex and
fuzzy edge. Some standard operations on the fuzzy graphs were studied by the Morde-
son and Peng [57] along with their properties. Further, Parvathi et al. [112, 113] ex-
tended the notion of a fuzzy graph to intuitionistic fuzzy graph and analyzed various
properties related to minmax intuitionistic fuzzy graph. Karunambigai et al. [90]
proposed a category of constant and totally constant intuitionistic fuzzy graphs and
subsequently Akram et al. [84] presented the concept of strong intuitionistic fuzzy
graphs along with their properties. Also, Akram et al. [85] presented intuitionistic
fuzzy hypergraphs with their applications and Alshehri et al. [98] defined the pla-
narity, duality and multigraphs in context with intuitionistic fuzzy graphs. Sahoo and
Pal [126] [127] proposed various types of product operations for intuitionistic fuzzy

graphs, intuitionistic fuzzy tolerance graph with their applications.

Various researchers [82] [89] [94] [129] utilized the flexibility and its applicabil-
ity to set forward some new ideas concerning the extended structures of intuitionistic
fuzzy graphs and provided many interesting applications in clustering and decision-
making problems and support systems. Naz et al. [133] proposed a generalization of
the intuitionistic fuzzy graph, termed as the Pythagorean fuzzy graphs, and studied
their applications in various decision making problems. Some graph-theoretic opera-
tions related with Pythagorean fuzzy graphs have been well studied by Verma et al.
[115]. Zuo et al. [24] introduced the new concept of picture fuzzy graph and its vari-
ous types with different properties. Earlier classical graphs were used to represent the

social network but the main drawback of using classical graphs was that in its case
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all the individuals are of same value which is not the case in real world. Therefore,
the relationship between these individuals will also be same in all the cases which
is again not true in reality. This problem was solved by Samanta and Pal [132] by
using type 1 fuzzy graph in place of classical fuzzy graph. But it is also not able
to deal with the complexity of the real world problem. Das et al. did alot of re-
search in the field of picture fuzzy graph in references [121] and [118] in which the
authors proposed the picture fuzzy planar graphs and explained it with the help of
its application in road map whereas m-step picture fuzzy competition graphs, pic-
ture fuzzy economic competition graphs and picture fuzzy competition hypergraphs
are introduced and its applications are shown in the field of academics, environ-
ment and companies etc respectively. With the above application Das et al. also
gave the novel concept of the m-step picture fuzzy competition graphs, picture fuzzy
economic competition graphs and picture fuzzy competition hypergraphs in [120] and
its plays a great role in the field of medicine and Pal et al. [92] explained the mod-

ern trends in study of fuzzy theory.

1.3 Motivation

Uncertainty is one of the root cause of real life problems which made it difficult to
extract solutions to various situations. The theory of fuzziness has been dealt by
various extensions but tracking the pattern of happening of an event is an important

contribution.
The following structural figure explains the motivation behind the present work:

It may be noted that the notions presented in the grey boxes of the above figure
already exist in the literature whereas the notions in green boxes have been proposed
and explained in detail in the present work. The outline of the research gap &

rationale of the present work have been discussed as follows.

e Extension of the fuzzy set to a complex fuzzy set increases the range of solv-
ing the problem from the interval [0, 1] on the real plane to the unit disc in
the complex plane. This lays the foundation of two novel concepts of the com-

plex neutrosophic matrix and cohesive fuzzy set forvsolving the problems related
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Figure 1.5: Flow of Proposed Work & Motivation

to uncertainties more efficiently. We present a natural extension of the existing
set to a novel concept of cohesive fuzzy set (CHFS) which has the capability to
explicitly focus on the set of the favorable situations for a particular uncertain
higher dimensional problem with the possible extended range of unit disk having
a phase component. The phase component gives the advantage of addressing
the impreciseness which occurs in a periodic fashion. The objective behind in-
troducing the concept of CHFS is that it not only deals with the situation in
which we are facing difficulty in choosing the best among the various favorable
options, but also helps in neglecting the unfavorable situations among the wide

range of situations which would certainly save our time and energy both.

Considering the importance of matrix form in solving a large number as well as
higher dimension problems in a single interval of time motivated us to extend
these advantages of the matrix form from the real plane to the complex pane of
unit range. Thus, we extended the theory of neutrosophic matrices to the com-
plex plane and introduced the novel concept of a complex neutrosophic matrix.
In this article, we have defined some new types of similarity measure matrices
for the Complex Neutrosophic Matrices (CNM) have been proposed. The pos-
itive definiteness and importance of these measures have been explained with
the help of various properties. The concept of complex fuzzy matrix plays a
significant role in the complex plane. Various new operators for the proposed

matrix have been presented for the detailed understanding of the concept. A
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similarity measure for the proposed matrices has also been designed and subse-
quently its applicability in the field of identification of reference signal has been

presented.

Similarity measure plays a significant role in defining the similarity among the
fuzzy sets. Therefore, there is a wide area of research in defining the simi-
larity in the case of neutrosophic set and this plays a vital role in explaining
the similarity among the uncertainties of events present. We have incorporated
the exponential function for framing the new similarity measures for the neu-
trosophic sets along with their weighted form and utilized them for the solv-
ing a standard classification problem of pattern recognition and the decision-
making problem. The concept of probabilistic occurrence and neutrosophic
entropy have been put together along with utility distribution of the events
to obtain a novel concept of ’useful’ single valued neutrosophic probabilistic
information measure. The proposed measure is a new kind of measure that
will be helpful for the study of decision problems under utility distribution. In
addition to this, some extended measures like hybrid ambiguity measure, analo-
gous divergence measure and information improvement measure have also been

discussed.

In literature, no study was presented using the Laplacian energy of picture fuzzy
graph to construct a methodology to identify the location in case of a site selec-
tion problem. We introduce the novel concept of adjacency matrix, energy and
Laplacian energy for picture fuzzy graphs with applications. A new methodology
for solving a selection problem based on the proposed notions of picture fuzzy
graph has also been provided with an example. In whole, the purpose of the
proposed work is to further expand the fuzzy graph related concepts under pic-
ture fuzzy environment. Such extensions and enrichment will certainly help in

widening the span and coverage of the information significantly.
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Chapter 2

Cohesive Fuzzy Set, Operations &
Applications

In this chapter, we have introduced the notion of cohesive fuzzy set (CHFS) with
various operations, properties and standard identities. This extension of fuzzy set is
capable to deal with the situation in which there are multi-favorable situations in
the complex plane. We have also presented the application of cohesive fuzzy sets in
the process of filtering the signals using the Fourier Cosine Transformation (FCT)
and Inverse Discrete Fourier Cosine Transformation (IDFCT/DFCT). In addition to
this, another application of identifying maximum number of sunspots in a particular
interval under a solar activity has been presented with an illustrative example. The

advantages and the limitations of the proposed methodology have also been studied.

2.1 Notion of Cohesive Fuzzy Set

In this section, we introduce the concept of cohesive fuzzy set and provide its formal

definition along with various operations and related important properties.

The complex fuzzy set captures the phase component to process the information
of a higher dimensional periodic problem while in the theory of hesitant fuzzy set
theory, experts provide a set of various multi-favorable situations for presenting their

assessments. In order to merge both the requirements in a synchronized way, a natural
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extension to a set called cohesive fuzzy set is being introduced for explicitly focussing
on the set of the favorable situations for a particular uncertain higher dimensional

problem with the possible extended range of unit disk having a phase component.

Definition 17 (Cohesive fuzzy set) Consider a fuzzy set T defined on a fized
universe of discourse S, a cohesive fuzzy set (CHFS) on T is in terms of function h

when applied on S returns a subset of unit circle, i.e.,
Sy ={<z,hr(x)>|z eSS}

where hy is a complex set of values in a unit circle of the complex plane, denoting the
possible membership degrees of elements x € S to the set T' C S. Here, hr is of the
form r¢ (z) exp (iwr (z)), where i = /=1, ¢ (z) and wy (x) both are real values and
rr(x) € [0, 1].

Example: For understanding the basic structure of CHFS, let S = {x1, 25, 23} be

the reference set. Suppose

hr, (x1) = {0.5exp 7, 0.8 exp g, 0.7 exp g},

hr, (x2) = {0.6 expm,0.9exp 7, 0.7 exp g},

and

hr, (z3) = {0.5expm, 0.7 exp g, 0.7expm}

denote the membership set of z; (i = 1,2,3) to the set T respectively. Then the
cohesive fuzzy set can be represented as

T ={< x1,{0.5expm, 0.8 exp g, 0.7 exp g} > < 29,{0.6expm,0.9expm,

0.7 exp %} >, < z3,{0.5expm,0.7exp g, 0.7expm} >}.

Various Basic Operations/Results on Cohesive Fuzzy Sets

Given a cohesive fuzzy set T' whose membership function is given by Az, we suit-

ably propose its lower and upper bound as given below:
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e lower bound: h; = min (hr) and

e upper bound: ht = maz (hr).

It may be noted that the pair of complex hesitant functions k. and 1 — ht define
the complex intuitionistic fuzzy set. Next, we first propose the definition of the

complement of cohesive fuzzy set as follows:

Definition 18 (Complement) Given a cohesive fuzzy set represented by member-

ship function hr, its complement set is defined as follows:

7= Uprenr {nr} (2.1.1)

— LW ;
where pp = rre™?, i.e.,

h% - UMTGhT{:U’T}C = UTTGhTﬂUTEhT{<1 - TT) ei(_U)T)}'

Proposition 1. The operation of complement is involution, i.e.,
(h$) = hr (2.1.2)

Proof: It is easy to observe that (1 — (1 —rp)) e?=(=*) for all 7o, wr € hy. Hence
the result.

Definition 19 (Untion) Suppose there are two cohesive fuzzy sets represented by
their hesitant membership functions hy, and hp, respectively. The union of these
CHF'Ss, denoted by hy, U hr,, can be defined as

(hry U hg,) () = {hy € (hyy (2) U by, (2)) |y > max (b, hy,) }-

Definition 20 (Intersection) Suppose there are two cohesive fuzzy sets represented
by their hesitant membership functions hp, and hr, respectively. The intersection of
these CHF'Ss, denoted by hy, N hy,, can be defined as

(he, Ohy) () = {hr € (hey (2) N he, (2)) [y < min (b7, b)) }-
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Hence, from the Definitions 18, 19 and 20 given above, we write the following equa-

tions:

h% = UMTEhT {NT}C = UTvaTehT{(]‘ - TT) e_in};

th U hTQ = UMT1 €hry, pry€hr,y maX{MTl ) /’LTQ} = Urp wrehy {maX (TT17 rTz) ¢ HlaX(WTl MTQ) };

th n hTz = UHTl €hry, pry€hr, Hlin{ru’ﬂ ) :U'T2} = UTT»wTehT{Hlin (TTI ) TT2) ¢ min(le 7wT2) }

(2.1.3)

where i, pr, and pg, are of form rpe™? rp e and r, e respectively.

Remark: The Complex Intuitionistic Fuzzy Set (CIFS) contains complex member-
ship and non-membership functions. However, in case of CHFS, only the complex
membership function is considered. Therefore, we can say that every CHFS is con-

tained in CIFS whereas the reverse is not true.

Definition 21 Suppose there is a cohesive fuzzy set given by hrp, we define CIFS
Aenw (hr) as the envelope of hy. Now the set Aeny (hr) is represented by < x, pus () , Vs
(x) > with

ps () = min (hy) = min (ur) (2.1.4)

vs () =1 —max (hr) = 1 — max (ur)

where pp = rpetr.
Proposition 2. Now the relationship between the cohesive fuzzy set and Complex

intuitionistic fuzzy set is given by:

b Aenv (h%) = (Aenv (hT))ca
4 Aem} (h’Tl U hTz) = Aeny (th) U Aeno (th);

L4 Aem} (th N hTz) = Aenv (th) N Aenv (th)-

Proof: We know that

Aeny (hr) =< minh (z),1 — maxh (x) >=< hy (z),1— hj (z) >

(Aenv (hT))C =<1- h; (l’) ) h; (l’) >
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and that
Aeny (hG) =< min h® (z),1 — max h® (z) >

=< min ((1 =g (2) e ") Tomax (1 - rp (2) e 7)) >
=< 1 —max (TT (J;) ein(I)) , 1 —1 -+ min (TT ([E) ein(l’)) >
=<1—hg(x),hy (x) >

So, it proves the first inequality.
Then,

Ao (hry, Uhg,) = Aeny ({hr € (hay (z) U hyy, (x)) [hy > max (hg,, b)) })

Thus, it implies that x lie in interval [max (hy, (z),hy, (2)) , max(hf, (z), b7, (2)).

This implies that
Aeny (hry, U hp,) =< max (hi? hi) , min (1 — h;l, 1— hﬁ) >

This proves the second inequality.
Similarly, we can prove the third inequality. Finally, all the equalities are proved.
Next, for the sake of relative ordering over the cohesive fuzzy elements, some necessary

comparing laws are being provided as follows:

Definition 22 For a given cohesive fuzzy element hr,

f (hT) _ ﬁ Z TTein;

rT,WT EhT

is called the score function of hr, where #hr is the number of the elements in hy.

For two cohesive fuzzy elements hr, and hr ,,

fo (hT1) > f (hT2> then hT1 > hTQ; fo (hT1> - f(hT2)7 then hT1 = hT2'

Next, we have defined some new operations on the cohesive fuzzy elements hy, hp,

and hp, on the basis of the relations proposed in proposition 2 are given below:
o (hp) = UTT’wTehT(rTein)A; where A € R, A >0

® )\hT = UTT,wTEhT (1 - (]_ - T’T))\> BiAwT
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° (Direct Sum) th ® hT2 = U7’T1 swry €hy rry wry €y {(TT1 + T, —Tn TT2) €i<wT1 +wT2)}

e (Direct Product) hpy ®@ hr, = Urey swry €y oy wr,y €hr, {(rryr) ei(le +wT2)}

Some more important operations have been established using the above operations

on cohesive fuzzy elements as follows:

Theorem 1 For given three cohesive fuzzy elements hp, hy, and hr,, the following
wdentities hold:

(a) hp,© U hp,= (hy, N hy).
(b) hr, N hp,° = (hy, U hg)".
(¢) (h5)* = (Ahr)“.
(d) A(hg) = (h7)".
(e) hs, @ hG, = (hr, ® hg)".

(f) h’%l ® h%z = (th EB hT2>C'
Proof. The proof for the above stated identities have been outlined below:

(a) thC U hT?C - UTTl wry €hryrry wry €hgy AKX ((1 - TTl) e_in17 (1 - TTE) e_iWT2)
= (1 — min (rp, r7,)) e*i(lfmin(“’Tl wry))

= (hy, N hy,)“.

(b> thc A hT?C = UTTI 7wT1€hT17’T1 swry €hy min ((1 - TTl) eiiwn? (1 - 70T2) eiiw%)
= (1 —max (rq,r1,)) ¢~ i(l-max(wr wr, ))

= (hny Uhg,)".

c —iwr\A — AW
(C> (hT))\ = UTT,wTEhT ((1 - TT) € T) - UTTﬂUTEhT (1 - 7nT))\ € Awr
U



(€) 1, Bh8, = Ung o, ety oryenr, (1= 77) (L= ,) = (L= ry) (L= ) 7 (vvm))

= U'I‘Tl swry €hy rry Wy €T, {(1 —Tn TTz) eii(wﬁ o ) }

= (hp, ® hp,)".

(f> hCT1 ® h%g = UTTl s wry €hry rry Wy €A {(1 - 7“T1) (1 - TTz) eii(le HUT2)}

= UrT1 Ay, €hyy Ty W, AT, (= (rpy +rpy, —ryrny)) e_i(le+wTQ>}

= (th D hTQ)C'

Definition 23 Let hy, and hy, are two cohesive fuzzy elements, we propose the op-

erators given below:

|
(a) th 01 hT2 U/‘Tl Eth { 1+M|Z}TI Mz2712| }

|
(b) h’Tl 02 h’TQ UUTl Eth { 1+g’|1;1T1M’13T2 | }

(¢) hy0shi, = Upp,eny, {2052221)

(d) hryoshr, = UuTleth{%}

where ur, & pg, are in the form of rp e & rr,e™T2 respectively.

Remarks:

It may be observed from the above definition that

_ i wp, +wr

¢ th D hT2 - UTTl Wy €Ay Ty Wy €N {<TT1 + T, — T TTQ) € ( 1 2>}
_ JwT, wr,
- UMTl swry €hry pry wr, €hr, {:uT1 e + U €T — i Ty }
— i wr +wr

[ ] th ® hT2 - UTTl wry GhT1 ST Ty W ehT2 {(TTl TT2> e ( 1 2) }

= UMTl €hr, )1y ERT, {:U“T1 KTy }

Theorem 2 For hy, and hp, be the two cohesive fuzzy elements. Then, we have the
following identities

(a) (hr, @ ht,) N (hr,01h1,) = (h1y01hT,) (d) (hr, @ hr,) N (hr,01h1,) = (hr, @ h1,)
(b) (hr, ® hr,) U (hr,01h1,) = (hr, © hT,) (e) (hr, ® hr,) N (h7,02h1,) = (hr,02hT,)

(¢) (hr, ® hr,) N (hry01h1,) = (hry01hT,) (f) (hry ® hr,) U (hry02h,) = (hr, © b))
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(9) (hr, @ hr,) O (hry02hT,) = (h1 02hT,) 1)
(h) (th & hTQ) N (hT102hT2) = (th & hTz) (m)

(hr, ® ha,) N (hry03he,) = (b, © h,)
(
(i) (hr, ® hr,) N (hr,03ht,) = (b7, 03hT,) (n) (hr, @ hr,) U (hr,04ht,) = (hy © hr)
(
(

hr, @ hz,) N (hry04hr,) = (hr,04h7,)

(G) (hr, ® hr,) U (hry03hT,) = (h1y © hT,)) (0)

(k) (th ® hTQ) n (th 03hT2) = (th 03hT2) (p)

hr, ® ht,) N (hr,04ht,) = (hT,04h7,)

th Y hTQ) N (hT1104hT2) = (th Y hTQ) .

Proof. All the above listed properties have been proved one by one. In view of the

Definition 12 stated above, we have

(a) (hr, ® hy,) O (hy 01 hr,)

_ iwr, iwp, b —pry |
- UMTl swry €hy {MT1 e + pr, e — fgy :uTz} N UMTl €hqy { THlnr, —firy| }
1U'T2 ,’U/'T2 ehTQ /‘LTQ ehTQ

_ . iwrn iwr, e —pmy|
- L—J,U/T1 »WTy Eth mln{,U/Tle 2 _'_ ILI/TQG ! :uTllU/T27 1+‘/“T NT2| }
Ky swry €EhTy

_ |1U'T1 /J'TQ o
= UHTl €hmy { ERP—— } (th 01 hT2)
K1y €EhT

(b) (h’TI S h'TQ) U (th 01 hTz)

R in in . IMTl MT2
= (Uuleleeth {pr e + pg, et MT1MT2}> U (UuTlehT1{1+|#T1 HT2|}>

KTy, Wy €N, K1y €Ny

J— in in _ ‘p’Tl MT2
= Up wr, ehy, maz{ iz, €72 + pp, €™ — iy gy, 7 ,#T2|}
HTy,wry €A,

= UMTl wry €hy {MT1 e + pr, e — Ky :U’T2} = (hT1 @ hT2)‘

Ky Wy €RT,Y

<C> (th ® hTQ) N (th 01 hTz)

— |IU’T1 ,U'TQ
- UuTl €hmy {/’LTI K, } n UMTl €hmy { T+ ur, —py| }
K1y ERT,

HTy EhT2
_ : lpTy — 1y |
= U,LT1 ehry mln{,UTl,uTza jE _MT2|}
K1y €hT,
MTl MT2
U.“Tl €hmy { 1+|pr, — MT2|} - (th 01 hTz)
K1y €hT,

(d) (hr, ® hy,) U (hyy 01 hry)
= (Uu:rl ehr, {ur por, }) U (UuTl ehr, { 1J|:ji;TL1Tl NZQTQ | }>

W1y €RT KTy ehTQ
— |.LLT1 #TQ
= Upr, ehr, max{pr, pr, e MTQ‘}
Hry€RT
- UNTl S {MT1MT2} = (hT1 ® hTz)'
Hry€hT,
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(e) (hr, ® hay) N (hyy 09 hry)

Ty — sy |

_ LW, W,
- UuTl swry €hry {MT16 2+ ppe T — pyy MT2} N U#Tl €hmy { T 2[ur, —pry) }
HTy,WTy EhTQ My EhT2
= i iwr, fwry _pry —py|
= UNTl awr, €h, mln{uTle 2 4 Hme My By, 1+2[ur, HT2|}
KTy Wy €RTy
_ |l =y
- UMTl GhT1{1+2|“T1 #T2|} - (th 02 hT2)
ury€hT,
(f> (th S hT2) U (hT1 09 hT2>
_ iw iw I, =1y |
- UMTl swry €Ehy {NTle 2+ ppe M — :uTuuTz} U UNTI EhT1{1+2|MT1 MT2|}
HTy,WTy ehTQ HTy eh’Tz
. W, wp, ‘/’LTl NTQ'
= U:“‘Tl swry €hyy maX{,Ulee 2 + pup,e Hry By, 1+2|pp, NT2|}
KTy swry €EhTy
_ LW LW _
= Upgy wr, ehy, {0 €72 + pry€™™ = gy pigy } = (hy © hy).
,LLT2,’LUT2 EhT2
(g> (th ® hTQ) N (hT1 02 hTz)
— |/”’T1 /U'TQ
- UNTleth {H’TI/“LTQ} N UuTleth{H_z\uTl MT2|}
wT, €hT,y KTy EhT2
_ 3 “’LTl H‘T2
— U#Tl Eth mln{,uT1 U1y, 1+2|HT1 ,UT2|}
Hry €ERT,
— U { ‘MTl N/TQ } o (h o h, )
wry €hy 14+2|pr) —py | 7 02 N1y ).
Hry ERT,
(h) (hr, ® hr,) U (hry 02 hr)
_ KTy —HTy
- UMTleth {MT1NT2} U UMTleth{lJrszl uT2|}
b1y €RT KTy ehTQ
_ |7y —pry |
= UMTl €hr, HlaX{,uTlll’Tgv 1+2[pry MT2|}
Hry€hT,
= UMTl €hr, {MT1MT2} = (th ® hTz)'
Hry€RT
<1> (th D hTQ) N (th 03 hTz)
_ W iwp, |HT1 #T2|
- UMTl swry €hy {/’LTle 2+ prpe K1y :LLTz} N UHTle T1{ }
KTy, Wy €ERTy K1y EhTy,
_ : iwr, iwp |y —py |
- UHTI swry €hry mln{uTue 2+ e — oy iy }
KTy s wry €Ty,
—U (I tty — (b, oy hy)
— YT, €hry 2 =\t 03 Ty )-
K1y €hTy,
(i) (hr, ® hr,) U (hry 03 hry)
— in in _ |MT1 _'uT2|
- UuTl swry €hry {MT16 2+ ppe T — pgy MTz} U UHTl €hmy { }

HTo,WTy EhTQ My EhT2
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— wT, 2w |:U‘T —HT: |
UHTl swry €hry maX{:U"He 2+ P — iy T, 12 2 }

Ky Wy €RTy

= UMTl swry €hyy {NT1 e + Wy e — My :U'T2} = (hT1 > hT2)‘

KTy WTy €RT,

<k> (th ® hTQ) N (th 03 hTz)

= UNTl €hr, {ﬂTl IUTQ} N U#Tl €hr, { iy ;MT2‘ }

wT, €hT, Ky €hy
_ . |y —py |
- U#Tl €hmy mln{:uflﬁ KTy, 2 }
KTy ERT,
_ |y —py |
= U.“Tl S { 2 } = (th 03 hr, ) .
K1y €hT,

(1) (k1 ® hz,) U (hry 03 hry)

Ury ety (i iz} | U [ Uper, e, { 20527210

K1y €RT, pTy €Ty
_ |y —pry |
= Upr, ehn, nlax{:“ﬂ/”“w 2 ’ }
Hry€hT,
= Upr, ehr, {NT1MT2} = (th ® hTz)'
HryERT

(m) (kg © hr,) N (hry 04 hry)

— LW W, |MT HT: ‘
UuTl swry €hry {MT1 e + e — gy :uTz} N UHTl €hmy { 12 2 }
KTy, WTy EhTQ My EhT2

— : W W |y pory |
U#Tl swry €hry mln{/“LTle 2+ P — i Uy, 12 : }
HTy Wy €RT,

- U#Tleth{%} = (th 04 h/Tg)
Hry ERT,

(n) (hr, ® hg,) U (hyy 04 hoy)
= UMT1 swry €hry {ILLTI "2 + Uy e — Ky :uTz} U UMTl €hry {@}

KTy Wy €EhTy ury €EhT,

_ iwn iw |l py |
U,LLTI swry €hyy maX{MTle 2 + pry€ - My By, 12 2 }
KTy s wry €y,

= U.“Tl swry €hqy {:uT1 T2 + Uy e — K1y IUTQ} = (hT1 > hTQ)‘

KTy WT, €RTy
(0) (hry, ® hy,) N (hry 04 hry)

= UMTl S {/JJT1 :U'TQ} N UMTl €hmy {WT1—2“T2|}

My €hT, HTy €ERT,
_ . |y oy |
- UMTl €hr, mln{ﬁle Ky, 2 }
Hry€hT
_ |y oy |
- UNTl Eth{ 2 } = (th 04 hT2>'
Hry€hT,
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(p) (h’TI ® h’Tg) U (th 04 hTz)
- (U“T1€hT1 {MTuuTz}) U (UuTlehT1{|MT12MT2|}>

My €RT, wry, €l

|y iy |
= UHTl €hpy maX{MTd“LTz? %}
pry €l
= UMTl €hp, {MT1/~LT2} = (hT1 ® hT2)'
pry€hT

Hence, this proves all the above stated identities from ((a) — (p)). Similarly, various

other operations and relations can further be established for cohesive fuzzy set.

2.2 Application of Cohesive Fuzzy Sets in Refer-

ence Signal

In this section, we incorporate the proposed notion of cohesive fuzzy set in the appli-
cation field of filtering the electromagnetic signals for obtaining the reference signal
from number of signals obtained. The propagation and parameter of an electromag-

netic signal can be understood through the following diagram given in Figure 2.1:

Propagation
Electric _ Direction
Field (E)

|

Propagation of Electromagnetic Waves
(Selecting the Reference Signal)

Magnetic
Field (8]

Figure 2.1: Components of Electromagnetic signal

In the subsequent sections, we first present new methodology by incorporating Fourier
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Cosine Transformation in order to identify reference electromagnetic signal and sec-
ondly by using Inverse Discrete Fourier Cosine Transformation we present another
methodology for identifying reference electromagnetic signal. To increase the clarity

the flowchart explaining the procedure is given in Figure 2.2.

I IDENTIFYING REFERENCE SIGNAL
| START | | START \

The received signals are ‘

obtained in the form of the
Inverse Discrete Fourier
transformation (IDFCT).

obtained in the form of the

The received signals are
Fourier Transformation.

l

CFS is used to detect the required signal from the receiving
signals which are affected by its phase and amplitude
differences.

Use particular case for the IDFCT, that is,
{x'(L) =UWIUX) € [0,1]}

| : | :

Applied CHFS to the set of signal in
which the Fourier cosine series is
obtained whose value is mainly greater
than the threshold value.

! !

Finally, the most similar value of the
. END

Signal with completely
different phase and value
less than threshold value is
rejected.

only Inverse Discrete Fourier Cosine Transformation is rejected

On the basis of applicability to CHFS, The Inverse Fourier Sine
Transformation is selected. due to non-applicability.

transmitted signal with the reference
signal is matched and selected.

I

. END

Figure 2.2: Methodology for Electromagnetic signal

2.2.1 Identifying Reference Electromagnetic Signal using Fourier
Cosine Transformation (FCT)

Here, the processing of electromagnetic signal has been carried over by implementing
the introduced concept of cohesive fuzzy set in identifying the signal of interest among
the large number of signals received by the receiver. Ramot et al. [28] demonstrated
the use of complex fuzzy set in signal processing where L different speech signals and
electromagnetic signals, viz., Ty (t), Ty (t),..., Ty, (t), have been detected & sampled
by the digital receiver. Each received signal is sampled N times. Let 7} (k) denotes
the k' (1 < k < N) sample and the I*" signal (1 <1< L).

Further, the Fourier transformation of the received signals have been obtained and
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each being represented as the sum of Fourier components given below:

2w (n—1)(k—1)

N
1
Tl(k):NZC’l,ne N (2.2.1)
n=1

where Cj,, (1 <n < N) are complex Fourier coefficients of T;.

It may be noted that in case of cohesive fuzzy set, we take Fourier cosine transfor-
mation of the received signals and each of which is represented as the sum of Fourier
cosine components

T (k) = % ; Cl, cOS (ZQW (n _]\1/_) (k= 1)>; (2.2.2)

where Cj,, (1 <n < N) are complex Fourier coefficients of 7;.

Therefore, the above mentioned sum may be rewritten as

N .
1 , 2 —1) (k-1
T, (k) = N E P, e cos <Z ™ (n N) ( )>, (2.2.3)
n=1

where Cj,, = A €' with P, and ay, to be real valued & P, > 0 Vn.

The aim of the above proposed application is to determine whether any signal among
received L signals can be identified as the reference signal R. Therefore, in similar
manner the reference signal R is also sampled N times and its corresponding Fourier
cosine series may be written as:

R(k) = % ; Pr € cos (i% (n _]y (k= 1)); (2.2.4)

where
Crp = PRmeio‘Rvn, with 1 <n < N,
Pr, and agr, to be real valued & Pr,, > 0V n.
Next, we formally list the steps of the proposed methodology for identifying the refer-
ence signal with the help of the similarity measures between the signals 71,75, ..., T},
to R as follows:
Step 1: We first normalize the amplitudes of all Fourier cosine coefficients for any

candidate signal T} (1 # [ # L). Suppose P, denotes the N-dimensional vector of am-

plitudes of the candidate signal’s (T") Fourier coefficients:
Pl = (Pl,la Pl,27 ceey PZ,N) s
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and Pg denotes the N-dimensional vector of amplitudes of the reference signal’s (R)

Fourier coeflicients:
Pr = (Pg1, PRy, ..., Pr.n) .

We consider the normalized vector @); in the form as given below:

1

Qr= "5,
" Pr.|| Prl|

where || Pg|| =

Thus, the vector Q; = (Q11,Qu2, ..., Qi ) represents the normalized amplitudes of 7}'s
Fourier cosine coefficients. Similarly, Qr = (Qr.1, @r2,...,Qrn) is the normalized
amplitude of R's Fourier cosine coefficients.

Step 2: Next, we calculate the complex grade similarity for every Fourier cosine
coefficient of T in relevance with the reference signal R. Then, the grade of similarity

between Cp,, to Cr, may be denoted by vg 1, (n) and given by:

vrr (n) =1rr1 (N) ewr (), (2.2.5)

where
—(Qrn—un)
rro (n) =e 9Rn%n & wgppn = (apn, — Q).

Here, vg 7y(n) represents the complex grade of membership which includes a phase and
amplitude terms. The phase term contains the information of the relative phase be-
tween the Cj,, and Cg,. The amplitude term 7z 7, in range [0,1] is normalized and
used to measure the distance exponentially between the C,, and Cr,. The effect of
outside factors such as path loss, distance of transmission source from digital receiver
etc are reduced by using normalized amplitudes @;,, and Qr,. In case of the relative
amplitude of Cp,, in T} is compared to Cr,, in R, so that synchronized results may
be obtained in either cases of strong and weak signals.

Step 3: Further, the complex grade similarity vg 1, is obtained by summing the

grade similarity of each of the Fourier cosine coefficient vg 1, (n)Vn (1 <n < N), in

36



which either Q);,, or Qg, must be larger than the Qrpresnord. This Qrareshoia is used to
prevent vg 7, from the Fourier cosine coefficients with small amplitudes in 7; and R.
Next, the sum of the complex grade similarity is divided by the number of coefficients
(m). The considered coefficients of );,, and Q g, must have greater amplitudes com-
pare to the Qrpresnoid and consequently mapping the amplitude of vg 7y in the range
of [0,1], subject to

_ 2y vrn (M), (2.2.6)

VRT = —m ;

where
M ={n|Qin or Qrn > QThreshoia} and the number of elements in M is denoted bym.

Hence, the sum of vr g given in equation (2.2.6) is totally dependent on the phase
term of vg 7;. The phase term is an important factor to determine whether the grade
of similarity increase or decreases among (7, s and C ,s. This issue of phase has been
reduced in our proposed methodology as we are taking Fourier cosine transformation
due to which only one factor will affect the phase term.

Thus, the amplitude of v 7, which is used to determine 7; to R, subject to the

following conditions:

e The identified signal 7T; w.r.t R must be close to 1.
e The normalized amplitudes of the Fourier coefficients of T; and R are similar.

e The relative phases of the Fourier coefficients of candidate and reference signals

i.e. T; and R are similar.

Step 4: Finally, the electromagnetic signal 7; may be identified as R, by comparing
the values of |v(g1)| t0 Vrhreshoia- 1f the obtained value of |v(g 1,)| exceeds the thresh-
old, then the identified signals 7; may be considered as R.

The above proposed methodology, which utilizes the Fourier Cosine Transformation
in calculating the similarity between two signals, is suppose to play a significant role in
signal analysis applications where the relative phase between the Fourier component

of the signals is considered to be important factor.

37



2.2.2 Identifying Reference Electromagnetic Signal using In-

verse Discrete Fourier Cosine Transformation (IDFCT)

In this subsection, we have used the Inverse Discrete Fourier Cosine Transformation
to develop a methodology to find the reference signal among the transmitted signals
received by the receiver.
Xueling et al. [96] used the L™ Inverse Discrete Fourier Transform (IDFT) coefficient
of a length L sequence x(L) and have defined it as:

-1

S (L) T, pen, 1,2, L1

p=0

1
z(p) = i3
where (L) have different values and considered the special case in which U[L] =
o (L) & U[L] € [0, 1].

In the similar way, we also consider the special case of Inverse Discrete Fourier Cosine
Transformation (IDFCT) as below:

1

L—-1
2m
= "(L —L 0,1,2,.... L —1.
)= 2 poos (F20) . pe0 L2

ll

Definition 13. The DFCT for 2’ (L) : 1 < L < L is given by matrix in the product form:

20 ] |t ! 1 L [ 2(0)
=27 —4m —2m(L—
! (1) 1 CcOoS (%) CcoS (%) . . . cos % 2 (1)
2’ (2) 1 cos (=%) cos (=2T) ... cos (AmlE=l) z (2)
L 2(L=1) ] |1 COS(%) COS(%) o Cos(M)_ | 2(L-1)

But the IDFCT is given by,

[ (0) ] 1 1 1 o 1 ' (0)
z (1) 1 cos (2%) oS (47”) N w 2 (1)
z(2) . 1 cos (4%) cos (57) . . . cos 477(2_1) 2 (2
"L
R (L-1) | I 1 cos (MLAU cos (%) . . . coS (M) | L ' (L —1) i




Next, with the help of the above definitions, we propose a new methodology to detect
a particular signals among the various signals received by the receiver.

Suppose l(uy (L), ug (L) ug(L),...,u; (L)) be the number of electromagnetic signals
received by the receiver and each of these signals is noted L times. Suppose z; (L)
be the [th (1 <1< L) signal, then the Discrete Fourier cosine transformation is given
by:

b' |

L—
Z cos( ); Lp=0,1,2,...L—1, (2.2.7)

p=0

where U[L] € [0, 1].

Here, U[L] = 0% (p) and %X Lp = wg (p) are called the amplitude and phase term

respectively. Thus, equation (2.2.7) denotes the model for signal representation.

Now, we construct a particular kind of matrix to detect the particular signal
among the different signals received by the receiver. For this, we consider a reference

signal R which has also been noted L times and its DFCT is given as below:

COS( Lp) Lip=0,1,2,....,L —1, (2.2.8)

m
Mh

where ¢ (p) € [0, 1].

The procedural steps of the proposed methodology in order to compare the similarity
between the two signals have been listed as follows:

Step 1:

Expanding v, (L) = %Zﬁ;ol UlL] cos (%Lp) ;for p=20,1,2,..., L — 1 leads to,

uy (L) = % [U[O] cos (%L(O)) + UJ1] cos (%L(l)) + U|[2] cos <2L L(2 )) + ..+ U[L — 1] cos (%L(L — 1))} .
(22.9)
Now, we put the values of L =0,1,2,..., L — 1 in equation (2.2.9), through which we

obtain the L' sample of the signal which are being explained by taking individual
discrete cases:
For L =0 case:

w (0) = % {U[O] cos (2%(0)(0)) +U[1] cos (2%(0)(1)) + U[2] cos (2%(0)(2)) -+ U[L — 1] cos (2 (0)(L — 1))} .

w (0) = % U[0].1 + U1+ U211 + .+ UL — 1].1]. (2.2.10)
For L =1 case:

w (1) = % U1].1+ U1] cos (22(1)(1)) + U2] cos (2;(1)(2)) b+ UL —1]sin (2;(1)@ - 1))}
(2.2.11)
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For L = 2 case:

w (2) = %] [U[l].l + U] cos (2L7T(2)(1)> + U[2] cos (2;(2)(2)) b+ UL — 1] cos (2;(2)@ - 1))}
(2.2.12)
Similarly, for L = L — 1 case:

w(L—1)= % [U[l}.l + U[1] cos (%”(L - 1)(1)) + U[2] cos (%”(L - 1)(2)) 4o+ UIL — 1] cos (%’r(L - 1)2)} .
(2.2.13)

In similar manner, we obtain the values for L samples of the reference signal.

Step 2:
Now, we construct the matrix for L-samples of signal u; (L) & the reference signal as
follows:
[ w (0) T 1 1 1 .. 1 U (0) ]
u (1) 1 oS (%’r) coS (4%) . . . cos w U (1)
uy (2) ) 1 oS (4%) cos (8%) . . . cos %{1) U (2)
L
| W (L-1) ] i 1 cos (W) cos (Mﬁ) . . . cos (M) L U(L-1) ]
&
[ 9 (0) T 1 1 1 o 1 % (0) ]
s s 2m(L—1
6(1) 1 cos (2%) cos (4F) . . . cos # o' (1)
6 (2) . 1 cos (4F) cos (57) . . . cos 47r(i_1) 0 (2
"L
| (L—1) ] i 1 cos (%) coS (%) . . . cos (M) ]t 0'(L—1) ]

It may be noted that the first matrix equation given above represents that transmit-
ted signal has been obtained by multiplying the phase term matrix and amplitude

matrix. Similarly, the second matrix equation given above represents the components

of reference signal.

Step 3:
In view of the above two matrix equations and for the desired analysis, we take the

absolute values of all the obtained values to bring them in the range of the disk of
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radius one in complex plane. These absolute values are given as below:

6(0), 2 (0)
0(1), ur (1)
0(2) ur (2)]

&
-] -]

Step 4:
Finally, we select the maximum absolute cosine value among all the cases of wu; ({)
& reference signal. Then, the most similar values will be considered to be reference

signal.

Example 1.

Suppose that there are four different electromagnetic waves (uy (L), us (L), uz (L) & ug (L))
which have been detected by the receiver. Then, the sample of each signal is to be
taken four times. Assume that 6 (L) is the reference signal. Then, the Discrete Fourier

Cosine Transformation (DFCT) of these signals u; (L) and the reference signal 6 (L)

is given by:
1o 2
w (L) = ) pz; Ui[L] cos (ZLp) : L,p=0,1,2,3; (2.2.14)
and
Q(L)—liﬁ’[l;]cos 2T ) Lp=01,2,3: (2.2.15)
_4p:U 4pa7p_7777 i

where U; (L), 6" (L) € [0, 1]. Further, the equation (2.2.14) gives

w (L) = i[U[O] cos (TL(O)) + U[1] cos (TL(l)) + U|2] cos <2IL(2)> + UJ2] cos (%ITL(?))) .
(2.2.16)
Now, we take the values of L = 0,1,2,3 and subsequently obtain the foloowing
equationsl:

w(0) = 4 wileos (0 )+l cos (500 )+ eos (0@ ) 401 cos (F0)3)).

w (0) = F[UI0]1+ U1 + U210 + U1 (2.2.17)
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w (1) = i[U[O} cos (2;(1)(0)> +U1] cos (%f(l)(l)) +U2] cos (22(1)(2)> +U2] cos (21(1)(3)) .

(2.2.18)
w (2) = LU70] cos (21(2)(0)> +U1] cos (T(Q)(l)) +U2] cos (22(2)(2)> +U[2] cos (25(2)(3)) .
(2.2.19)

1=

w (3) = i[U[O} cos (?(3)(0)) +U[1] cos (22(3)(1)> +U[2] cos (T(g)(z)) +U[2] cos (2;(3)(3)) .
(2.2.20)

Next, from all the above equations (2.2.17)-(2.2.20), we obtain:

u (1) _ 1 1 cos(2) cos (%) cos (%) Uy (1)
w (2) 1 cos(%) cos () cos (27) U (2)
w (3) 1 cos (&) cos () cos (17) Uy (3)
In similar manner, for the case of the reference signal, the matrix equation obtained
as follows:
0 (0) 11 1 1 o' (0)
0 (1) 1 1 cos (%) cos (%) cos (%) o' (1)
0(2) 1 cos (%) cos (%) cos (£7) o' (2)
0(3) 1 cos (%) cos () cos (£87) 0 (3)

Suppose that the provided values for the reference signal are as below:

0; p=20
0; —1
8'lp] = P (2.2.21)
0.2, p=2
1; p=3

0 (0) 11 1 1 0
o) | 1|1 0 -1 0 0
o) | 4|1 -1 1 —1]]o02
0(3) 1 0 -1 0 |



Now, the absolute value matrix of reference signal is given as:

16.(0)| 0.3
o] | | o1
02)] | |02
10(3) | 0.1

The maximum value in the above matrix is 0.3.
Now, for the signal u; (L); L =0,1,2,3

(05: p=0
0.7, p=1
Uilp) = (2.2.22)
0.8, p=2
(L p=3
uy (0) 11 1 1 0.5
w(l) | 11 0 -1 0 0.7
w@ | 41 -1 1 —1]]o08
u (3) 1 0 -1 0 1
Now, the absolute value matrix of reference signal u; (L) is,
|ur (0) | 0.8
s (1) || 01
i (2)] | | 01
lut (3) | 0.1

The maximum value in the above matrix is 0.8.

Now, for the signal us (L); L =0,1,2,3

(
04; p=0
0.6; p=1
Uslp] = (2.2.23)
0.8, p=2
L p=3
us (0) 1 1 1 0.4
ug (1) :l 1 0 -1 0 0.6
us (2) 411 -1 1 -1 0.8
us (3) 1 0 -1 0 1



Now, the absolute value matrix of reference signal usy (L) is,

|uz (0) 0.7
ue (D] | _ | 0
uz (2) | 0.1
|uz (3) | 0.1

The maximum value in the above matrix is 0.7.
Now, for the signal uz (L); L =0,1,2,3

0.9

p
0.6; p=20
1, p=1
Us[p] =
0.9; p=2
(0.8, p=3
uz(1) | 111 0 —1
us (2) 411 -1 1 -1
us (3) 1 0 -1
Now, the absolute value matrix of reference signal usz (L) is,
uz (0) | 0.8
lug (1) | _ 0.1
|uz (2) | 0.1
us (3)| 0.1

The maximum value in the above matrix is 0.8.

Now, for the signal uy (L); L =0,1,2,3,

)
0.8; p=0
0.5; p=1
Uslp] =
0; p=2
L 0; p=3
uy (0) 1 1
ug(l) | 1)1 0 —1
uy (2) 411 -1 1 -1
uy (3) 1 0 -1

(2.2.24)

(2.2.25)



Now, the absolute value matrix of reference signal u4 (L) is,

|us (0) | 0.3
| _ |02
lug (2) | 0.3
|ua (3) ] 0.2

The maximum value in the above matrix is 0.3.

Now, listing all the maximum values and tabulating with the reference value, we get

0 (L) 0.3 ]
uy (L) 0.8
ug (L) | = | 0.7
us (L) 0.8
| wi (L) | 0.3 |

Based on the above, we determine that the signal uy (L) is the reference signal.

2.3 Cohesive Fuzzy Sets in Solar Activities/Cycles

The planning a space mission requires a good prediction of favourable situations for
which a large amount of data related to the solar cycles are required. With the
help of estimation based on this data, the best time interval for the space mission
may accordingly be predicted. In other words, the time interval and the favourable
situations both conditions play a vital role in the success of a particular mission. The
most important real-life example is the satellite on Mars (Mangalyaan) which was
launched in the year 2013 and got planted in orbit of Mars in the year 2014. In that
case, the scientist considered all the possible situations and the particular time was
selected according to the data collected regarding the solar cycles. Thus, we can say
that the planning under the given set of uncertainties which may include the fuzziness

is an essential component behind the success of any mission.

In this section, we will consider the situations which can affect the solar activ-
ity /cycles and propose a brief outline of the methodology which could effectively help
in the planning of such missions related to the solar activities in the complex plane.

In reference to the above discussions, Yazdanbaksh et.al [104] proposed the concept
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of Adaptive Neuro Complex Fuzzy Inferential System (ANCFIS) which played a sig-
nificant role in the area of solar energy and also compared the results with the help
of two techniques viz. the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Ra-
dial Basis Function Networks (RBFNs). In this way the proposed method and the

obtained results were validated.

The idea behind implementing the cohesive fuzzy sets in the planning of the so-

lar activities is being given by Figure 2.3 for the better understanding of the concept.

CHFS APPLICATION IN SOLAR ACTIVITY

START

|

On application of Fuzzy Set,
the information is processed in
the form of amplitude only.

I

The additional component, i.e.,
the phase variable is added by
the application of Complex
Fuzzy Set.

v 1

Applied CHFS to deal with the
multi-favorable situations
(Both phase & amplitude
components are added).

Non-favorable
situations are
neglected.

END

Figure 2.3: Methodology for Solar Activities

Further, the important role of CHFS in the case of solar activity is explained
with the help of the following example.
Example 2. In every eleven years, the sun undergoes a period of activity called the
“solar maximum” followed by a period known as “solar minimum”. During the so-
lar maximum, large number of sunspots, solar flares and coronal mass ejections are
noticed, which can affect communications and weather on earth. During the solar

minimum, the less number of sunspots are observed. This implies that one way of
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tracking the solar activity is by observing the amplitude of sunspots. In this the
dark blemishes observed on the face of sun signifies the sunspots and the sites where
solar flares are observed to occur. As per the data available with Solar Science re-
source (NASA) [128], the data collected shows the monthly average of the number of

sunspots observed since year 1749 as shown in Figure 2.4.

Monthly Averaged Sunspot Numbers (V2.0)
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Figure 2.4: Monthly Average of Sunspot Observed [128§]

In the case of solar activity, the simple fuzzy set denoted by T is efficient in
collecting the data regarding the amplitude of sunspot whereas in case of complex
fuzzy set (CFS) one additional information regarding the phase of the sunspot is

obtained. This additional information helps to track the solar cycle with amplitude.

This helps us to understand that the notion of complex fuzzy set gives an added
advantage over fuzzy set. In the present work, the proposed notion of Cohesive fuzzy
set (CHFS) would certainly have another extra advantage over the complex fuzzy set.

It may be noted that when CHFS is used in place of CFS then in case of solar activity
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it encounters the information regarding the interval in which the maximum number
of sunspots are obtained. Since the implementation of CHF'S will be able to deal with
the favorable set of situations in the unit circle on complex plane, therefore, this will
not only neglect the useless data, but also every element in the favorable set will be

considered.

Now this is being explained in detail with the help of empirical values. Consider
an ordinary fuzzy set T' with high solar activity, which implies that the set T" consists
of large number of sunspots. However, the average number of sunspots observed
during the month is used to derive the grade of membership in a particular month.
Clearly, the grade of membership is totally dependent on average number of sunspots,
i.e., if the number of sunspots is 200, it signifies the large grade of membership whereas
2 (number of sunspots) is associated with the small grade of membership. If grade of
membership is 0.25 in set 7', then it signifies the average number of sunspots in that
particular month, say, 50, which can vary considerably if the solar cycle is considered.
Therefore, the grade of membership to be 0.25 may be treated as inefficient. For
example, it is been noted that the maximum number of sunspots in the months of
year 1805 and 1956 was 50 and barely quarter of the way up respectively in solar
cycle. Thus, to plan a space mission in these kind of years was not supposed to
be possible. This signifies that it requires long term planning to execute a mission

related to the space.

Ramot et al. [28] introduced the notion of complex fuzzy set which was able to
deal with the phase variable with the explanation of the use of phase in tracking the
cycle of solar activity. Further, they explained that the degree of membership can
accordingly be increased by using the phase element. Now, the degree of membership
depends on both the amplitude and phase variables. The limitation of using CFS is
that it only deals with the maximum value of membership of sunspots whereas the
nearby values are sometimes neglected which can also play an important role in the

tracking of the solar activity.

Therefore, in order to overcome such limitations, it would always be better and
advantageous to apply the proposed notion of Cohesive fuzzy set (CHFS) which deals
with the set of favorable values which not only counter the limitation of ordinary fuzzy

set but also provide an added feature over CFS. Hence, we can assert that CHFS plays
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a very important role in the planning of any solar activity. It is important to consider

following three conditions for achieving a favorable sets in planning a solar activity:

e In first condition, the amplitude will be in the range of [0.5, 1] and no restriction

will be applied on the phase element.

e Secondly, the phase element will be in range of [%, 37”} and no restriction is

applied on the amplitude.

e Thirdly, the amplitude and phase element will always lie in the range [0.5, 1]

and [%, 37”} respectively.
It may be noted that all the above conditions can always be better dealt with the
help of cohesive fuzzy sets. Now, the first condition is only applicable for the year
in which the average number of sunspots is in between 100 to 200, which will lead
to the grade of membership between [0.5, 1]. This will automatically increase the
grade of membership irrespective of the membership of phase likely in year 1990-1994
(according to the data given in Figure 2.4). Such condition will automatically neglect

the unfavorable data for any solar activity.

In second case, we will be restricting the phase parameter and will select the years
in which the average number of sunspots is very less (like in year 1995 - according to
Figure 2.4). In those years, due to the decrease in the average number of sunspots,
the degree of membership will also decrease. Therefore, in order to increase the
membership degree, it is advisable to increase the phase element. In this way, in
those years where there are less amplitude of sunspot, a space mission can also be

planned.

In third case, this condition relates to the set of most favorable situations in
which we will be restricting both amplitude and phase terms in the intervals in which
both are increasing. Hence, the degree of membership in this set will be maximum
for almost all the data. Thus, to plan a space mission in this interval of the years
will increase the chances of success. In this manner, all the nearby situations cannot
be neglected and each of the elements of the sets in all the above cases can be dealt

with the help of CHFS. The cases explained above can accordingly be worked out
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depending on the place of experiment. Therefore, the researchers must collect the data

related to the solar cycles according to the places and then plan any solar activity.

2.4 Advantages & Limitations of Proposed Method-
ology

The advantages of CHFS in contrast with the utilization of fuzzy sets and complex

fuzzy sets have been explained with the help of table given below:

Table 2.1: Comparative Advantages of Cohesive Fuzzy Sets with the Existing Exten-

sions
Degree of mem- | FS CFS HFS CHFS
bership
Amplitude N N N N
Phase N N
Advantages Degree of member- | Degree of member- | Degree of member- | Degree of member-

ship in case of am-

plitude is obtained

ship in case of am-
plitude and phase is

obtained.

ship in case of fa-
vorable situation is

obtained

ship in case of am-
plitude and phase is

obtained.

Advantages over

other

It is not able to

track the solar cycle

It contains both the
useful data as well
as the non wuse-
ful data which con-
sumes time.

Secondly, it also
misses some of the
useful data as only
the max value is

considered.

It contain  the
favourable data but

in range [0,1]

It only contains the
favorable values in
the set and also all
the values are con-

sidered.

e The advantage of CHFS is that it contains the properties of both Complex
Fuzzy Set (CFS) and Hesitant Fuzzy Set (HFS) which enhances the efficiency

of the proposed set in solving the problems more efficiently.

e The proposed notion of CHFS deals with the favorable set, i.e., in case of signals
a favorable set of Cosine Transformation is considered, but the Sine Transfor-

mation is rejected due to the limitation of the problem under consideration.
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This limitation of the proposed methodology may be resolved in future by in-

troducing some new concepts with some other examples.

e Similarly, in case of solar cycles, the different particular favorable cases have

been selected on the basis of the structure of the problem.

2.5 Conclusions

A new extension set coined as Cohesive fuzzy set (CHFS) has been successfully pro-
posed which has the dual benefits of complex fuzzy set with coverage of hesitant fuzzy
set. We have studied the various operations, several useful identities on the CHFS
and duly explained the process of selection of the best among the available multiple
favorable situations with the possibility of its range in the extended unit circle of the
complex plane. We have successfully established the relationship between the cohe-
sive fuzzy set and complex intuitionistic fuzzy set and also validated the obtained
results. The identification process of the reference signal among various transmitted
electromagnetic signals has been successfully accomplished by utilizing the feature
of cohesive fuzzy set and Fourier cosine transform/inverse Fourier cosine transform.
Also, the process of identifying maximum number of sunspots in a particular interval
under a solar activity has been discussed and explained with suitable reference. The
advantageous features of the proposed methodology have been tabulated for a better

readability and a quick glance.

The proposed notion of Cohesive fuzzy sets appears to be a promising one which
has the capability to address certain real life situations which can not be dealt with
complex fuzzy sets and other extensions of fuzzy sets. Various other properties of
CHF'S need to be explored to fully comprehend its potential. The concepts of ag-
gregation operators and complex hesitant fuzzy relations for CHFS can further be

worked out for solving various types of decision-making problems.
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Chapter 3

Complex Neutrosophic Matrix,

Operations & Properties

In this chapter, the novel notion of the complex neutrosophic matrix has been pro-
posed and studied in detail. Different algebraic operations and properties related to
the proposed matrix along with norm convergence have also been studied. In addition
to this, two novel neutrosophic similarity matrices have been successfully introduced
and validated. Various properties and results related to the positive definiteness of
the proposed matrices have been described. The systematic procedure and outline
of the proposed methodology utilizing the similarity measures matrices have been
detailed. A numerical example of medical diagnosis consisting of empirical data
available in literature has been illustrated for showing the implementation of the
proposed methodology. Further, the description of the complex fuzzy matrix and its
theoretic algebraic operations have been given. The new similarity measure for the
complex fuzzy matrices has been additionally proposed along with a numerical exam-
ple. Further, the problem of identification of the reference signal has been considered

in order to demonstrate the implementation of the proposed methodology.
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3.1 Notion of Complex Neutrosophic Matrix

We propose the formal definition of a new kind of a complex neutrosophic matrix
along with illustrative example, its complement, union and intersection for a better

understanding of the concept.

Definition 24 A CNM, S,,x, defined on a universe of discourse U, which can be
characterized by a truth membership function I's (y;;), an indeterminacy membership
function Is(yi;) and a falsity membership function g (y;;) that assign complex value

functions of the form,
Ly (yij) = Pg (yw) eias(yij)7
Is (yij) = Qs (yij) €75W),
and
Is (yij) = Rg (ylj) ei’ys(yij)‘

in Smxn for any y;;eU, where Ps,Qs, Rs € [0,1] s.t. 0 < Ps+ Qs + Rg < 3.
The values and the sum of I's, Is and wg may always lie within the unit circle in the

complex plane. Then, the complex neutrosophic fuzzy matriz S,,xn is represented as

Smxn = [FS (?ng) 7IS (yz]) , TS (yij)]mxn’yij ceU.

where |F5| S 1, |Is| S 17 |7TS| S 1&|FS+]S+7TS| S 3.

Example: The matrix representaion of complex neutrosophic set of order 3 x 1 is

given below:

Definition 25 (Complement of the CNM) The complement of the complex neutro-

sophic matriz can be written in the form of
(Simxn)” = [L's Wig)  Ls (%i) 75 Wit lmmsen = (1S Wig) , 15 (Wi5) s 75 (Yi)mxcn
= [(Ps (yij) €*%)" (Qs (yij) €75 ) (Rs (yi) €75%)) e
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where (Ps (yi;))° = Rs (yi;) and (e*s¥:)) = i?m=asis),
Similarly, (Rs (yi;))° = Ps (yi;) and (e”S(yiJ’))c = ei2m=75(yi5))
Finally, (Qs (yi))" =1 — Qs (yi;) and (esid) )C = ¢t@m=Bsij))

Example: Suppose S3x; be a CNM. Then, (S3x1)¢ will be given by

3,08 2 3% 1 i3 2 3 iIr 1 45%

(56 756‘%564) (5 Grais), e 4,§e4>

_ 3 ,i0.1 2,43 1 4T c__ 7 3 i 9 4Im
S3><1_ (106 756 471064) 7(S3><1) - (0 ( 1800)75 47106 *
1,i0.7 1 ,i%% 2 ;T 4 i(2n—-L 9 37 3 ;Ix

(56 y70€ 11 5€ 4) (56( 1800)’E6 1,5€ 14

Definition 26 (Union of the complex neutrosophic matriz) Consider two complex
neutrosophic matrices Sy = U8 (yij) s I8 (i) s 75 (Yij)mxn and S2,.,, =

1% (yis) s I3 (yij) 7% (Yij)|lmxn Tespectively. Then, the union of these two matrices will
be given by

St USEn = max{T's (yi;) . I% (yi7) }, min{I4 (i) . I3 (yi) } min{m§ (vi) , 7% (Yij) Himxn
where
max {T (vi;) . I'% (yi;) } = max {P§ (yi5) , P§ (yi;) pe' ™ {akui) ok i)}
min {7¢ (vi;) , I3 (i)} = min {Q% (vi;) , Q% (yi;) ye' ™™ (8L (yi)) B2 (i)}
and

: : i min {5 (yi),72 (yis
min {II5 (yi;) , 115 (yi;) } = min {Rg (yi;) . R (yi;) } {3 wia) 73 wid) }

Example: Consider two complex neutrosophic matrices

1607 13T 9 457 2 _ 1,i0.5 1,4 3 iT
S3><1 (106 :5647106 4) ’ S3><1 (56 756471_064)
1,07 1 5% 2 ;= 3,07 1 47 1 %
(56 T 47534) (5 y5€ 1, 5€1

3 ,i0.8 2 i3% 7 ;3¢

5€ 156 45106 4)

1 2 1405 14T 3 i~T

S3><1 US3><1 = (me g€, e 4)

1,407 1 % 2%

(5e 710647564)



Definition 27 (Intersection of the complex neutrosophic matriz) Consider two com-
plex neutrosophic matrices Sy, = s (Yij) s I8 (Yij) s T& (Yij)lmxn and S2,y, =

(T2 (yij) s 12 (Yij) , 7% (Yij)|mxn Tespectively. Then, the intersection of these two matri-
ces will be given by

S VSo s = Min {Ts (yi5) , T (yi;) }, max {15 (yi) . 15 (yi;) }, max {m§ (yij) 7% (Vi) Hmxn
where,
. . 4 min Oél . O¢2 L.
min {T% (y5;) , T% (i)} = min { P} (ys;) , P2 (y;j) ye' ™ 105 wia), S},

max {I (yi;) , I3 (i)} = max {Qk (yij) , Q% (ysy) yei ™2 195 wis) 55 (wii))
and

max {TT (y;;) , 113 (yij) } = max { R (v;j) , R (yij) } '™ 13 wia) 75 wid) }

Example: Consider two complex neutrosophic matrices

1 .40.2 3 3% 7 T
(10e v106471064)

1 _ 1 .40.7 1 4% 9 ;5% 2 . - -
S3x1 = (Ee T S5 = (%610'5,%614,%614)
1,i0.7 1 _i%™ 2 iT (§ 0.7 1 3% lzﬂ)
(56 ’10647564> 56,56 1,560

1 402 3 T 1 13)

(106 1106 1€ "

1 2 1,407 1,45 9 3¢

S3x1 NS5y = (56 72647164)

3.2 Algebraic Operations on Complex Neutrosophic
Matrix

In this section, we have discussed the theoretical operations of the complex neutrosophic
set. This section begins with the basic definition related to the concept and followed

by the theorem, multiplication and additive identity.

Definition 28 A be a mxn neutrosophic matriz. If all of its entries are < 0,0, 1 >,
then A is called zero complex neutrosophic matrices and denoted by 0. If all of its en-

tries are < 1e©,1e°,0 >, then A is called universal complex neutrosophic matriz and
denoted by J.
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Theorem 3 The matrix S,,xn, are a complex neutrosophic fuzzy algebra under the

component-wise addition and multiplication operations (+, ®) represented as:
For Sy = [Ug (Vi) » 15 (Wij) s s (Yi)lmxn and So = [T (yig) , 13 (Yig) & (Yig)lmxn 0

San7
S14Sy = (sup {S1, S2}) = (sup{T's, (1ij), T's, (i)}, sup {18 (viz) , 15 (i)} inf {m§ (yij) , 7 (uig)})

$1082 = (inf {S1,82}) = (inf {Ts, (i), s, (yi) }, inf {15 (yij) , 15 (i)} sup {ms (vig) s 78 (yi)})
where
S1=[Us (i) Is (¥is) » 75 (Yi)mxn
or
S1= [Psl (yij) €51 09) Qg (yig) €051 W) | Ry, (yij) €751 W) }

mxn

and

Sy = [Psg (yig) €252%9), Qg (i) €752 W3) | R, (y;5) €752 00) i|m><n
Proof: Every matrix in complex neutrosophic algebra should also satisfy the prop-
erties of fuzzy algebra. Therefore, S; + O = SiandS; © J = 51V S1€S,,xn, hence the
zero matrix O is the additive identity and the universal matrix J is the multiplica-
tive identity. Thus, the identity element relative to the operations (+, ®) exist. Fur-
ther, S; 4+ J = J and S; ©® O = O. This proves that universal bound holds. Similarly,
we can prove for Idempotence, Commutativity, Associative and Absorption proper-

ties. Now, in the case of Distributivity property, we have to prove
S1®(S24S;3) = (S1©82)+ (51 Ss)

where

Sl — |:PS:l (yzj) ZCVSl ym QSI ( ) ’LﬁSl y'L] RS ( ) ’ySl (ylj) ] ,

mxn

S0 = [Py () €509, Qs () ¢75209) | R, (3) €:) |

mxn

and
|:PSS ( ) sy (wis) st ( ) 1653 Yij) RS ( ) ’753 (vij) ]

Next, if Sy < Sy(or)Ssi.e.L's, (yi;) < s, (4i5) or Usy (yig) 5 L (yi5) < 13 (y35)
or I (yij) s m& (yij) > 7% (i) or w3 (y;;) then in both cases

mxn

inf {S1,sup {S2, S3}} = Siand sup{inf{S;, Sy},inf {5, S3}} = 5.
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In a similar manner,
S1+ (S2® 85) = (S1+ 52) ® (51 + S5)
Next, if S > Sy(or)Ss then in both cases
sup {{S,inf {S2, S3}}} = Siandinf {sup {S7, Sa},sup {Si,S3}} = Si.

Hence, all the properties are proved.

Definition 29 Multiplication of two complex neutrosophic matrices. Consider two

complez neutrosophic matrices given by S3., and Si. ., on the unit circle in complex

plane 1i.e.
(dl et ) ELQew?, CVL36163) (EL4€Z64, d5e’95, d6e“96)
1 e e . e e
SS><2 = (ble“’l,bge“”,bge“’?’) (b461047b56105, b6 6106)
(éleim’ ¢oe'P?, égeips) (é4eip4’ CselPs, 666”’6)

(pre™r, poe™®2, pse'es)

531 = (e, goe™, Gze')

Now the product of two matrices is given by

dll
1 2 _
S3><2' SZXI - d21

d31
where,
dy; = {sup {inf (dleiel,ﬁleml),inf (a4ei04, (jle’ﬂl)}, sup {inf (a2€i92,]§26ia2) ,inf (d5ei95, qVQei’BQ)},
inf {sup (Ezgew3 , pgeia3) ,sup(age’, q3ei’83)}}

Similarly, for doy & d3;.

Example: Let us consider two matrices given below

3,i0.8 2 iT 1 ;3¢ 1,304 1 432 1 5%
<5€ 75647564) (56 56 410 "
1 _ 1 407 14T 9 457 7 0.3 1 3™ 1 ;T
Sgxa = (106 7564’1064> (106 »10¢ 12 €|
1,407 1 %% 2 ;% 7 601 9 4T 1 437
(56 710647564> <106 1106 1 5¢ 1
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1 0.2 1,04 3 4T 1 5T\ 7 i%m

<sup{ﬁe ,5€ },sup{1—064,5e4},1nf{ﬁe T,

1 2 102 1.i0.3 1.4 1 4=
S3yo. S5y = (sup{l—oe ,5€ },sup{ge4 5"

)
1,402 1_i0.1 1 3% 1 3%
<sup{ﬁe y 5€ },sup{me 1,5€e'

Definition 30 The identity element for addition.

Consider two neutrosophic matrices Soyo and oo respectively, where 5.5 is an iden-

tity matrix. Then,

SQ><2 =

21 d22




3.3 Matrix Norm Convergence for Complex Neu-
trosophic Matrix

This section includes the norm convergence of the complex neutrosophic matrix, fol-

lowed by some basic properties, definitions and theorem.

Definition 31 [70] “Suppose F = RorC, V in linear space over F. If the real

vector function || || on V werify the properties given below:

e For arbitrary uw € V, ||ul]| > 0, and ||u]| =0 = u = 0.
e For arbitrary a € F,u € V get ||au|| = |a|.||ul],

e For arbitrary u, v € V, get ||u+ v|| < [|u|| + ||v]],
Then, ||ul| is called the vector norm of X in V.”

Definition 32 Consider || % || is a non-negative real function on E™", if

[|C1CoRTs (i) || < [|CLRT's (i) || [|CoRT s (i) ||

[[C1Co7s (yij) || < |[C17Ts (i) ||| CorTs (i) ||

where R (T's (vi;)) & 7 (Ts (yi5)) is the real and imaginary part of the CNM (Complex
neutrosophic matriz).
Similarly, for Is (yij) &ms (yij). Then, this known as || * || is CNFM(n,m) .

Definition 33 Consider || || is a non-negative real function on F™ ™, if
191528 (T (i) || < [[S1R (T (2i5)) [[-[[S2 B (T (35)) [[;
191957 (T (i) [| < (1997 (i) [[-[1S27T (35) [];

where R (I' (x;;)) & 7 (I (245)) is the real and imaginary part of the complex neutrosophic
matriz. Similarly, we can obtain for I (x;;) &m (z;;) functions.
Then, called || || is CNFM (n,m).
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Definition 34 Suppose (V,|| *||) is a n-dimensional normed linear space, p1,pa, . . .,

Dk, - - - 1S a vector sequence and ¢ is a fized vector of V, if
lim ||px — d]| = 0.
k—o0

Then, we can say that vector sequence convergence in the norm, ¢ is the limit of a
sequence, given as:
lim pp =0 or pp — 0.

k—o00

Definition 35 Suppose (V,|| *||) is a n-dimensional normed linear space, p1,pa, . . .,

Dics - - - (where Dy = (FZ (zi5), L) (w5) , ) (a:lj)) Ju=1,2, 3,) is a complex neutroso
-phic matriz sequence of V, p (k) {p (k) is of form (U% (xi;) , I¥ (i) , 7k (i)} con-

stitutes a fized complex neutrosophic function § = (s (z5), L5 (xi5) , 75 (xi5)) of V,

if

Tim lpr (T () — 67 (T (233)) || = 0

where R (T% (;7)) , R (Us (x;)) denotes the real & 7 (L% (x;5)) , 7 (U5 (;;)) denotes the
imaginary parts of the complex neutrosophic matriz respectively.
Similarly, for the case of indeterminacy and falsity components of the matrix can be

obtained.

3.3.1 Convergence of Power of Complex Neutrosophic Ma-

trix

Definition 36 Consider M (Uy (vij) , I (Yij) s 7o (i) € CNFM (n,n) power K
of M is defined as M*, among them M' = M, M* = M*=1 M.

Theorem 4 Consider M (Uns (vis) , In (yij) , 7 (vi;)) € CNEM (n,n), there exists
a positive integer a and K, such that Vk > K has M**te = MP*.

Proof:. Suppose Vk > 1,

M (FM (yij) Y (ym) s TM (yij))
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= [R(Tar (Yi5) s Ing (i) mar (Yig)) + 6 (7 (Car (Yig) s Ing (i) > Tr (Yig)) e
M* = [R(Tas (i) s It (ig) s (i) + i (7 (Car (Wig) 5 Tar (i) s 7ax (9i3))) )

R(Tos (yig) s Inr (Yig)  ma (0i)) =

Vi<py,pp—1 <n (B (Cr Wipy) > Inge Yipy ) s T Wiy ) A AR (Tar (Yis Pr—1) 5 Ing (Yin Pe—1) s T (Yirs Pre—1))))}

It is known that V&A are closed, therefore, the number of the elements of { M* k > 1}
will not be greater than (n*")". Then, there exists a positive integer a and K, s.t.
MF+e = M* thus k > K has

Mk+a — M(k—k)+k+a — Mk—kMk-‘ra — Mk—k;Mk: _ Mk:

3.4 Some New Similarity Measure Matrices

In this section of the current manuscript, the two similarity measure matrices are

proposed and the properties are satisfied with the help of theorems.

Definition 37 Suppose two complex neutrosophic matrices represented as M, x, =

Y; (%) e (w5), Py (5Uz'j)]mxn and Nyxn = [T (745) , In (%) , v (i) |lmxn- Then,
the proposed similarity measure matriz s given by,

1 m n
S (M, N )= |1=—3 > [|TnT} = TNTR| + [Tn IR — InI3; | + [Fur Yy — FiFiy ]

=1 =1 mxn

Theorem 5 Consider S (M) and S (N ) be two complex neutrosophic matrices. Then,

these matrices must satisfy the following conditions:
(i) 0 < S(M,N ) <1,
(ii)) S(M,N )=1<= M = N.
(ii) S(M,N )=S (N, M ).
(iv) If M C N Co,thenS(M,N )>S(M, o) and S (N, o) > S (M, o).
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Proof:

(i)

(i)

(i)

(iv)

It is already known that T3, and Ty are two truth membership functions of
complex neutrosophic matrices.

Then, its obvious that
Ty <1, |Ty| <1& |Ty —Tn| < 1.

This implies,
Tyl <1, TR < 1.

This means,
Ty Tx| <1 & |TnTh| < 1.

Similarly, we can obtain it for the neutrality and falsity functions.
= [Ty Ty — TnTy| < 1,|InI3 — InIi| < land |FyFR — FyFyy| < 1.

This proves that,

1 m n
0< 1= S S (| TTE = TwT |+ Il — Il | + |FarFE — i) < 1.

i=1 =1

Hence, 0 < S (M,N ) < 1.
If M = N, then

TvTy — TnTy| = |IuIx — Inly| = |FuFy — FnFy| = 0.
Thus, S(M,N) = 1.

Replacing M by N then, also we obtain the same relation it simply proves that
it satisfies the condition S(M,N) = S(N, M).

When M C N C o then,
Ty <Ty < Ty, Iy > Iy > lpand Fyy > Fy > F,.

= Ty — Tw| < |Tw — T,

= |TnTx — TnTy| < |TuT: — T,T%| -
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Similarly,
\In I3 — InIay| = |In 12 — II3 | and |Fy Fay — FnFif| > |FuFo — FFyy|.

Thus, S (M,N ) > S (M, o).
Similarly, we can obtain the second condition that is S (N, o) > S (M, o).

Hence, all the properties are satisfied.

Definition 38 Suppose two complexr neutrosophic matrices represented as M, x, =
(Tor (ig) s Ing (265) 5 For (Tig)]mxn and N, = [T (745) 5 In (ij) s FN (%5)lmxn- Then,
the proposed logarithmic similarity matrix is given by:

Sy (M,N )=

m n

1 1
— Z [logQZ — log, <3 (| T TR — TNTY| + [T I3 — INTiy| + |Fm FR — FNF]%4)>:|]
i=1 j=1

mXxn

Theorem 6 Consider S (M) andS (N ) be two complex neutrosophic matrices. Then,

these must also satisfy the conditions given in Theorem 5.

(i) It is already known that T, and Ty are two truth membership functions of

complex neutrosophic matrices. Then, its obvious that
T < 1,|Ty| <1& Ty —Tn| <1

This implies,
T3 <1, Ta < 1.

This means,
Ty Tx| <1 & |TnTh| < 1.

Similarly, it can be proved for the case of neutrality and falsity,
= |TnTx — TnTy| < 1[Il — InIiy| < land |FyFy — FyFy| < 1.
= log[|TuTy — TnTy| + |InI3 — InIy | + |FuFry — FnFyl|] < 1.

This proves that,

1 T 1
Ogmz;z:l[logzg_w%(?) (‘TMT]%—TNTﬁ‘+|IMIJ2V—INIJQ\/[‘+‘FMFJ%7—FNF]%/[D>:| <L
i=1 j=

Hence, 0 < S (M,N ) < 1.
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(i)

If M = N, then
v TR — TNTY| = |In IR — InT3| = |Fu FR — FnFiy| =0.
Thus, S (M,N ) =1.

Replacing M by N. Then, also the same function relations are obtained which simply
proves that it satisfies the condition S (M,N )= S (N, M ).

When M C N Co. Then, Tyy < Ty < To,Ing > In > I, and Fyy > Fy > F,,.
= [Tar — T| < |Tag — T4l -
= |TuTx — TnTy| < [TuTy — TiThy| -

Similarly,

\In I3 — INDyg| > | I IZ = 1.13;] and |Fy FR — FxFiyf| > |FuF?2 — FoFy| .
Next,

log (|TuTx — TnTx| + |Inl% — INI3g| + |FuFx — FnFyy|) >
log(|TnTy — ToTy| + |In12 — LIy + |FuFy — FoFyl).

Thus, S(M,N ) > S (M, o).
Similarly, we can obtain the second condition, that is, S (N, o) > S (M, o).

Hence, all the properties are satisfied.

3.5 Positive Definiteness of Similarity Measure Ma-

trices of CNMs

In this section, the positive definiteness of the similarity measure matrix has been

proved in detail with the help of theorems.

ness

Let us recall some basic definitions and theorems related to the positive definite-

of complex matrices and the proof of the following definitions are already present

in the literature. Therefore, detailed proof of the theorems will not be presented in

the given section.
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Definition 39 /58] “Suppose N be a complex hermitian matriz with n dimension.
Then, N is known as a positive semidefinite matriz if it satisfies the condition xxNx >
0, where xx denotes the conjugate of complexr matrix x.

Secondly, if v *x Nv = 0 = x = 0.Then, the matrix N will be known as strictly

positive definite.”

Theorem 7 [58] The eigenvalues obtained for the case of hermitian matriz N is

always real and positive.

Theorem 8 [58] Consider two hermitian positive semidefinite matrices N and M.

Then, the sum of these two matrices N + M is also positive semidefinite.

Definition 40 Suppose Ny, Ny, N3, ..., N,, denotes the Complex neutrosophic matri-
ces in the universe of U = uy, us, us, ...,u, and all the CNSs are hermitian matrices.

Then, the similarity measure is described by S and is represented as

Sll (N17N1> 512 (N17N2) Sln (vaNn)
S: 521 (NQaNl) 522 (N27N2) SQn <N27Nn)
Snl (Nle) S2n (NnaN2> Snn (NnyNn)

This is already known that Sij(N;, N;) = S;i(N;, N;) as all the matrices took are

hermitian matrices and Sy( N;, N;) = 1.

Theorem 9 The hermitian matrix S between CNMs is a non-singular matriz.

Proof Suppose S be the singular matrix. Then, the two columns must be linearly

independent. Then, let IV; and N; are linearly dependent. Therefore,
N j=DP- Nk

Thus,
Njq =p. Nygforallg =1, 2, ..., n.
If g=j or ¢ =k, then
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= p=1/N,;>1or p= Ny <1

Similarly, for ¢ = k. This results in the contradiction of the assumption. Hence, S is

a non-singular matrix.
Theorem 10 The similarity matriz S is a positive definite matriz.

Proof: Consider the similarity matrix proposed in definition 37. for square matrices

with dimensions n x n. Then, the similarity matrix S is defined as

1—&11 1—@12 1—0612
S _ 1—@21 1—0622 1—062n :
l—a, 11—y, ... 1—ay,

where

ajj = % DO AT (i) TR (i) = T (i) Ty ()| + [Iar (i) I (i) — I (0g) g (w5))|
=1 1=1

+ | Far (i) Fy (i) — F (i) Fip ()] }-

When M = N, then S(M,N) =1 and also S(M,N) =S(N, M).
Therefore, S = S*.

1 1—a2 ... 1—ap
g — l—a 1 ... 1—ao,
1—Oén1 1—0(211 Lo 1

According to theorem 7. given above, all the hermitian matrices have real and positive
roots, thus the similarity matrix S will also follow the same condition and have real and
positive roots, denoted by 01, 02, 03, ..., 6,. Let us assume that 6§ be an arbitrary eigenvalue

of similarity matrix S. According to Gerschgorin Theorem, we obtain

o-11< 3 (8).
j=1
JFi
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Then,

j =
J#i
Now, let us consider
Do) = D (5) =n&nbna> Y (Ok) > nbmn,
j=1 j= j=
j#i j#i

where the min and max of the eigenvalues are denoted by
Omin & Omaz (Omin < 1, Omar > 1) respectively. Therefore,

|9min - 1| =1- emin;

<(n—1)— > (aij);
j=1
j#i

n
Omin > 2+ Z (Ozij) —n.
j=1
J#i
No loss of generality is done by varying the values of ¢ & j. Then, consider n = 2 we get,

n n
Omin 22+ > (0j) —2=0min > > (aij) >0.

j=1 i=1

J#i J#i
Similarly, we obtain the values of 6,,;, by varying the values of n (n = 3, 4, ...). Thus,
it is concluded that 6,,;, > 0. Finally, we also conclude that all the eigenvalues of S are
non-negative. Hence, the similarity matrix is positive semidefinite.
From theorem 9, we have already proved that it is a nonsingular matrix. Therefore, the
determinant of the similarity matrix S will not be equal to 0. Thus, all eigenvalues are
strictly positive.
Hence, we can say that similarity matrix S is positive definite.

Similarly, we can prove it for the logarithmic similarity matrix given in definition 38.
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3.6 Application of the Similarity Measure Matri-

ces in Medical Diagnosis

In this section of the manuscript, we have explained the methodology of the application
using proposed measures.

Suppose we consider a set of n patients denoted as { Py, Py, Ps, ..., P, }, set of symptoms

is denoted by {s1, s2, ..., sx}and the number of diseases is denoted by {di, da, ds, ...,dp, }.
The procedure for the proposed methodology is explained below.

Methodology

Step 1: We construct a decision matrix between the patients, symptoms and diseases. The

matrices should be of the form

P |51 2 a3 4 ... g

Py | 5091 599 303 o4 ... sty

P, | nl 72 Xn3 Mnd o .- Xnk |
S1 S S Sy ... S

Step 2: Secondly, we construct a decision-making matrix based on symptoms and diseases

related to them. The matrix should be of the form

- o

S1 |1 }/13 e HAm
/ /

Sy |y sy sy ... oy,
/ / /

S3 |21 By 3 -
/

Sk |51 My g e %km_
dp  do ds ... dm,

Step 3: Then, the similarity matrix S; is applied to these two matrices.

Step 4: Then, the highest similarity matrix element is noted. Accordingly, the disease is
told to the patient.

Step 5: End of the methodology.
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3.7 Application of the Proposed Methodology

In this section, a case is considered and the methodology explained in the above section is
used to obtain the result. This example not only proves the validity of the methodology
but also increases the understanding of the concept.

Suppose three patients denoted by { P;, P», P3 } shows the symptoms { Temperature, Headache,
Stomach Pain, Cough, Chest Pain} and the set of diseases related to the given set is {Viral,
Malaria, Stomach Problem, Chest Problem}. Then, the application using the methodology

to detect the type of disease is given below.

Step 1: The following matrix is the relationship between patients and symptoms. In
this matrix, the numbers of patients are denoted by the number of rows and the num-
ber of columns denotes the number of symptoms that is Temperature, Headache, Stomach

pain, Cough, Chest Pain respectively.

D1
0.6e19%, 0.4¢1-2¢ 0.4e'-2% 0.4et- 10 0.3¢19%, 0.4e12% 0.6e19%, 0.5¢1-20 0.4e-0%, 0.3¢1-0%
0.2¢0-8¢ 0.3¢0:7¢ 0.4¢0-6% 0.3¢0-8¢ 0.2¢0-5¢
_ 0.7¢!3%,0.4e1-2%, 0.4e'-5%,0.6et-5 0.5e14%, 0.4e2%, 0.6e10%, 0.4¢1-0 0.3¢1-5%,0.4¢1-0%
B 0.5¢0-9% 0.3¢0-5% 0.4e!-0% 0.4¢0-6% ,0.5¢1-0

0.5€9:6% 0.5¢1-2%, 0.5¢!3%,0.4et-2% 0.4e':9%,0.4e1-0%, 0.4e9% 0.5¢1-17, 0.5¢t-27,0.2¢1-2%
0.5¢0-9% 0.4€0-4¢ 0.2¢0-6% 0.2¢1-2¢ 0.2¢14¢

Step 2: Next, the following matrix is the relation between the disease and symptoms. In
this case, the number of columns represents the diseases like Viral, Malaria, Stomach Prob-
lem, Chest Problem whereas the number of rows represents the symptoms - Temperature,
Headache, Stomach Pain, Cough, Chest Pain respectively.

Do

0 661'57:, 0A460’6i
0.5¢0:7¢

0.5e!4%, 0.5¢1-5 . 1
0.2¢0-61
0.5¢9:8%0.40-9% 0.5€9:9%,0.4¢1-0%
0.2¢1-0i 0.5¢0-87
< 0.4e12% 0.4et-31 > < 0.4et3% 0.4et4 >

0461.21"0461,4& 0661':“,0‘461"“
0.3e9-61 0.2¢1-5%

< 0‘060_257(?‘8716 > < 0. 60_35785716 >
(" ) (" )
( )| )

0.4e10% 0.4¢1-1% 0.5¢11% 0.2¢1-2%

- 0.4el-21 0.2¢1:37 0.5el:4? 0.3e!:5%¢
0.3et4% 0.4et5% 0.4e'5% 0.5¢0:6% 0.5€9:6%,0.4¢0:7% 0.3¢9:7%,0.4¢0-8%
0‘560.6i 043&0'7i 0_360.8i 0_460.9i
0.4e9-8%0.4¢0-9% 0.6e'0%,0.4¢1-2% 0.4e'2% 0.4¢14% 0.4e'4%,0.3¢0-6%
0.5¢1-0% 0.3e1-4¢ 0.5¢0-6¢ 0.2¢0-8¢

Step 3: Applying similarity measure matrix given in definition 37 among D; and Do

matrices, we get

P 10,9217 0.9125 0.9048 0.9046
Sq[D1, D3] = P, | 0.8930 0.8878 0.8863 0.8978
P53 10.9016 0.8919 0.8965 0.9010
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|4 M SpP C

where Py, P> & Pj3 represents the number of patients and V, M, S P & C denotes Viral
fever, Malaria, Stomach problem and chest pain respectively.
Step 4: Applying similarity measure matrix given in definition 38 among D; and Ds

matrices, we get

P |0.7876 0.7557 0.7424 0.7307
Sa[D1, D] = P, | 0.6975 0.6839 0.6801 0.7107
P53 10.7216 0.6946 0.7070 0.7200

|4 M SP C

Step 5: Now results obtained using both the proposed similarities state that

Patients Disease
P Viral Fever
Py Chest Pain
Ps Viral Fever

The concluded results are also written in bold in the above two similarity matrices to show
the difference between the other values and results.

Step 6: Finally, this ends the methodology.

3.8 Comparative Analysis

In literature, many researchers have worked on similarity measures and found solutions
to various practical life problems related to the fields like medicine and decision-making
problems. In the present manuscript, the concept of similarity measure is studied in detail
and two new similarity measure matrices are proposed. This similarity measure is studied in
detail with the help of a similarity matrix i.e., the similarity measures are basically in matrix
form and applied to the two matrices. The positive definiteness of the proposed similarity
matrices is also defined and proved with the help of theorem. This positive definiteness of

matrix plays a significant role in its application.

Later, in the work, the application of the proposed measure is described in the field of
medical science where it plays a vital role in the identification of diseases with similar symp-
toms and later, the results are verified with the results already obtained in the literature
by Mondal et al. [63]
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The comparison values have been tabulated below which contains the results of our
proposed similarity measures and other existing measures. On the basis of these values,
we observe that the proposed similarity measure matrices are effective in resolving the

difficulties related to medical diagnosis.

Viral Fever Viral Fever Viral Fever Viral Fever Viral Fever
(0.9303) (0.8623) (0.8595) (0.9217) (0.7876)

Chest Prob. Chest Prob. Chest Prob. Chest Prob.  Chest Prob.
(0.8651) (0.8307) (0.8502) (0.8978) (0.7107)

Viral Fever Viral Fever Viral Fever Viral Fever Viral Fever
(0.9267) (0.9005) (0.8708) (0.9016) (0.7216)

where

CNCSM - The complex neutrosophic cosine similarity measure,
CNDSM - The complex neutrosophic dice similarity measure,
CNJSM - Complex neutrosophic Jaccard similarity measure,
PM; - Proposed Measure 1,

PDMs - Proposed Measure 2.

3.9 Complex Fuzzy Matrix with Algebraic Opera-

tions

In this section, we have extended the concept of the complex fuzzy matrix with its examples.
In addition to this, various set-theoretic operations viz. addition, multiplication, union and

intersection on the CFM have described to increase the understanding of the basics.

Definition 41 A complex fuzzy matriz Chyxn, defined on a universe of discourse U, is
characterized by a membership function pc (x;;) that assigns any element x;; € U. All the
values of function pc (xi;) will lie in the unit disk of complex plane and will be of the form
ro (zij) €40 @i) where j = /—1, ro (vi;) & wo (i) are both real-valued functions sub-
ject to ra (z45) € [0, 1].
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Then, CFM (Cyxn) can be represented as

Crxn = {(ij, pe (Tif)un |5 € UL

Example: Suppose that we have an example of a medical situation in which there is a
set of three patients, say, B = (b1, ba, b3), who are suffering from diseases having similar
symptoms. Then, the possibility of a patient suffering from the set of particular disease

D = (di, ds, d3), can be represented through the following matrix, i.e.,

dy do ds

by | fue9 fr2€'9? fize’9s
by | far€"9?"  fope'9??  faze'o2s

b3 | fa1€'931  fzpe'32  faze’oss

where ( €91, frgeirz, f336i933) represents the degree of membership function for

the patients in cases of a particular disease.

Theoretic Algebraic Operations on Complex Fuzzy Matrices
Let us consider two complex fuzzy matrices whose entries are of the form r¢ () e/¢ (@35)

and given by

hipe'

hi2e™ Jipet e Jygetoz
C(21><2 = [ i03 ; ] & C22><2 = [ ] (3.9.1)

hate hagei¥t Jo1eis  Jygeto

e Addition Operation of Two Complex Fuzzy Matrices

The sum of Ci, ., & C3,, is defined and represented as follows:

fll f12
C2l><2 + 022><2 = [ ;

for f22

where

i 0
fll = max hlle 0 J11€ = max {h117 Jll}ez maz{ 17011};

{
{
{
{

faz = max { hoge'® | Jope'™

= max {ho, Jlg}ei max{e?’”};

16 ] [
thez 3 ngem3 = max {hgl, ng}ez max{ 3,a3};

N~ Y~ Y~ =

= max {th, Jgg}ei max{94,a4}‘



Example: In view of the particular examples, the sum of given two matrices is

illustrated as follows:

L0603 0.1€07 o |0.5e0T0.4¢703
220,860 (.7¢102

Then

O.6€i0'3 0.46i0'7

1 2
Coxa + Oz = [O.Semﬁ 0.7¢i0-4

Commutativity and Associativity of Addition for CFMS:

Theorem 11 Suppose that there are three CEMSs, say, P, Q and R, then the oper-

ation of addition is commutative and associative.

(i) P+Q=Q+ P. (Commutative law)
(ii)) (P+Q)+ R=P+ (Q+ R). (Associative law)

Proof: Consider the following three complex fuzzy matrices:

P ar1et  ajge? 0 bi1e' M bgete? ¢ R g1 giae"?
= . . 9 = . . == 3 . .
ag1e?s  agoet bo1€'*3  boge'4 g21€"  goge't
Suppose that
Tl T12
P+Q= =Y
T21 T22

where

T11 = max {auewl,buew‘l} = rnax{al17 bll}ez ma:c{&l,al};
T19 = mMax {auelez7 bl2eza2} — max {a127 blg}el max{@z,az};

= 63 iag | i maz{03,a3}.
o1 = IMax q ag1€ ,6216 = Imax {azl, bgl}e 5

To9 = Max {aggew“, bggem‘l} = max {ago, bos}e’ maz{0a,0a}

Similarly, @ + P =Y. Hence, P+ Q =Q + P.

Also, in case of associativity,

(P+Q)+R=Y+R=

Ti1 T2 gr1e  gipe? ki1 k1o
T i iva | =K
To1 T2 go1€"7%  goge't ko1 koo
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where

y . 9

kll = max {xllmgllel 1} = max {a117 blla 911}61 m x{ 1oL, 1},
= maxisx 6‘) —maxia b ) ax{02,a2,y

k;12 { 12, 912 ! 2} { 12, 127912}61 m { %2 2},

‘ _— 2 : 0 b} .

k?21 = Imax {2721, 92162 3} max {a21, b 1,921}GZ “Laz{ 3,003 ’7’3]’7

koo = max {21, gooe™* } = max {azo, boa, goo Je! M ra 1},

Next,
bi1e™®  bygete? griet groe™? Y11 Y12
R = = g Y/‘
Q+ Do i03  hooelita * i3 iv4 ’
21€ 22€ g21€ ga2€ Y21 Y22
where
e % 1 mazx{ay, .
y11 = max {b11€’*", g11€’" } = max {b11, gu1}e {erm},
e i i mazx{asg, .
Y12 = Mmax {b12€ 2,9126 72} = Imax {512, 912}6 {az 72}7
T 7 1 mazr{as, .
yo1 = max {by1€'*?, g21"7*} = max {ba1, ga1}e {asa},
{7 % © max{oa,
Yoo = max { e, gore} = max {baa, gao}e! Mer{oa},
Further,

P+(Q+R)=P+Y' = =1

» 0

a1 aq9ef2 N yii yiz| |l he
i0 i0 o

az e’ agee’* Y21 Yoo lo1 22

0 i maxz{61,a1, .
l11 = max {aue Ly p = max {a1, b, gi1}e {Branm},

where

16
l12 = max {CL12€Z 2, Y12

j
)
i3 }
)

i max{02,a2, .
max {ai2, bi2,g12}e {02,02,72},

i 0 3}
lo1 = max {azle L Y21 max {ag1, bay, go1 ye' meTi0sas3},

l2g = max {a22€i047 Yoo t = max {agy, by, goo}e’ M {Oru),
Hence, (P+ Q)+ R=P+ (Q+R).

e Multiplication Operation of Two Complex Fuzzy Matrices
Suppose Ci,, & C2, ., given by equation 3.9.1 are two CFMs, then their product is

defined as follows:

di1 dio
C2l><2c22><2 = [ ] )

do1  da2

where

dip = {max {min {hnewl7 Jie }7 min {hl?eiGQ’ Jmemg}}} ;
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dig = {maX {min {h116i917 J1ge'? }7 min {hweiaz’ Tz } }} ;
da1 = {maX {min {h216i93, Jue® }’ min {h226w4’ Tt }}} ;

d22 = {max {min {h216i93, JlgeiOQ }, min {h22€i94, J22€m4 } }} N
Example: The product of given two matrices is obtained as follows:

0.6€i0'3 0.1€i0'7-

0.2¢1 0.5¢"0]

Coyoy = . ,
o [ 0.8¢106 0.7¢702

0.5€i0'1 O.4€i0'3
& C’22><2 = [

Then

1 2 _
CY2><202><2 -

_0.561‘0.6 0‘461’0.3]

0.5¢0-4  ().5¢0-2

e Union of Two Complex Fuzzy Matrices
Now again, taking the value of C3, , & O3, , from equation 3.9.1 and then, the union

of these matrices is given as

di1 dia
C’21><2U022><2:[v . ]?
21 da2

where

di1 = {max{hn, Jip pet min{0n.0n}

dlZ

max {h21’ le}ei min {03,03}

}:
{max{hlg, Jyo et min {020z} };
b

dy = {
dog = {max {h11, Jn}eimin{el’o‘l} }

Example: The union of given two matrices is obtained as follows:

C21><2 = [

0.6e3  0.1¢707 5 |0.5e0T0.4¢703
0.2¢101  0.5¢104 22 08606 07602

Then

0.6t 0.4¢03
C’21><2 U 022><2 = [

0.8¢"010.7¢02
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Intersection of Two Complex Fuzzy Matrices
Similarly, suppose that C3., & C3, 5 are two CFMs, then the intersection of these

matrices is defined as follows:

dqq 512
Cl ﬂ 02 - M M ,
2X2 2X2 [d21 dgg]

where

Q¢

1= {min{hn, Jll}eimax{Gl,al}

Q.

b
= {min (haa, Jip}elmeieaea) 1
b

Q.

21 = {min {hat, Jog peimax{baoa)

Cz22 = {min {hlla Jll}eimax{Gl,al} }

Example: The intersection of given two matrices is obtained as follows:

L |0.6e3 0,107 o |0.5e0T0.4¢703
P2 02601 0.5ei04] T TP 0.86i06 0.7¢102
Then

0.5¢03  (.1¢0-7
C2l><2 N 022><2 - [

0_261'0.6 0_561'0.4

Commutativity, Associativity and Distributivity Properties of CFMs:

Theorem 12 Suppose that there are three CFMSs, say, P, QQ and R, then the union

operation of CFMs is commutative and associative and distributive over intersection.

(i) PUQ=QUP (Commutative law)
(ii)) PU(QUR)=(PUQ)UR (Associative law)

(iii) PU(QNR)=(PUQ)N(PUR) (Distributive law)
Proof: Consider the following three complex fuzzy matrices:

P= & R=

a116i91 a126i92 ] Q [ blleioq blzeiocg
5 =

03 04 b21 eiag b22 eia4

g1 gipe? ]

az1e'”  agoe’ go1€"7%  goge't

7



Commutative Property:

PU Q _ max (au, b11)6

max (agl, b21)€

Associative Property:

¢min (61,a1)

i min (63,a3)

max (CL12, b12)€i min (02,a2)

max (a227 bzg)ei min (04,04)

é é
QuR) =" ?l=(PUQUR
€21 €22
where
é11 = max (ay1, bi1, gip)e’ ™ @rer 1),

é12 = mMaX (alz,
é21 — maXx (agl,
é22 = IMaX ((LQQ,

Distributive Property:

u(@
where
Q=
and
é11 = min ( b
é12
a1

2o = min (b2, gao)e

min (b2, gi2)e

(
(

=min ( by1, ga1)e ;
(

b12, g12)ezmm (62,02, 'yz);

bor, 921)61 min (03,03, ’Ys);

baa, 922)ei min (04,04, 74)'

NR)=PUQ;
€1 €1 )
T T ’
€21 €22

11, gip)etmax(an ),
tmax (ag2, 72)

imax (as, 73).

tmax (a4, 74)

Next, remaining part of the equation is calculated that is

PUQ =

where
P11 =

1312 =

1322 -

[1311 1512]_
Da1 D22

01, 5 .
ayjre”’t Ueqr;
T
aiz2e”? U e12;
03, 3 .
az1€”? U €a1;

as2 ey é22 .
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Similarly, we will obtain the right-hand side of the identity and after calculation, it
is observed that the desired values are obtained. In this manner, the distributive
property is satisfied.

Now, the above three identities are being illustrated with the help of numerical ex-
amples for better understanding of the concept.

Suppose the matrices are of following form:

P:

06€i0.3 02€i0.5 026i0.4 096i0.2 0661'0.1 0767;0‘2

0.5¢07 03¢0 ] [ 0.7¢01  0.5¢03 ] [ 0.4¢73  0.3¢705 ]

Commutative law:

0.7¢0-1  (.5¢10-1

0.6€i0'3 0.9€i0'2

PUQ_[ ]_QUP.

Associative law:

0.7¢01 0.5¢01]  [0.4e03 0.3¢05] 0.7 0.5¢701]
(PUQ)UR = , U . = . -
0.6€03  0.9¢0-2 0.6¢0-1  (.7¢70-2 0.6¢0-1  (.9¢70-2

» ne 0.7¢00 0.5¢01]  [0.4eP3 0.3¢0%]  [0.7¢01 0.5
PODUR= 1 603 0.9002| ¥ [6eivt 0.7¢02| ~ 0,661 0.9602]

PU(QUR) =(PUQ)UR.

Distributive law:

PU@NE) = 0.6e93  (0.2¢705 0.2e04  0.7¢10-2 0.6e03 .71

0.5 07 0.3ei0-1] [0.4&03 0.3ei0-5] [0.5&03 0.3ei0-1]

PUQ)N(PUR) = , , , . . .
( )N ) 0.6€03  (.9¢10-2 0.6e01  (.7¢10-2 0.6€03  (.7¢10-2

0.7¢i0-1 0.5ei0~1] [0.5&03 0.3ei0~1] [0.5&03 0.3ei0~1]

3.10 Similarity Measure for Complex Fuzzy Ma-

trix

In this section, we have proposed a new similarity measure for the complex fuzzy matrix

and studied its computational feature with the help of a suitable numerical example. In

literature, it may be noted that the following necessary conditions for the proposed similarity

measure must be satisfied:
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Definition 42 A real valued mapping: S:Px Q — [0, 1] is known as a similarity measure
between two complex fuzzy matrices P = pup (xi;) = rp (zi) €<P@3) and Q = pg (zi;) =

rq (xij) e wQ(i) if § satisfies the following azioms:

(i) S(P,Q)=S(Q,P);
(ii) S(P,Q)=1+= (P,Q) = (Q,P);

(iii) S(P,Q) =0 <= z;; €U,
where rp (xi5) =1, rg(zi5) =0 orrp(xi) =0, 71g(xi) =1 and

wp (:L'w) = 27T, wQ (l'w> =0 or wp (xw) = 0, wQ (xzj) =27

(iv) For three modified complex fuzzy matrices P, Q and R subject to P C Q C R,

then, S(P,Q) < S(P,R) or 8§ (P,Q) < 5 (R,Q).

Further, we propose a new similarity measure for the complex fuzzy matrices which is sup-
posed to be very helpful in obtaining the solutions to various decision making problems as

follows:

Definition 43 Suppose there are two complex fuzzy matrices P and Q) on the universe of
discourse U. The complex form of P and Q can be written as follows: P = pp (xi;) =
rp (w55) 9P @5) Q = g (w45) = rg (xi;) e2@3) . The similarity measure of two CFMs P
and Q, denoted by S(P, Q), is defined as follows:

> ; (3.10.1)

SPQ) =5 >3 ('P“Q [ '(pq)+ S

mn £ |P U Q| 27
where
ST(P,Q)=1->> max(rp (zij) — ro (zi) |);
j=1 i=1

59(P,Q) —27T—ZZmax lwp (i) — wg (xi5) |) -

7j=114i=1

Theorem 13 The proposed similarity measure S’(P, Q) given by equation (3.10.1) is a

valid similarity measure.
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Proof: In view of the axioms listed in Definition 4.1 and also to validate the proposed

similarity measure, we prove the axioms one by one below:

(i) [PNQ[=]@NP| & |[PUQ|=[QUP|

S(P,Q)=1-) "> max(|rp (zy) —rq (i) |).

j=1 i=1

=1- ZZmax(h“Q (zij) —rp (z3)]) = S7(Q, P).

j=1i=1

Similarly, 5¢(P, Q) = S¥(Q, P).

— S(P,Q)=5(Q,P).

(ii) Let P = Q. Then,

PNQl_
PUQ)|
S(P,Q)=1-=) > max(|rp (zi;) — rp (xi)]) = 1.
j=1 i=1
SUPQ)=1-> > max (Jwp (xi) — wp (z;5) |) = 2.
j=1 i=1

Substituting all the values in the proposed similarity measure. Then,

S(P,Q)=1.
(i) Substitute rp (zi) =1, 7rq (zij) =0 and wp (z;5) = 27, wg (x) = 0. Then,
S"(P,Q) = 5“(P,Q) = 0.
— S(P,Q)=0.

(iv) When P C Q C R.
Then, rp (xi;) < 1 (xi) < rr(xi;) and wp (zi5) < wg (T45) < wr (x45) -

= max (|rp (zi5) — rr (2i;) |) < max (|rp (zi5) —rq (i) |) -

= max (lwp (2ij) — wr (745) |) < max (jwp (zij) — wgq (wij) |) -

— S(P,Q) < S(P,R).
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Hence, all the axioms for similarity measure is satisfied.

Example: Suppose P and @) be two complex fuzzy matrices defined as :

0.6¢10-3m 0'161'0.771 o [O‘5ei0.17r 0.461‘0.31
2x2 —

Pyyo = . . . .
0'2620.17r 0.5610.471’ 0.8610'6ﬂ- 0_7610.271'

Then

2 A
[PNQ) 54(P,Q)
S(P.Q) = 2><2><QZZ<]PUQ|[ PO+ 2

J=11i=1

iwp(zij)

2 2 o
1 |rp(zi;) exp Aro(wij) expe@i) | /. A

8 ' S"(P(xij), Q(wij)) + S (P(x45), Q(wij
8 ;; <"I“P($ )eszwp(:mg UTQ($’Lj)eXp’LUJQ([L‘Z’j) | ( (P(xij), Q(w45)) (P(zi5) Q(g;]))
1 rp(en) exp™r 1) Arg () exp™ei | o .

~ 8 J ] ST(P ) + SY(P , +
8{|TP(‘T11)€XPZ°JP($11)UTQ(xn)expWQ(fﬁll)‘ ( (P(711), @(711)) (P(211) Q(IIJH))

[rp(12) expr(12) (g (215) exp™e™2) | /- .
i 1 ST P ) + Sw P R +
’Tp(:z:lz) eXprP($12) UT‘Q (3712) expsz(xm) ’ ( ( ($12) Q(mm)) ( (:L'lg) Q(,’I;lz))

[P (221) exp™?(720) Nrg (wa1) exp™e @21 |/, .
J i ST(P ’ ij)) + SY(P , +
|T‘p(x21) expzwp(le) UTQ(Jle) expsz(le) | ( ( (xQI) Q(x ])) ( (3321) Q(w21)>

’7"P($22) expiwp(:mz) mTQ <x22) expin(:pgz) ’
|7 p(222) exp@P(@22) Urg (z92) expie(®22) |

(57 (P(22), Q(rm)) + 5°(P(22), Q(rn) ) }

Thus, the value of the proposed similarity measure has been computed to be

S(P,Q) = 0.3647

3.11 Application of Complex Fuzzy Matrix in the
Identification of the Signal

In this segment, we have used the concept of the complex fuzzy matrix in detecting the
appropriate signal among the various signals transmitted by the transmitter. The method-

ology used to detect the reference signal is explained below and the applicability of the
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following methodology is described with the help of an example.

Methodology

Stepl. Suppose p (S1(z), S2(x), S3(x),..., Sp(x)) number of signals are sent by the
transmitter, then each of the p signals are sampled @) times by the receiver. Then, the
appropriate signal S; () (I varies from 1 to p) is selected with the help of reference signal
R, whose value is already known. Let both the signals S; (z) and R are considered @) times.
The absolute value of each j-th signal i.e., S; (u) (1 <u < p) in terms of discrete complex
fuzzy transform is given by z;g = 5J~756i51»5, (6j,5,05s e R&ejs>1V S (1 <8 <p)),

where z; g is the complex Fourier coefficients of signals S; (u).

Step 2. Now the signals are expressed in form of matrix and is given by Epxn =
[15; (u)l]gxp» Where signals are denoted by the column of the matrix and @ samples of

each signal is considered.

1SL (D] 1S2(@Q)] ... 1S, (1)
L | 15@1 1S:@1 ... 15,
[S1(@)] 152(Q)] - 1S, (Q)]]
Step 3. Similarly, the second matrix is given by F,x, = [ S (u)H o
ST 1S5(@)1 ... |85 ()] ]
o | 1S IS5 @1 - S,
ST 185@)] - S, (@)]]

Step 4. Next, the product of the above two matrices (F & F') is obtained.
Step 5. Now, the complex fuzzy max-min decision matrix is obtained.

Step 6. Finally, the optimal fuzzy set is obtained.

In order to have a summarized overall view of the proposed methodology, we present the

procedural steps in the form of the following Figure 3.1 given below:

We utilize the notion of complex fuzzy matrix and the proposed methodology given
above in finding the reference signals among the five signals obtained by the receiver. As-

sume that there is a set of five signals S = {11, 12,3, 14,15} and every signal is sampled
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P number of
signals S, are
transmitted

A\ 4
Signals obtained are expressed in form
of two matrix named E and F, where
number of column in matrix denotes
the number of sample taken for each
signal.

A 4

Then, the product of taken two
matrices are obtained and followed by
max-min decision matrix

Finally, optima
results are
obtained

Figure 3.1: Procedural Steps of Proposed Methodology

five times each. Let R denotes the reference signal from which each of the signals is ac-
cordingly compared to obtain the high degree of resemblance between the signal and the

reference signal.

\

\

Ak

transmitted wave '

Figure 3.2: Signal Transfer from Transmitter to Receiver

According to the step 2, the matrix F and second matrix F' are obtained. Both the obtained
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matrices are given below.

0.1 02 05 0.1 0.2 0.2 01 03 01 0.1
05 04 04 0.1 02 04 02 03 0.2 03
E=104 02 02 02 03] & F=1]04 02 02 02 0.2
02 03 03 02 04 0.1 05 03 05 04
01 02 01 0.1 0.3 02 01 02 04 0.3

Next, according to step 4 the following matrix is obtained:

0.35 0.22 0.26 0.28 0.27
0.47 0.28 0.42 0.34 0.35
ExF=1032 025 0.34 0.34 0.31
0.38 0.28 0.35 04 0.37
021 0.15 0.2 0.24 0.22

Now, as per given in step 5, the max-min of matrices is calculated as follows:

MmE x F] = [Dg] = (di1)Vi € {1,2,3,4,5}

subject to
diy = min {uy, ug1, u31, 41, Us1};
where
Ul = 0.35,UQ1 = 0.47, usl = 0.32, Ug1 = 0.38, us1 = 0.21.
Then,
d11 = min {0.35,0.47, 0.32, 0.38, 0.21} = 0.21.
Similarly,

d2; = min {0.22,0.28, 0.25, 0.28, 0.15} = 0.15.
d3; = min {0.26,0.42, 0.34, 0.35, 0.2} = 0.2.
ds1 = min {0.28,0.34, 0.34, 0.4, 0.24} = 0.24.
ds; = min {0.27,0.35, 0.31, 0.37, 0.22} = 0.22.

Finally, we obtain the min-max decision matrix which is given below:

diy = 0.21
dy = 0.15
mM (E x F) = | d3; =0.2
dyy = 0.24
ds1 = 0.22
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In the end, the optimum fuzzy set is obtained [S]

0.21 0.15 0.2 0.24 0.22
optMm(ExF)(a):{ — }

0417042’0437C¥47a5
Hence, a4 is the signal.
In this manner, the reference signal is identified among the various number of signals ob-

tained by the receiver. This is also validates the proposed methodology.

3.12 Conclusions

In the current study, a novel concept of complex neutrosophic matrices is presented and
explained with the help of a few algebraic operations and properties, which will be of great
help for the researchers to understand the basics of the concept. The norm and power
convergence of the complex neutrosophic matrix have been discussed thoroughly. Further,
new similarity measures have been proposed and the property of positive definiteness for the
proposed measures has been studied. Later, applicability of the proposed theory has been
presented in case of medical diagnosis for better clarity. Various set-theoretic properties
of the fundamental operations related to commutativity, associativity and distributivity in
case of complex fuzzy matrix have been established. Some suitable numerical examples
to illustrate these computations have also been included. A new similarity measure for
the complex fuzzy matrix has been proposed with the proof of its validity. The proposed
methodology has been duly implemented in the process of identification of reference signal

from a set of signals transmitted from the transmitter.
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Chapter 4

Information Measures of

Neutrosophic Sets

In this chapter, we have proposed some new exponential similarity measures with proof of
their validity and also presented several counter-intuitive cases to show the efficacy of the
exponential measures. In order to show the applicability of the exponential similarity mea-
sures, we have presented two illustrative examples - one related to the classification problem
(pattern recognition) and other related to the evaluation problem of decision-making . In add
ition to this, some important comparative remarks have been enumerated. We have also
proposed entropy for the single valued neutrosophic information measure. The ‘useful’
divergence of neutrosophic information measure is described. The concept of hybrid ambi-
guity ‘useful’ measure is also defined. The ‘useful’ neutrosophic information improvement

measure of neutrosophic measure is explained.

4.1 Similarity Measure of Neutrosophic Sets

Now, the new similarity measures under neutrosophic environment have been presented
below:

Let U be the universe of discourse.

Definition 44 Consider P = {(Tp (ui), Ip (uwi), Fp (u;))|uieU} and Q =
{(Tg (wi), Ig (wi), Fg (u;))|ueU, i =1,2,...,n} be two valued neutrosophic sets, then the
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similarity measure SMy (P, Q) between P and Q is defined as:

n

SM, (P, Q) = %Z (SMT (us) x SMI (u5) x SMF (u7)) :

=1
SM ( sz (SM () x SM{ (ui) x SM{ (ui)) ;
Uy ! Uy r Us
i=1

U; Iy, F (y,
SMY (P, Q) = sz ( l ZHSMzS( i) + 5M; z)>;

where

SMT (ug) = eI~ Tatw)

SMF (ug) = o~ 11p(ui)—~Ig(ui)|
SMiF (u;) = e_‘FP(ui)_FQ(ui)L
Theorem 14 The measure proposed in Definition 44 is a valid similarity measure.

Proof: For this, we need toshow that the similarity measure SM;(P,(Q) between two
neutrosophic sets P and () holds the conditions as defined in Definition 44.

e We know that Tp (u;),Tg (u;) < 1, which implies |Tp (u;) — T (u;)] < 1. This can
also be written as —1 < |Tp (u;) — Tg (u;)] < 0.
Hence,
0 < e |TP)=-Tow)| <1 = ¢ < SMF (u;) < 1. Also 0 < SMF (w;), SMF (u;) < 1.
Therefore, from equation given in 44 we conclude that 0 < SM; (P, Q) < 1.

e We know that SMI (u;) =1, SM] (w;) =1 and SM} (u;) = 1 if and only if P = Q,
so we have SM; (P,Q) =1<= P = Q.

o As SMT (u;), SM] (u;), SM} (u;) are symmetric for neutrosophic sets. Hence, we
observe that SM; (P,Q) = SM; (Q, P).
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o If PC Q C O, then for u; € U we have,
0<Tp (u;) <Tg(u;) < To (u;) < 1;

0> Ip(w) > Ig (u;) > Io (us) > 1;

and

0< Fp (uz) < Iy (uz) < Fp (’U,Z) <1.

It means that
= |Tp (ui) = To ()| < min{|Tp (u;) — To (ui)l, | Tq (uwi) - To (ui)]};
— Tp (wi) = I (u;)| < min{|Tp (ui) = Iq (u)] ;I () — To (uq)|};
and
— |Fp (u;) — Fg (u;)| < min {|Fp (u;) — Fo (wi)| ,|Fg (ui) = Fo (ui)]};
This implies that
SM (P,Q) < min {SM]" (P,Q),SM]" (Q,0)};

SM! (P,Q) <min {SM] (P,Q),SM] (Q,0)};

and

SM} (P,Q) < min {SM] (P,Q),SMF (Q,0)}.

Thus, based on this, equation in definition 44 becomes SM; (P, Q) < SM; (P, Q)
and SM; (P,Q) < SM; (Q,0).
Hence, the proposed measure in the Definition 44 is the valid similarity measure over

two neutrosophic sets.
Theorem 15 The measure proposed in the Definition 44 is a valid similarity measure.

Proof: For this, we need to show the similarity measure SM; (P, Q) between two neutro-
sophic sets P and () holds the conditions defined in Definition 44.

We know that Tp (u;), Tg (u;) < 1, which implies |Tp (u;) — T (u;)| < 1. This can also be
written as

=1 <|Tp (ui) — Tq (u;)| < 0.
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Hence, 0 < ¢~ TP@d)~To(w)| <1 = 0 < SMT (u;) < 1. Also, 0 < SM/ (u;), SMF (u;) < 1.
Therefore, from equation in defintion44 we conclude that

0<SMP(P,Q) <) wi=1.

i=1

We know that SMT (u;) =1, SM] (u;) = 1 and SM}" (u;) = 1 if only if P = @ because,
Yo wi =1, s0 we have , SM{" (P, Q) =1<= P =Q.
As SMT (u;), SMI (u;), SMF (u;) are symmetric for neutrosophic sets. Hence, we
observe that

SM{’ (P, Q)= SM; (Q, P).

For P C Q C O and u; € U, we have
SM{ (P, Q) <min {SM] (P, Q),SM] (Q, O)};

SM! (P, Q) <min{SM/ (P, Q),SM/(Q, O)};

and
SMF (P, Q) <min {SM] (P, Q),SM}I (Q, 0)}.

Thus, based on this, equation in definition 44 becomes SM{’ (P, Q) < SM7’ (P, Q) and
SMY (P, Q) < SM{ (Q.0).

Hence, the proposed measure in the Definition 44 is the valid similarity measure over two
neutrosophic sets.

Comparison with Existing Similarity Measures

In order to show the effectiveness, performance and advantages of the proposed similar-
ity measures, we present the following comparative analysis with existing measures presented
by equations given in definition 44.

Thus, to carry out the comparison of the proposed similarity measures with the existing ones

in the literature, we consider five different cases consisting of two neutrosophic sets as follows:

Case 1: A= {0.2,0.3,0.4} & B ={0.2, 0.3, 0.4}
Case 2: A= {0.3,0.2,0.4} & B = {04, 0.2, 0.3}
Case 3: A= {1,0.0,0.0} & B=1{0.0, 1, 1}
Case 4: A= {1,0.0,0.0} & B = {0.0, 0.0, 0.0}
Case 5: A= {04,0.2,0.6} & B=1{0.2, 0.1, 0.3}

Based on the computational analysis, the values obtained by the proposed similarity measures

and existing similarity measures for each case have been tabulated in the Table 4.1.
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Table 4.1: Comparison of Proposed Similarity Measure with Existing Ones

Case 1 | Case 2| Case 3 | Case 4 | Caseb

SM, 1 0.8187 | 0.0497 | 0.3678 | 0.5488

S My 0.978 | 0.3678 | 0.7892 | 0.8214

S;[28] 1 0.93 0.0 0.0 0.666

Sp[28] 1 0.965 0.0 0.0 0.8

Sc(28] 1 0.965 0.0 Null 1

Sr[28] 1 —2.10 | 0.954 0.984 0.259

In view of the computed values obtained by the different measures, we can conclude that
the proposed similarity measures are quite effective and give distinguished result whereas the
existing ones are not able to perform good in some cases (indicated by the bold values).
Remark : Null represents the case when the degree of similarity can not be computed due

to the problem division by zero.

4.2 Applications of Neutrosophic Similarity Mea-

sures

4.2.1 Classification Problem

Consider a standard classification problem where we have m different classes (say)

,Un}

., Py, from each class and have an un-

Cy, Cy, Cs,...,Cp of known patterns over the universe of discourse U = {uy, ug, ug, . . .
Suppose we choose one sample (say) P, P, Ps,..
known sample () where the information in each known and unknown pattern is featured un-
der the neutrosophic environment. Thus, our main objective is to classify the unknown sample
into one of the known classes. In order to solve this classification problem, we calculate
the similarity measure of unknown sample @ with each known pattern P;(i = 1, 2, 3,...,m)
and then allocate the unknown sample to one of the classes which has highest similarity index.
Example: Let us consider three existing patterns P;, P» and P53 being described by the

neutrosophic sets in U = {uy, wug, us} as following:

Pr = {(u1, 0.5, 0.4,0.2), (ug, 0.4, 0.3, 0.4), (us, 0.4, 0.5, 0.1)};
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Py = {(uy, 0.6, 0.5,0.1), (ug, 0.5, 0.1, 0.3), (us, 0.5, 0.5, 0.1)};
Py ={(uy, 0.4, 0.4,0.2), (ug, 0.4, 0.5, 0.2), (us, 0.3, 0.3, 0.4)};

Let us take an unknown pattern @) given by
Q = {(u1, 0.4, 0.4,0.2), (ug2, 0.5, 0.6, 0.1), (us, 0.3, 0.4, 0.4)}.

Now, the main objective of the problem is to find the class to which @ belongs.
We present the computational procedure of solving the classification problem under consid-

eration with the help of following Figure 4.1.

Neutrosophic feature of
pattern from each
known class

\/

Computation of neutrosophic
similarity measure between
known and unknown pattern

|

Classify the unknown pattern
to the known class based on
highest similarity index

Neutrosophic feature
of unknown pattern

Figure 4.1: Computational Procedure for Classification Problem

With the help of proposed similarity measures given by equations in definition 44, and choos-
ing the arbitrary weight vector w=(0.3,0.4,0.3) (may be selected on the decision makers

choice) of the elements of U, we compute the desired values and tabulate them in Table 4.2.

Table 4.2: Computed Values of Similarity Measures
(P1,Q) | (P2,Q) | (Ps,Q)
SM, 0.6725 0.5611 0.5322
SMY | 0.6659 0.5656 0.5530
SM, 0.880 0.8226 0.804
SMY | 0876 | 0824 | 0.814

Based on the obtained values in Table 4.2, we conclude that the unknown pattern ) belongs

to the class P;. The results obtained by utilizing the proposed similarity measures are certain
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-ly found to be consistent with the results obtained in [101]. The values obtained are also

more prominent and decisive in nature.

4.2.2 Evaluation Process in Decision Making

In view of the general format of a decision-making problem, we consider a set of avail-
able alternatives (say) Z1, Zo,...,Z, and the set of criteria (say) O1, Og,..., O,. The
main goal of the problem is to select the optimal and the best alternatives out of the m avail-
able alternatives with respect to n criteria. The procedure for ranking of the alternatives
is based on transforming the neutrosophic decision matrix and computing the similarity index
between the alternatives and the ideal solution which has been clearly represented with the he

-lp of the following block diagram given in Figure 4.2:

Start
; Transform  the neutrosophic
Const'rucho.n' e ; decision matrix to overcome
Neutrosophic decision matrix. oo

" Rankthealternative in |
descending order and choose

the one with highest

Compute the similarity measure
between the alternative Z; and
i ion a” = (1

Figure 4.2: Ranking Procedure for Decision Making with Similarity Measures

Example: Consider there is a financial private limited firm whose objective is to invest
a significant amount of money in the best possible sector. Suppose there are four possi-
ble investment sectors selected on the basis of an initial survey, say,

Z1 : Automobile Sector,

Zs : Food & Beverages Service Sector,

Z3 : Information Technology Sector,

Z4: Ammunition Production Sector.

The investment company must take a decision according to the following three impor-

tant criteria:
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O : Risk Factor,

O, : Growth Prospects,

O3 : Ecological Impact.

Suppose that the management and the decision-makers assign suitable weights to each criteria
based on their experience and risk bearing capability given by w = (0.35,0.25,0.4). The nec-
essary information has been taken from the experts/decision makers for the sake of evalua-

tion of the alternatives Z;/s with respect to each criterion Oj;/s.

The opinion values of each alternative with respect to each criteria have been expressed
as a neutrosophic information, and the following neutrosophic decision matrix has been pro-
vided :

O, 0,
(0.4.0.2.0.3) (0.4.0.2,

Z,] (0.6.0.1,0.2) (0.6.0.1,
(0.3.0.2,0.3) (0.5.0.2,
(0.7.0.0.0.1) (0.6.0.1.

The ideal solution in such decision-making problems can be as o* = (1, 0, 0). However,
it may be noted that the ideal solution generally does not exist in practice but a closer value
is accepted. Our decision can be obtained by calculating the values proposed similarity mea-
sures between each alternative Z;(i = 1,2,3,4) and the ideal solution a*. In view of the
procedure presented in Figure 4.2, these values have been computed and tabulated in the
Table 4.3.

Table 4.3: Obtained Results Using the Proposed Similarity Measures
SM, | SM{ | SMy | SMy
) | 0.2962 | 0.2889 | 0.6768 | 0.6716
*) | 0.4665 | 0.4605 | 0.7813 | 0.7779
)
)

0.3456 | 0.3445 | 0.7098 | 0.7092
0.6703 | 0.4919 | 0.7942 | 0.7892

On the basis of the computed values, the ranking order of the four alternatives in the above

problem is

Z4>ZQ>Z3>Z1
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Thus, we have that the alternative Z, is the best choice among all the alternatives. The
results obtained by utilizing the proposed similarity measures are consistent with the results
obtained by Ye [59] and Wang et al. [153].

4.3 Entropy of Single Valued Neutrosophic Infor-

mation Measure

In this section of the study, the entropy of the single valued neutrosophic information
measure is explained in detail with the help of theorem. The properties of single valued

neutrosophic entropy are explained below.

Definition 45 [33]“Consider M’ to be a set of all SVNSs and A € M'. Then, the entropy
of A, denoted by Eyy(A), satisfies

1. Epp(A) =0 iff Da(y) = Aa(y) = 0a(y) =0orl.
2. Exp(A) =1, whenTa(y) = Aa(y) = 0a(y) = 0.5.

3. EM/(Al) > EM/(AQ) ifAl C AQ 1.€.,
Cay (i) STay(yi), Aay (vi) > Ay & 04, (yi) < 0a,(yi)-

4. Expr(A) = Eyp(A) where A is complement of A.”

Next, the entropy measure given by Luca et al.[1] is extended and modified to find the
entropy for the single value neutrosophic information measure. This measure takes the
following form,

n

Ey (A) = 2711();(0.5) Z[FA(yi) log(T'a(yi)) + (1 — Ta(ys)) log((1 — T'a(yi)))];
i—1

Ep (A) = %102(0.5) > [Aa(yi)log(Aa(wi)) + (1 — Aayi)log((1 = Aa(wi)));  (4.3.1)
=1

Prig(4) = gy D 0a() 1om(0a 01)) + (1 = 0a(31)) og((1 = a(wi))L
=1

Similarly, the‘useful’ single valued neutrosophic information measure is obtained with some

modification in ‘useful’ fuzzy information measure given by Hooda and Bajaj [31] earlier in
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literature and this measure takes the following form for truth, falsity and neutral member-

ship functions i.e.,

1 Yty wipilla(yi) log(T'a(yi) + (1 — T'a(yi)) log((1 — T'a(yi))]

By (A PU) = 5000 05) 2= UiPi |
o L S uipiAa(y) log(Aa(i) + (1= Aa(i)) log((1 — Aa(y))].

EM/’\ (Aa Pv U) - m log(05) : Zzn:l Uipi |
L S uipilBa(yi) log(0a(yi)) + (1~ 0 () los(L — 04(y:)))]

Exy (A PsU) = 5 0m) 2 P |

(4.3.2)

where u; > 0.

Theorem 16 The measure 4.3.2 must satisfy the neutrosophic entropy measure properties

given by 45.

Proof: Axiom 1: Eyp (A; P;U) =0.
Then,

1 > iy wibi[Ta(yi) log(Ta(yi)) + (1 = Ta(yi)) log((1 — Ta(yi)))]
2nlog(0.5) o wipi

L a(yi)log(Ta(y:)) + (1 = Ta(ys))log((1 — Ta(w:)))] = 0.

Next, either I'4(y;) =0or 1Vi=1,2,...,n.
This proves that it satisfies the crisp set property.

=0.

Axiom 2: T'4(y) = Aa(y) = 0a(y) = 0.5.
Putting this in equation 4.3.2, we get

1 S wipif0.51og(0.5) + (1 — 0.5) log((1 — 0.5)]
2n10g(0.5) o wipi
Hence, Epp(A) =1, when T'a(y) = Aa(y) = 04(y) = 0.5.

=1

Axiom 3: If A} C Ay, then, I'y, <T'4,.
Also,

L4, (yi) log(Ta, (yi)) + (1 = T4, (y:)) log((1 — T, (y:))) < Tay(yi) log(Ta, (vi)
+(1 =T, (yi)) log((1 — T4y (4:)))-
This implies

My(Ay; P;U) < Mp(Ag; P;U).
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Similarly, we can prove that
M (A1; PsU) > Mj(Asg; Py U) & Mg(Av; PyU) < My(Aa; P3U).

Hence, this proves Ejp (A1) > Epp(Ag) if Ay C As.

Axiom 4: For the complement,
My(4; P;U)

by uapi[TG (i) log (T (i) + (1 — Ta(yi))° log (1 — Ta(ys))°]
2n10g(0.5) S upi '

= M{(4; P;U)

v i wpi[(I — Ta(yi) log(1 — Ta(yi) + (Da(yi)) log((T'a(%i)))]
2n log(0.5) o wipi '

— M{(4; P;U) = M{.(A; P;U).

In similar manner, the condition can be obtained for the neutral and falsity membership
functions.

Thus, we observe that all the axioms have been satisfied and this is a valid entropy measure.
It may be noted that these properties can also be satisfied with the help of some numerical
examples. We consider Table 4.4 which shows the behavior of the proposed measure in case
of the crisp set. In this case, the values of degree of truth membership function is 1 when

membership is maximum whereas the values of indeterminacy and falsity are zero.

Table 4.4: Behavior of proposed measure on crisp set in case of maximum membership

ui | pi | (Ta(ys), Aa(wi), 0a(ys)) | (M'(Talyi), M'(Malys)), M'(0a(y:)))
ug | 0.4 (1,0,0) 0
us | 0.3 (1,0,0) 0
us | 0.2 (1,0,0) 0
w | 0.1 (1,0,0) 0

Secondly, in Table 4.5 when degree of membership is minimum then falsity component is
1 and the values of rest of the components are equal to zero i.e., A = (1,0,0) or (0,0,1).
Consider the universe U = (1,2,3,4) with utilities u; = (u1,u2,us,us) and probabilities
p(A) =(0.1,0.2,0.3,0.4). Note: In similar manner, all the above properties of single valued

neutrosophic information measure can be satisfied using the numerical example.
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Table 4.5: Behavior of proposed measure on crisp set in case of minimum membership

wi | pi | (Tayi), Aa(i), 0alyi)) | (M'(Dalyi)), M'(Aa(y:)), M'(0a(ys)))
i | 0.4 (0,0,1) 0
s | 0.3 (0,0,1) 0
us | 0.2 (0,0,1) 0
ug | 0.1 (0,0,1) 0

4.4 ‘Useful’ Divergence Measure of Single Valued

Neutrosophic Information Measure

In this segment of the study, we have described the properties of divergence and the diver-
gence between the proposed neutrosophic information measures.
The divergence of two single valued neutrosophic sets is defined on the basis of the following

parameters:

e Two positive and symmetric single valued neutrosophic sets are compared.
e Divergence is equal to zero when these two sets coincide.

e Divergence is inversely proportion to the similarity between the two sets. As the

similarity increases the divergence decreases.

Consider two single valued neutrosophic sets A and B on the same similarity points
y; (i =1,2,...,n) and with neutrosophic vectors
(La(yi), Aa(vi),0a(yi)) and (Up(vi), Ap(yi),05(yi)) where (i =1,2,...,n).

The simplest form of fuzzy divergence was introduced by Bhandari and Pal [25] as

n

I(A,B) = [Ta(yi)log

i=1

L) (= Ta()
Tp(yy T O Tawlloe g oyl (44d)

Next, we consider two single valued neutrosophic fuzziness of A from B and the ‘useful’
measure for truth membership component of these two single valued neutrosophic directed

divergence measure of A from B is given by:

o 1 > iy wipi[La(yi) log(Tp(yi)) + (1 — Ta(yi)) log((1 —T'p(y:)))]
(A, B; P;U) = 2nlog(0.5) : o uip; '
(4.4.2)
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Then, the ‘useful’ neutrosophic symmetric divergence measure is defined as,

J(A,B;P;U)=I(A,B;P;U)+I(B,A;P;U). (4.4.3)

Theorem 17 The proposed measure 1(A, B, P,U),i.e., I(A,B;P;U) > 0 if Ta(y;) =

I'p(yi) where i = 1,2,...,n is a valid information measure.

Proof: Suppose

ZFA(«%) =, ZFB(%) =f & Zuipi = u.
i=1 i=1 i=1

Then,
1 - T a(y:) ue e
S wpi(Tay) ] > log <. 4.4.4
2nlog(0.5) [;u pi(Tayi)log FB(yZ-)] 2n1og(0.5) ©8 f ( )
In similar manner, we can prove that
1 - (1 —=Tx4(y)) u(n —e) n—e
ST o ipi(1 —Ta(yi))l > 1 . 4.4.5
21 10g(0.5) [;”p( Al)log T 052 5 0e05) 8 n = 7 (445)
Adding equations 4.4.4 and 4.4.5,
1 (1 —Talys)
_— uZZF i) lo + uZZ —Ta(y)log ——=5] >
u n—e
— el —e)l .
2nlog(0.5) lelog f P (n—e) & f]
Suppose
1 n—e
— 1 — _
, 1 e n—e
= — 1 —_
1) 2nlog(0.5)[og ! . f]7
1 1 1
f'(e) = [+ —I]>0.

2nlog(0.5)'e n—e
Thus f”(e) > 0, which proves that f(e) is a complex function and have a minimum value

when e = f. Secondly, > """ | u;p; > 0.

Hence, I(A,B; P;U) >0

4.5 Notion of Hybrid Ambiguity ‘Useful’ Measure

In this segment of the current manuscript, hybrid ambiguity of the single valued neutrosophic

information measure under utility distribution has been obtained.
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Consider two single valued neutrosophic information sets A and B. The two conditions to

be satisfied to find the hybrid ambiguity are given below:
e Then, entropy of set A defines ambiguity for the given set.

e Secondly, the difference between A and directed divergence of B is calculated by
I(A, B).

Hybrid ambiguity= Entropy of A + I(A, B).

The hybrid ambiguity for the truth membership function is given below:

1 i upilla(yi) log(Ta(yi) + (1 — Ta(yi)) log((1 — Ta(yi)]
2n1og(0.5) Do Wi
1 X0 wipCa(y:) log 1423 + (1= T (ys) log (patey)]
2nlog(0.5) D1 WiDi .

HAp

1 i uipilTa(yi) log(Ta(yi) + (1 —Ta(y:) log((1 — Ip(y:)))]
2n1og(0.5) D i1 UiDi

s [I(A,B)|p = — >oisy uipilDa(y) log(Tp (i) + (1 — Ta(yi) log(1 = Tn(y:)))]

~ 2nlog(0.5) > wipi

Similarly, we can find for other two components for neutrosophic theory.

Remarks: It may be noted that we can establish a relation between entropy and directed

divergence of two single valued neutrosophic sets as follows.

If 'g = 0.5, then

1 " wipi[Tays) log AW 1 (1 - T 4(y;)) log U=Fali))

[1(A, B)Ir

~ 2nlog(0.5) > Ui
1 L b uipilTa(yi) log(Ta(yi) + (1 = Ta(yi) log((1 — Ta(yi)))]
2 2nlog(0.5) SO Ui '

Then, the relation obtained is given by
= %—(Entropy of SVNS A).
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4.6 ‘Useful’ Single Valued Neutrosophic Informa-

tion Improvement Measure

The ‘useful” information improvement measure for the three single valued neutrosophic sets

under consideration can be explained as follows,

Consider sets A and B, where set A is estimated from set B and was revised to set C.
Then, the original and final ambiguity is given by I'(A, B) and I'(A, C). Then, the reduced

ambiguity for truth membership function is given by

1 >y wipi[La(yi) log(T(yi) + (1 = Ta(yi))log((1 — Tp(y:)))]

[

~ 2nlog(0.5) D i Wi
_ Sy wiplCaly) og(To(i) + (1~ Taly) los(L = Te());
D iy Wi
_ 1 S unlla)log pAGS + (1 - Ta(ws) log %‘?;f(yyz?ﬂ]
2n10g(0.5) SO Ui '

Similarly, we can obtain for the improved measure of the neutrality and falsity function of

neutrosophic information measure.

This is called the ‘useful’ single valued neutrosophic improved information measure.

4.7 Conclusions

We have successfully introduced somenew measures of similarity for the neutrosophic sets
in terms of the exponential functions of the truth membership,vindeterminacy-membership
and falsity-membership. The efficiency of the proposed measure has been validated by pre-
senting few counter-intuitive cases which show that the existing measures fail under some
certain cases, while the proposed measures classify them more accurately and precisely. Furth
-ermore, to illustrate the applicability of the proposed similarity measures, an example of
classification problem and an example of decision-making problem under neutrosophic enviro
-nment have been successfully solved. Finally, we conclude that the proposed types of ex-
ponential similarity measures are better than the existing measures. The proposed mea-
sures produce a reasonable and distinguishable results which is the main outcome and ad-
vantage in contrast with other existing methods. Also, it may clearly be observed that

the proposed measures are very simple and have the minimum computational burden as
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compared with other existing methods. The proposed exponential similarity measure for the
the neutrosophic sets can be extended for single and multi-valued neutrosophic hyper soft
set also along with the relevant application which will certainly give an added advantage
in the literature. The proposed strategy utilizing the exponential similarity measure can
further be applied in various other decision-making problems, e.g., supplier selection, pat-
tern recognition, cluster analysis, medical diagnosis, weaver selection, fault diagnosis, data
mining, logistic centre location selection etc. Later, we have successfully established the
validity of the proposed measures named as the probabilistic single valued neutrosophic
‘useful’ information measure, ‘useful’ divergence measure, hybrid ambiguity and ‘useful’
information improvement measure of single-valued neutrosophic sets. All these measures
have been explained and validated with the help of well established axioms and numerical

example.
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Chapter 5

Energy of Picture Fuzzy Graph in

Site Selection

In this chapter, we have considered the fact that picture fuzzy graph has the sufficient streng
-th to formulate the impreciseness, vagueness and incompleteness embedded in the informa-
tion of an application. Therefore, we have proposed the definition of adjacency matrix of
such graph, its spectrum and energy /Laplacian energy with upper/lower bounds in the curre
-nt chapter. In reference with picture fuzzy directed graph, similar studies and results have
been presented. Further, we have also presented a new algorithm to solve hydropower
plant site selection problem by utilizing the notion of energy/Laplacian energy of picture
fuzzy graph. Some comparative findings and advantages of the proposed approach have

also been provided.

5.1 Notion of Energy of Picture Fuzzy Graph

In this section, we have proposed some novel concepts of adjacency matrix, spectrum , en-
ergy and Laplacian energy of picture fuzzy graph as follows:

Let G = (S, R) be a picture fuzzy graph, where S is the picture fuzzy vertex set and R is
the picture fuzzy edge set.

Definition 46 The adjacency matrix A(G) of the graph G is a square matriz defined as
A(G) = [aij], where a;; = (pr(oi, ), nr(s, o), vr(ai, ay)) -
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Here, pr(ay, o), nr(ai, o) & vi(as, o) are the degree of membership, degree of neutral membership

(abstain) and degree non-membership respectively.

Definition 47 The spectrum of the adjacency matriz A(G) of the picture fuzzy graph G =
(S, R) is given by (O, P, V), where ©, ® and VU are the set of the eigenvalues of matrices

A(pr(ai, o)) = [pr(ai, aj)];

A(mr(s, o)) = [nr(cs, o))
and
A(vr(ai, aj))) = [vr(i, ;)]

respectively.

Definition 48 The energy E(G) of the picture fuzzy graph G is defined as

E(G):(E(MR(O%aj))’E(nR(ai’O‘j))vE(VR(aivaj))):( doolel D el > |¢i|>-
i=1,6,€0 i=1,¢;€® i=1,3b; €W

For illustrating the proposed definitions, we consider the following example of a picture fuzzy
graph:
Example: Suppose G = (S, R) be a picture fuzzy graph given in Figure 5.1.

(0.4,0.2,0.3)
(@1,0.5,0.3,0.2) (€,0.5,0.3,0.2)

(0.4,0.3,0.2)
(0.3,0.5,0.2)

0.5,0.2,0.2
(23,0.5,0.3,0.2) ( ) (24,0.5,0.2,0.3)

Figure 5.1: Graph G = (S, R) for Energy

In view of the definitions proposed above, the adjacency matrix A(G) is given by

(0.0,0.0,0.0) (0.4,0.3,0.2) (0.0,0.0,0.0) (0.4,0.2,0.3)
A(G) = (0.4,0.3,0.2) (0.0,0.0,0.0) (0.5,0.2,0.2) (0.0,0.0,0.0)
(0.0,0.0,0.0) (0.5,0.2,0.2) (0.0,0.0,0.0) (0.3,0.5,0.2)
(0.4,0.2,0.3) (0.0,0.0,0.0) (0.3,0.5,0.2) (0.0,0.0,0.0)
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Using the adjacency matrix A(G), the spectrum of the picture fuzzy graph G can be eval-

uated as

Spec(pr (i, o)) = {—0.8063,0.8063, —0.0992,0.0992};

Spec(nr(oi,a;)) = {—0.5114,0.5114, —0.0917,0.0917};

Spec(vr(ay, o)) = {—0.4561,0.4561, —0.0438, 0.0438}.
Hence, the spectrum of G may be presented as

Spec(@) = {(—0.8063, —0.5114, —0.4561), (0.8063,0.5114, 0.4561),
(—0.0992, —0.0917, —0.0438), (0.0992, 0.0917, 0.0438)}.

Now, the calculation of energy of the picture fuzzy graph can be done as
E(MR(Ozi,Oéj)) = 1.811; E(nR(ai,aj)) = 1.2062; E(VR(ai,ozj)) = 0.998.

Hence, the energy of G is
E(G) = (1.811,1.2062,0.998).

Next, we present the studies and various important results related to eigenvalues of ad-

jacency matrix, upper bound and lower bound of energy of picture fuzzy graph.

Theorem 18 Let G = (S, R) be a picture fuzzy graph and A(G) be its adjacency matriz.
If0, >0 > ...2 0, ¢1 > ¢ > ... > ¢y andpy > P2 > ... > Y, are the abso-

lute eigenvalues of A(pur(oy, o)), A(nr(as, o)) and A(vr(ou,a;)), respectively, then:

. m m m
(i) > 60;,=0, > ¢;i=0and > 5 ;=0;
=1,0:€0 i=1,p;€P =1, €0

i) > 02=2 % (unloia;)?

i=1,0,€0 1<i<j<m

m

Y 0i=2 > (nr(oi,a))?; and
i=1,0,€® 1<i<j<m

m

Yoowi=2 Y (vrlo,a))?
i=1,1p;€¥ 1<i<j<m

Proof :

(i) Since the diagonal entries of adjacency matrix A(G) are zero, therefore the trace of
the matrix is zero. As the trace of a matrix is equal to sum of its eigenvalues, the

proof is obvious.
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(ii) By the trace property of a matrix, we have
m
tr((Alpr(ei,a))?) = Y 03
i=1,0,€0

where

r(Alun(as, a;)))?) = (o T (urlon a2))® + ... (urlas, am>>2)

T <<uR<a2, 01))® + 0+ ... (ur(oz, am>>2>

+ <(MR(04mOé1))2 + 0+ (ur(Qm, am))? + ... + 0)
=2 > (urlai,ay))
1<i<j<n

Hence,
m
Yo =2 ) (un(a,qy)
i=1,0,€0 1<i<j<n

Similarly, we can show that

m m
Yo #i=2 ) (mlaia))® and ) Wi=2 Y (vr(ai,ay)
i=1,;€P 1<i<j<n i=1,0,€¥ lsi<jsn

Hence, the results of the theorem are proved.

Further, throughout the manuscript we denote

My= > (urlei )% My =1 > (r(ai,e;))% and M, = > (vr(ai, o))

1<i<j<n 1<i<j<n 1<i<j<n

Also, we denote

|Ay| =: det(A(pr(cu, aj))); |Ay| =: det(A(nr(a, ))); and |A,| =: det(A(vr(ay, aj))).

Theorem 19 Let G = (S, R) be the picture fuzzy graph with m vertices and A(G) be its

adjacency matriz. Then,

(i) /20, + m(m — 1) A% < B(up(asaz)) < /2my;

(i1) \[2My + m(m — 1)| 4% < E(n(as, ) < /2l

(iii) \/2M, +m(m — DA% < B(vp(as, ;) < VI,
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Proof : Using Cauchy-Schwarz inequality for the vectors (1,1,...,1) and (|61, |02|,

with m entries, we get

D ol6i < vm |62
i=1 i=1

Also,
m 2 m m
(Z w) =) li>+2 Y |68 =0.
i=1 i=1 1<i<j<m
The characteristic polynomial of A(G) is given by
[T =6 = [A@) — a1l
i=1

Now, comparing the coefficients of A»~2 in above polynomial, we get

Z |919j| = —M,.

1<i<j<m

Using equation (5.1.3) in equation (5.1.2), we have

m
> 10i* = 2M,.
=1

Substituting equation (5.1.4) in equation (5.1.1), we have

m
S 16l < Vimy/2M, = \/2mD,.
1<i<j<m
Therefore ,
E(pr(ei, ;) < /2mM,.
Next,

m 2 m m
(E(pr(ei, ;) = (Z W) = Z 16, + 2 Z 10:0;]

i—1 i—1 1<i<;<m
2m(m — 1)

=2M
M+ 9

AM{|6;6,|}.

ooy |Oml)

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

Since, the arithmetic mean is greater than or equal to the geometric mean, i.e., AM{|6;6,|} >

GM{|0;0;]}, therefore,

(o, 05)) > 1/2My, +m(m — )GM{|0:0;1}.
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Also,

m(m—1) m(m—1)

am{leg;ly = [ 166 = II e

1<i<j<m 1<i<j<m

- (Hy@) YT (5.1.7)
i=1

Substituting equation (5.1.7) in equation (5.1.6), we get

B(ur(oi, a5)) > \/2M, + m(m — 1)|A,[%. (5.1.8)

Thus, from equations (5.1.5) and (5.1.8), we have

\/QMM +m(m — 1)\AM]% < E(pr(ag,a5)) < /2mM,,.
On similar lines, we can show that

V2M, + m(m — 1| Ay < E(n(as, 7)) < v/2m,

and

\/ZMV +m(m —1)|A|w < E(vr(os, o)) < /2mM,.

Theorem 20 Let G = (S, R) be a picture fuzzy graph on m vertices and A(G) be its adjacency
matriz. If m < 2M,,, m < 2M, and m < 2M,, then:

(i) E(pr(o, o)) < 20 + \/(m -1) {QMu - (2%“)2}’

(ii) E(nr(ai,aj)) < 2o 4 \/ (m—1) {2M" - (2%2}"

(iii) E(vgr(oy,aj)) < 2 4 \/(m —1) {zMV — (%)2}.

Proof : Since A(G) of the picture fuzzy graph G is symmetric with trace zero, therefore,

2 Z MR(Oéz‘,Oéj)

6, > 1<i<j<m ’
m
where 601,04, ... ,0,, are the eigenvalues of A(G). In view of the results obtained in Theorem
18, we write
m
> 67 =2M, —67. (5.1.9)
i=2
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Using Cauchy- Schwarz inequality for the vectors (1,1,...,1) & (|61],162],- .-, |0m|) with

(m — 1) entries, we get

E(pr(ai,ap)) =61 = > 67 < (5.1.10)
1=2
Substituting equation (5.1.9) in equation (5.1.10) and after rearranging, we have
E(ur(oi.a7)) < 61 +/(m — 1) (20, - 63). (5.1.11)

Since the function F(a) = a++/(m — 1)(2M,, — a?2) decreases on the interval (4/ 2]\”{“, V2M,,),

2M,,
as 1 < =~

, therefore,

[2M,, < 2M,, < 2(pr(ai, aj)) < 6, < \/2M,.
m

m m

Thus, the equation (5.1.11) implies

2
Blup(an ) < 25 4 J(m—1) {2M# - <2Mﬂ> }

m

On similar lines, we can also show that

2
E(nr(ai, a;)) < 2y -1 {2]\477 - <2Mn) };

mo\

2
E(vr(as,aj)) < 2M, + 4| (m—=1) {2Ml, - <2MV) }

and

m m

It may be noted that the results obtained in the above theorem provide the upper bound
for the energy of the picture fuzzy graph, with the conditions m < 2M,, m < 2M, and
m < 2M,,.

Theorem 21 Let G = (S, R) be a picture fuzzy graph on m vertices. ThenE(G) < (1 +

V).

Proof : If n < 2Mpu, then by calculus it is easy to show that

2
Fgy) = 2 <m—1>{2Mu—<2M"> }

m m

109



my/m

2
obtains a maximum value when M, = %. Substituting this value of M, in the above
< m(l+ym)

Theorem 20, we get E(pur(as, aj)) < 5 . Similarly, the results for other energy components

can be obtained. Hence, the theorem is proved.

Next, we study another important notion of energy of graph, known as Laplacian Energy

of Picture Fuzzy Graph and discuss its various graph-theoretic aspects.

Definition 49 Let G = (S, R) be a picture fuzzy graph on m vertices. The degree matrix
D(G) = [dyj], of G is a m x m diagonal matriz defined as:

da(a;) if i = J;

0 otherwise.

dij =

Example: Let G = (S, R) be picture fuzzy matrix 4 vertices. Then, the degree of matrix
D(G) is a 4 x 4 diagonal matrix defined as

(0.4,0.2,0.1)  (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,0.0)
D(E) = (0.0,0.0,0.0) (0.5,0.7,0.6) (0.0,0.0,0.0) (0.0,0.0,0.0)
(0.0,0.0,0.0) (0.0,0.0,0.0) (0.2,0.3,0.4) (0.0,0.0,0.0)
(0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (0.1,0.2,0.5)

Definition 50 Let G = (S, R) be a picture fuzzy graph on m vertices. The Laplacian matriz
of a picture fuzzy graph G is defined as L(G) = D(G) — A(G); where D(G) & A(G) are de-

gree and adjacency matriz of the picture fuzzy graph G, respectively.

Example: Let G = (S,R) be the picture fuzzy graph on 4 vertices. The lapla-

cian matrix of a picture fuzzy graph G is defined as

(0.4,0.2,0.1)  (—0.4,-0.2,-0.3) (—0.4,—0.3,—0.2)  (0.0,0.0,0.0)

(0.0,0.0,0.0) (0.5,0.7,0.6) (0.0,0.0,0.0)  (—0.3,-0.5,—0.2)

(0.0,0.0,0.0)  (=0.2,—-0.1,—0.6)  (0.2,0.3,0.4) (0.0,0.0,0.0)
(=0.5,—-0.2,—0.3)  (0.0,0.0,0.0)  (=0.5,—0.2,—0.2)  (0.1,0.2,0.5)

Definition 51 The spectrum of the Laplacian matriz L(G) of the picture fuzzy graph G =
(S, R) is given by {(A,T,Q)}, where A, T and ) are the set of the eigenvalues of L(pgr(ay, o)),
L(nr(cy,aj)) and L(vr(ay, o ))), respectively.
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Example: Using the example given in the definition 51 we calculate the spectrum
of L(G) given below:

spec(pur(ai, aj)) = {—0.20962,0.4000, 0.50481 + 0.35617,0.50481 — 0.35614}

spec(nr(cy, o)) = {—0.023607,0.42361,0.5 — 0.17,0.5 + 0.17}

spec(vr(ai, aj)) = {—0.027074,0.4000, 0.61354 — 0.25845i,0.61354 + 0.25845i}

Theorem 22 Let G = (S, R) be a picture fuzzy graph on m vertices and L(G) be its Laplacian
matriz. If 61 > 0o > ... > 0y, V1 > V2 > ... > Uy and wy > Wo > ... > Wy, are the abso-
lute eigenvalues of L(pr(cu, o)), L(nr(ou,a;)) and L(vr(oy, oj))) respectively, then

m
@) > =2 > pr(a,a);
i=1,0,€A 1<i<j<m
m
>ooovi=2 Y nrla,aj); and
i=1,u;,€YT 1<i<j<m
m
Z W; — 2 Z I/R(Oéi,aj).
i=1,w; EQ) 1<i<j<m
.o m 2
(”) ; 125: A(Si N 21<’z:< (,UJR(Oéi,OCj)) * Zd#R (evisrj) al);
1=1,0;€ <1<gs<m
m
. 1Z TU? :21<4Z< (nr(ai, a5))* + Z nr(ei,a; )( a); and
1=1,v;€ <t1<gs<m
m
, 12 Qw§=21<2< (VR(e, ;) + Z v(asay) (@)
1=1,w; € <i<gsm

Proof : The theorem can be proved on the similar lines as the proof of Theorem 18.

Definition 52 The Laplacian energy of the picture fuzzy graph G = (S, R), denoted by
LE(G), is defined as

LE(G) = (LE(pr(as, aj)), LE(nr(as, aj)), LE(nr(as, a ) (Zm Zlle Z<>

2 > pr(ag,ay) 2 > nr(aaj) 2 > ve(aay)
1<1<y< 1<1<3< 1<i<y<
where p; = §; — stejsm 1 & =y — ——==0 DG = W stejsm

Example: Again we will be using the example used in definition 52 to find the energy

of the particulr matrix which is given as:
LE(pur(ag, o)) = 1.845103, LE(nr(ovu, o)) = 1.467021, LE(vg(ay, o)) = 1.758581
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Theorem 23 Let G = (S, R) be a picture fuzzy graph on m vertices and L(G) be its Lapla-
cian matrix. Ifdy > 6o > ... 2 0m, U1 > U2 > ... > Uy and wy > wo > ... > Wy are the
absolute eigenvalues of L(pr(cvi,a;)), L(nr(oi,a;)) and L(vg(as, o)), respectively, then

. m m m
(1) 22pi=0,2 & =0and 3 =0;
i=1 i=1 i=1
m m m
(i) > p? =2N,, Y& =2N,, > ¢ =2N,; where
i=1 i=1 i=1
2 > pr(ad)

m
1<i<j<m

Ny = My, + % 21 <d“(%%)(o‘i) - m )

21<_§< nr(a;)
dn(ai,aj)(ai) — + and

N, =M, + 3 ;
1 & 21<';< vr(ai)
N, =M, + 3 ; dy(ahaj)(oéi) — % .

Proof : The proof of the theorem is obvious.

Theorem 24 Let G = (S, R) be a picture fuzzy graph onm vertices and L(G) be its Laplacian

matriz. Then

NE

2 > prlasa)\ 2
(i) LE(ugr(ci, ;) < | 2mM, +m : ;

> (dR(ai’aj)(Oéi) o 1§z<J_”:n

-
I

3

(it) LE(nr(os, ;) < | 2mMy +m (dR(ai,aj)(ai) — SR

(2

Il
—

m 2 Z vr(0g,05) 2
(iti) LE(vr(ai, o)) < \ 2mM, +m Y. | dpiagap (o) — == ‘

=1

Proof : The proof can be given on the similar lines as the proof of the Theorem 19.

Theorem 25 Let G = (S, R) be a picture fuzzy graph on m vertices and L(G) be its Laplacian

matriz. Then

1w 21<‘;< nr(eia;)\ 2
(i) LE(pr(0i,05)) > 24| My + 3 3 | driag.ap (0n) — === ;

1 21<';< nr(@ia;) ?
(ii) LE(nr(c, ;) > 24| My + 5 5 [ digas ) (@) — =250 ;
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(iii) LE(vr(ei, ;) > 2y My + } z(dawxaz) e

Proof : The proof can be given on the similar lines as the proof of the Theorem 19.
The results obtained in the above theorems provide us the upper bound and lower bound of

the Laplacian energy of the picture fuzzy graph G.

Theorem 26 Let G = (S, R) be a picture fuzzy graph on m vertices and L(G) be its Laplacian

matriz. Then

(i) LE(ur(ai, o)) < |p1] + /(m —1)(2N, — p?);
(ii) LE(nr(ai,a;)) <[]+ /(m —1)(2N, — £D);

(iii) LE(vr(ci,a5)) < |l ++/(m = 1)(2N, — ).

Proof : The proof can be given on the similar lines as the proof of the Theorem 20.

5.2 Energy and Laplacian Energy of Picture Fuzzy
Directed Graph

In case of the directed graph, the adjacency matrix A(G) of a picture fuzzy directed graph is
not necessarily symmetric. Therefore, the eigenvalues of the adjacency matrix may be com-
plex numbers. This section generalizes the concept of energy and Laplacian energy for picture

fuzzy directed graphs.

Definition 53 The spectrum of the adjacency matriz A(G) of the picture fuzzy directed graph
G = (S5, ﬁ) is given by {(©, P, V)}, where ©, ® and ¥ are the set of the eigenvalues of

Alpg (i, ), Alng (s, o)) and A(vg(as, ;))), respectively.

Definition 54 The energy of the picture fuzzy directed graph G is given as:

E(G)=(E(ug(ai,og))ﬂ(ng(maﬂ%E(ug(ai,o@)»:( ST Re@), Y. IRe(e)l, 3 |Re<wi>|);

i=1,0,€0 i=1,0,€® i=1,; €W

where Re(6;), Re(p;) and Re(1);) represents the real part of the eigenvalues 0;, ¢; and 1);, respect

-wely.
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Theorem 27 Let G = (S, ﬁ) be a picture fuzzy directed graph and A(G) be its adjacency matriz.
If0, > 60> ...2 0, &1 > 2> ... > by and Py > o > ... > by, are the absolute eigen-

values of A(ug(a, o), A(nr(ay, o) and A(vr(ou, a;), respectively, then Y. Re(6;) =

i=1,0,€0
0, >, Re(p;)=0and > Re(y;)=0.
i=1,0,€®P i=1,,€V

Definition 55 Let G = (S5, ﬁ) be a picture fuzzy graph on m vertices. The out-degree matrix
D(@Q) = [dij], of G is a m x m diagonal matriz defined as:

dg(aq) ifi=j;

0 otherwise.

dij =

Definition 56 Let G = (5, ﬁ) be a picture fuzzy directed graph on m vertices. The Lapla-
cian matriz of a picture fuzzy directed G, denoted by L(G) is defined as

L(G) = D*"(G) — A(G);

where D°'(G) & A(G) are the out degree matriz and adjacency matriz of the picture fuzzy direc
-ted graph G, respectively.

Definition 57 The spectrum of the Laplacian matriz L(G) of the picture fuzzy directed graph G =
(S, ﬁ) is given by {(A, T, Q)}, where A, T and  are the set of the eigenvalues of L(p (v, o)),
L(n3(qi, ;) and L(v3 (i, o)), respectively.

Theorem 28 Let G = (S, ﬁ) be a picture fuzzy graph on m vertices and L(G) be its Lapla-
cian matrixz. Ifdy > 09 > ... > 0, V1 > V9 > ... > Upandwy > wWo > ... > Wy
are the absolute eigenvalues of L(p3(ci, o)), L(ng (s, o)) and L(v3 (i, o)) respectively,
then

(2

> Re(8) = tr(L(ug (i, ay)));
i=1,0,€A
Z Re(v;) = tr(L(ng (i, a))));

1,u,€Y

and

> Re(wi) = tr(L(vg(as, o))).
i=1,w; €N

Proof: The proof can be given on the similar lines as the proof of the Theorem 18.
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Definition 58 The Laplacian energy of the picture fuzzy directed graph G = (S, ﬁ)
denoted by LE(G) is defined as

LE(G) = (LE(pg (0, ;)), LE(ng (i, ), LE(ng (04, 5))) = (Z il D6l Y |<i|> ;
i=1 i=1 i=1

S Re(5) S Re(u;) S Re(ws)

where p; = Re(6;) — —S0——; & = Re(v;) — =5 ——; ; = Re(w;) — =<

m m

Theorem 29 Let G = (S, ﬁ) be a picture fuzzy directed graph on m vertices and L(G) be
its Laplacian matriz. Ifd01 > 00> ... 2 0m, U1 202 > ... 2 Uy and W] > Wy > ... > Wy
are the absolute eigenvalues of L(pg (e, o)), L(ng (s, o)) and L(vg (e, o)), respectively,

m m m
then > pi=0,>& =0and > ¢ =0.
i=1 =1 i=1

(2

Proof: The proof of the theorem is obvious.

For illustrating the proposed definitions, we consider the following example of a picture direct
-ed fuzzy graph:
Example: Suppose G = (5, R) be a picture fuzzy graph as given in Figure 5.2.

(@1,0.5,0.3,0.2) (€1,0.5,0.3,0.2)

(0.4,0.3,0.2)
(0.3,0.5,0.2)

0.5,0.2,0.2
(23,0.5,0.3,0.2) ( ) (24,0.5,0.2,0.3)

Figure 5.2: Graph G = (S, R) for Laplacian Energy

In view of the above definitions and Figure 5.2, the adjacency matrix of picture fuzzy direct

-ed graph can be given by

(0.0,0.0,0.0) (0.4,0.2,0.3) (0.4,0.3,0.2) (0.0,0.0,0.0)
A(C) = (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (0.3,0.5,0.2)
(0.0,0.0,0.0) (0.2,0.1,0.6) (0.0,0.0,0.0) (0.0,0.0,0.0)
(0.5,0.2,0.3) (0.0,0.0,0.0) (0.5,0.2,0.2) (0.0,0.0,0.0)
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The spectrum of the picture fuzzy directed graph G can be computed as

Spec(u (i, o)) = {0.48586, —0.17786 + 0.3976i, —0.17786 — 0.3976i, —0.13014};
Spec(ng (@i, 7)) = {0.3387, —0.1208 + 0.27689i, —0.1208 — 0.27689%, —0.0970};
Spec(vg (i, o)) = {0.39225, —0.11764 + 0.32108, —0.11764 — 0.321087, —0.156972}.

Hence, the spectrum of picture fuzzy directed graph G may be presented as

Spec(G) = {(0.48556, 0.3387,0.39225), (—0.17786 + 0.39767, —0.1208 + 0.276897, —0.11764 + 0.321084),
(—0.17786 — 0.3976i, —0.1208 — 0.276897, —0.11764 — 0.32108i), (—0.13014, —0.0970, —0.156972), }.

The calculation of the components for energy of picture fuzzy directed graph G has been

listed below:
E(pup(qi, ;) = —0.13014; E(ng (i, a;)) = —0.0970; E(vg(as, o)) = —0.156972.
Hence, the energy of picture fuzzy directed graph G is

E(G) = (—0.13014, —0.0970, —03156972).

Next, the out-degree matrix D(G) and the Laplacian matrix L(G) of the picture fuzzy directed
graph G are given by

(0.8,0.5,0.5) (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,0.0)
pot(@) — (0.0,0.0,0.0) (0.2,0.1,0.6) (0.0,0.0,0.0) (0.0,0.0,0.0)
(0.0,0.0,0.0) (0.0,0.0,0.0) (0.5,0.2,0.3) (0.0,0.0,0.0)
(0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (1.0,0.4,0.5)
and
(0.8,0.5,0.5) (—0.4,-0.2,-0.3) (—0.4,—0.3,—0.2) (0.0,0.0,0.0)
L@ = (0.0,0.0,0.0) (0.2,0.1,0.6) (0.0,0.0,0.0) (—0.3,—-0.5,—0.2)
N (0.0,0.0,0.0) (—0.2,-0.1,—0.6) (0.5,0.2,0.3) (0.0,0.0,0.0) ’

(=0.5,—0.2, —0.3) (0.0,0.0,0.0) (=0.5,—0.2, —0.2) (0.1,0.4,0.5)

respectively. The Laplacian spectrum of the picture fuzzy directed graph G can be computed

as

Spec(u (i, a;)) = {0.02329,0.8883 + 0.26354, 0.8883 — 0.26354,0.7000};
Spec(ig (@i, a;)) = {—0.04585,0.4824 + 0.2599i, 0.48244 — 0.25994, 0.5809};
Spec(v (ai, a;)) = {0.61958 + 0.289127,0.61958 — 0.28912i, 0.5864,0.0744}.

Hence, the Laplacian spectrum of picture fuzzy directed graph G may be written as

Spec(G) = {(0.02329, —0.04585,0.61958 + 0.0289127), (0.8883 + 0.26351, 0.4824 + 0.2599¢, 0.61958 — 0.289127),
(0.8883 — 0.2635i, 0.48244 — 0.25994,0.5864), (0.7000, 0.5809, 0.0744) }.
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The calculation of the components for Laplacian energy of picture fuzzy directed graph G

has been listed below:
LE(pug (i, aj)) = 2.49989; LE(n3 (i, ;) = 1.59163; LE(v3 (i, ;) = 1.89996
Hence, the Laplacian energy of picture fuzzy directed graph G is

LE(G) = (2.49989, 1.59163, 1.89996).

5.3 Algorithm for Selection Process Using Picture
Fuzzy Graph Energy

In this section, we focus on the application of the proposed energy /Laplacian energy of pictu
re fuzzy directed graph in a real world problem related to the site selection process. For ens
-uring the sustainable development, the use of natural resources in an environmental consci
-ousness framework has got a remarkable popularity in recent decades. Establishment of hyd
-ropower plants certainly provides high usability, better reliability and clean source of energy.
The problem of site selection for the hydropower plants also comprise of political, social, en-

vironmental and cultural aspects in addition to the technical requirements.

Decision making methods are often used in various selection processes where the final
task is to select the best one out of the given set of alternatives. While drawing some con-
cluding remarks in applicable fields, the experts mainly focus on different correlated factors
with their prior perception and expertise. The preference relation is supposed to be the best
and fruitful tool to achieve the actual sorting of the given set of alternatives among which
the experts put forward their preference over other alternatives. In order to implement the
preference relation concept, we would consider the information in the shape of picture fuzzy

numbers as follows:

Definition 59 A picture fuzzy preference relation (PFPR) on the universe of dis-
course U = {1, 00,a3,...,am} is represented by a matric R = (73j)mxm, where rj; =
((ai,ozj),,u(ozi,aj),n(ai,aj),y(ai,aj)) Vi, j=1,2,...,m.

For the sake of simplicity, suppose ri; = (uij,nij,Vij), where p;; is the degree to
which the object a; has been preferred over the object o, m;; is the degree to which the ex-

pert is in dilemma whether to prefer the object oy or ;. In addition to this, v;; gives the
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degree to which o; is not preferred to o and
rij =1 — (pij (@) +mij (@) + vij(a))
gives the amount of refusal with the following constraint:
0 < paj(@) + mij(e) + vig(e) < 1, pij = vji, mij = nji, vig = pji and pyg = 1,75 = vig = 0;

Vi,j=1,2,...,m.

Suppose that the issue of site selection for the establishment of hydropower plant is

formulated as:

e Based on the comprehensive survey conducted by the government agencies, let there
are four possible locations/sites (a1, ag, as, a4) for the hydropower plant to be establis
-hed.

e The survey has a detailed database and reports for all the four possible sites in con-
text with the various deterministic features such as ecological safety, plant safety, so-
cial factor, economical factors, maximum efficiency, hydrological factors, environmen-

tal factor etc.

e For conducting the evaluation process based on the survey database report, suppose there
are three experts (ex; k = 1,2,3) who have been independently deputed. Based on
the their experience, the expert’s comparative opinions have been marked in the form

picture fuzzy numbers.

e Further, picture fuzzy preference relations in the form of matrices have been constructed

as the initial step for the site selection process.

In view of the proposed energy/Laplacian energy of picture fuzzy directed graphs with pref-
erence relations, an algorithm for accomplishing the computing task of site selection along with

a flow chart is being presented in Figure 5.3.
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Start

l

For each expert ey,
construct the preference
matrix R, and
corresponding PFDG G,

Calculate the energy
— > and Laplacian energy
of each PFDG

Determine the weight

Utilize the Picture fuzzy weighted Neoa ) e

geometric interactive aggregation

«— rt based
operator (PFWGIA,,) to obtain the EE::;V\L::T“:::]
aggregated matrix R = [rij] energy of PFDG
Calculate the score value Determine the net degree of
for each r; by utilizing preference of alternatives by
X I —.
the score function utilizing the function ®(a;),
S(Tij) =piz’-~v?j =12 ..,m
Rank the

|
alternatives a; based on the

Finish <+«——— valuesobtained from the
function ®(a;),
=12

Figure 5.3: Flow chart of algorithm for alternatives selection process

Working Methodology of Proposed Algorithm

Step 1: The experts compare the involved factors and present some initial inputs for the
computing process in the shape of picture fuzzy preference relations, represented in the

form of matrices Ry = (ﬁ;(k))zxxzx (k=1,2,3).

Step 2: Consider a suitable picture fuzzy directed graph Gy, corresponding to the PF'PRs
given by Ri(k =1,2,3).

Step 3: Compute the energy of each picture fuzzy directed graph as per the definition
of the energy of PFDG.

Step 4: The weight vector for each expert can be calculated by using

kook ok EG )y  EG)r  E(G))

;pwnawy): k [ ' Tk
IZ)IE(Gu)z ;E(Gn)z ;E(Gu)z

wi = (w k=1,23.

Step 5: In this step, we use picture fuzzy weighted average or picture fuzzy ordered weighted

average or picture fuzzy hybrid average aggregation operator recently given by Garg [39].
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In this way, we aggregate the three picture fuzzy preference relations R;, Ro and R3 given in

step 1 into a single preference relation R.
- Step 6: We compute the score values by utilizing the score function
) = 1,
and tabulate them in the form of a matrix S(R) = [r;].

- Step 7: Next, we determine the net degree of preference of alternatives by utilizing the function
¢(a;) given by Wang and Fan [154] as follows:

m

(o) = Z (?”z‘j — Tji),i =1,2,3,...m

=1,

- Step 8: On the basis of the highest value of the net degree, finally we choose the opti-

mal alternative by ranking all the /s, i.e,
Q] > g > 0y > Q3.

Hence, we conclude that the site oy is the best site for the establishment of hydropower plant

based on our proposed methodology and algorithm.

Remark: In step 4, we can replace the concept of energy by the concept of Laplacian
energy for the evaluation of weights. In this case, we will be using the following formula for

the calculation of weights:

LE(G ) LE(Gn)k LE(GV)k
ZLE( L ZLE( n)i ZLE( v)i

wy = (wﬁ,w,’;,wk)

k=1,2,3.

All the computations can similarly by performed for the evaluation process.

Important Comparative Remarks:
For the sake of justification in connection with the proposed technique, we consider two examples
of problems of site selection which have been solved recently by different researchers. Gundogdu
et al.[34] proposed Picture Fuzzy Linear Assignment Method and Jovicic et.al [122] pro-
posed Picture Fuzzy ARAS Method to solve the site selection problems.

e In both the approaches, the decision matrix has been constructed by considering the

available alternatives and the laid down criteria according to the respective needs.
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e In step 4, we can replace the concept of energy by the concept of Laplacian energy for

the evaluation of weights. In this case, we will be using the following formula for

the calculation of weights:

E ok k) = LE(G) LE(Gn)k: LE<G1/>k

k=1,2,3.

Wg = (w,uawnv

ZLE(

ml ZLE( n)t ZLE( v)i

All the computations can similarly by performed for the evaluation process.

e The difference is in the process of considering the vertices and edges where the vertices

of the particular individuals and connecting edges would represent the mutual rela-

tionships and makes the situation easier to understand and interpret. The data of

the problem under consideration fits for the picture fuzzy graph-theoretic approach.

e The advantage of our method over other existing methods are explained by follow-

ing remarks.

PF Linear Assignment Method [34]

Initially the alternatives and the criteria-based table have been
designed with the help of experts. Utilizing Picture Fuzzy
Weighted Averaging operator (PFWA), the individual decision matrix
has been accumulated and the elements have been computed with
the picture fuzzy score function. Further, the rank frequency
of the positive valued matrix/weighted matrix 7 is calculated.
After solving these two matrices the solutions are obtained.

The weight vector is dependent on the expert view.

PF ARAS Method [122]

The linguistic criteria weight matrices are considered with the
help of decision makers. The picture fuzzy evaluation matrices have
been evaluated and normalized to determine the picture fuzzy decision
matrix. Further, in this process the picture fuzzy weighted decision
matrix is calculated. In the end, the author calculated the picture
fuzzy optimality function which leads to the defuzzified value of the
optimality function and ultimately the utility

degree of each alternative is obtained (for ranking).

Laplacian Energy of Picture Fuzzy Graph

But in our case the data is collected only for the graph after
the graph is made according to the various criteria. We calculated
the weight vector of the graph which makes it more reliable.
The mutual relationships among the criteria and alternatives have
been translated with the concept of Laplacian energy for

the evaluation of the necessary weights.
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5.4 Comparative Remarks, Advantages and Limi-

tations of the Proposed Methodology

On the basis of the work proposed in the manuscript, we present some important compar-
ative remarks & advantageous features behind the implementation of picture fuzzy graphs

and their operations:

e As mentioned earlier, the incorporation of intuitionistic fuzzy sets and Pythagorean fu
-zzy sets has some limitations and not able to capture the full information specification
of the situation. Therefore, the additional components of the degrees of membership,
neutral membership, non-membership and degree of refusal in case of the picture fuzzy
sets certainly provide a wider coverage and wider geometrical

span.

e In this way we find that the proposed graphs & operations are sufficiently capable
to address the connected dependance due to the incompleteness of the information hav

-ing the refusal factor in a more reliable way.

e The drawback in the existing literature of the intuitionistic fuzzy graphs and Pythag
-orean fuzzy graphs is that the condition does not allow the experts/decision makers
to allocate the membership values of their own choice (Refer Table 5.1). Somehow,
this makes the experts bounded for giving their input in a particular defined domain.
However, the proposed picture fuzzy graphs provide a generalization feature which

make a strong impact.

Table 5.1: Concerns Raised in IFSs and PyFSs

R Ch Co Cs Cy

o (1.0+0.0+0.0=1) (0.40 + 0.20 + 0.60 > 1) | (0.36 +0.19+ 0.79 > 1) | (0.56 + 0.17 + 0.62 > 1)
Cy | (0.68+0.20+0.44>1) (1.040.040.0> 1) (0,40 +0.24 +0.56 > 1) | (0.51 +0.29 +0.61 > 1)
Cs | (0.76+0204042>1) | (0.54+0.24+0.42 > 1) (104 0.0+ 0.0 > 1) (0.48 4+ 0.14 + 0.77 > 1)
Co | (049+0.1740.68>1) | (059+0.29+053>1) | (0.77+0.17+0.38 > 1) (1.0 4 0.0 + 0.0 > 1)

e The weights are being evaluated using the energy and the Laplacian energy which play
a key role in the evaluation process. This is because the utility factors of the avail-

able alternatives are directly translated into the weights with the help of the energy.
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5.5 Conclusions

The Pythagorean fuzzy graph-theoretic model and concepts are however sufficient to dis-
cuss the issues related with uncertainty, impreciseness & inconsistency of the information,
but the containment of the refusal degree has not been considered. We have successfully
put forward the novel notion of energy and Laplacian energy for the picture fuzzy graph
along with the bounds on them. Through the proposed approach, we are certainly able to
model accordingly and deal with the refusal component for providing a better geometri-
cal span. The proposed concepts are well composed and clearly discussed with illustrative
fuzzy graph examples. The implementation of the proposed algorithm has been success-

fully presented by taking a hydropower plant site selection problem into account.
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Chapter 6

Conclusions & Future Work

In the present thesis, we have studied and proposed some new extension of fuzzy sets with
various results and applications. The findings of the work carried out in the various chapters

are being listed along with possible scope of future work:

e A novel concept of cohesive fuzzy set (CHFS) has been successfully proposed which
has the dual benefits of complex fuzzy set with coverage of hesitant fuzzy set. Various
properties and identities have also been proposed to increase the understanding of the

concept.

e The applicability of cohesive fuzzy set has been explained in detail in case of reference
signals using the concept of Inverse/Discrete Fourier transformation. The numerical

example has also been presented using the proposed methodologies.

e Second application of cohesive fuzzy set has been presented in case of solar activity
in which the proposed concept is utilized to obtain the interval contains maximum

amount of sunspots.

e The proposed concept of cohesive has been proved to be very reliable and therefore

will be of great help in solving various uncertainties problems in future.

e The novel concept of complex neutrosophic matrix has been proposed and the funda-
mentals of the concept have also been explained with the help of various operations

for better clarity.

e The matrix norm and power convergence of complex neutrosophic matrix have been

studied and discussed thoroughly.
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Further, new similarity measures have been presented and the property of positive

definiteness of presented similarity measures have also been discussed for better clar-
ity.

The applicability of the proposed similarity measure have been presented in case of

medical diagnosis.

Various operators in case of complex fuzzy matrix have been discussed in detail for

better understanding and a similarity measure has also been proposed.

The applicability of the complex fuzzy matrix has been studied in case of signal

identification and this also validates the use of proposed theory.

The four exponential similarity measures have been proposed for the case of single

valued neutrosophic set and in addition a classification problem has been presented.

The applicability of proposed exponential measures has been presented in case of

decision making problem.

The ‘useful’ information measure with various other information measures have been

presented and validated with the help of various theorems.

The future work of the proposed concept can also been presented for the case of

constrained optimization with a suitable applicability for the decision models.

Laplacian energy for the case of picture fuzzy graph is calculated and through the
proposed approach we are able to deal with the refusal component for providing a

better geometrical span.

The applicability of the proposed concepts has been applied in case of hydrogen power
plant. Further, the concept of isomorphic graphs, planar graphs, dual graphs, regu-
lar graphs, etc., can analogously defined and applied in various application fields of
engineering design, system science, networking etc. Also, these definitions can fur-
ther be applicably enhanced to “hesitant picture fuzzy graph” and “picture fuzzy soft
graph”.
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