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Abstract
———————————————————————————————–

The objective of this thesis entitled, “On Complex Extensions and Information Mea-

sures of Neutrosophic, Hesitant & Picture Fuzzy Sets in Decision Making” is to

study the concept of fuzzy extensions on real and complex planes along with various

applications in detail. The work presented in this thesis has been carried out in

order to fulfill the objective to propose the notion of cohesive fuzzy set, complex

neutrosophic matrix, energy of picture fuzzy graphs with their various important

operations & applications in the field of decision-making.

In literature, the notion of fuzzy sets and its generalized extensions have made

a large amount of contribution in the progress of scientific and engineering research

area. It has large number of applications in the areas (theoretical as well as prac-

tical) related to engineering, arts, humanities, computer science, health sciences,

life sciences, physical sciences etc due to its ability of dealing with the uncertainty

factor. In the current work, these concepts have been explained in detail and brief

structure of the format of the presented work is presented below:

We have presented the fundamental background of hesitant, neutrosophic, picture

and complex fuzzy sets with their mathematical form, definitions, operations and

literature survey in Chapter 1.

In Chapter 2, a novel concept of Cohesive fuzzy set (CHFS) has been proposed as a

synchronized generalization from innovative notions of complex fuzzy set and hesi-

tant fuzzy set. We have also studied the relationship and connections between the

Cohesive Fuzzy Set and Complex Intuitionistic Fuzzy Set along with the validation

of the obtained results. Based on the proposed notion, various properties, operations

and identities have been established with their necessary proof. The applications of

CHFS in the process of filtering the signals for getting the reference signal using the

necessary Fourier cosine transform (FCT)/inverse FCT and identifying maximum

number of sunspots in a particular interval under a solar activity have been suitably

discussed with illustrative numerical examples. Some advantages of incorporating

the proposed notion have also been tabulated for the sake of better understanding.

In Chapter 3, a new concept of the complex neutrosophic matrix has been intro-

viii



duced to solve different problems related to uncertainties. Based on the proposed

matrix, we have provided various algebraic operations like addition, subtraction,

union many others which will be of great help in establishing the fundamental con-

cepts. The matrix norm convergence of the proposed matrix has also been studied

for the necessary foundation of the complex neutrosophic matrix. The two different

types of new similarity measure matrices for complex neutrosophic matrices have

been proposed and validated the axiomatic definition of the similarity measure. In

addition to this, a new similarity measure has also been proposed for complex fuzzy

matrices along with detailed explanatory numerical example. The application in the

area of identification of reference signal has also been described.

In Chapter 4, four new similarity measures in their exponential form have been

proposed for the case of single valued neutrosophic set. Numerical examples for the

classification problem and the decision-making problem have also been presented and

compared the obtained results with the well established existing approaches. Later,

a novel concept of single valued neutrosophic information measure based on utility

distribution and probabilistic randomness has also been proposed. The proposed

concept has been obtained by integrating the uncertainties caused by neutrosophic

information, useful information (utility based) and probabilistic information. Fur-

ther, in a similar integrating way, the divergence measure of the ‘useful’ information

has also been proposed for the study of applicable mutual information. Conse-

quently, the hybrid ambiguity and neutrosophic information improvement measures

have been studied with the help of the proposed ‘useful’ information measures.

In Chapter 5, the notion of energy and Laplacian energy of Picture fuzzy graph and

directed Picture fuzzy graph have been proposed with the help of adjacency matrix.

and the results on lower and upper bounds. On the basis of the proposed energy of

picture fuzzy graph, a methodology for the ranking in a decision-making problem

of site selection has been proposed. In order to illustrate the implementation of

the proposed methodology, a hydro-power plant site selection problem has been

considered. The novelty of the proposed approach, comparative analysis, advantages

have also been studied.

Finally, the proposed work has been concluded in Chapter 6 of the current thesis

along with some possible scope of future work.
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Chapter 1

Introduction

Various tools have been designed by different researchers to solve the problem of un-

certainty inherited in our day today life among which the probability theory and the

theory of fuzzy sets are the most popular as well as widely applicable theories. It

may be noted that the information regarding the relative frequency is having a due

concern with the probability theory whereas in case of imprecise and inexact infor-

mation having uncertainty for the decision makers, the fuzzy set theory is utilized.

Zadeh introducedithe concept ofifuzzy sets (FSs) [72] which is found to be more ef-

ficientidecision aid techniquesiproviding the ability to dealiwith the uncertaintyiand

the vagueness present in our real-life problems. In literature, it is prominently visible

that the notion of fuzzy set theoryiplaysia vital role in the areas of medical science

[100], engineering applications [45], optimization [95], decision science [138], biologi-

cal characterization problems [26], econometric [103], image analysis [105] etc. Due

to the increasing componential factor, Atanassov [64] introduceditheiconcept of in-

tuitionisticifuzzy set (IFS)iwhich includes theimembership, non-membershipiand the

hesitant function.

In an another extensional way, Torra [141] first introduceditheinotioniof hesitant

fuzzyiset (HFS) along with various operations (complement, union and intersection

etc.) which provided new dimensions to the research especially in theifield of group

decisionimaking where the problem of multi-favorable situation can be better han-

dled. For the sake of better understanding on some of the existing extensions and

generalizations available in literature, we present an explanatory diagram given in

1



the following Figure 1.1:

Intuitionistic 

Fuzzy Set 

K.T. Atanasov (1983)

Fuzzy Sets

L . A.  Zadeh (1965)

Intuitionistic Fuzzy Set 

of Second Type

K.T.  Atanasov (1989) or
Pythagorean Fuzzy Set 

R.R. Yager (2013)

Hesitant Fuzzy Set

V.Torra (2010)

Soft Set

D. Molodstov
(1999)

Fuzzy Soft Set

P.K. Maji  et. al. 
(2001)

Intuitionistic 

Fuzzy Soft Set

P.K. Maji et. al.  
(2001)

Complex Intuitionistic 

Fuzzy Set

Abdulzeez et. al. (2012)

Complex Fuzzy Set

Ramot et al. (2002)

Picture Fuzzy 

Soft Set

B. Coung (2013)

Soft Matrix

Naim Cagman
et. al.(2010)

Fuzzy Soft 

Matrix

Yong Yang
et. al. (2011)

Intuitionistic 

Fuzzy Soft 

Matrix

B. Chetia
et. al. (2012)

Pythagorean 

Fuzzy Soft 

Matrix

A. Guleria
et. al. (2018)

T-spherical Fuzzy 

Soft Set

(Guleria & Bajaj 2019)

Intuitionistic 

Fuzzy Set of 

n-th Type

K.T. Atanasov et.al. 
(2018)

Start

Dual Hesitant Fuzzy Set

Zhu (2012)

Figure 1.1: Generalizations and Extensions of FuzzyiSets

Inithe hesitant fuzzy set, the decision makers provide a set of various favorable

(multi-favorable situations) membership values for expressing their preferences/ as-

sessments at the same time. On the other hand, the complex fuzzy set provides

freedom to add a phase component which enables us to gain for information regard-

ing a particular higher dimensional periodic problem. Further, Rezaei et al. [14]

proposed the concept of hesitant fuzzy filters with few results on BE-algebra. In ad-

dition to this the connection between the γ- inclusive sets and hesitant fuzzy filters

are also presented in detail. Further, the authors [15] have extended the concept to

neutrosophic set and proposed a concept of neutrosophic filters in BE-algebra.

Further, Smarandache [32] contributed the unique concept of indeterminacy to

the above-mentioned theories, which plays a vitalirole in obtaining solutions to var-

ious uncertain situations. This novel concept is known as the neutrosophiciset, this

concept of the neutrosophic set not only increase the clarity but also increase the basic

information related to neutrality. “Neutrosophic set is the branch of philosophy that

deals with neutrality and its interaction with the different philosophical spectra.[32]”

Different generalized extensions of the theory of neutrosophic sets are available in

literature. Some of them have been listed through the following Figure 1.2.
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Neutrosophic Set

Smarandache
(1995)

Neutrosophic Crisp Set 

Salama et al.(2014)
Complex 

neutrosophic Set

Smarandache
et al. (2015)

Single valued 

Neutrosophic Set 

Wang et al.(2010)

Interval valued 

Neutrosophic Set

Wang et al.(2010)

Neutrosophic Fuzzy 

Matrix

Dhar et al. (2014)

Fuzzy Set

Zadeh (1965)

Strong Neutrosophic 

Graph

Dhavaseelan et 
al.(2015)

Interval Neutrosophic 

Hesitant Fuzzy Set

Ye (2016)

Multi valued 

Neutrosophic Set

Wang et al.(2015)

Hesitant Bipolar 

valued Neutrosophic 

Set

Awang et al. (2019)

Neutrosophic Soft 

Matrix

Deli et al.(2014)

Complex neutrosophic 

soft set

Broumi et al.(2017)

Neutrosophic interval 

Matrix

Kandasamy et 
al.(2006)

Bipolar Neutrosophic 

Set

Deli et al.(2015)

Neutrosophic Soft 

Graph

Akram (2017)

Single valued 

Neutrosophic Planar 

Graph

Akram (2016)

Neutrosophic Soft Set

Maji et al.(2013)

Intuitionistic 

Neutrosophic Set

Bhowmik et al.(2009)

Figure 1.2: Literature Survey of Neutrosophic Theory

It may beinoted that the application of neutrosophiciset enhances the capability

to study different types of information-based decisionimaking problems more effec-

tively. The generalizationiof fuzzyiset to neutrosophic set with their information span

may be understood by the geometric presentation given by the following Figure 1.3:

Figure 1.3: Extensioniof FuzzyiSet to NeutrosophiciSet

Further, Cuong [16] proposed the concept of pictureifuzzyiset (PFS), where in all

the four components, i.e., “degree of membership, degree of indeterminacy (neutral),

3



degree of nonmembership and the degree of refusal have been taken into account”. For

the sake of better understanding the implementation of picture fuzzy information, we

narrate an example of a voting system [16] - “Suppose the voters have been categorized

into four different classes: one who votes for (yes), one who votes against (no), one

who neither vote for nor against (abstain) and one who refused for voting (refusal). It

may be noted that the concept of ‘refusal’ is found to be an additional component which

was not being taken into account by any of the sets or by their generalizations (fuzzy

set, intuitionistic fuzzy set, Pythagorean fuzzy set, neutrosophic set) stated above”.

Kifayat et al. [140] presented the geometricaliaspects andifeatures of these gen-

eralizations - “fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and picture

fuzzy sets”. It may beinoted that the phenomenon ofithe votingisystem statediabove

caninot beirepresented closelyiand sufficientlyiby utilizingithe Pythagoreanifuzzy grap

-hs/sets. Foricapturing the informationicontent andiutilizing the flexibilityiin a more

broader sense, theigraph-theoretic literatureiof picture fuzzy set, pictureifuzzy graph

and itsiapplications have been introduced.

1.1 Fundamental Notions and Preliminaries

In this section, some fundamental notion related to the hesitant fuzzy set, neutro-

sophic set, complex fuzzy set, fuzzy matrix and picture fuzzy sets/graphs along with

their binary operations have been explained in detail.

1.1.1 Hesitant Fuzzy Set

Consider a fuzzyiset M over a universeiofidiscourse X characterizediby the degree of

membershipifunction µM(x)(µM : X → [0, 1]) . The value of µM representsithe grade

of degree toiwhich the given elementiof the set X belongs to theiset M . A new ex-

tension to fuzzy set has been firstly presented by Torra [141] in 2010 and named

as Hesitant fuzzy set, which has various advantageous properties over the other ex-

tensions present in literature. This motivated a large amount of mathematicians to

study the hesitant concept in detail, which yields various meaningful studies for ex-

tracting solutions of the problems related to uncertainty in decisionimakingiprocess.

4



The mathematical form of the hesitant fuzzy set in form of hesitant fuzzy element is

given below:

Definition 1 [141] “Suppose a universe of discourse X, then the hesitantifuzzy set

over X is defined by a hesitant fuzzy element h such that when it is applied to X it

again returns a subset in interval [0, 1]. The hesitant fuzzy set M is represented as:

M = {< x, hM (x) > |x ∈ X}; where hM is the hesitant element.”

Later, Qian et al. [35] presented theiconcept of the generalized hesitant fuzzy set

which defines its connection with the intuitionistic fuzzyiset and also explained its

application in case of decision support system. Some of the properties related to the

hesitant fuzzy set are explained below:

Definition 2 [141]“Some of the hesitant fuzzy set are given below:

• Empty Set: h(x) = 0, ∀x ∈ X.

• Full Set: h(x) = 1,∀x ∈ X.

• Complement Ignorance Set: h(x) = [0, 1].

• Nonsense Set for element x: h(x) = ϕ.”

Definition 3 [141]“Suppose the lower and the upper bound in case of hesitant fuzzy

set h(x) is defined as

• Lower Bound: h−(x) = minh(x) and

• Upper Bound: h+(x) = maxh(x).”

Definition 4 [141] “Consider two hesitant fuzzy sets hA and hB over the universe of

discourse set X. The binary operations defined over the hesitant fuzzy sets are given

as:

• Intersection: hA(x) ∩ hB(x) = {h ∈ (hA(x) ∪ hB(x)) |h ≤ min
(
h+
A, h

+
B

)
}.

• Union: hA(x) ∪ hB(x) = {h ∈ (hA(x) ∩ hB(x)) |h ≥ min
(
h−
A, h

−
B

)
}.

• Complement: hc(x) = ∪γ∈h(x){1− γ}.”
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1.1.2 Neutrosophic Set

Smarandache stated that the term neurtosophic obtained from the combination of

two Latin words Neuter iand Sophia which means neutral skill which definitely re-

lated to the third independent component of neutrosophic set which is the important

contribution of the presented concept.

Definition 5 [32] “Suppose the neutrosophic set A in universe X is characterized by

three independent membership functions of truth (TA), neutrality (IA) and falsity (FA),

where TA, IA&FA lie in interval ]0−, 1+[. The mathematical form of the definition is

given as

A = {< x, (TA, IA, FA) > |x ∈ X};

and it must also satisfy the condition: 0− ≤ sup(TA) + sup(IA) + sup(FA) ≤ 3+.”

Definition 6 [47] “Suppose A and B be two neutrosophic sets over the universe X.

Then, the binary operation defined over the two NSs are given as;

• Intersection: For truth function TA∩B = TA(x)× TB(x),

– For neutrality function IA∩B = IA(x)× TB(x),

– For falsity function FA∩B = FA(x)× FB(x).

• Union: For truth function TA∪B = TA(x) + TB − TA × TB,

– For neutrality function IA∪B = IA(x) + IB − IA × IB,

– For falsity function FA∪B = FA(x) + FB − FA × FB.

• Complement: For truth function T c
A = {1+} − TA(x),

– For neutrality function IcA = {1+} − IA(x),

– For falsity function F c
A = {1+} − FA(x).”

However, it is very difficult to apply the concept of non-standard NS to practical life

problems. Therefore, the concept of three independent functions in NS is bounded

in the range of unit interval [0, 1] to extract the solution of real life problems. This
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leads to the concepts of a singleivalued neutrosophiciset (SVNS) [47] and an inter-

val neutrosophic set (INS) [48] which are known as the branches of a neutrosophic

theory/set. The formal definition for the case of SVNS is given as:

Definition 7 [47] “Consider a single valued neutrosophic set A in X(universe of dis-

course) and is characterized by three membership function truth (TA), indeterminacy

(IA) and falsity (FA). The mathematical form is represented as

A = {
∫
X

< T (x), I(x), F (x) > /x|x ∈ X};

when the universe X is continuous.

A = {
n∑
i=1

< T (xi), I(xi), F (xi) > /xi|xi ∈ X};

when the universe X is discrete. All the functions must satisfy, i.e., TA, IA, FA ∈
[0, 1].”

Definition 8 [47] “Suppose A and B be two single valued neutrosophic sets over the

universe X. The, the binary operation defined over the two NSs are given as;

• Intersection: For truth function TA∩B = min (TA(x), TB(x)),

– For neutrality function IA∩B = min (IA(x), TB(x)),

– For falsity function FA∩B = max (FA(x), FB(x)).

• Union: For truth function TA∪B = max (TA(x), TB(x)),

– For neutrality function IA∪B = max (IA(x), TB(x)),

– For falsity function FA∪B = min (FA(x), FB(x)).

• Complement: For truth function T c
A = FA(x),

– For neutrality function IcA = {1} − IA(x),

– For falsity function F c
A = TA(x).”
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1.1.3 Complex Fuzzy Set

Later, the fuzzy set is extended from the unit interval of [0, 1] on real plane to unit

disc in complexiplane by Ramot[28] in 2002. The complexifuzzy set added the phase

term to the amplitude term present in the Zadeh’s theory of fuzzy set and this prove

to be very useful in tracking the cycle or the pattern of occurrence of the uncertainty

events. The mathematical form of the complexifuzzy set is explained below:

Definition 9 [28] “A complex fuzzy set M in the universe of discourse X, is char-

acterized by the complex valued form of membership function µM(x), i.e., µM(x) =

aM(x)eibM (x) where aM(x)& bM(x) are real valued functions and aM(x) ∈ [0, 1]. The

mathematical representation of the complex fuzzy set M is given as:

M = {< x, µM(x) > |x ∈ X.}”

Definition 10 [28] “Some of the binary operations between two CFSs M and N are

given below:

• Intersection: µM∪N(x) = [aM(x)⊕ aN(x)]e
ibM∪N (x).

• Union: µM∩N(x) = [aM(x) ∗ aN(x)]eibM∩N (x).

• Complement: µMc(x) = (1− aM(x)) ei(2π−bM (x)).”

Thomason [91] proposed the concept of matrix in case of fuzzy set and explained it

with the help of the various properties of convergence.

Definition 11 [91] “Let fuzzy matrix is denoted by P , defined on a universe X con-

sists of fuzzy element aij and is represented by

P = [aij]m×n ; where aij ∈ [0, 1] , (1 ≤ i ≤ m, 1 ≤ j ≤ n) .”

Definition 12 [91] “Some of the algebraic operations between two fuzzy matrices A

and B are given below:

• Subtraction: A−B =

{
aij, iff A > B

0, otherwise
.
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• Addition: A+B = max (aij, bij) .

• Multiplication: A.B = min (aij, bij).”

Definition 13 [158] “The complex fuzzy matrix denoted by P , is defined as

P = [aij (x) + ibij (x)]m×n ;

where (aij, bij) ∈ [0, 1] , (1 ≤ i ≤ m, 1 ≤ j ≤ n).”

1.1.4 Picture Fuzzy Set and Picture Fuzzy Graph

Picture fuzzy set [16] are directiextensions of fuzzyisets and intuitionisticifuzzy sets

which additionallyiincorporates the concept of positive, negative, neutralimembership

and degree ofirefusal in the decision making problems related to human opinions. One

of the most common example to understand the concept more clearly has been pre-

sented in case of voting where we have to deal with four categories (vote for/iabstain/ivote

against/irefusal of the voting). This theory of picture fuzzy set has been further ex-

tended by Zuo[24] for the case of fuzzy graph and the author presented the concept

of picture fuzzy graph with several types. The researchers utilized the concepts of

picture fuzzy set/ graph to solve various complex situations created in real life under

uncertain environment. The detailed definition for both the concepts are presented

below:

Definition 14 [16]“A picture fuzzy set A in U (universe of discourse) is given by

A = {< x, (µA(x), ηA(x), νA(x)) >| x ∈ U} ;

where µA : U → [0, 1], ηA : U → [0, 1] and νA : U → [0, 1] denote the degree of

membership, degree of neutral membership (abstain) and degree of non-membership

respectively and for every α ∈ U satisfy the condition

µA(x) + ηA(x) + νA(x) ≤ 1.

The degree of refusal for any picture fuzzy set A and x ∈ U is given by rA(x) =

1− (µA(x) + ηA(x) + νA(x)).”
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Definition 15 [16] “Suppose A and B be two picture fuzzy sets over the universe X.

The, the binary operation defined over the two PFSs are given as;

• Intersection: For truth function µA∩B = min (µA(x), µB(x)),

– For neutrality function ηA∩B = min (ηA(x), ηB(x)),

– For falsity function νA∩B = max (νA(x), νB(x)).

• Union: For truth function µA∪B = max (µA(x), µB(x)),

– For neutrality function ηA∪B = min (ηA(x), ηB(x)),

– For falsity function νA∪B = min (νA(x), νB(x)).

• Complement: For truth function µcA = νA(x),

– For neutrality function ηcA = ηA(x),

– For falsity function νcA = νA(x).”

Definition 16 [24] “A picture fuzzy graph on (S,R), denoted by G = (M,N), where

M is a picture fuzzy set on S and N is a picture fuzzy relation in R = S × S such

that

µN(x, y) ≤ min{µM(x), µM(y)},

ηN(x, y) ≥ max{ηM(x), ηM(y)},

νN(x, y) ≥ min{νM(x), νM(y)};

satisfying the constraint condition 0 ≤ µN(x, y) + ηN(x, y) + νN(x, y) ≤ 1, ∀x, y ∈ S.

The set M is called the picture fuzzy vertex set of the graph G and N is called the

picture fuzzy edge set of the graph G.”

1.2 Literature Survey

A brief literature survey related to our present work has been summarized below:
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1.2.1 Complex Extensions of Fuzzy Sets & Neutrosophic Sets

In due course of time, several types of complexities got added upon and researchers

proposed various other generalizations of fuzzy sets and intuitionisticifuzzy sets. One

of the major limitation of the application of FSs and IFSs that these sets are not ca-

pable to address the periodicity occurring in some uncertain and incomplete/inexact

information. In addition to this, various other problems having two dimensional

framework can not be modeled with FSs and IFSs. In order to encounter this defi-

ciency, Ramot et al.[28] extendedithe existing structure of fuzzy set to complex fuzzy

set (CFS) which added the phase variable and also extended the range from [0,1]

to the uniticircle in the complexiplane which spans the information in a wider sense.

The membership function µS (x) = rS (x) e
iwS(x) in the complex fuzzy set implies that

all the membership values must lie inside the unit circle on the complexiplane. There

is a kind of specific mapping between a CFS and Fourier transform which can be

observed by restricting the range to a complex unit disk and henceforth having vari-

ous applications in the field of communication system, geological phenomena, optical

systems etc. The CFS has been extendedito complex intuitionistic fuzzy set (CIFS)

by Abdulzeez et. al. [7] which added the complex membership and non-membership

function. Garg & Rani [41] [42] contributed two studies in the field of CIFS. First,

they developed correlation/weighted correlation coefficients under the CIFS setup

where the membership degrees were utilized to represent the two-dimensional infor-

mation. Secondly, they introduced and discussed the transformation relationships

among the similarity, distance, entropies, and inclusion measures. Yaqoob et.al [102]

introduced the notion of complex intuitionistic fuzzy graphs by combining two effi-

cient theories (CIFS and graph theory) and also explained their advantage with the

help of examples in the field of cellular network.

Besides various generalizations of fuzzy sets and their respective measures avail-

able in literature, Xu & Xia [160] presented various distance measures, similarity

measures and correlation coefficients for hesitant fuzzy sets. Also, Torra [141] es-

tablished a relation between HFS and IFS stating the enveloping procedure of IFS

over HFS. Xu et.al [161] elaborated the hesitant fuzzy sets theoretically with differ-

ent support system and methodologies which have some kind of special advantageous

features in the group decision making processes. They also described the consensus
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process in hesitant fuzzy setup to complete the decision making process. Ren et.al.

[159] extended the concept of HFS to normal wiggly hesitant fuzzy sets to improve

the rationality of decision making process and also proposed two introductory ag-

gregation operators. The another important contribution made in the study of HFS

is dual hesitant fuzzy set (DHFS) which was proposed by Xu et.al [19] in which

the membershipihesitancy functioniand non-membershipihesitancy functioniare used

to supportia moreiflexible accessito assign theivalues to eachielement in theidomain.

It may be noted that FS, IFS & HFS can be treated as the special cases of DHFS.

Further, Garg et.al. [40] added the probability factor to DHFS and proposed the coef-

ficients along with the weighted correlation coefficients for probabilistic dual hesitant

fuzzy sets (PDHFSs).

Further, the application of the cosine similarity measure to show the connectivity

between the CFSs is also displayed by Guo [145]. Then, Mahmood and Rehman [136]

extended the concept of CFS towards a bipolar complex fuzzy set and presented some

basic operators with two real-life applications in pattern recognition and medicine.

Further, Qudah and Hasan [150] presented a hybrid model known as a compleximulti-

fuzzy set by adding the properties of bothicomplex fuzzy setiandimulti fuzzy set. This

concept is further extended by Alkouri and Salleh [7] which contains the properties of

complex-valued membership and non-membershipifunctions and theibasic operators

(Union, Intersection andiComplement), which have been explained in detail for the

basic understanding of the concept. Later, Rani and Garg [29] introduced a distance

measure under the environment of a series of distance measures (Hamming, Euclidean,

and Hausdorff metrics) present in literature and validated this theory with the help

of decision-making problems.

Ali and Smarandache [87] extended this concept of complex value to neutro-

sophic and named it as ComplexiNeutrosophic FuzzyiSet (CNFS) which contains the

properties of both the complexifuzzy setiand neutrosophiciset. The complex neu-

trosophicifuzzy set has been studied in detail with the basic operations (Union, In-

tersection, complement etc) and the concept has been validated with the help of the

suitable application. Further, Ali and Mahmood [155] proposed a diceisimilarity mea-

sure for two complexineutrosophic setsiand explained the proposed concept by using

it to solve the pattern recognition problem.
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1.2.2 Fuzzy Matrix, Neutrosophic & Complex Fuzzy Matrix

Thomason [91] introduced the concept of fuzzyimatrix and studiediits convergence

with respect to matrix norms. Later, the determinant of the intuitionisticifuzzy ma-

trix wasiproposed by Pal [93] and then the notion of interval-valuediintuitionistic

fuzzy matrix was introducedkby Khan and Pal [123]. Dhar et al. [88] introducedithe

matrixiform of the neutrosophic set which plays a significant role in dealing with a

big database of information which was extended by Kandasamy et al. [148] who

proposedithe conceptiof neutrosophiciinterval matrices with itsiapplication. Vari-

ousiresearchers haveiextended theiristudy in the direction of extensioniof fuzzy the-

ories, which later turned to complex fuzzyimatrices by Zhaoiand Ma [158] in 2016.

Theyidefined theicomplex fuzzyimatrices in the form ofiC = (Aij(x) + iBij(x))iand

alsoiexplained the normiconvergence. Khan et al. [147] extendeditheiconcept of

complexifuzzy matrices to complexifuzzy softimatrices in 2020 and also proposed

someitheorems, which haveibeen explainediwith the help ofiits applicationiin Decision-

MakingiProblems.

Various other mathematicians like Abobala [81] in 2021, presented the refined

neutrosophic matrices and their algebraic operations with their application in the

refined algebraic equation. Deli et al. [52] contributed the neutrosophic soft ma-

trices and gave a methodology for storing the concept of the neutrosophic soft set

to the memory of the computer. Further, the concept of convergence was discussed

by many researchers [[146]-[69]] foria betteriunderstanding ofithe concept. This also

proves the advantage of matrix form over the set form for the uncertainty parameter

where one event can be taken at an interval of time instead of one problem. Ragab

et al. [97]discussed the determinant and adjoint of the square fuzzy matrix in detail.

Various other properties like the canonical form of transitive and strongly transitive

matrices are studied [[43],[146]]. In Kamaci [44] proposed various similarity measures

in case of soft matrices and also explained the advantages of soft matrices in many

computational process. Das [118] introduced the novel concept of intuitionistic fuzzy

matrix and studied various operators. The author also presented several similarity

measure and validated the theory with the help of application in case of proposed

similarity measure. The adjoint and determinant of square intuitionistic fuzzy matri-

ces were discussed by Le and Park [[151]-[152]]. Further, Muthuraji and Lalitha [137]
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discussed the unitary and binary operators for intuitionistic fuzzy matrices.

1.2.3 Information Measures of Neutrosophic Sets

The concept of similarity plays a fundamental role in solving various complex in-

determinate matters in human life. The theory of similarity is very efficient in the

fields of taxonomy, recognition, case-based reasoning and many others. Pramanikiand

Mondal [63] introduced weighted fuzzyisimilarity measures based on tangentifunction

and explained its importance through its applicationito medicalidiagnosis. Peng and

Smarandache [149] in 2019 generated multi-similarity model for the neutrosophic set

in order to brief the detailed process in decision-making problems in the economic

sector.

Wang [47] restricted the benefits of the neutrosophiciset to a Single Value Neutro-

sophic Set (SVNS) to increase its applicability in solving the problems. The similarity

and entropy measures play a critical role in the study of measuring uncertain infor-

mation related to the data available for fuzzy sets and their hybrid structures. The

necessary axioms for fuzzy entropy were introduced and explained by De Luca and

Termini [1]. On the otherihand, the similarityimeasure is considered an important

tool in comparison with the entropy measure due to its ability to calculate the simi-

larity between the sets according to the data present in the literature.

Mehmet et al.[125] have proposed the transformations between single-valued neu-

trosophic values based on the centroid points and the values are according to the

truth, indeterminacyiand falsityivalues of SVNS. The authors have also proposed a

new similarity measure based on the falsity function and presented its applicability

in the case of pattern recognition. Ulucay et al.[143] proposed some new similarity

measures (Dice similarityimeasure, weighted diceisimilarity measure, Hybridivector)

for the case of bipolar neutrosophic sets. Later, Ulucay et al. [144] proposed some

distance, similarityiand entropyimeasures between the two bipolar neutrosophicisets

after careful consideration of positive and negative membership functions. Finally,

the results obtained have been validated in accordance with the proposed methodol-

ogy. Also, Shahzadi et al. [37] have used the distanceiand similarityimeasures in the

case of single-valued neutrosophicisets to propose two algorithms in the field of medi-

14



cal diagnosis and validated the algorithms with help of numerical examples. Further,

Pamucar et al. [30] have proposed a fuzzy decision-making approach in the case of

a construction company by using a new weight aggregation operator that uses pair-

wise comparison. In addition, a novel fuzzyineutrosophic basediapproach for resilient

supplieriselection has also been proposed, which mainly contributes to the design,

implementationiand analysis of a multi-attribute evaluationisystem concerning fuzzy

neutrosophicivalues.

Majumdar and Samanta [108] presented the similarity and entropy measure be-

tween the two single-valued neutrosophic sets. Later, Pappis et al. [21], [22] presented

an axiomatic view of similarity measure for a better understanding of the similarity

measure concept. Various researchers have published many research articles on sim-

ilarity and entropy measures and utilized it in many applications like in the case of

fuzzyisoft sets [157], intuitionisticisoft sets [109] and interval-valuedifuzzy sets [51] so

on.

Various authors compared their algorithms with the similarityimeasures present

in theiliterature. The advancement in the case of similarity measures has been ex-

plained through the following sequential development given in Figure 1.4:

Measure of 

similarity on FS 

is introduced by 

Pappis (1993) 

Comparison of 

SM on FS by 

Chen & Hsiao 

(1995)

Dice SM on 

SVNS by Shan & 

Jun (2014)

SM on IVIFS by 

Kumar & Bajaj 

(2014)

SM on IFS by 

Hwang & Yang 

(2013)

Tangent SM on 

IFS by Mondal & 

Pramanik (2015)

SM on NS by 

Broumi & 

Smarandache 

(2013)

Tangent SM on 

NS by Kalyan & 

Mondal (2015)

SM on NS by 

Majumdar & 

Samanta (2014)

Cosine SM on IVNS 

by Broumi& 

Smarandache (2014)

Logarithmic 

SM on SVNS by 

Mondal et al. 

(2018)

Divergence SM 

by Guleria et 

al.(2019)

SM on NS by 

Poonia & Bajaj 

(2021)

SM on NS by 

Peng & 

Smarandache 

(2020)

SM on CNS by 

Mondal et al. 

(2020)

Figure 1.4: Methodologies using Similarity Measures

Different kinds of similarity/distanceimeasures of NSs haveibeen wellistudied by

Broumi & Smarandache [117]. Utilizing the distanceimeasure betweenitwo SVNSs,

Majumdariand Samanta [108] defined some importantimeasures of similarityialong
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with theiricharacteristics. Ye [59] presentedithe threeidifferent similarityimeasures

betweeniSVNSs as an extensioniof the Jaccard,iDice, and cosineisimilarity measures

in vectorispace and utilizedithen to solve theiMCDM problem underisimplified neu-

trosophiciinformation. Mondal andiPramanik [63] proposed a newitrigonometric mea-

sure called tangentisimilarity measureias an improvement oficosine similarityiand used

thisito solve the applicationsiproblem of selection ofieducational streamiand medi-

calidiagnosis. Ye [60] has given differentisimilarity measures for the intervalineutrosop

-hic sets based onidistance measuresiwith application inidecision processes. Next,iYe

et al. [61] [134] and Wu et al. [49] discussedithe problem of diagnosisibased on the

similarityimeasures for SVNSs.

Thao andiSmarandache [101] proposed newidivergence measure forineutrosophic

set with someiproperties and utilizedito solve the medicalidiagnosis problem and the

classification problem. Abdel-Bassetiet al. [73]ideveloped ainew model toihandle

the hospitalimedical careievaluation systemibased on plithogenicisets andialso stud-

iediintelligent medicalidecision supportimodel [74] based on softicomputing andiintern

-et of things. Iniaddition to this,ia hybrid plithogeniciapproach [75] byiutilizing the

qualityifunction in theisupply chain managementihas also beenideveloped. Further,

a newisystematic frameworkifor providingiaid and supportito the cancer patientsiby

using neutrosophicisets has been successfullyisuggested byiAbdel-Basset et al. [76].

Basedion neutrosophicisets, some newidecision-makingimodels haveialso been success-

fully presented for projectiselection [77]iand heartidisease diagnosis [78]iwith advan-

tagesiand definedilimitations. In subsequentiresearch, Abdel-Bassetiet al. [79] have

proposedia modifiediforecasting model basedion neutrosophicitime seriesianalysis and

ainew model for linearifractional programming basedion triangular neutrosophicinumb

-ers [80]. Also,iYang et al. [50]ihave studied some newisimilarity and entropyimeasures

of theiinterval neutrosophicisets on theibasis of new axiomaticidefinition alongiwith

its application in MCDMiproblem.

A new integrated method based on the Weighted Aggregated Sum Product As-

sessment (WASPAS) approach has also been proposed by Mishra et al. [8] to solve

a decision-makingiproblem with hesitant fuzzy information. The applicability of the

proposed technique has been presented in the case of the green supplier selection prob-

lem and the results obtained have been duly compared with the result that exists in
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the literature. Further, Mishra et al.[9] studied IVIF-divergence and entropy mea-

sures and proposed a new technique for solving the classical interactive multi-criteria

decision making by calculating the dominance degrees along with its applicability

with vehicle company example.

In 1972, Luca and Termini [1] introduced a newimeasure of fuzzy entropy basedion

the Shannon function [23] and with the help of these two theories a new set of prop-

erties have been designed. These properties play a significant role in describing the

fuzzy entropy. The fuzzy entropy by Luca et al. [1] is one of the simplest forms of

entropy present in the literature and is defined as,

M ′(A) = −
n∑
i=1

[ΓA(yi) log ΓA(yi) + (1− ΓA(yi)) log(1− ΓA(yi))]; (1.2.1)

where ΓA(yi) denotes the degreeiof membershipifunction and the properties of entropy

measure are given below:

• M ′(A) = 0 iff ΓA(y) = 0 or 1.

• M ′(A) is maximum when ΓA(y) = 0.5.

• M ′(A) = M ′(A′), where the sharpen version of A is A′, i.e.

ΓA′(xi) ≤ ΓA(yi) for ΓA(yi) ≤ 0.5 & ΓA(yi) ≤ ΓA′(yi) for ΓA(yi) ≥ 0.5

• M ′(A) = M ′(Ã) where Ã is complement of A.

These properties are the necessary and sufficient conditions to form the fuzzy entropy

measure. The Luca and Termini measure given by equation 1.2.1 also fulfills these

conditions. In 1980, Kaufmann [5] proposed an entropy measure which played the

basic for various new entropies in literature and is of form,

M ′(A) = − 1

log n

n∑
i=1

ΓA(yi) log ΓA(yi). (1.2.2)

In 1967, Havrda and Charvat [56] extended the concept of Kaufmann [5] and

defined the following entropy measure;

M ′(A) =
1

1− α

n∑
i=1

[(ΓαA(yi) + (1− (ΓA(yi))
α − 1]. (1.2.3)
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Thus, with the help of fuzzy entropy, the quantity of information is obtained from the

systems of fuzzy theory and the measure of information collected from this fuzziness

is known as fuzzy information measure. This concept of information measure was

further used by Joshi [111] in 2019 to generate a new measure based on Tsallis-Havrda-

Charvat entropy. Later, in 2020, Li et al. [156] and Mahmood et al. [136] studied

this concept using the structures of Gaussian kernels and Complex q-rung orthopair

fuzzy set respectively. The entropy was first proposed by Shannon[23] in 1948, which

is a probabilistic theory and contributes majorly to the communication sector. As

per deliberation given by Robert et al. [13], the defined quantity of information

conveyed is directly proportional to the probability of the probabilistic task. This

implies that the information quantity defines the log of the event probability of A, i.e.,

M ′(A) = − log p(A); where p(A) denotes the probability and the average information

over all the events is known as Shannon entropy.

Further, the concept of information entropy measure was extended to ‘useful’

information measure by Bhaker and Hooda [139] in 1993, who defined the generalized

mean value characteristic measure for incomplete probability measure. This theory

was later used by Hooda and Bajaj [31] in 2010 and they introduced a new ‘use-

ful’ information measure for directed divergence of Zadeh’s theory. Then, in 2016

the briefly description related to the overview of fuzzy information measure and gen-

eralized form of fuzzy entropy was presented by Ohlan [11] and in the same year

Arora and Dhiman [38] contributed a new measure of fuzzy directed divergence and

its applications in decision making problems in the literature. Sharma et al. [114]

established the primary decomposition of k-ideals of semirings with its uniqueness

and also generalized it for fuzzy k-ideals of the semirings. In 2018 & 2019, Sofi et al.

[130]-[131] used the concept of parametric ‘useful’ fuzzy information measure for R -

norm and obtained new properties with numerical examples respectively.

1.2.4 Various Fuzzy Graphs and Notion of Energy

Meenakshi et al. [124] explained that energyiof graph connects the graphimoreiclosely

to theichemical quantityiknown asiπ- electronienergy oficonjugated hydroicarbon mole

-cule.iThe conceptiof energy of aigraph [53] [55] [110] has beeniutilized in chemi-
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caliengineering applications-ithe moleculariorbital theory oficonjugated molecules [4]

[54] [46]. Sridhara andiKhanna [36] studied theibounds on energyiand Laplacian en-

ergy ofigraphs with various importantiobservations and results. The concept ofienergy

toifuzzy graphs has beeniextended by Narayananiand Mathew [10] withisome bounds

on the energy ofifuzzy graphs. Further,iPraba et al. [18] extendedithe energyiconcept

foriintuitionistic fuzzyigraph with importantiresults. Recently, the applicationiof en-

ergy of Pythagoreanifuzzy graphsihas beenistudied in the decisionimakingiexample

of a satelliteicommunication systemiand in the evaluationiof the schemes of reser-

voirioperation [86].

Based on the fuzzyirelation [71], Kaufmann [6] proposed the conceptiof fuzzy

graphsiand Rosenfeld [12] subsequentlyideveloped the concept ofifuzzy vertex and

fuzzyiedge. Some standardioperations on the fuzzyigraphs wereistudied byithe Morde-

son andiPeng [57] alongiwith theiriproperties. Further, Parvathi et al. [112, 113] ex-

tendedithe notion of a fuzzyigraph to intuitionisticifuzzy graph and analyzedivarious

propertiesirelated to minmaxiintuitionistic fuzzyigraph. Karunambigai et al. [90]

proposedia categoryiof constant anditotally constantiintuitionistic fuzzyigraphs and

subsequentlyiAkram et al. [84] presented theiconcept ofistrong intuitionisticifuzzy

graphsialong with theiriproperties. Also,iAkram et al. [85] presentediintuitionistic

fuzzyihypergraphsiwith theiriapplications and Alshehri et al. [98] definedithe pla-

narity, duality and multigraphs in contextiwith intuitionistic fuzzy graphs. Sahoo and

Pal [126] [127] proposedivarious typesiof product operations foriintuitionistic fuzzy

graphs,iintuitionistic fuzzyitolerance graph with theiriapplications.

Variousiresearchers [82] [89] [94] [129] utilized theiflexibility and its applicabil-

ity to setiforward some new ideas concerning the extendedistructures of intuitionistic

fuzzyigraphs andiprovided manyiinteresting applicationsiin clustering and decision-

makingiproblems andisupport systems.iNaz et al. [133]iproposed a generalizationiof

the intuitionisticifuzzyigraph,itermed asithe Pythagoreanifuzzy graphs,iandistudied

theiriapplications in variousidecisionimaking problems. Someigraph-theoretic opera-

tions relatediwith Pythagorean fuzzyigraphs haveibeen wellistudied byiVerma et al.

[115]. Zuoiet al. [24] introducedithe newiconcept of pictureifuzzy graphiand its vari-

ousitypes with differentiproperties. Earlier classical graphs were used to represent the

social network but the main drawback of using classical graphs was that in its case
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all the individuals are of same value which is not the case in real world. Therefore,

the relationship between these individuals will also be same in all the cases which

is again not true in reality. This problem was solved by Samanta and Pal [132] by

using type 1 fuzzyigraph in place of classicalifuzzy graph. But it is also not able

to deal with the complexity of the real world problem. Das et al. did ailot of re-

searchiin the field of pictureifuzzy graph in references [121] and [118] in which the

authors proposed the pictureifuzzy planar graphs and explained it with the help of

its application in road map whereas m-stepipicture fuzzyicompetitionigraphs, pic-

ture fuzzyieconomic competitionigraphsiandipictureifuzzy competitionihypergraphs

are introduced and its applications are shown in the field of academics, environ-

mentiand companies etc respectively. With the aboveiapplication Das et al. also

gave the novel concept of the m-stepipicture fuzzy competitionigraphs, pictureifuzzy

economic competitionigraphs and pictureifuzzy competitionihypergraphs in [120] and

its plays a greatirole in the field of medicine and Pal et al. [92] explainedithe mod-

ernitrends in study of fuzzyitheory.

1.3 Motivation

Uncertainty is one of the root cause of real life problems which made it difficult to

extract solutions to various situations. The theory of fuzziness has been dealt by

various extensions but tracking the pattern of happening of an event is an important

contribution.

The following structural figure explains the motivation behind the present work:

It may be noted that the notions presented in the grey boxes of the above figure

already exist in the literature whereas the notions in green boxes have been proposed

and explained in detail in the present work. The outline of the research gap &

rationale of the present work have been discussed as follows.

• Extension of the fuzzy set to a complexifuzzyiset increasesithe range of solv-

ing the problem from the interval [0, 1] on the real plane toitheiunit disc in

the complexiplane. This lays the foundation of two novel concepts of the com-

plexineutrosophic matrix and cohesive fuzzy set forvsolving the problems related
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Figure 1.5: Flow of Proposed Work & Motivation

to uncertainties more efficiently. We present a natural extension of the existing

set to a novel concept of cohesive fuzzy set (CHFS) which has the capability to

explicitly focus on the set of the favorable situations for a particular uncertain

higher dimensional problem with the possible extended range of unit disk having

a phase component. The phase component gives the advantage of addressing

the impreciseness which occurs in a periodic fashion. The objective behind in-

troducing the concept of CHFS is that it not only deals with the situation in

which we are facing difficulty in choosing the best among the various favorable

options, but also helps in neglecting the unfavorable situations among the wide

range of situations which would certainly save our time and energy both.

• Considering the importanceiof matrix formiin solving ailarge numberias well as

higheridimension problemsiin a singleiinterval of timeimotivated us toiextend

theseiadvantages of the matrixiform from the realiplane to the complexipane of

unit range. Thus, weiextended theitheory ofineutrosophic matricesito the com-

plex plane and introducedithe novel concept of a complexineutrosophic matrix.

In this article, we have defined some new types of similarity measure matrices

for the Complex Neutrosophic Matrices (CNM) have been proposed. The pos-

itive definiteness and importance of these measures have been explained with

the help of various properties. The concept of complex fuzzy matrix plays a

significant role in the complex plane. Various new operators for the proposed

matrix have been presented for the detailed understanding of the concept. A
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similarity measure for the proposed matrices has also been designed and subse-

quently its applicability in the field of identification of reference signal has been

presented.

• Similarity measure plays a significant role in defining the similarity among the

fuzzy sets. Therefore, there is a wide area of research in defining the simi-

larity in the case of neutrosophic set and this plays aivital role in explaining

the similarity among the uncertainties of events present. We haveiincorporated

the exponentialifunction for framing the new similarityimeasures for the neu-

trosophic sets along with their weighted form andiutilized them for the solv-

ing a standardiclassification problemiof patternirecognition andithe decision-

makingiproblem. The concept of probabilistic occurrence and neutrosophic

entropy have been put together along with utility distribution of the events

to obtain a novel concept of ’useful’ single valued neutrosophic probabilistic

information measure. The proposed measure is a new kind of measure that

will be helpful for the study of decision problems under utility distribution. In

addition to this, some extended measures like hybrid ambiguity measure, analo-

gous divergence measure and information improvement measure have also been

discussed.

• In literature, no study was presented using the Laplacianienergy of pictureifuzzy

graph to construct a methodology to identify the location in case of a site selec-

tion problem. We introduceithe noveliconcept of adjacencyimatrix, energyiand

Laplacianienergy foripicture fuzzyigraphs with applications. A newimethodology

forisolving a selectioniproblem based onithe proposedinotions of pictureifuzzy

graph hasialso been providediwith an example. In whole, the purposeiof the

proposediwork is to furtheriexpand the fuzzyigraph related conceptsiunder pic-

tureifuzzy environment. Such extensionsiand enrichment will certainlyihelp in

widening theispan andicoverage of the informationisignificantly.
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Chapter 2

Cohesive Fuzzy Set, Operations &

Applications

In this chapter, we have introduced the notion of cohesive fuzzy set (CHFS) with

various operations, properties and standard identities. This extensioniof fuzzy set is

capable to deal with the situation in which there are multi-favorable situations in

the complex plane. We have also presented the application of cohesive fuzzy sets in

the process of filtering the signals using the Fourier Cosine Transformation (FCT)

and Inverse Discrete Fourier Cosine Transformation (IDFCT/DFCT). In addition to

this, another application of identifying maximum number of sunspots in a particular

interval under a solar activity has been presented with an illustrativeiexample. The

advantages and the limitations of theiproposed methodology have also been studied.

2.1 Notion of Cohesive Fuzzy Set

In this section, we introduce the concept of cohesive fuzzy set and provide its formal

definition along with various operations and related important properties.

The complex fuzzy set captures the phase component to process the information

of a higher dimensional periodic problem while in the theory of hesitant fuzzy set

theory, experts provide a set of various multi-favorable situations for presenting their

assessments. In order to merge both the requirements in a synchronized way, a natural
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extension to a set called cohesive fuzzy set is being introduced for explicitly focussing

on the set of the favorable situations for a particular uncertain higher dimensional

problem with the possible extended range of unit disk having a phase component.

Definition 17 (Cohesive fuzzy set) Consider a fuzzy set T defined on a fixed

universe of discourse S, a cohesive fuzzy set (CHFS) on T is in terms of function h

when applied on S returns a subset of unit circle, i.e.,

S1 = {< x, hT (x) > |x ∈ S};

where hT is a complex set of values in a unit circle of the complex plane, denoting the

possible membership degrees of elements x ∈ S to the set T ⊂ S. Here, hT is of the

form rT (x) exp (iwT (x)), where i =
√
−1, rT (x) and wT (x) both are real values and

rT (x) ∈ [0, 1].

Example: For understanding the basic structure of CHFS, let S = {x1, x2, x3} be

the reference set. Suppose

hT1 (x1) = {0.5 exp π, 0.8 exp π

2
, 0.7 exp

π

2
},

hT2 (x2) = {0.6 exp π, 0.9 exp π, 0.7 exp π

4
},

and

hT3 (x3) = {0.5 exp π, 0.7 exp π

2
, 0.7 exp π}

denote the membership set of xi (i = 1, 2, 3) to the set T respectively. Then the

cohesive fuzzy set can be represented as

T = {< x1, {0.5 exp π, 0.8 exp
π

2
, 0.7 exp

π

2
} >,< x2, {0.6 exp π, 0.9 exp π,

0.7 exp
π

4
} >,< x3, {0.5 exp π, 0.7 exp

π

2
, 0.7 exp π} >}.

Various Basic Operations/Results on Cohesive Fuzzy Sets

Given a cohesive fuzzy set T whose membership function is given by hT , we suit-

ably propose its lower and upper bound as given below:
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• lower bound: h−
T = min (hT ) and

• upper bound: h+
T = max (hT ).

It may be noted that the pair of complex hesitant functions h−
T and 1 − h+

T define

the complex intuitionistic fuzzy set. Next, we first propose the definition of the

complement of cohesive fuzzy set as follows:

Definition 18 (Complement) Given a cohesive fuzzy set represented by member-

ship function hT , its complement set is defined as follows:

hcT = ∪µT∈hT {µT}c; (2.1.1)

where µT = rT e
iwT , i.e.,

hcT = ∪µT∈hT {µT}c = ∪rT∈hT ,wT∈hT {(1− rT ) e
i(−wT )}.

Proposition 1. The operation of complement is involution, i.e.,

(hcT )
c = hT (2.1.2)

Proof : It is easy to observe that (1− (1− rT )) e
i(−(−wT )) for all rT , wT ∈ hT . Hence

the result.

Definition 19 (Union) Suppose there are two cohesive fuzzy sets represented by

their hesitant membership functions hT1 and hT2 respectively. The union of these

CHFSs, denoted by hT1 ∪ hT2, can be defined as

(hT1 ∪ hT2) (x) = {hT ∈ (hT1 (x) ∪ hT2 (x)) |hT ≥ max
(
h−
T1
, h−

T2

)
}.

Definition 20 (Intersection) Suppose there are two cohesive fuzzy sets represented

by their hesitant membership functions hT1 and hT2 respectively. The intersection of

these CHFSs, denoted by hT1 ∩ hT2, can be defined as

(hT1 ∩ hT2) (x) = {hT ∈ (hT1 (x) ∩ hT2 (x)) |hT ≤ min
(
h+
T1
, h+

T2

)
}.
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Hence, from the Definitions 18, 19 and 20 given above, we write the following equa-

tions:

hcT = ∪µT∈hT {µT}c = ∪rT ,wT∈hT {(1− rT ) e
−iwT };

hT1 ∪ hT2 = ∪µT1∈hT1 , µT2∈hT2 max{µT1 , µT2} = ∪rT ,wT∈hT {max (rT1 , rT2) e
imax(wT1 ,wT2)};

hT1 ∩ hT2 = ∪µT1∈hT1 , µT2∈hT2 min{µT1 , µT2} = ∪rT ,wT∈hT {min (rT1 , rT2) e
imin(wT1 ,wT2)}.

(2.1.3)

where µT , µT1 and µT2 are of form rT e
iwT , rT1e

iwT1 and rT2e
iwT2 respectively.

Remark: The Complex Intuitionistic Fuzzy Set (CIFS) contains complex member-

ship and non-membership functions. However, in case of CHFS, only the complex

membership function is considered. Therefore, we can say that every CHFS is con-

tained in CIFS whereas the reverse is not true.

Definition 21 Suppose there is a cohesive fuzzy set given by hT , we define CIFS

Aenv (hT ) as the envelope of hT . Now the set Aenv (hT ) is represented by < x, µS (x) , γS

(x) > with

µS (x) = min (hT ) = min (µT )

γS (x) = 1−max (hT ) = 1−max (µT )
(2.1.4)

where µT = rT e
iwT .

Proposition 2. Now the relationship between the cohesive fuzzy set and Complex

intuitionistic fuzzy set is given by:

• Aenv (h
c
T ) = (Aenv (hT ))

c;

• Aenv (hT1 ∪ hT2) = Aenv (hT1) ∪ Aenv (hT2);

• Aenv (hT1 ∩ hT2) = Aenv (hT1) ∩ Aenv (hT2).

Proof: We know that

Aenv (hT ) =< minh (x) , 1−maxh (x) >=< h−
T (x) , 1− h+

T (x) >

(Aenv (hT ))
c =< 1− h+

T (x) , h−
T (x) >
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and that

Aenv (h
c
T ) =< minhc (x) , 1−maxhc (x) >

=< min
(
(1− rT (x)) e

−iwT (x)
)
, 1−max

(
(1− rT (x)) e

−iwT (x)
)
>

=< 1−max
(
rT (x) e

iwT (x)
)
, 1− 1 + min

(
rT (x) e

iwT (x)
)
>

=< 1− h+
T (x) , h−

T (x) >

So, it proves the first inequality.

Then,

Aenv (hT1 ∪ hT2) = Aenv

(
{hT ∈ (hT1 (x) ∪ hT2 (x)) |hT ≥ max

(
h−
T1
, h−

T2

)
}
)

Thus, it implies that x lie in interval [max
(
h−
T1
(x) , h−

T2
(x)
)
,max(h+

T1
(x) , h+

T2
(x)].

This implies that

Aenv (hT1 ∪ hT2) =< max
(
h−
T1
, h−

T2

)
,min

(
1− h+

T1
, 1− h+

T2

)
>

This proves the second inequality.

Similarly, we can prove the third inequality. Finally, all the equalities are proved.

Next, for the sake of relative ordering over the cohesive fuzzy elements, some necessary

comparing laws are being provided as follows:

Definition 22 For a given cohesive fuzzy element hT ,

f (hT ) =
1

#hT

∑
rT ,wT∈hT

rT e
iwT ;

isicalled theiscore functioniof hT , where #hT is theinumber ofitheielements in hT .

Foritwo cohesive fuzzyielements hT1iandihTii2,

if f (hT1) > f (hT2) then hT1 > hT2 ; iff (hT1) = f (hT2) , then hT1 = hT2 .

Next, we have definedisome newioperations onithe cohesive fuzzyielements hT , hT1

andihT2 on the basis of the relations proposed in proposition 2 are given below:

• (hT )
λ = ∪rT ,wT∈hT (rT eiwT )

λ
; where λ ∈ R, λ > 0

• λhT = ∪rT ,wT∈hT
(
1− (1− rT )

λ
)
eiλwT
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• (Direct Sum) hT1 ⊕ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(rT1 + rT2 − rT1rT2) e
i(wT1+wT2)}

• (Direct Product) hT1 ⊗ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(rT1rT2) e
i(wT1+wT2)}

Some more important operations have been established using the above operations

on cohesive fuzzy elements as follows:

Theorem 1 For given three cohesive fuzzy elements hT , hT1 and hT2, the following

identities hold:

(a) hT1
c ∪ hT2

c = (hT1 ∩ hT2)
c.

(b) hT1
c ∩ hT2

c = (hT1 ∪ hT2)
c.

(c) (hcT )
λ = (λhT )

c.

(d) λ (hcT ) =
(
hλT
)c
.

(e) hcT1 ⊕ hcT2 = (hT1 ⊗ hT2)
c.

(f) hcT1 ⊗ hcT2 = (hT1 ⊕ hT2)
c.

Proof. The proof for the above stated identities have been outlined below:

(a) hT1
c ∪ hT2

c = ∪rT1 ,wT1∈hT1rT1 ,wT1∈hT1 max
(
(1− rT1) e

−iwT1 , (1− rT2) e
−iwT2

)
= (1−min (rT1 , rT2)) e

−i(1−min(wT1 ,wT2))

= (hT1 ∩ hT2)
c.

(b) hT1
c ∩ hT2

c = ∪rT1 ,wT1∈hT1rT1 ,wT1∈hT1 min
(
(1− rT1) e

−iwT1 , (1− rT2) e
−iwT2

)
= (1−max (rT1 , rT2)) e

−i(1−max(wT1 ,wT2))

= (hT1 ∪ hT2)
c.

(c) (hcT )
λ = ∪rT ,wT∈hT ((1− rT ) e

−iwT )
λ
= ∪rT ,wT∈hT (1− rT )

λ e−iλwT

= ∪rT ,wT∈hT
((

1− (1− rT )
λ
)
eiλwT

)c
= (λhT )

c.

(d) λ (hcT ) = ∪rT ,wT∈hT
(
1−

(
1− (1− rT )

λ
))

e−iλwT =
(
hλT
)c
.
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(e) hcT1⊕hcT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{((1− rT1) + (1− rT2)− (1− rT1) (1− rT2)) e
−i(wT1+wT2)}

= ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(1− rT1rT2) e
−i(wT1+wT2)}

= (hT1 ⊗ hT2)
c.

(f) hcT1 ⊗ hcT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(1− rT1) (1− rT2) e
−i(wT1+wT2)}

= ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(1− (rT1 + rT2 − rT1rT2)) e
−i(wT1+wT2)}

= (hT1 ⊕ hT2)
c.

Definition 23 Let hT1 and hT2 are two cohesive fuzzy elements, we propose the op-

erators given below:

(a) hT1o1hT2 = ∪µT1∈hT1{
|µT1−µT2 |

1+|µT1−µT2 |
}

(b) hT1o2hT2 = ∪µT1∈hT1{
|µT1−µT2 |

1+2|µT1−µT2 |
}

(c) hT1o3hT2 = ∪µT1∈hT1{
|µT1−µT2 |

2
}

(d) hT1o4hT2 = ∪µT1∈hT1{
|µT1 .µT2 |

2
}

where µT1 & µT2 are in the form of rT1e
iwT1 & rT2e

iwT2 respectively.

Remarks:

It may be observed from the above definition that

• hT1 ⊕ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(rT1 + rT2 − rT1rT2) e
i(wT1+wT2)}

= ∪µT1 ,wT1∈hT1 ,µT2 ,wT2∈hT2{µT1e
iwT2 + µT2e

iwT1 − µT1µT2}.

• hT1 ⊗ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2{(rT1rT2) e
i(wT1+wT2)}

= ∪µT1∈hT1 ,µT2∈hT2{µT1µT2}.

Theorem 2 For hT1 and hT2 be the two cohesive fuzzy elements. Then, we have the

following identities

(a) (hT1 ⊕ hT2) ∩ (hT1o1hT2) = (hT1o1hT2)

(b) (hT1 ⊕ hT2) ∪ (hT1o1hT2) = (hT1 ⊕ hT2)

(c) (hT1 ⊗ hT2) ∩ (hT1o1hT2) = (hT1o1hT2)

(d) (hT1 ⊗ hT2) ∩ (hT1o1hT2) = (hT1 ⊗ hT2)

(e) (hT1 ⊕ hT2) ∩ (hT1o2hT2) = (hT1o2hT2)

(f) (hT1 ⊕ hT2) ∪ (hT1o2hT2) = (hT1 ⊕ hT2)
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(g) (hT1 ⊗ hT2) ∩ (hT1o2hT2) = (hT1o2hT2)

(h) (hT1 ⊗ hT2) ∩ (hT1o2hT2) = (hT1 ⊗ hT2)

(i) (hT1 ⊕ hT2) ∩ (hT1o3hT2) = (hT1o3hT2)

(j) (hT1 ⊕ hT2) ∪ (hT1o3hT2) = (hT1 ⊕ hT2)

(k) (hT1 ⊗ hT2) ∩ (hT1o3hT2) = (hT1o3hT2)

(l) (hT1 ⊗ hT2) ∩ (hT1o3hT2) = (hT1 ⊗ hT2)

(m) (hT1 ⊕ hT2) ∩ (hT1o4hT2) = (hT1o4hT2)

(n) (hT1 ⊕ hT2) ∪ (hT1o4hT2) = (hT1 ⊕ hT2)

(o) (hT1 ⊗ hT2) ∩ (hT1o4hT2) = (hT1o4hT2)

(p) (hT1 ⊗ hT2) ∩ (hT11o4hT2) = (hT1 ⊗ hT2) .

Proof. All the above listed properties have been proved one by one. In view of the

Definition 12 stated above, we have

(a) (hT1 ⊕ hT2) ∩ (hT1 o1 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1−µT2 |
1+|µT1−µT2 |

}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

} = (hT1 o1 hT2).

(b) (hT1 ⊕ hT2) ∪ (hT1 o1 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1−µT2 |
1+|µT1−µT2 |

}

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2} = (hT1 ⊕ hT2).

(c) (hT1 ⊗ hT2) ∩ (hT1 o1 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}

)
= ∪µT1∈hT1

µT2∈hT2

min{µT1µT2 ,
|µT1−µT2 |

1+|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

} = (hT1 o1 hT2).

(d) (hT1 ⊗ hT2) ∪ (hT1 o1 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}

)
= ∪µT1∈hT1

µT2∈hT2

max{µT1µT2 ,
|µT1−µT2 |

1+|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{µT1µT2} = (hT1 ⊗ hT2).
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(e) (hT1 ⊕ hT2) ∩ (hT1 o2 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1−µT2 |
1+2|µT1−µT2 |

}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

} = (hT1 o2 hT2).

(f) (hT1 ⊕ hT2) ∪ (hT1 o2 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1−µT2 |
1+2|µT1−µT2 |

}

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2} = (hT1 ⊕ hT2).

(g) (hT1 ⊗ hT2) ∩ (hT1 o2 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}

)
= ∪µT1∈hT1

µT2∈hT2

min{µT1µT2 ,
|µT1−µT2 |

1+2|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

} = (hT1 o2 hT2).

(h) (hT1 ⊗ hT2) ∪ (hT1 o2 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}

)
= ∪µT1∈hT1

µT2∈hT2

max{µT1µT2 ,
|µT1−µT2 |

1+2|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{µT1µT2} = (hT1 ⊗ hT2).

(i) (hT1 ⊕ hT2) ∩ (hT1 o3 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min{µT11eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1−µT2 |
2

}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2

} = (hT1 o3 hT2).

(j) (hT1 ⊕ hT2) ∪ (hT1 o3 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2

}

)
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= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

max{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1−µT2 |
2

}

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2} = (hT1 ⊕ hT2).

(k) (hT1 ⊗ hT2) ∩ (hT1 o3 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2

}

)
= ∪µT1∈hT1

µT2∈hT2

min{µT1µT2 ,
|µT1−µT2 |

2
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2

} = (hT1 o3 hT2).

(l) (hT1 ⊗ hT2) ∪ (hT1 o3 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2

}

)
= ∪µT1∈hT1

µT2∈hT2

max{µT1µT2 ,
|µT1−µT2 |

2
}

= ∪µT1∈hT1
µT2∈hT2

{µT1µT2} = (hT1 ⊗ hT2).

(m) (hT1 ⊕ hT2) ∩ (hT1 o4 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1µT2 |
2

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1µT2 |
2

}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1µT2 |
2

} = (hT1 o4 hT2).

(n) (hT1 ⊕ hT2) ∪ (hT1 o4 hT2)

=

(
∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1µT2 |
2

}

)
= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1eiwT2 + µT2e
iwT1 − µT1µT2 ,

|µT1µT2 |
2

}

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1eiwT2 + µT2e
iwT1 − µT1µT2} = (hT1 ⊕ hT2).

(o) (hT1 ⊗ hT2) ∩ (hT1 o4 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∩

(
∪µT1∈hT1
µT2∈hT2

{ |µT1µT2 |
2

}

)
= ∪µT1∈hT1

µT2∈hT2

min{µT1µT2 ,
|µT1µT2 |

2
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1µT2 |
2

} = (hT1 o4 hT2).
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(p) (hT1 ⊗ hT2) ∪ (hT1 o4 hT2)

=

(
∪µT1∈hT1
µT2∈hT2

{µT1µT2}

)
∪

(
∪µT1∈hT1
µT2∈hT2

{ |µT1µT2 |
2

}

)
= ∪µT1∈hT1

µT2∈hT2

max{µT1µT2 ,
|µT1µT2 |

2
}

= ∪µT1∈hT1
µT2∈hT2

{µT1µT2} = (hT1 ⊗ hT2).

Hence, this proves all the above stated identities from ((a)− (p)). Similarly, various

other operations and relations can further be established for cohesive fuzzy set.

2.2 Application of Cohesive Fuzzy Sets in Refer-

ence Signal

In this section, we incorporate the proposed notion of cohesive fuzzy set in the appli-

cation field of filtering the electromagnetic signals for obtaining the reference signal

from number of signals obtained. The propagation and parameter of an electromag-

netic signal can be understood through the following diagram given in Figure 2.1:

Propagation of Electromagnetic Waves 

(Selecting the Reference Signal) 

Figure 2.1: Components of Electromagnetic signal

In the subsequent sections, we first present new methodology by incorporating Fourier
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Cosine Transformation in order to identify reference electromagnetic signal and sec-

ondly by using Inverse Discrete Fourier Cosine Transformation we present another

methodology for identifying reference electromagnetic signal. To increase the clarity

the flowchart explaining the procedure is given in Figure 2.2.

IDENTIFYING REFERENCE SIGNAL

START

The received signals are 

obtained in the form of the 

Fourier Transformation.

CFS  is used to detect the required signal from the receiving 

signals which are affected by  its phase and amplitude 

differences.

Applied CHFS to the set of signal in 

which the Fourier cosine series is 

obtained whose value is mainly greater 

than the threshold value.

Signal with completely 

different phase and value 

less than threshold value is 

rejected.

END

START

The received signals are 

obtained in the form of the 

Inverse Discrete Fourier  

transformation (IDFCT).

Use particular case for the IDFCT, that is,

On the basis of applicability to CHFS, 

only Inverse Discrete Fourier Cosine 

Transformation is selected.

The Inverse Fourier Sine 

Transformation is rejected 

due to non-applicability.

Finally, the most similar value of the 

transmitted signal with the reference 

signal is matched and selected.

END

Figure 2.2: Methodology for Electromagnetic signal

2.2.1 Identifying Reference Electromagnetic Signal using Fourier

Cosine Transformation (FCT)

Here, the processing of electromagnetic signal has been carried over by implementing

the introduced conceptiof cohesive fuzzy set in identifying the signal of interest among

the largeinumber of signals received by the receiver. Ramot et al. [28] demonstrated

the use of complexifuzzy set in signal processing where L different speech signals and

electromagnetic signals, viz., T1 (t) , T2 (t) , ..., TL (t),ihave beenidetected &isampled

by the digitalireceiver. Eachireceivedisignal isisampled N itimes. LetiTl (k) denotes

theikth (1 ≤ k ≤ N)isample and the lth signal (1 ≤ l ≤ L).

Further, the Fourier transformation of the received signals have been obtainediand
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each being represented as the sum of Fouriericomponents given below:

Tl (k) =
1

N

N∑
n=1

Cl,ne
i2π(n−1)(k−1)

N ; (2.2.1)

where Cl,n (1 ≤ n ≤ N)iareicomplexiFouriericoefficientsiof Tl.

It may be noted that in case of cohesive fuzzy set, we take Fourier cosine transfor-

mation of the received signals and each of which is represented as the sum of Fourier

cosine components

Tl (k) =
1

N

N∑
n=1

Cl,n cos

(
i2π (n− 1) (k − 1)

N

)
; (2.2.2)

where Cl,n (1 ≤ n ≤ N) are complex Fourier coefficients of Tl.

Therefore, the above mentioned sum may be rewritten as

Tl (k) =
1

N

N∑
n=1

Pl,ne
iαl,n cos

(
i2π (n− 1) (k − 1)

N

)
; (2.2.3)

where Cl,n = Al,ne
iαl,n , with Pl,n and αl,n to be real valued & Pl,n ≥ 0 ∀n.

The aim of the above proposed applicationiis to determine whether any signal among

received L signalsican be identified as the referenceisignal R. Therefore, in similar

manner the reference signal R is also sampled N timesiand its corresponding Fourier

cosine series may be written as:

R (k) =
1

N

N∑
n=1

PR,ne
iαR,n cos

(
i2π (n− 1) (k − 1)

N

)
; (2.2.4)

where

CR,n = PR,ne
iαR,n ,with 1 ≤ n ≤ N,

PR,n and αR,n to be real valued & PR,n ≥ 0 ∀ n.

Next, we formally list the steps of the proposed methodology for identifying the refer-

ence signal with the help of the similarity measures between the signals T1, T2, ..., TL

to R as follows:

Step 1: We first normalize the amplitudes of all Fourier cosine coefficients for any

candidate signal Tl (1 ̸= l ̸= L). Suppose Pl denotes the N -dimensional vector of am-

plitudes of the candidate signal’s (T ) Fourier coefficients:

Pl = (Pl,1, Pl,2, ..., Pl,N) ,

35



and PR denotes the N -dimensional vector of amplitudes of the reference signal’s (R)

Fourier coefficients:

PR = (PR,1, PR,2, ..., PR,N) .

We consider the normalized vector Ql in the form as given below:

Ql =
1

Pl.∥Pl∥
, where ∥Pl∥ =

√√√√ N∑
n=1

(Pl,n)
2,

and the normalized vector QR in the form as given below:

QR =
1

PR.∥PR∥
, where ∥PR∥ =

√√√√ N∑
n=1

(PR,n)
2.

Thus, the vector Ql = (Ql,1, Ql,2, ..., Ql,N) represents the normalized amplitudes of T ′
l s

Fourier cosine coefficients. Similarly, QR = (QR,1, QR,2, ..., QR,N) is the normalized

amplitude of R′s Fourier cosine coefficients.

Step 2: Next, we calculate the complex grade similarity for every Fourier cosine

coefficient of Tl in relevance with the reference signal R. Then, the grade of similarity

between Cl,n to CR,n may be denoted by νR,Tl (n) and given by:

νR,Tl (n) = rR,Tl (n) e
iwR,Tl (n); (2.2.5)

where

rR,Tl (n) = e
−(QR,n−Ql,n)

2

QR,nQl,n & wR,Tl = (αR,n − αl,n) .

Here, νR,Tl(n) represents the complexigradeiofimembershipiwhich includesia phase and

amplitude terms. The phase termicontains theiinformationiofitheirelativeiphase be-

tween the Cl,n and CR,n. Theiamplitudeiterm rR,Tl in range [0,1] is normalized and

used to measure the distance exponentially between the Cl,n and CR,n. The effect of

outsideifactors suchiasipathiloss, distanceiof transmissionisourceifrom digitalireceiver

etc are reduced by using normalized amplitudes Ql,n and QR,n. In case of the relative

amplitude of Cl,n in Tl is compared to CR,n in R, so that synchronized results may

be obtained in either cases of strong andiweak signals.

Step 3: Further, the complex gradeisimilarity νR,Tl , is obtained by summing the

grade similarity of each of the Fourier cosine coefficient νR,Tl (n) ∀n (1 ≤ n ≤ N), in
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which either Ql,n or QR,n must be larger than the QThreshold. This QThreshold is used to

prevent νR,Tl from the Fourier cosine coefficients with small amplitudes in Tl and R.

Next, the sum of the complex grade similarity is divided by the number of coefficients

(m). The considered coefficients of Ql,n and QR,n must have greater amplitudes com-

pare to the QThreshold and consequently mapping the amplitude of νR,Tl in the range

of [0,1], subject to

νR,Tl =

∑
M νR,Tl (n)

m
; (2.2.6)

where

M = {n|Ql,n or QR,n > QThreshold} and the number of elements in M is denoted bym.

Hence, the sum of νR,Tl given in equation (2.2.6) is totally dependent on the phase

term of νR,Tl . The phase term is an important factor to determine whether the grade

of similarity increase or decreases among C ′
l,ns and C ′

R,ns. This issue of phase has been

reduced in our proposed methodology as we are taking Fourier cosine transformation

due to which only one factor will affect the phase term.

Thus, the amplitude of νR,Tl , which is used to determine Tl to R, subject to the

following conditions:

• The identified signal Tl w.r.t R must be close to 1.

• The normalizediamplitudes of the Fouriericoefficients of Tl and Riareisimilar.

• Theirelativeiphasesiof the Fouriericoefficients of candidate and reference signals

i.e. Tl and R are similar.

Step 4: Finally, the electromagnetic signal Tl may be identified as R, by comparing

the values of |ν(R,Tl)| to νThreshold. If the obtained value of |ν(R,Tl)| exceeds the thresh-
old, then the identified signals Tl may be considered as R.

The above proposed methodology, which utilizes the Fourier Cosine Transformation

in calculating the similarity between two signals, is suppose to play a significant role in

signal analysis applications where the relativeiphaseibetween theiFourier component

of theisignals is considered to be importantifactor.
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2.2.2 Identifying Reference Electromagnetic Signal using In-

verse Discrete Fourier Cosine Transformation (IDFCT)

In this subsection, we have used the Inverse Discrete Fourier Cosine Transformation

to develop a methodology to find the reference signal among the transmitted signals

received by the receiver.

Xueling et al. [96] used the Lth Inverse Discrete Fourier Transform (IDFT) coefficient

of a length L sequence x(L) and have defined it as:

x (p) =
1

L

L−1∑
p=0

x′ (L) ei
2π
L
Lp, p ∈ 0, 1, 2, ..., L− 1;

where x (L) have different values and considered the special case in which U [L] =

x′ (L) & U [L] ∈ [0, 1].

In the similar way, we also consider the special case of Inverse Discrete Fourier Cosine

Transformation (IDFCT) as below:

x (p) =
1

L

L−1∑
p=0

x′(L) cos

(
2π

L
Lp

)
, p ∈ 0, 1, 2, ..., L− 1.

Definition 13. The DFCT for x′ (L) : 1 ≤ L ≤ L is given by matrix in the product form:

x′ (0)

x′ (1)

x′ (2)

.

.

.

x′ (L− 1)


=



1 1 1 . . . 1

1 cos
(−2π

L

)
cos
(−4π

L

)
. . . cos

(
−2π(L−1)

L

)
1 cos

(−4π
L

)
cos
(−8π

L

)
. . . cos

(
−4π(L−1)

L

)
. . . . . . .

. . . . . . .

. . . . . . .

1 cos
(

−2π(L−1)
L

)
cos
(

−4π(L−1)
L

)
. . . cos

(
−2π(L−1)2

L

)





x (0)

x (1)

x (2)

.

.

.

x (L− 1)


.

But the IDFCT is given by,

x (0)

x (1)

x (2)

.

.

.

x (L− 1)


=

1

L



1 1 1 . . . 1

1 cos
(
2π
L

)
cos
(
4π
L

)
. . . cos

(
2π(L−1)

L

)
1 cos

(
4π
L

)
cos
(
8π
L

)
. . . cos

(
4π(L−1)

L

)
. . . . . . .

. . . . . . .

. . . . . . .

1 cos
(

2π(L−1)
L

)
cos
(

4π(L−1)
L

)
. . . cos

(
2π(L−1)2

L

)





x′ (0)

x′ (1)

x′ (2)

.

.

.

x′ (L− 1)


.
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Next, with the help of the above definitions, we propose a new methodology to detect

a particular signals among the various signals received by the receiver.

Suppose l(u1 (L) , u2 (L) u3 (L) , ..., ul (L)) be the number of electromagnetic signals

received by the receiver and each of these signals is noted L times. Suppose xl (L)

be the lth (1 ≤ l ≤ L) signal, then the Discrete Fourier cosine transformation is given

by:

ul (L) =
1

L

L−1∑
p=0

U [L] cos

(
2π

L
Lp

)
; L, p = 0, 1, 2, ..., L− 1, (2.2.7)

where U [L] ∈ [0, 1].

Here, U [L] = θ′S (p) and
2π
L
Lp = wS (p) are called the amplitude and phase term

respectively. Thus, equation (2.2.7) denotes the model for signal representation.

Now, we construct a particular kind of matrix to detect the particular signal

among the different signals received by the receiver. For this, we consider a reference

signal R which has also been noted L times and its DFCT is given as below:

R (L) =
1

L

L−1∑
p=0

θ′ (p) cos

(
2π

L
Lp

)
; L, p = 0, 1, 2, ..., L− 1, (2.2.8)

where θ′ (p) ∈ [0, 1].
The procedural steps of the proposed methodology in order to compare the similarity
between the two signals have been listed as follows:
Step 1:
Expanding ul (L) =

1
L

∑L−1
p=0 U [L] cos

(
2π
L
Lp
)
; for p = 0, 1, 2, ..., L− 1 leads to,

ul (L) =
1

L

[
U [0] cos

(
2π

L
L(0)

)
+ U [1] cos

(
2π

L
L(1)

)
+ U [2] cos

(
2π

L
L(2)

)
+ ...+ U [L− 1] cos

(
2π

L
L(L− 1)

)]
.

(2.2.9)

Now, we put the values of L = 0, 1, 2, ..., L− 1 in equation (2.2.9), through which we
obtain the Lth sample of the signal which are being explained by taking individual
discrete cases:
For L = 0 case:

ul (0) =
1

L

[
U [0] cos

(
2π

L
(0)(0)

)
+ U [1] cos

(
2π

L
(0)(1)

)
+ U [2] cos

(
2π

L
(0)(2)

)
+ ...+ U [L− 1] cos

(
2π

L
(0)(L− 1)

)]
.

ul (0) =
1

L
[U [0].1 + U [1]1 + U [2].1 + ...+ U [L− 1].1] . (2.2.10)

For L = 1 case:

ul (1) =
1

L

[
U [1].1 + U [1] cos

(
2π

L
(1)(1)

)
+ U [2] cos

(
2π

L
(1)(2)

)
+ ...+ U [L− 1] sin

(
2π

L
(1)(L− 1)

)]
.

(2.2.11)
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For L = 2 case:

ul (2) =
1

L
]

[
U [1].1 + U [1] cos

(
2π

L
(2)(1)

)
+ U [2] cos

(
2π

L
(2)(2)

)
+ ...+ U [L− 1] cos

(
2π

L
(2)(L− 1)

)]
.

(2.2.12)
Similarly, for L = L− 1 case:

ul (L− 1) =
1

L

[
U [1].1 + U [1] cos

(
2π

L
(L− 1)(1)

)
+ U [2] cos

(
2π

L
(L− 1)(2)

)
+ ...+ U [L− 1] cos

(
2π

L
(L− 1)2

)]
.

(2.2.13)

In similar manner, we obtain the values for L samples of the reference signal.

Step 2:

Now, we construct the matrix for L-samples of signal ul (L) & the reference signal as

follows:

ul (0)

ul (1)

ul (2)

.

.

.

ul (L− 1)


=

1

L



1 1 1 . . . 1

1 cos
(
2π
L

)
cos
(
4π
L

)
. . . cos

(
2π(L−1)

L

)
1 cos

(
4π
L

)
cos
(
8π
L

)
. . . cos

(
4π(L−1)

L

)
. . . . . . .

. . . . . . .

. . . . . . .

1 cos
(

2π(L−1)
L

)
cos
(

4π(L−1)
L

)
. . . cos

(
2π(L−1)2

L

)





U (0)

U (1)

U (2)

.

.

.

U (L− 1)


&

θ (0)

θ (1)

θ (2)

.

.

.

θ (L− 1)


=

1

L



1 1 1 . . . 1

1 cos
(
2π
L

)
cos
(
4π
L

)
. . . cos

(
2π(L−1)

L

)
1 cos

(
4π
L

)
cos
(
8π
L

)
. . . cos

(
4π(L−1)

L

)
. . . . . . .

. . . . . . .

. . . . . . .

1 cos
(

2π(L−1)
L

)
cos
(

4π(L−1)
L

)
. . . cos

(
2π(L−1)2

L

)





θ′ (0)

θ′ (1)

θ′ (2)

.

.

.

θ′ (L− 1)


.

It may be noted that the first matrix equation given above represents that transmit-

ted signal has been obtained by multiplying the phase term matrix and amplitude

matrix. Similarly, the second matrix equation given above represents the components

of reference signal.

Step 3:

In view of the above two matrix equations and for the desired analysis, we take the

absolute values of all the obtained values to bring them in the range of the disk of
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radius one in complex plane. These absolute values are given as below:

|θ (0) |
|θ (1) |
|θ (2) |

.

.

.

|θ (L− 1) |


&



|ul (0) |
|ul (1) |
|ul (2) |

.

.

.

|ul (L− 1) |


.

Step 4:

Finally, we select the maximum absolute cosine value among all the cases of ul (l)

& reference signal. Then, the most similar values will be considered to be reference

signal.

Example 1.

Suppose that there are four different electromagnetic waves (u1 (L) , u2 (L) , u3 (L) &u4 (L))

which have been detected by the receiver. Then, the sample of each signal is to be

taken four times. Assume that θ (L) is the reference signal. Then, the Discrete Fourier

Cosine Transformation (DFCT) of these signals ul (L) and the reference signal θ (L)

is given by:

ul (L) =
1

4

3∑
p=0

Ul[L] cos

(
2π

4
Lp

)
; L, p = 0, 1, 2, 3; (2.2.14)

and

θ (L) =
1

4

3∑
p=0

θ′[L] cos

(
2π

4
Lp

)
; L, p = 0, 1, 2, 3; (2.2.15)

where Ul (L) , θ
′ (L) ∈ [0, 1]. Further, the equation (2.2.14) gives

ul (L) =
1

4
[U [0] cos

(
2π

4
L(0)

)
+ U [1] cos

(
2π

4
L(1)

)
+ U [2] cos

(
2π

4
L(2)

)
+ U [2] cos

(
2π

4
L(3)

)
.

(2.2.16)

Now, we take the values of L = 0, 1, 2, 3 and subsequently obtain the foloowing

equations1:

ul (0) =
1

4
[U [0] cos

(
2π

4
(0)(0)

)
+U [1] cos

(
2π

4
(0)(1)

)
+U [2] cos

(
2π

4
(0)(2)

)
+U [2] cos

(
2π

4
(0)(3)

)
.

ul (0) =
1

4
[U [0].1 + U [1].1 + U [2].0 + U [2].1. (2.2.17)
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ul (1) =
1

4
[U [0] cos

(
2π

4
(1)(0)

)
+U [1] cos

(
2π

4
(1)(1)

)
+U [2] cos

(
2π

4
(1)(2)

)
+U [2] cos

(
2π

4
(1)(3)

)
.

(2.2.18)

ul (2) =
1

4
[U [0] cos

(
2π

4
(2)(0)

)
+U [1] cos

(
2π

4
(2)(1)

)
+U [2] cos

(
2π

4
(2)(2)

)
+U [2] cos

(
2π

4
(2)(3)

)
.

(2.2.19)

ul (3) =
1

4
[U [0] cos

(
2π

4
(3)(0)

)
+U [1] cos

(
2π

4
(3)(1)

)
+U [2] cos

(
2π

4
(3)(2)

)
+U [2] cos

(
2π

4
(3)(3)

)
.

(2.2.20)

Next, from all the above equations (2.2.17)-(2.2.20), we obtain:
ul (0)

ul (1)

ul (2)

ul (3)

 =
1

4


1 1 1 1

1 cos
(
2π
4

)
cos
(
4π
4

)
cos
(
6π
4

)
1 cos

(
4π
4

)
cos
(
8π
4

)
cos
(
12π
4

)
1 cos

(
6π
4

)
cos
(
12π
4

)
cos
(
18π
4

)




U1 (0)

U1 (1)

U1 (2)

U1 (3)

 .

In similar manner, for the case of the reference signal, the matrix equation obtained

as follows:
θ (0)

θ (1)

θ (2)

θ (3)

 =
1

4


1 1 1 1

1 cos
(
2π
4

)
cos
(
4π
4

)
cos
(
6π
4

)
1 cos

(
4π
4

)
cos
(
8π
4

)
cos
(
12π
4

)
1 cos

(
6π
4

)
cos
(
12π
4

)
cos
(
18π
4

)




θ′ (0)

θ′ (1)

θ′ (2)

θ′ (3)

 .

Suppose that the provided values for the reference signal are as below:

θ′[p] =



0; p = 0

0; p = 1

0.2; p = 2

1; p = 3

(2.2.21)

Then, putting equation(2.2.21) in the above references matrix equation. We get,
θ (0)

θ (1)

θ (2)

θ (3)

 =
1

4


1 1 1 1

1 0 −1 0

1 −1 1 −1

1 0 −1 0




0

0

0.2

1

 .

42



Now, the absolute value matrix of reference signal is given as:
|θ (0) |
|θ (1) |
|θ (2) |
|θ (3) |

 =


0.3

0.1

0.2

0.1

 .

The maximum value in the above matrix is 0.3.

Now, for the signal u1 (L) ;L = 0, 1, 2, 3

U1[p] =



0.5; p = 0

0.7; p = 1

0.8; p = 2

1; p = 3

(2.2.22)


u1 (0)

u1 (1)

u1 (2)

u1 (3)

 =
1

4


1 1 1 1

1 0 −1 0

1 −1 1 −1

1 0 −1 0




0.5

0.7

0.8

1

 .

Now, the absolute value matrix of reference signal u1 (L) is,
|u1 (0) |
|u1 (1) |
|u1 (2) |
|u1 (3) |

 =


0.8

0.1

0.1

0.1

 .

The maximum value in the above matrix is 0.8.

Now, for the signal u2 (L) ;L = 0, 1, 2, 3

U2[p] =



0.4; p = 0

0.6; p = 1

0.8; p = 2

1; p = 3

(2.2.23)


u2 (0)

u2 (1)

u2 (2)

u2 (3)

 =
1

4


1 1 1 1

1 0 −1 0

1 −1 1 −1

1 0 −1 0




0.4

0.6

0.8

1

 .
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Now, the absolute value matrix of reference signal u2 (L) is,
|u2 (0) |
|u2 (1) |
|u2 (2) |
|u2 (3) |

 =


0.7

0.1

0.1

0.1

 .

The maximum value in the above matrix is 0.7.

Now, for the signal u3 (L) ;L = 0, 1, 2, 3

U3[p] =



0.6; p = 0

1; p = 1

0.9; p = 2

0.8; p = 3

(2.2.24)


u3 (0)

u3 (1)

u3 (2)

u3 (3)

 =
1

4


1 1 1 1

1 0 −1 0

1 −1 1 −1

1 0 −1 0




0.6

1

0.9

0.8

 .

Now, the absolute value matrix of reference signal u3 (L) is,
|u3 (0) |
|u3 (1) |
|u3 (2) |
|u3 (3) |

 =


0.8

0.1

0.1

0.1

 .

The maximum value in the above matrix is 0.8.

Now, for the signal u4 (L) ;L = 0, 1, 2, 3,

U4[p] =



0.8; p = 0

0.5; p = 1

0; p = 2

0; p = 3

(2.2.25)


u4 (0)

u4 (1)

u4 (2)

u4 (3)

 =
1

4


1 1 1 1

1 0 −1 0

1 −1 1 −1

1 0 −1 0




0.8

0.5

0

0

 .
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Now, the absolute value matrix of reference signal u4 (L) is,
|u4 (0) |
|u4 (1) |
|u4 (2) |
|u4 (3) |

 =


0.3

0.2

0.3

0.2

 .

The maximum value in the above matrix is 0.3.

Now, listing all the maximum values and tabulating with the reference value, we get

θ (L)

u1 (L)

u2 (L)

u3 (L)

u4 (L)


=



0.3

0.8

0.7

0.8

0.3


.

Based on the above, we determine that the signal u4 (L) is the reference signal.

2.3 Cohesive Fuzzy Sets in Solar Activities/Cycles

The planning a space mission requires a good prediction of favourable situations for

which a large amount of data related to the solar cycles are required. With the

help of estimation based on this data, the best time interval for the space mission

may accordingly be predicted. In other words, the time interval and the favourable

situations both conditions play a vital role in the success of a particular mission. The

most important real-life example is the satellite on Mars (Mangalyaan) which was

launched in the year 2013 and got planted in orbit of Mars in the year 2014. In that

case, the scientist considered all the possible situations and the particular time was

selected according to the data collected regarding the solar cycles. Thus, we can say

that the planning under the given set of uncertainties which may include the fuzziness

is an essential component behind the success of any mission.

In this section, we will consider the situations which can affect the solar activ-

ity/cycles and propose a brief outline of the methodology which could effectively help

in the planning of such missions related to the solar activities in the complex plane.

In reference to the above discussions, Yazdanbaksh et.al [104] proposed the concept
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of Adaptive Neuro Complex Fuzzy Inferential System (ANCFIS) which played a sig-

nificant role in the area of solar energy and also compared the results with the help

of two techniques viz. the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Ra-

dial Basis Function Networks (RBFNs). In this way the proposed method and the

obtained results were validated.

The idea behind implementing the cohesive fuzzy sets in the planning of the so-

lar activities is being given by Figure 2.3 for the better understanding of the concept.

On application of Fuzzy Set, 

the information is processed in 

the form of amplitude only.

START

The additional component, i.e., 

the phase variable is added by 

the application of  Complex 

Fuzzy Set. 

CHFS APPLICATION IN SOLAR ACTIVITY

Fuzzy Set. 

Applied CHFS to deal with the 

multi-favorable situations 

(Both phase & amplitude 

components are added).

END

On application of Fuzzy Set, 

the information is processed in 

the form of amplitude only.

The additional component, i.e., 

the phase variable is added by 

the application of  Complex 

Fuzzy Set. 

CHFS APPLICATION IN SOLAR ACTIVITY

Fuzzy Set. 

Non-favorable

situations are 

neglected.

Non-favorable

situations are 

neglected.

Figure 2.3: Methodology for Solar Activities

Further, the important role of CHFS in the case of solar activity is explained

with the help of the following example.

Example 2. In every eleveniyears, the suniundergoesiaiperiod of activityicalled the

“solar maximum” followediby aiperiod known as “solar minimum”. Duringithe so-

larimaximum, large number of sunspots,isolariflares andicoronal massiejections are

noticed, which caniaffect communicationsiandiweather oniearth. Duringithe solari

minimum, the less number of sunspots are observed. This implies that one way of
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tracking the solar activity is by observing the amplitude of sunspots. In this the

darkiblemishes observed onithe faceiof sun signifies the sunspotsiand the sitesiwhere

solariflares areiobserved toioccur. As per the data available with Solar Science re-

source (NASA) [128], the data collected shows the monthlyiaverage of the number of

sunspotsiobserved since year 1749 as shown in Figure 2.4.

Figure 2.4: Monthly Average of Sunspot Observed [128]

In the case of solar activity, the simple fuzzy set denoted by T is efficient in

collecting the data regarding the amplitude of sunspot whereas in case of complex

fuzzy set (CFS) one additional information regarding the phase of the sunspot is

obtained. This additional information helps to track the solar cycle with amplitude.

This helps us to understand that the notion of complex fuzzy set gives an added

advantage over fuzzy set. In the present work, the proposed notion of Cohesive fuzzy

set (CHFS) would certainly have another extra advantage over the complex fuzzy set.

It may be noted that when CHFS is used in place of CFS then in case of solar activity
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it encounters the information regarding the interval in which the maximum number

of sunspots are obtained. Since the implementation of CHFS will be able to deal with

the favorable set of situations in the unit circle on complex plane, therefore, this will

not only neglect the useless data, but also every element in the favorable set will be

considered.

Now this is being explained in detail with the help of empirical values. Consider

an ordinaryifuzzy set T with high solar activity, which implies that the set T consists

of large number of sunspots. However, the average number of sunspotsiobserved

during the month is used to derive the grade of membership in a particular month.

Clearly, the grade of membership is totally dependent on average number of sunspots,

i.e., if the number of sunspots is 200, it signifies the large grade of membership whereas

2 (number of sunspots) is associated with the small grade of membership. If grade of

membership is 0.25 in set T , then it signifies the average number of sunspots in that

particular month, say, 50, which can varyiconsiderably if the solar cycle is considered.

Therefore, the grade of membership to be 0.25 may be treated as inefficient. For

example, it is been noted that the maximum number of sunspots in the months of

year 1805 and 1956 was 50 and barely quarteriof the way up respectively in solar

cycle. Thus, to plan a space mission in these kind of years was not supposed to

be possible. This signifies that it requires long termiplanning to execute a mission

related to the space.

Ramot et al. [28] introduced the notion of complex fuzzy set which was able to

deal with the phase variable with the explanation of the use of phase in tracking the

cycle of solar activity. Further, they explained that the degree of membership can

accordingly be increased by using the phase element. Now, the degree of membership

depends on both the amplitude and phase variables. The limitation of using CFS is

that it only deals with the maximum value of membership of sunspots whereas the

nearby values are sometimes neglected which can also play an important role in the

tracking of the solar activity.

Therefore, in order to overcome such limitations, it would always be better and

advantageous to apply the proposed notion of Cohesive fuzzy set (CHFS) which deals

with the set of favorable values which not only counter the limitation of ordinary fuzzy

set but also provide an added feature over CFS. Hence, we can assert that CHFS plays
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a very important role in the planning of any solar activity. It is important to consider

following three conditions for achieving a favorable sets in planning a solar activity:

• In first condition, the amplitude will be in the range of [0.5, 1] and no restriction

will be applied on the phase element.

• Secondly, the phase element will be in range of
[
π
2
, 3π

2

]
and no restriction is

applied on the amplitude.

• Thirdly, the amplitude and phase element will always lie in the range [0.5, 1]

and
[
π
2
, 3π

2

]
respectively.

It may be noted that all the above conditions can always be better dealt with the

help of cohesive fuzzy sets. Now, the first condition is only applicable for the year

in which the average number of sunspots is in between 100 to 200, which will lead

to the grade of membership between [0.5, 1]. This will automatically increase the

grade of membership irrespective of the membership of phase likely in year 1990-1994

(according to the data given in Figure 2.4). Such condition will automatically neglect

the unfavorable data for any solar activity.

In second case, we will be restricting the phase parameter and will select the years

in which the average number of sunspots is very less (like in year 1995 - according to

Figure 2.4). In those years, due to the decrease in the average number of sunspots,

the degree of membership will also decrease. Therefore, in order to increase the

membership degree, it is advisable to increase the phase element. In this way, in

those years where there are less amplitude of sunspot, a space mission can also be

planned.

In third case, this condition relates to the set of most favorable situations in

which we will be restricting both amplitude and phase terms in the intervals in which

both are increasing. Hence, the degree of membership in this set will be maximum

for almost all the data. Thus, to plan a space mission in this interval of the years

will increase the chances of success. In this manner, all the nearby situations cannot

be neglected and each of the elements of the sets in all the above cases can be dealt

with the help of CHFS. The cases explained above can accordingly be worked out
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depending on the place of experiment. Therefore, the researchers must collect the data

related to the solar cycles according to the places and then plan any solar activity.

2.4 Advantages & Limitations of Proposed Method-

ology

The advantages of CHFS in contrast with the utilization of fuzzy sets and complex

fuzzy sets have been explained with the help of table given below:

Table 2.1: Comparative Advantages of Cohesive Fuzzy Sets with the Existing Exten-

sions
Degree of mem-

bership

FS CFS HFS CHFS

Amplitude
√ √ √ √

Phase
√ √

Advantages Degree of member-

ship in case of am-

plitude is obtained

Degree of member-

ship in case of am-

plitude and phase is

obtained.

Degree of member-

ship in case of fa-

vorable situation is

obtained

Degree of member-

ship in case of am-

plitude and phase is

obtained.

Advantages over

other

It is not able to

track the solar cycle

It contains both the

useful data as well

as the non use-

ful data which con-

sumes time.

Secondly, it also

misses some of the

useful data as only

the max value is

considered.

It contain the

favourable data but

in range [0,1]

It only contains the

favorable values in

the set and also all

the values are con-

sidered.

• The advantage of CHFS is that it contains the properties of both Complex

Fuzzy Set (CFS) and Hesitant Fuzzy Set (HFS) which enhances the efficiency

of the proposed set in solving the problems more efficiently.

• The proposed notion of CHFS deals with the favorable set, i.e., in case of signals

a favorable set of Cosine Transformation is considered, but the Sine Transfor-

mation is rejected due to the limitation of the problem under consideration.
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This limitation of the proposed methodology may be resolved in future by in-

troducing some new concepts with some other examples.

• Similarly, in case of solar cycles, the different particular favorable cases have

been selected on the basis of the structure of the problem.

2.5 Conclusions

A new extension set coined as Cohesive fuzzy set (CHFS) has been successfully pro-

posed which has the dual benefits of complex fuzzy set with coverage of hesitant fuzzy

set. We have studied the various operations, several useful identities on the CHFS

and duly explained the process of selection of the best among the available multiple

favorable situations with the possibility of its range in the extended unit circle of the

complex plane. We have successfully established the relationship between the cohe-

sive fuzzy set and complex intuitionistic fuzzy set and also validated the obtained

results. The identification process of the reference signal among various transmitted

electromagnetic signals has been successfully accomplished by utilizing the feature

of cohesive fuzzy set and Fourier cosine transform/inverse Fourier cosine transform.

Also, the process of identifying maximum number of sunspots in a particular interval

under a solar activity has been discussed and explained with suitable reference. The

advantageous features of the proposed methodology have been tabulated for a better

readability and a quick glance.

The proposed notion of Cohesive fuzzy sets appears to be a promising one which

has the capability to address certain real life situations which can not be dealt with

complex fuzzy sets and other extensions of fuzzy sets. Various other properties of

CHFS need to be explored to fully comprehend its potential. The concepts of ag-

gregation operators and complex hesitant fuzzy relations for CHFS can further be

worked out for solving various types of decision-making problems.
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Chapter 3

Complex Neutrosophic Matrix,

Operations & Properties

In this chapter, the novel notion of the complexineutrosophic matrixihas been pro-

posed and studied in detail. Different algebraicioperations and propertiesirelated to

the proposedimatrix along with normiconvergence have also been studied. In addition

to this, two novel neutrosophic similarity matrices have been successfully introduced

and validated. Various properties and results related to the positive definiteness of

the proposed matrices have been described. The systematic procedure and outline

of the proposed methodology utilizing the similarity measures matrices have been

detailed. A numerical example of medical diagnosis consisting of empirical data

available in literature has been illustrated for showing the implementation of the

proposed methodology. Further, the description of the complex fuzzy matrix and its

theoretic algebraic operations have been given. The new similarity measure for the

complex fuzzy matrices has been additionally proposed along with a numerical exam-

ple. Further, the problem of identification of the reference signal hasibeen considered

iniorderitoidemonstrate the implementation of theiproposedimethodology.
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3.1 Notion of Complex Neutrosophic Matrix

We propose the formal definition of a newikind of a complex neutrosophic matrix

along with illustrative example, its complement, unioniand intersectionifor aibetter

understanding of theiconcept.

Definition 24 A CNM, Sm×n defined on a universeiof discourseiU , which can be

characterized by a truthimembership function ΓS (yij) , an indeterminacyimembership

function IS(yij) and a falsityimembership function ΠS (yij) thatiassign complexivalue

functions of the form,

ΓS (yij) = PS (yij) e
iαS(yij),

IS (yij) = QS (yij) e
iβS(yij),

and

ΠS (yij) = RS (yij) e
iγS(yij).

in Sm×n for any yijϵU , where PS, QS, RS ∈ [0, 1] s.t. 0− ≤ PS + QS + RS ≤ 3+.

The values andithe sum of ΓS, IS and πS may always lieiwithin the uniticircle inithe

complexiplane. Then, the complex neutrosophic fuzzy matrix Sm×n is represented as

Sm×n = [ΓS (yij) , IS (yij) , πS (yij)]m×n|yij ∈ U.

where |ΓS| ≤ 1, |IS| ≤ 1, |πS| ≤ 1& |ΓS + IS + πS| ≤ 3.

Example: The matrix representaion of complex neutrosophic setiof order 3 × 1 is

given below:

S3×1 =


(

3
5
ei0.8, 2

5
ei
π
4 , 1

2
ei

3π
4

)(
3
10
ei0.1, 2

5
ei

3π
4 , 1

10
ei
π
4

)(
1
5
ei0.7, 1

10
ei

5π
4 , 2

5
ei
π
4

)


Definition 25 (Complement of the CNM) The complement of the complex neutro-

sophic matrix can be written in the form of

(Sm×n)
c = [ΓS (yij) , IS (yij) , πS (yij)]

c
m×n = [ΓcS (yij) , I

c
S (yij) , π

c
S (yij)]m×n

= [
(
PS (yij) e

iαS(yij)
)c
,
(
QS (yij) e

iβS(yij)
)c
,
(
RS (yij) e

iγS(yij)
)c
]m×n
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where (PS (yij))
c = RS (yij) and

(
eiαS(yij)

)c
= ei(2π−αS(yij)).

Similarly, (RS (yij))
c = PS (yij) and

(
eiγS(yij)

)c
= ei(2π−γS(yij)).

Finally, (QS (yij))
c = 1−QS (yij) and

(
eiβS(yij)

)c
= ei(2π−βS(yij)).

Example: Suppose S3×1 be a CNM. Then, (S3×1)
c will be given by

S3×1 =


(

3
5
ei0.8, 2

5
ei
π
4 , 1

2
ei

3π
4

)(
3
10
ei0.1, 2

5
ei

3π
4 , 1

10
ei
π
4

)(
1
5
ei0.7, 1

10
ei

5π
4 , 2

5
ei
π
4

)
 , (S3×1)

c =


(

2
5
ei(2π−

π
225), 3

5
ei

7π
4 , 1

2
ei

5π
4

)(
7
10
ei(2π−

π
1800), 3

5
ei

5π
4 , 9

10
ei

7π
4

)(
4
5
ei(2π−

7π
1800), 9

10
ei

3π
4 , 3

5
ei

7π
4

)


Definition 26 (Union of the complex neutrosophic matrix) Consider two complex

neutrosophicimatrices S1
m×n = [Γ1

S (yij) , I
1
S (yij) , π

1
S (yij)]m×n and S2

m×n =

[Γ2
S (yij) , I

2
S (yij) , π

2
S (yij)]m×n respectively. Then, theiunioniof these twoimatrices will

beigiven by

S1
m×n∪S2

m×n = [max{Γ1
S (yij) ,Γ

2
S (yij)},min{I1S (yij) , I2S (yij)},min{π1S (yij) , π2S (yij)}]m×n

where

max
{
Γ1
S (yij) ,Γ

2
S (yij)

}
= max

{
P 1
S (yij) , P

2
S (yij)

}
eimax{α1

S(yij),α
2
S(yij)},

min {I1S (yij) , I2S (yij)} = min {Q1
S (yij) , Q

2
S (yij)}eimin {β1

S(yij),β
2
S(yij)}

and

min
{
Π1
S (yij) ,Π

2
S (yij)

}
= min

{
R1
S (yij) , R

2
S (yij)

}
ei min{γ1S(yij),γ2S(yij)}

Example: Consider two complex neutrosophic matrices

S1
3×1 =


(

3
5
ei0.8, 2

5
ei
π
4 , 1

2
ei

3π
4

)(
1
10
ei0.7, 1

5
ei
π
4 , 9

10
ei

5π
4

)(
1
5
ei0.7, 1

10
ei

5π
4 , 2

5
ei
π
4

)
 , S2

3×1 =


(

1
10
ei0.2, 3

10
ei

3π
4 , 7

10
ei
π
4

)
(
1
5
ei0.5, 1

2
ei
π
4 , 3

10
ei
π
4

)(
3
5
e
i0.7

, 1
5
ei
π
4 , 1

2
ei
π
4

)


S1
3×1 ∪ S2

3×1 =


(

3
5
ei0.8, 2

5
ei

3π
4 , 7

10
ei

3π
4

)
(

1
10
ei0.5, 1

5
ei
π
4 , 3

10
ei
π
4

)(
1
5
ei0.7, 1

10
ei
π
4 , 2

5
ei
π
4

)

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Definition 27 (Intersection of the complex neutrosophic matrix) Consider two com-

plex neutrosophicimatrices S1
m×n = [Γ1

S (yij) , I
1
S (yij) , π

1
S (yij)]m×n andS

2
m×n =

[Γ2
S (yij) , I

2
S (yij) , π

2
S (yij)]m×n respectively. Then, the intersection of these two matri-

ces will be given by

S1
m×n∩S2

m×n = [min {Γ1
S (yij) ,Γ

2
S (yij)},max {I1S (yij) , I2S (yij)},max {π1S (yij) , π2S (yij)}]m×n

where,

min
{
Γ1
S (yij) ,Γ

2
S (yij)

}
= min

{
P 1
S (yij) , P

2
S (yij)

}
eimin{α1

S(yij),α
2
S(yij)},

max {I1S (yij) , I2S (yij)} = max {Q1
S (yij) , Q

2
S (yij)}eimax {β1

S(yij),β
2
S(yij)}

and

max
{
Π1
S (yij) ,Π

2
S (yij)

}
= max

{
R1
S (yij) , R

2
S (yij)

}
eimax{γ1S(yij),γ2S(yij)}

Example: Consider two complex neutrosophic matrices

S1
3×1 =


(

3
5
ei0.8, 2

5
ei
π
4 , 1

2
ei

3π
4

)(
1
10
ei0.7, 1

5
ei
π
4 , 9

10
ei

5π
4

)(
1
5
ei0.7, 1

10
ei

5π
4 , 2

5
ei
π
4

)
 , S2

3×1 =


(

1
10
ei0.2, 3

10
ei

3π
4 , 7

10
ei
π
4

)
(
1
5
ei0.5, 1

2
ei
π
4 , 3

10
ei
π
4

)(
3
5
ei0.7, 1

5
ei
π
4 , 1

2
ei
π
4

)


S1
3×1 ∩ S2

3×1 =


(

1
10
ei0.2, 3

10
ei
π
4 , 1

2
ei
π
4

)(
1
5
ei0.7, 1

2
ei
π
4 , 9

10
ei

5π
4

)(
3
5
ei0.7, 1

5
ei

5π
4 , 1

2
ei
π
4

)


3.2 Algebraic Operations on Complex Neutrosophic

Matrix

In this section, we have discussedithe theoretical operations of the complexineutrosophic

set. This section begins with the basic definitionirelated to theiconcept and followed

by theitheorem, multiplicationiand additive identity.

Definition 28 A be a m×n neutrosophicimatrix. If all of itsientries are < 0, 0, 1ei0 >,

then A is called zero complex neutrosophic matrices and denoted by 0. If all of its en-

tries are < 1ei0, 1ei0, 0 >, then A is callediuniversal complex neutrosophicimatrix and

denoted by J.
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Theorem 3 The matrix Sm×n are a complexineutrosophic fuzzy algebra underithe

component-wise addition and multiplicationioperations (+,⊙) represented as:

For S1 = [Γ1
S (yij) , I

1
S (yij) , π

1
S (yij)]m×n and S2 = [Γ2

S (yij) , I
2
S (yij) , π

2
S (yij)]m×n in

Sm×n,

S1+S2 = (sup {S1, S2}) =
(
sup {ΓS1 (yij) ,ΓS2 (yij)}, sup {I1S (yij) , I2S (yij)}, inf {π1S (yij) , π2S (yij)}

)
S1⊙S2 = (inf {S1, S2}) = (inf {ΓS1 (yij) ,ΓS2 (yij)}, inf {I1S (yij) , I2S (yij)}, sup {π1S (yij) , π2S (yij)})

where

S1 = [Γ1
S (yij) , I

1
S (yij) , π

1
S (yij)]m×n

or

S1 =
[
PS1 (yij) e

iαS1 (yij), QS1 (yij) e
iβS1 (yij) , RS1 (yij) e

iγS1(yij)
]
m×n

and

S2 =
[
PS2 (yij) e

iαS2 (yij), QS2 (yij) e
iβS2 (yij) , RS2 (yij) e

iγS2(yij)
]
m×n

Proof: Every matrix in complexineutrosophic algebra should also satisfy the prop-

erties of fuzzyialgebra. Therefore, S1 + O = S1andS1 ⊙ J = S1∀ S1ϵSm×n, henceithe

zeroimatrix O is theiadditiveiidentity andithe universalimatrix J isithe multiplica-

tiveiidentity. Thus, the identity elementirelative toithe operations (+,⊙)iexist. Fur-

ther, S1 + J = J iandiS1 ⊙O = O. This proves that universalibound holds. Similarly,

we caniprove foriIdempotence, Commutativity,iAssociative andiAbsorption proper-

ties. Now, in the caseiof Distributivity property, we have toiprove

S1 ⊙ (S2 + S3) = (S1 ⊙ S2) + (S1 ⊙ S3)

where

S1 =
[
PS1 (yij) e

iαS1 (yij), QS1 (yij) e
iβS1(yij) , RS1 (yij) e

iγS1 (yij)
]
m×n

,

S2 =
[
PS2 (yij) e

iαS2 (yij), QS2 (yij) e
iβS2 (yij) , RS2 (yij) e

iγS2(yij)
]
m×n

and

S3 =
[
PS3 (yij) e

iαS3 (yij), QS3 (yij) e
iβS3(yij) , RS3 (yij) e

iγS3 (yij)
]
m×n

.

Next, if S1 ≤ S2(or)S3i.e.ΓS1 (yij) ≤ ΓS2 (yij) or ΓS3 (yij) , I1S (yij) ≤ I2S (yij)

or I3S (yij) , π
1
S (yij) ≥ π2

S (yij) or π
3
S (yij) then in both cases

inf {S1, sup {S2, S3}} = S1and sup{inf{S1, S2}, inf {S1, S3}} = S1.

57



In a similar manner,

S1 + (S2 ⊙ S3) = (S1 + S2)⊙ (S1 + S3)

Next, if S1 ≥ S2(or)S3 then in both cases

sup {{S1, inf {S2, S3}}} = S1and inf {sup {S1, S2}, sup {S1, S3}} = S1.

Hence, all the propertiesiare proved.

Definition 29 Multiplicationiof two complexineutrosophic matrices. Consider two

complexineutrosophic matrices given by S1
3×2 and S2

2×1 on the unit circle inicomplex

plane i.e.

S1
3×2 =


(
ǎ1e

iθ1 , ǎ2e
iθ2 , ǎ3e

iθ3
)(

b̌1e
iσ1 , b̌2e

iσ2 , b̌3e
iσ3
)

(č1e
iρ1 , č2e

iρ2 , č3e
iρ3)

(
ǎ4e

iθ4 , ǎ5e
iθ5 , ǎ6e

iθ6
)(

b̌4e
iσ4 , b̌5e

iσ5 , b̌6 eiσ6
)

(č4e
iρ4 , č5e

iρ5 , č6e
iρ6)

 ,

S2
2×1 =


(p̌1e

iα1 , p̌2e
iα2 , p̌3e

iα3)(
q̌1e

iβ1 , q̌2e
iβ2 , q̌3e

iβ3
) 

Now the product of two matrices is given by

S1
3×2. S

2
2×1 =


d11

d21

d31


where,

d11 = {sup {inf
(
ǎ1e

iθ1 , p̌1e
iα1
)
, inf

(
ǎ4e

iθ4 , q̌1e
iβ1
)
}, sup {inf

(
ǎ2e

iθ2 , p̌2e
iα2
)
, inf

(
ǎ5e

iθ5 , q̌2e
iβ2
)
},

inf {sup
(
ǎ3e

iθ3 , p̌3e
iα3
)
, sup(ǎ6e

iθ6 , q̌3e
iβ3)}}

Similarly, for d21 & d31.

Example: Let us consider two matrices given below

S1
3×2 =


(

3
5
ei0.8, 2

5
ei
π
4 , 1

2
ei

3π
4

)(
1
10
ei0.7, 1

5
ei
π
4 , 9

10
ei

5π
4

)(
1
5
ei0.7, 1

10
ei

5π
4 , 2

5
ei
π
4

)
(

1
2
ei0.4, 1

5
ei

3π
4 , 1

10
ei

5π
4

)(
7
10
ei0.3, 1

10
ei

3π
4 , 1

2
ei
π
4

)(
7
10
ei0.1, 9

10
ei
π
4 , 1

5
ei

3π
4

)
 ,
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S2
2×1 =


(

1
10
ei0.2, 3

10
ei

3π
4 , 7

10
ei
π
4

)
(
1
5
ei0.5, 1

2
ei
π
4 , 3

10
ei
π
4

)


S1
3×2. S

2
2×1 =


(
sup

{
1
10
ei0.2, 1

5
ei0.4

}
, sup

{
3
10
ei
π
4 , 1

5
ei
π
4

}
, inf

{
7
10
ei

3π
4 , 3

10
ei

5π
4

})(
sup

{
1
10
ei0.2, 1

5
ei0.3

}
, sup

{
1
5
ei
π
4 , 1

10
ei
π
4

}
, inf

{
9
10
ei

5π
4 , 1

2
ei
π
4

})(
sup

{
1
10
ei0.2, 1

5
ei0.1

}
, sup

{
1
10
ei

3π
4 , 1

2
ei
π
4

}
, inf

{
7
10
ei
π
4 , 3

10
ei

3π
4

})


S1
3×2. S

2
2×1 =


(

1
5
ei0.4, 3

10
ei
π
4 , 3

10
ei

3π
4

)
(
1
5
ei0.3, 1

5
ei
π
4 , 1

2
ei
π
4

)(
1
5
ei0.2, 1

2
ei

3π
4 , 3

10
ei
π
4

)


Definition 30 The identity element for addition.

Consider two neutrosophicimatrices S2×2 and I2×2 respectively, where I2×2 is an iden-

tity matrix. Then,

S2×2 =

( 1
10
ei0.3, 7

10
ei
π
4 , 1

5
ei

5π
4

)(
1
5
ei0.2, 4

5
ei

5π
4 , 1

2
ei

3π
4

) (
7
10
ei0.4, 3

5
ei

5π
4 , 1

10
ei
π
4

)(
3
5
ei0.7, 1

2
ei
π
4 , 2

5
ei

3π
4

) 

I2×2 =

[
(0, 0, 1ei0)

(0, 0, 1ei0)

(0, 0, 1ei0)

(0, 0, 1ei0)

]

S2×2 + I2×2 =

[
d11

d21

d12

d22

]
= S2×2

where,

d11 =

(
sup

(
1

10
ei0.3, 0

)
, sup

(
7

10
ei
π
4 , 0

)
, inf

(
1

5
ei

5π
4 , 1

))
=

(
1

10
ei0.3,

7

10
ei
π
4 ,

1

5
ei

5π
4

)

d12 =

(
sup

(
7

10
ei0.4, 0

)
, sup

(
3

5
ei

5π
4 , 0

)
, inf

(
1

10
ei
π
4 , 1

))
=

(
7

10
ei0.4,

3

5
ei

5π
4 ,

1

10
ei
π
4

)
d21 =

(
sup

(
1

5
ei0.2, 0

)
, sup

(
4

5
ei

5π
4 , 0

)
, inf

(
1

2
ei

3π
4 , 1

))
=

(
1

5
ei0.2,

4

5
ei

5π
4 ,

1

2
ei

3π
4

)
d22 =

(
sup

(
3

5
ei0.7, 0

)
, sup

(
1

2
ei
π
4 , 0

)
, inf

(
2

5
ei

3π
4 , 1

))
=

(
3

5
ei0.7,

1

2
ei
π
4 ,

2

5
ei

3π
4

)

59



3.3 Matrix Norm Convergence for Complex Neu-

trosophic Matrix

This sectioniincludes theinorm convergenceiof the complexineutrosophic matrix, fol-

lowed by some basiciproperties, definitionsianditheorem.

Definition 31 [70] “Suppose F̌ = Ror C, V in linear space over F . If the real

vector function || ∗ || on V verify the properties given below:

• For arbitrary u ∈ V, ||u|| ≥ 0, and ||u|| = 0 =⇒ u = 0.

• For arbitrary a ∈ F̌ , u ∈ V get ||au|| = |a|.||u||,

• For arbitrary u, v ∈ V, get ||u+ v|| ≤ ||u||+ ||v||,

Then, ||u|| is called the vector norm of X in V .”

Definition 32 Consider || ∗ || is a non-negativeireal function on F̌ n×n, if

•
||C1C2RΓS (yij) || ≤ ||C1RΓS (yij) ||.||C2RΓS (yij) ||

•
||C1C2τΓS (yij) || ≤ ||C1τΓS (yij) ||.||C2τΓS (yij) ||

where R (ΓS (yij)) & τ (ΓS (yij)) is the real andiimaginary part of the CNM (Complex

neutrosophic matrix).

Similarly, for IS (yij)&πS (yij). Then, this known as || ∗ || is CNFM(n,m) .

Definition 33 Consider || ∗ || is a non-negativeireal function on F n×n, if

||S1S2R (Γ (xij)) || ≤ ||S1R (Γ (xij)) ||.||S2R (Γ (xij)) ||;

||S1S2τ (Γ (xij)) || ≤ ||S1τΓ (xij) ||.||S2τΓ (xij) ||;

where R (Γ (xij)) & τ (Γ (xij)) is the real and imaginary part of the complexineutrosophic

matrix. Similarly, we can obtain for I (xij)&π (xij) functions.

Then, called || ∗ || is CNFM (n,m).
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Definition 34 Suppose (V, || ∗ ||) is a n-dimensional normedilinear space, p1, p2, . . . ,

pk, . . . is a vector sequence and δ is a fixed vector of V , if

lim
k→∞

||pk − δ|| = 0.

Then, we can say that vector sequenceiconvergence in the norm, δ is the limit of a

sequence, given as:

lim
k→∞

pk = δ or pk → δ.

Definition 35 Suppose (V, || ∗ ||) is a n-dimensionalinormed linear space, p1, p2, . . . ,

pk, . . .
(
where pu =

(
Γup (xij) , I

u
p (xij) , π

u
p (xij)

)
, u = 1, 2, 3,

)
is a complexineutroso

-phic matrix sequence of V, p (k) {p (k) is of form
(
Γkp (xij) , I

k
p (xij) , π

k
p (xij)

)
} con-

stitutes a fixed complex neutrosophic function δ = (Γδ (xij) , Iδ (xij) , πδ (xij)) of V ,

if

lim
k→∞

||pR
(
Γkp (xij)

)
− δR (Γδ (xij)) || = 0,

lim
k→∞

||pτ
(
Γkp (xij)

)
− δτ (Γδ (xij)) || = 0;

where R
(
Γkp (xij)

)
, R (Γδ (xij)) denotes the real & τ

(
Γkp (xij)

)
, τ (Γδ (xij)) denotes the

imaginary parts of the complexineutrosophic matrix respectively.

Similarly, for the case of indeterminacyiand falsity components of the matrix can be

obtained.

3.3.1 Convergence of Power of Complex Neutrosophic Ma-

trix

Definition 36 ConsideriM (ΓM (yij) , IM (yij) , πM (yij)) ∈ CNFM (n, n) poweriK

of M is defined as Mk, among them M1 = M,Mk = Mk−1M.

Theorem 4 Consider M (ΓM (yij) , IM (yij) , πM (yij)) ∈ CNFM (n, n), thereiexists

a positiveiinteger a and K, such that ∀k ≥ K has Mk+a = Mk.

Proof:. Suppose ∀k ≥ 1,

M (ΓM (yij) , IM (yij) , πM (yij))
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= [R (ΓM (yij) , IM (yij) , πM (yij)) + i (τ (ΓM (yij) , IM (yij) , πM (yij)))]n×n

Mk = [R (ΓM (yij) , IM (yij) , πM (yij)) + i (τ (ΓM (yij) , IM (yij) , πM (yij)))]
k
n×n

R (ΓM (yij) , IM (yij) , πM (yij)) =

∨1≤p1,,pk−1≤n{(R (ΓM (yip1 ) , IM (yip1 ) , πM (yip1 )) ∧ ∧ (R (ΓM (yi, pk−1) , IM (yi, pk−1) , πM (yi, pk−1))))}

It is known that ∨&∧ are closed, therefore, the number of the elements of {Mk, k ≥ 1}
will not be greater than (n4n)

n
. Then, thereiexists a positive integer a and K, s.t.

Mk+a = Mk, thus k ≥ K has

Mk+a = M (k−k)+k+a = Mk−kMk+a = Mk−kMk = Mk

3.4 Some New Similarity Measure Matrices

In this section of the current manuscript, the two similarity measure matrices are

proposed and the properties are satisfied with the help of theorems.

Definition 37 Suppose two complex neutrosophic matrices represented as Mm×n =

[TM (xij) , IM (xij) , FM (xij)]m×n and Nm×n = [TN (xij) , IN (xij) , FN (xij)]m×n. Then,

the proposed similarity measure matrix is given by,

S1 (M, N ) =

[
1− 1

mn

m∑
i=1

n∑
i=1

[∣∣TMT 2
N − TNT

2
N

∣∣+ ∣∣IMI2N − INI
2
M

∣∣+ ∣∣FMF 2
N − FNF

2
M

∣∣]]
m×n

.

Theorem 5 Consider S (M) and S (N ) be two complex neutrosophic matrices. Then,

these matrices must satisfy the following conditions:

(i) 0 ≤ S (M,N ) ≤ 1.

(ii) S (M,N ) = 1 ⇐⇒ M = N.

(iii) S (M,N ) = S (N, M ) .

(iv) If M ⊆ N ⊆ o, thenS (M,N ) ≥ S (M, o) and S (N, o) ≥ S (M, o) .
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Proof:

(i) It is already known that TM and TN are two truth membership functions of

complex neutrosophic matrices.

Then, its obvious that

|TM | ≤ 1, |TN | ≤ 1 & |TM − TN | ≤ 1.

This implies,

|T 2
M | ≤ 1, |T 2

N | ≤ 1.

This means,

|TMT 2
N | ≤ 1 & |TNT 2

M | ≤ 1.

Similarly, we can obtain it for the neutrality and falsity functions.

⇒
∣∣TMT 2

N − TNT
2
M

∣∣ ≤ 1,
∣∣IMI2N − INI

2
M

∣∣ ≤ 1and
∣∣FMF 2

N − FNF
2
M

∣∣ ≤ 1.

This proves that,

0 ≤ 1− 1

mn

m∑
i=1

n∑
i=1

[∣∣TMT 2
N − TNT

2
M

∣∣+ ∣∣IMI2N − INI
2
M

∣∣+ ∣∣FMF 2
N − FNF

2
M

∣∣] ≤ 1.

Hence, 0 ≤ S (M,N ) ≤ 1.

(ii) If M = N, then∣∣TMT 2
N − TNT

2
M

∣∣ = ∣∣IMI2N − INI
2
M

∣∣ = ∣∣FMF 2
N − FNF

2
M

∣∣ = 0.

Thus, S(M,N) = 1.

(iii) Replacing M by N then, also we obtain the same relation it simply proves that

it satisfies the condition S(M,N) = S(N, M).

(iv) When M ⊆ N ⊆ o then,

TM ≤ TN ≤ To, IM ≥ IN ≥ Io andFM ≥ FN ≥ Fo.

⇒ |TM − TN | ≤ |TM − To| .

⇒
∣∣TMT 2

N − TNT
2
M

∣∣ ≤ ∣∣TMT 2
o − ToT

2
M

∣∣ .
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Similarly,∣∣IMI2N − INI
2
M

∣∣ ≥ ∣∣IMI2o − IoI
2
M

∣∣ and ∣∣FMF 2
N − FNF

2
M

∣∣ ≥ ∣∣FMF 2
o − FoF

2
M

∣∣ .
Thus, S (M,N ) ≥ S (M, o) .

Similarly, we can obtain the second condition that is S (N, o) ≥ S (M, o) .

Hence, all the properties are satisfied.

Definition 38 Suppose two complex neutrosophic matrices represented as Mm×n =

[TM (xij) , IM (xij) , FM (xij)]m×n and Nm×n = [TN (xij) , IN (xij) , FN (xij)]m×n. Then,

the proposed logarithmic similarity matrix is given by:

S2 (M,N ) = 1

mn

m∑
i=1

n∑
j=1

[
log22− log2

(
1

3

(∣∣TMT 2
N − TNT

2
M

∣∣+ ∣∣IMI2N − INI
2
M

∣∣+ ∣∣FMF 2
N − FNF

2
M

∣∣))]
m×n

Theorem 6 Consider S (M) andS (N ) be two complex neutrosophic matrices. Then,

these must also satisfy the conditions given in Theorem 5.

(i) It is already known that TM and TN are two truth membership functions of

complex neutrosophic matrices. Then, its obvious that

|TM | ≤ 1, |TN | ≤ 1 & |TM − TN | ≤ 1.

This implies,

|T 2
M | ≤ 1, T 2

N ≤ 1.

This means,

|TMT 2
N | ≤ 1 & |TNT 2

M | ≤ 1.

Similarly, it can be proved for the case of neutrality and falsity,

⇒
∣∣TMT 2

N − TNT
2
M

∣∣ ≤ 1,
∣∣IMI2N − INI

2
M

∣∣ ≤ 1and
∣∣FMF 2

N − FNF
2
M

∣∣ ≤ 1.

⇒ log[
∣∣TMT 2

N − TNT
2
M

∣∣+ ∣∣IMI2N − INI
2
M

∣∣+ ∣∣FMF 2
N − FNF

2
M

∣∣] ≤ 1.

This proves that,

0 ≤ 1

mn

m∑
i=1

n∑
j=1

[
log22− log2

(
1

3

(∣∣TMT 2
N − TNT

2
M

∣∣+ ∣∣IMI2N − INI
2
M

∣∣+ ∣∣FMF 2
N − FNF

2
M

∣∣))] ≤ 1.

Hence, 0 ≤ S (M,N ) ≤ 1.

64



(ii) If M = N, then∣∣TMT 2
N − TNT

2
M

∣∣ = ∣∣IMI2N − INI
2
M

∣∣ = ∣∣FMF 2
N − FNF

2
M

∣∣ = 0.

Thus, S (M,N ) = 1.

(iii) Replacing M by N. Then, also the same function relations are obtained which simply

proves that it satisfies the condition S (M,N ) = S (N, M ) .

(iv) When M ⊆ N ⊆ o. Then, TM ≤ TN ≤ To, IM ≥ IN ≥ Io and FM ≥ FN ≥ Fo.

⇒ |TM − TN | ≤ |TM − T≀| .

⇒
∣∣TMT 2

N − TNT
2
M

∣∣ ≤ ∣∣TMT 2
≀ − T≀T

2
M

∣∣ .
Similarly,∣∣IMI2N − INI

2
M

∣∣ ≥ ∣∣IMI2o − IoI
2
M

∣∣ and ∣∣FMF 2
N − FNF

2
M

∣∣ ≥ ∣∣FMF 2
o − FoF

2
M

∣∣ .
Next,

log (
∣∣TMT 2

N − TNT
2
M

∣∣+ ∣∣IMI2N − INI
2
M

∣∣+ ∣∣FMF 2
N − FNF

2
M

∣∣) ≥
log
(∣∣TMT 2

o − ToT
2
M

∣∣+ ∣∣IMI2o − IoI
2
M

∣∣+ ∣∣FMF 2
o − FoF

2
M

∣∣).
Thus, S (M,N ) ≥ S (M, o) .

Similarly, we can obtain the second condition, that is, S (N, o) ≥ S (M, o) .

Hence, all the properties are satisfied.

3.5 Positive Definiteness of Similarity Measure Ma-

trices of CNMs

In this section, the positive definiteness of the similarity measure matrix has been

proved in detail with the help of theorems.

Let us recall some basic definitions and theorems related to the positive definite-

ness of complex matrices and the proof of the following definitions are already present

in the literature. Therefore, detailed proof of the theorems will not be presented in

the given section.

65



Definition 39 [58]“Suppose N be a complex hermitian matrix with n dimension.

Then, N is known as a positive semidefinite matrix if it satisfies the condition x∗Nx ≥
0, where x∗ denotes the conjugate of complex matrix x.

Secondly, if x ∗ Nx = 0 =⇒ x = 0.Then, the matrix N will be known as strictly

positive definite.”

Theorem 7 [58] The eigenvalues obtained for the case of hermitian matrix N is

always real and positive.

Theorem 8 [58] Consider two hermitian positive semidefinite matrices N and M.

Then, the sum of these two matrices N +M is also positive semidefinite.

Definition 40 Suppose N1, N2, N3, ..., Nn denotes the Complex neutrosophic matri-

ces in the universe of U = u1, u2, u3, ..., un and all the CNSs are hermitian matrices.

Then, the similarity measure is described by S and is represented as

S =


S11 (N1, N1) S12 (N1, N2) . . . S1n (N1, Nn)

S21 (N2, N1) S22 (N2, N2) . . . S2n (N2, Nn)

· · . . .

Sn1 (Nn, N1) S2n (Nn, N2) . . . Snn (Nn, Nn)


This is already known that Sij(Ni, Nj) = Sji(Nj, Ni) as all the matrices took are

hermitian matrices and Sii( Ni, Ni) = 1.

Theorem 9 The hermitian matrix S between CNMs is a non-singular matrix.

Proof Suppose S be the singular matrix. Then, the two columns must be linearly

independent. Then, let Ni and Nj are linearly dependent. Therefore,

Nj = p. Nk

Thus,

Njq = p. Nkq for all q = 1, 2, ..., n.

If q = j or q = k, then

Njj = p. Nkj = 1
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=⇒ p = 1/Nkj > 1 or p = Nkj < 1

Similarly, for q = k. This results in the contradiction of the assumption. Hence, S is

a non-singular matrix.

Theorem 10 The similarity matrix S is a positive definite matrix.

Proof: Consider the similarity matrix proposed in definition 37. for square matrices

with dimensions n× n. Then, the similarity matrix S is defined as

S =


1− α11 1− α12 ... 1− α12

1− α21 1− α22 ... 1− α2n

.

1− αn1

.

1− α2n

...

...

.

1− αnn

 ;

where

αij =
1

mn

m∑
i=1

n∑
i=1

{
∣∣TM (xij)T

2
N (xij)− TN (xij)T

2
M (xij)

∣∣+ ∣∣IM (xij) I
2
N (xij)− IN (xij) I

2
M (xij)

∣∣
+
∣∣FM (xij)F

2
N (xij)− FN (xij)F

2
M (xij)

∣∣}.
When M = N, then S(M,N) = 1 and also S(M,N) = S(N, M).

Therefore, S = S∗.

S =


1 1− α12 ... 1− α12

1− α21 1 ... 1− α2n

.

1− αn1

.

1− α2n

...

...

.

1

 .

According to theorem 7. given above, all the hermitian matrices have real and positive

roots, thus the similarity matrix S will also follow the same condition and have real and

positive roots, denoted by θ1, θ2, θ3, ..., θn. Let us assume that θ be an arbitrary eigenvalue

of similarity matrix S. According to Gerschgorin Theorem, we obtain

|θ − 1| ≤
n∑

j = 1

j ̸= i

(S) .
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Then,

|θ − 1| = (n− 1)−
n∑

j = 1

j ̸= i

(αij) .

Now, let us consider

n∑
j = 1

(θk) =

n∑
j = 1

j ̸= i

(s) = n & n.θmax ≥
n∑

j = 1

j ̸= i

(θk) ≥ n.θmin,

where the min and max of the eigenvalues are denoted by

θmin & θmax (θmin ≤ 1, θmax ≥ 1) respectively. Therefore,

|θmin − 1| = 1− θmin;

≤ (n− 1)−
n∑

j = 1

j ̸= i

(αij) ;

θmin ≥ 2 +
n∑

j = 1

j ̸= i

(αij) − n.

No loss of generality is done by varying the values of i & j. Then, consider n = 2 we get,

θmin ≥ 2 +

n∑
j = 1

j ̸= i

(αij) − 2 = θmin ≥
n∑

j = 1

j ̸= i

(αij) > 0.

Similarly, we obtain the values of θmin by varying the values of n (n = 3, 4, ...). Thus,

it is concluded that θmin ≥ 0. Finally, we also conclude that all the eigenvalues of S are

non-negative. Hence, the similarity matrix is positive semidefinite.

From theorem 9, we have already proved that it is a nonsingular matrix. Therefore, the

determinant of the similarity matrix S will not be equal to 0. Thus, all eigenvalues are

strictly positive.

Hence, we can say that similarity matrix S is positive definite.

Similarly, we can prove it for the logarithmic similarity matrix given in definition 38.
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3.6 Application of the Similarity Measure Matri-

ces in Medical Diagnosis

In this section of the manuscript, we have explained the methodology of the application

using proposed measures.

Suppose we consider a set of n patients denoted as {P1, P2, P3, . . . , Pn }, set of symptoms

is denoted by {s1, s2, . . . , sk} and the number of diseases is denoted by {d1, d2, d3, . . . , dm } .
The procedure for the proposed methodology is explained below.

Methodology

Step 1: We construct a decision matrix between the patients, symptoms and diseases. The

matrices should be of the form

P1

P2

...

Pn


κ11

κ21

...

κn1

κ12

κ22

...

κn2

κ13

κ23

...

κn3

κ14

κ24

...

κn4

. . . κ1k

. . . κ2k

. . .
...

. . . κnk

 .

S1 S2 S3 S4 . . . Sk

Step 2: Secondly, we construct a decision-making matrix based on symptoms and diseases

related to them. The matrix should be of the form

S1

S2

S3
...

Sk



κ′
11

κ′
21

κ′
31
...

κ′
51

κ′
12

κ′
22

κ′
32
...

κ′
52

κ′
13

κ′
23

κ′
33
...

κ′
53

. . . κ′
1m

. . . κ′
2m

. . . κ′
3m

...

. . . κ′
km


.

d1 d2 d3 . . . dm

Step 3: Then, the similarity matrix Sd is applied to these two matrices.

Step 4: Then, the highest similarity matrix element is noted. Accordingly, the disease is

told to the patient.

Step 5: End of the methodology.
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3.7 Application of the Proposed Methodology

In this section, a case is considered and the methodology explained in the above section is

used to obtain the result. This example not only proves the validity of the methodology

but also increases the understanding of the concept.

Suppose three patients denoted by {P1, P2, P3 } shows the symptoms {Temperature, Headache,

Stomach Pain, Cough, Chest Pain} and the set of diseases related to the given set is {Viral,

Malaria, Stomach Problem, Chest Problem}. Then, the application using the methodology

to detect the type of disease is given below.

Step 1: The following matrix is the relationship between patients and symptoms. In

this matrix, the numbers of patients are denoted by the number of rows and the num-

ber of columns denotes the number of symptoms that is Temperature,iHeadache, Stomach

pain,iCough, Chest Pain respectively.

D1

=



(
0.6e1.0i, 0.4e1.2i

0.2e0.8i

) (
0.4e1.2i, 0.4e1.1i

0.3e0.7i

) (
0.3e1.0i, 0.4e1.2i,

0.4e0.6i

) (
0.6e1.0i, 0.5e1.2i

0.3e0.8i

) (
0.4e1.0i, 0.3e1.0i

, 0.2e0.5i

)
(

0.7e1.3i, 0.4e1.2i,

0.5e0.9i

) (
0.4e1.5i, 0.6e1.5i

0.3e0.5i

) (
0.5e1.4i, 0.4e1.2i,

0.4e1.0i

) (
0.6e1.0i, 0.4e1.0i

0.4e0.6i

) (
0.3e1.5i, 0.4e1.0i

, 0.5e1.0i

)
(

0.5e0.6i, 0.5e1.2i,

0.5e0.9i

) (
0.5e1.3i, 0.4e1.2i

0.4e0.4i

) (
0.4e1.0i, 0.4e1.0i,

0.2e0.6i

) (
0.4e1.0i, 0.5e1.1i,

0.2e1.2i

) (
0.5e1.2i, 0.2e1.2i

, 0.2e1.4i

)



Step 2: Next, the following matrix is the relation between the disease and symptoms. In

this case, the number of columns represents the diseases like Viral, Malaria, Stomach Prob-

lem, Chest Problem whereas the number of rows represents the symptoms - Temperature,

Headache, Stomach Pain, Cough, Chest Pain respectively.

D2

=



(
0.4e1.2i, 0.4e1.4i

0.3e0.6i

) (
0.6e1.3i, 0.4e1.4i

0.2e1.5i

) (
0.5e1.4i, 0.5e1.5i

0.2e0.6i

) (
0.6e1.5i, 0.4e0.6i

0.5e0.7i

)
(

0.5e0.6i, 0.4e0.7i

0.2e0.8i

) (
0.4e0.7i, 0.4e0.8i

0.3e0.9i

) (
0.5e0.8i, 0.4e0.9i

0.2e1.0i

) (
0.5e0.9i, 0.4e1.0i

0.5e0.8i

)
(

0.4e1.0i, 0.4e1.1i

0.4e1.2i

) (
0.5e1.1i, 0.2e1.2i

0.2e1.3i

) (
0.4e1.2i, 0.4e1.3i

0.5e1.4i

) (
0.4e1.3i, 0.4e1.4i

0.3e1.5i

)
(

0.3e1.4i, 0.4e1.5i

0.5e0.6i

) (
0.4e1.5i, 0.5e0.6i

0.3e0.7i

) (
0.5e0.6i, 0.4e0.7i

0.3e0.8i

) (
0.3e0.7i, 0.4e0.8i

0.4e0.9i

)
(

0.4e0.8i, 0.4e0.9i

0.5e1.0i

) (
0.6e1.0i, 0.4e1.2i

0.3e1.4i

) (
0.4e1.2i, 0.4e1.4i

0.5e0.6i

) (
0.4e1.4i, 0.3e0.6i

0.2e0.8i

)



Step 3: Applying similarity measure matrix given in definition 37 among D1 and D2

matrices, we get

Sd[D1, D2] =

P1

P2

P3


0.9217

0.8930

0.9016

0.9125

0.8878

0.8919

0.9048

0.8863

0.8965

0.9046

0.8978

0.9010


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V M SP C

where P1, P2 & P3 represents the number of patients and V, M, S P & C denotes Viral

fever, Malaria, Stomach problem and chest pain respectively.

Step 4: Applying similarity measure matrix given in definition 38 among D1 and D2

matrices, we get

Sd[D1, D2] =

P1

P2

P3


0.7876

0.6975

0.7216

0.7557

0.6839

0.6946

0.7424

0.6801

0.7070

0.7307

0.7107

0.7200


V M SP C

Step 5: Now results obtained using both the proposed similarities state that

Patients Disease

P1 Viral Fever

P2 Chest Pain

P3 Viral Fever

The concluded results are also written in bold in the above two similarity matrices to show

the difference between the other values and results.

Step 6: Finally, this ends the methodology.

3.8 Comparative Analysis

In literature, many researchers have worked on similarity measures and found solutions

to various practical life problems related to the fields like medicine and decision-making

problems. In the present manuscript, the concept of similarity measure is studied in detail

and two new similarity measure matrices are proposed. This similarity measure is studied in

detail with the help of a similarity matrix i.e., the similarity measures are basically in matrix

form and applied to the two matrices. The positive definiteness of the proposed similarity

matrices is also defined and proved with the help of theorem. This positive definiteness of

matrix plays a significant role in its application.

Later, in the work, the application of the proposedimeasure is described in the field of

medical science where it plays a vital role in the identification of diseases with similar symp-

toms and later, the results are verified with the results already obtained in the literature

by Mondal et al. [63]
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The comparison values have been tabulated below which contains the results of our

proposed similarity measures and other existing measures. On the basis of these values,

we observe that the proposed similarity measure matrices are effective in resolving the

difficulties related to medical diagnosis.

where

CNCSM - The complexineutrosophic cosineisimilarity measure,

CNDSM - The complexineutrosophic diceisimilarity measure,

CNJSM - Complexineutrosophic Jaccard similarityimeasure,

PM1 - Proposed Measure 1,

PM2 - Proposed Measure 2.

3.9 Complex Fuzzy Matrix with Algebraic Opera-

tions

In thisisection, weihave extended the conceptiof the complexifuzzy matrix with its examples.

In addition to this, various set-theoretic operations viz. addition, multiplication, union and

intersection on the CFM have described to increase the understanding of the basics.

Definition 41 A complex fuzzy matrix Cm×n, definedion a universeiof discourseiU , is

characterizediby a membershipifunction µC (xij) thatiassigns anyielement xij ∈ U . All the

values of function µC (xij) will lie in the unit disk of complexiplaneiand will be of theiform

rC (xij) e
jωC(xij) , where j =

√
−1, rC (xij) & ωC (xij) are both real-valued functions sub-

ject to rC (xij) ∈ [0, 1].
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Then, CFM (Cm×n) can be represented as

Cm×n =
{
(xij , µC (xij))m×n |xij ∈ U

}
.

Example: Suppose that we have an example of a medical situation in which there is a

set of three patients, say, B = (b1, b2, b3), who are suffering from diseases having similar

symptoms. Then, the possibility of a patient suffering from the set of particular disease

D = (d1, d2, d3), can be represented through the following matrix, i.e.,

d1 d2 d3

b1

b2

b3


f11e

ig11 f12e
ig12 f13e

ig13

f21e
ig21 f22e

ig22 f23e
ig23

f31e
ig31 f32e

ig32 f33e
ig33


where

(
f11e

ig11 , f12e
ig12 , . . . , f33e

ig33
)
represents the degree of membership function for

the patients in cases of a particular disease.

Theoretic Algebraic Operations on Complex Fuzzy Matrices

Let us consider two complex fuzzy matrices whose entries are of the form rC (xij) e
jωC(xij)

and given by

C1
2×2 =

[
h11e

iθ1 h12e
iθ2

h21e
iθ3 h22e

iθ4

]
& C2

2×2 =

[
J11e

iα1 J12e
iα2

J21e
iα3 J22e

iα4

]
(3.9.1)

• Addition Operation of Two Complex Fuzzy Matrices

The sum of C1
2×2 & C2

2×2 is defined and represented as follows:

C1
2×2 + C2

2×2 =

[
f11

f21

f12

f22

]
;

where

f11 = max
{
h11e

iθ1 , J11e
iα1

}
= max {h11, J11}ei max{θ1,α1};

f12 = max
{
h12e

iθ2 , J12e
iα2

}
= max {h12, J12}ei max{θ2,α2};

f21 = max
{
h21e

iθ3 , J21e
iα3

}
= max {h21, J21}ei max{θ3,α3};

f22 = max
{
h22e

iθ4 , J22e
iα4

}
= max {h22, J22}ei max{θ4,α4}.
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Example: In view of the particular examples, the sum of given two matrices is

illustrated as follows:

C1
2×2 =

[
0.6ei0.3

0.2ei0.1

0.1ei0.7

0.5ei0.4

]
& C2

2×2 =

[
0.5ei0.1

0.8ei0.6

0.4ei0.3

0.7ei0.2

]
Then

C1
2×2 + C2

2×2 =

[
0.6ei0.3

0.8ei0.6

0.4ei0.7

0.7ei0.4

]
.

Commutativity and Associativity of Addition for CFMS:

Theorem 11 Suppose that there are three CFMSs, say, P , Q and R, then the oper-

ation of addition is commutative and associative.

(i) P +Q = Q+ P. (Commutative law)

(ii) (P +Q) +R = P + (Q+R). (Associative law)

Proof: Consider the following three complex fuzzy matrices:

P =

[
a11e

iθ1 a12e
iθ2

a21e
iθ3 a22e

iθ4

]
, Q =

[
b11e

iα1 b12e
iα2

b21e
iα3 b22e

iα4

]
& R =

[
g11e

iγ1 g12e
iγ2

g21e
iγ3 g22e

iγ4

]
.

Suppose that

P +Q =

[
x11

x21

x12

x22

]
= Y ;

where

x11 = max
{
a11e

iθ1 , b11e
iα1

}
= max {a11, b11}ei max{θ1,α1};

x12 = max
{
a12e

iθ2 , b12e
iα2

}
= max {a12, b12}ei max{θ2,α2};

x21 = max
{
a21e

iθ3 , b21e
iα3

}
= max {a21, b21}ei max{θ3,α3};

x22 = max
{
a22e

iθ4 , b22e
iα4

}
= max {a22, b22}ei max{θ4,α4}.

Similarly, Q+ P = Y . Hence, P +Q = Q+ P .

Also, in case of associativity,

(P +Q) +R = Y +R =

[
x11

x21

x12

x22

]
+

[
g11e

iγ1

g21e
iγ3

g12e
iγ2

g22e
iγ4

]
=

[
k11

k21

k12

k22

]
= K;
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where

k11 = max
{
x11, g11e

iγ1
}
= max {a11, b11, g11}ei max{θ1,α1,γ1};

k12 = max
{
x12, g12e

iγ2
}
= max {a12, b12, g12}ei max{θ2,α2,γ2};

k21 = max
{
x21, g21e

iγ3
}
= max {a21, b21, g21}ei max{θ3,α3,γ3};

k22 = max
{
x21, g22e

iγ4
}
= max {a22, b22, g22}ei max{θ4,α4,γ4}.

Next,

Q+R =

[
b11e

iα1

b21e
iα3

b12e
iα2

b22e
iα4

]
+

[
g11e

iγ1

g21e
iγ3

g12e
iγ2

g22e
iγ4

]
=

[
y11

y21

y12

y22

]
= Y ′;

where

y11 = max
{
b11e

iα1 , g11e
iγ1
}
= max {b11, g11}ei max{α1,γ1};

y12 = max
{
b12e

iα2 , g12e
iγ2
}
= max {b12, g12}ei max{α2,γ2};

y21 = max
{
b21e

iα3 , g21e
iγ3
}
= max {b21, g21}ei max{α3,γ3};

y22 = max
{
b22e

iα4 , g22e
iγ4
}
= max {b22, g22}ei max{α4,γ4}.

Further,

P + (Q+R) = P + Y ′ =

[
a11e

iθ1

a21e
iθ3

a12e
iθ2

a22e
iθ4

]
+

[
y11

y21

y12

y22

]
=

[
l11

l21

l12

l22

]
= L;

where

l11 = max
{
a11e

iθ1 , y11

}
= max {a11, b11, g11}ei max{θ1,α1,γ1};

l12 = max
{
a12e

iθ2 , y12

}
= max {a12, b12, g12}ei max{θ2,α2,γ2};

l21 = max
{
a21e

iθ3 , y21

}
= max {a21, b21, g21}ei max{θ3,α3,γ3};

l22 = max
{
a22e

iθ4 , y22

}
= max {a22, b22, g22}ei max{θ4,α4,γ4}.

Hence, (P +Q) +R = P + (Q+R) .

• Multiplication Operation of Two Complex Fuzzy Matrices

Suppose C1
2×2 & C2

2×2 given by equation 3.9.1 are two CFMs, then their product is

defined as follows:

C1
2×2C

2
2×2 =

[
d11

d21

d12

d22

]
;

where

d11 =
{
max

{
min

{
h11e

iθ1 , J11e
iα1

}
,min

{
h12e

iθ2 , J21e
iα3

}}}
;
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d12 =
{
max

{
min

{
h11e

iθ1 , J12e
iα2

}
,min

{
h12e

iθ2 , J22e
iα4

}}}
;

d21 =
{
max

{
min

{
h21e

iθ3 , J11e
iα1

}
,min

{
h22e

iθ4 , J21e
iα3

}}}
;

d22 =
{
max

{
min

{
h21e

iθ3 , J12e
iα2

}
,min

{
h22e

iθ4 , J22e
iα4

}}}
;

Example: The product of given two matrices is obtained as follows:

C1
2×2 =

[
0.6ei0.3

0.2ei0.1

0.1ei0.7

0.5ei0.4

]
& C2

2×2 =

[
0.5ei0.1

0.8ei0.6

0.4ei0.3

0.7ei0.2

]

Then

C1
2×2C

2
2×2 =

[
0.5ei0.6

0.5ei0.4

0.4ei0.3

0.5ei0.2

]
.

• Union of Two Complex Fuzzy Matrices

Now again, taking the value of C1
2×2 & C2

2×2 from equation 3.9.1 and then, the union

of these matrices is given as

C1
2×2 ∪ C2

2×2 =

[
ď11

ď21

ď12

ď22

]
;

where

ď11 =
{
max {h11, J11}eimin {θ1,α1}

}
;

ď12 =
{
max {h12, J12}eimin {θ2,α2}

}
;

ď21 =
{
max {h21, J21}eimin {θ3,α3}

}
;

ď22 =
{
max {h11, J11}eimin {θ1,α1}

}
.

Example: The union of given two matrices is obtained as follows:

C1
2×2 =

[
0.6ei0.3

0.2ei0.1

0.1ei0.7

0.5ei0.4

]
& C2

2×2 =

[
0.5ei0.1

0.8ei0.6

0.4ei0.3

0.7ei0.2

]
.

Then

C1
2×2 ∪ C2

2×2 =

[
0.6ei0.1

0.8ei0.1

0.4ei0.3

0.7ei0.2

]
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• Intersection of Two Complex Fuzzy Matrices

Similarly, suppose that C1
2×2 & C2

2×2 are two CFMs, then the intersection of these

matrices is defined as follows:

C1
2×2 ∩ C2

2×2 =

[
ˇ̌d11
ˇ̌d21

ˇ̌d12
ˇ̌d22

]
;

where
ˇ̌d11 =

{
min {h11, J11}eimax {θ1,α1}

}
;

ˇ̌d12 =
{
min {h12, J12}eimax {θ2,α2}

}
;

ˇ̌d21 =
{
min {h21, J21}eimax {θ3,α3}

}
;

ˇ̌d22 =
{
min {h11, J11}eimax {θ1,α1}

}
.

Example: The intersection of given two matrices is obtained as follows:

C1
2×2 =

[
0.6ei0.3

0.2ei0.1

0.1ei0.7

0.5ei0.4

]
& C2

2×2 =

[
0.5ei0.1

0.8ei0.6

0.4ei0.3

0.7ei0.2

]

Then

C1
2×2 ∩ C2

2×2 =

[
0.5ei0.3

0.2ei0.6

0.1ei0.7

0.5ei0.4

]
.

• Commutativity, Associativity and Distributivity Properties of CFMs:

Theorem 12 Suppose that there are three CFMSs, say, P , Q and R, then the union

operation of CFMs is commutative and associative and distributive over intersection.

(i) P ∪Q = Q ∪ P (Commutative law)

(ii) P ∪ (Q ∪R) = (P ∪Q) ∪R (Associative law)

(iii) P ∪ (Q ∩R) = (P ∪Q) ∩ (P ∪R) (Distributive law)

Proof: Consider the following three complex fuzzy matrices:

P =

[
a11e

iθ1 a12e
iθ2

a21e
iθ3 a22e

iθ4

]
, Q =

[
b11e

iα1 b12e
iα2

b21e
iα3 b22e

iα4

]
& R =

[
g11e

iγ1 g12e
iγ2

g21e
iγ3 g22e

iγ4

]
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Commutative Property:

P ∪Q =

[
max (a11, b11)e

imin (θ1,α1)

max (a21, b21)e
imin (θ3,α3)

max (a12, b12)e
imin (θ2,α2)

max (a22, b22)e
imin (θ4,α4)

]
= Q ∪ P.

Associative Property:

P ∪ (Q ∪R) =

[
ě11

ě21

ě12

ě22

]
= (P ∪Q) ∪R;

where

ě11 = max (a11, b11, g11)e
imin (θ1,α1, γ1);

ě12 = max (a12, b12, g12)e
imin (θ2,α2, γ2);

ě21 = max (a21, b21, g21)e
imin (θ3,α3, γ3);

ě22 = max (a22, b22, g22)e
imin (θ4,α4, γ4).

Distributive Property:

P ∪ (Q ∩R) = P ∪ Q̌;

where

Q̌ =

[
ˇ̌e11

ˇ̌e21

ˇ̌e12

ˇ̌e22

]
;

and

ˇ̌e11 = min ( b11, g11)e
imax (α1, γ1);

ˇ̌e12 = min (b12, g12)e
imax (α2, γ2);

ˇ̌e21 = min ( b21, g21)e
imax (α3, γ3);

ˇ̌e22 = min (b22, g22)e
imax (α4, γ4).

Next, remaining part of the equation is calculated that is

P ∪ Q̌ =

[
ˇ̌p11
ˇ̌p21

ˇ̌p12
ˇ̌p22

]
;

where

ˇ̌p11 = a11e
iθ1 ∪ ˇ̌e11;

ˇ̌p12 = a12e
iθ2 ∪ ˇ̌e12;

ˇ̌p21 = a21e
iθ3 ∪ ˇ̌e21;

ˇ̌p22 = a22e
iθ4 ∪ ˇ̌e22.
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Similarly, we will obtain the right-hand side of the identity and after calculation, it

is observed that the desired values are obtained. In this manner, the distributive

property is satisfied.

Now, the above three identities are being illustrated with the help of numerical ex-

amples for better understanding of the concept.

Suppose the matrices are of following form:

P =

[
0.5ei0.7 0.3ei0.1

06ei0.3 02ei0.5

]
, Q =

[
0.7ei0.1 0.5ei0.3

02ei0.4 09ei0.2

]
& R =

[
0.4ei0.3 0.3ei0.5

06ei0.1 07ei0.2

]
.

Commutative law:

P ∪Q =

[
0.7ei0.1

0.6ei0.3

0.5ei0.1

0.9ei0.2

]
= Q ∪ P.

Associative law:

(P ∪Q) ∪R =

[
0.7ei0.1

0.6ei0.3

0.5ei0.1

0.9ei0.2

]
∪

[
0.4ei0.3

0.6ei0.1

0.3ei0.5

0.7ei0.2

]
=

[
0.7ei0.1

0.6ei0.1

0.5ei0.1

0.9ei0.2

]
.

(P ∪Q) ∪R =

[
0.7ei0.1

0.6ei0.3

0.5ei0.1

0.9ei0.2

]
∪

[
0.4ei0.3

0.6ei0.1

0.3ei0.5

0.7ei0.2

]
=

[
0.7ei0.1

0.6ei0.1

0.5ei0.1

0.9ei0.2

]
.

P ∪ (Q ∪R) = (P ∪Q) ∪R.

Distributive law:

P ∪ (Q ∩R) =

[
0.5 ei0.7

0.6ei0.3

0.3ei0.1

0.2ei0.5

]
∪

[
0.4ei0.3

0.2ei0.4

0.3ei0.5

0.7ei0.2

]
=

[
0.5ei0.3

0.6ei0.3

0.3ei0.1

0.7ei0.2

]
.

(P ∪Q) ∩ (P ∪R) =

[
0.7ei0.1

0.6ei0.3

0.5ei0.1

0.9ei0.2

]
∩

[
0.5ei0.3

0.6ei0.1

0.3ei0.1

0.7ei0.2

]
=

[
0.5ei0.3

0.6ei0.3

0.3ei0.1

0.7ei0.2

]
.

3.10 Similarity Measure for Complex Fuzzy Ma-

trix

In this section, we have proposed a new similarity measure for the complex fuzzy matrix

and studied its computational feature with the help of a suitable numerical example. In

literature, it may be noted that the following necessary conditions for the proposed similarity

measure must be satisfied:
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Definition 42 A real valued mapping: Ŝ : P ×Q→ [0, 1] is known as a similarity measure

between two complex fuzzy matrices P = µP (xij) = rP (xij) e
iωP (xij) and Q = µQ (xij) =

rQ (xij) e
iωQ(xij), if Ŝ satisfies the following axioms:

(i) Ŝ (P,Q) = Ŝ (Q,P ) ;

(ii) Ŝ (P,Q) = 1 ⇐⇒ (P,Q) = (Q,P ) ;

(iii) Ŝ (P,Q) = 0 ⇐⇒ xij ∈ U,

where rP (xij) = 1, rQ (xij) = 0 or rP (xij) = 0, rQ (xij) = 1 and

ωP (xij) = 2π, ωQ (xij) = 0 or ωP (xij) = 0, ωQ (xij) = 2π

(iv) For three modified complex fuzzy matrices P , Q and R subject to P ⊆ Q ⊆ R,

then, Ŝ (P,Q) ≤ Ŝ (P,R) or Ŝ (P,Q) ≤ Ŝ (R,Q) .

Further, we propose a new similarity measure for the complex fuzzy matrices which is sup-

posed to be very helpful in obtaining the solutions to various decision making problems as

follows:

Definition 43 Suppose there are two complex fuzzy matrices P and Q on the universe of

discourse U . The complex form of P and Q can be written as follows: P = µP (xij) =

rP (xij) e
iωP (xij), Q = µQ (xij) = rQ (xij) e

iωQ(xij). The similarity measure of two CFMs P

and Q, denoted by Ŝ(P,Q), is defined as follows:

Ŝ(P,Q) =
1

2mn

n∑
j=1

m∑
i=1

(
|P ∩Q|
|P ∪Q|

[
Ŝr(P,Q) +

Ŝω(P,Q)

2π

])
; (3.10.1)

where

Ŝr(P,Q) = 1−
n∑
j=1

m∑
i=1

max (|rP (xij)− rQ (xij) |) ;

Ŝω(P,Q) = 2π −
n∑
j=1

m∑
i=1

max (|ωP (xij)− ωQ (xij) |) .

Theorem 13 The proposed similarity measure Ŝ (P,Q) given by equation (3.10.1) is a

valid similarity measure.
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Proof: In view of the axioms listed in Definition 4.1 and also to validate the proposed

similarity measure, we prove the axioms one by one below:

(i) |P ∩Q| = |Q ∩ P | & |P ∪Q| = |Q ∪ P |.

Ŝr(P,Q) = 1−
n∑
j=1

m∑
i=1

max (|rP (xij)− rQ (xij) |) .

= 1−
n∑
j=1

m∑
i=1

max (|rQ (xij)− rP (xij) |) = Ŝr(Q,P ).

Similarly, Ŝω(P,Q) = Ŝω(Q,P ).

=⇒ Ŝ (P,Q) = Ŝ (Q,P ) .

(ii) Let P = Q. Then,
|P ∩Q|
|P ∪Q|

= 1.

Ŝr(P,Q) = 1−
n∑
j=1

m∑
i=1

max (|rP (xij)− rP (xij) |) = 1.

Ŝω(P,Q) = 1−
n∑
j=1

m∑
i=1

max (|ωP (xij)− ωP (xij) |) = 2π.

Substituting all the values in the proposed similarity measure. Then,

Ŝ (P,Q) = 1.

(iii) Substitute rP (xij) = 1, rQ (xij) = 0 and ωP (xij) = 2π, ωQ (xij) = 0. Then,

Ŝr(P,Q) = Ŝω(P,Q) = 0.

=⇒ Ŝ (P,Q) = 0.

(iv) When P ⊆ Q ⊆ R.

Then, rP (xij) ≤ rQ (xij) ≤ rR (xij) and ωP (xij) ≤ ωQ (xij) ≤ ωR (xij) .

=⇒ max (|rP (xij)− rR (xij) |) ≤ max (|rP (xij)− rQ (xij) |) .

=⇒ max (|ωP (xij)− ωR (xij) |) ≤ max (|ωP (xij)− ωQ (xij) |) .

=⇒ Ŝ (P,Q) ≤ Ŝ (P,R) .
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Hence, all the axioms for similarity measure is satisfied.

Example: Suppose P and Q be two complex fuzzy matrices defined as :

P2×2 =

[
0.6ei0.3π

0.2ei0.1π

0.1ei0.7π

0.5ei0.4π

]
& Q2×2 =

[
0.5ei0.1π

0.8ei0.6π

0.4ei0.3π

0.7ei0.2π

]
Then

Ŝ (P,Q) =
1

2× 2× 2

2∑
j=1

2∑
i=1

(
|P ∩Q|
|P ∪Q|

[
Ŝr(P,Q) +

Ŝω(P,Q)

2π

])

=
1

8

2∑
j=1

2∑
i=1

(
|rP (xij) expiωP (xij) ∩rQ(xij) expiωQ(xij) |
|rP (xij) expiωP (xij) ∪rQ(xij) expiωQ(xij) |

(
Ŝr(P (xij), Q(xij)) + Ŝω(P (xij), Q(xij)

))

=
1

8
{
|rP (x11) expiωP (x11) ∩rQ(x11) expiωQ(x11) |
|rP (x11) expiωP (x11) ∪rQ(x11) expiωQ(x11) |

(
Ŝr(P (x11), Q(x11)) + Ŝω(P (x11), Q(x11)

)
+

|rP (x12) expiωP (x12) ∩rQ(x12) expiωQ(x12) |
|rP (x12) expiωP (x12) ∪rQ(x12) expiωQ(x12) |

(
Ŝr(P (x12), Q(x12)) + Ŝω(P (x12), Q(x12)

)
+

|rP (x21) expiωP (x21) ∩rQ(x21) expiωQ(x21) |
|rP (x21) expiωP (x21) ∪rQ(x21) expiωQ(x21) |

(
Ŝr(P (x21), Q(xij)) + Ŝω(P (x21), Q(x21)

)
+

|rP (x22) expiωP (x22) ∩rQ(x22) expiωQ(x22) |
|rP (x22) expiωP (x22) ∪rQ(x22) expiωQ(x22) |

(
Ŝr(P (x22), Q(x22)) + Ŝω(P (x22), Q(x22)

)
}

Thus, the value of the proposed similarity measure has been computed to be

Ŝ (P,Q) = 0.3647

.

3.11 Application of Complex Fuzzy Matrix in the

Identification of the Signal

In this segment, we have used the concept of the complex fuzzy matrix in detecting the

appropriate signal among the various signals transmitted by the transmitter. The method-

ology used to detect the reference signal is explained below and the applicability of the
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following methodology is described with the help of an example.

Methodology

Step1. Suppose p (S1 (x) , S2 (x) , S3 (x) , . . . , Sp (x)) number of signals are sent by the

transmitter, then each of the p signals are sampled Q times by the receiver. Then, the

appropriate signal Sl (x) (l varies from 1 to p) is selected with the help of reference signal

R, whose value is already known. Let both the signals Sl (x) and R are considered Q times.

The absolute value of each j-th signal i.e., Sj (u) (1 ≤ u ≤ p) in terms of discrete complex

fuzzy transform is given by xj,S = εj,Se
iδj,S , (εj,S , δj,S ∈ R & εj,S ≥ 1∀ S (1 ≤ S ≤ p)) ,

where xj,S is the complex Fourier coefficients of signals Sj (u) .

Step 2. Now the signals are expressed in form of matrix and is given by Em×n =

[|Sj (u)|]Q×p, where signals are denoted by the column of the matrix and Q samples of

each signal is considered.

E =


|S1 (1)| |S2 (Q)| . . . |Sp (1)|
|S1 (2)| |S2 (Q)| . . . |Sp (2)|

. . . . . .

|S1 (Q)| |S2 (Q)| . . . |Sp (Q)|


Step 3. Similarly, the second matrix is given by Fm×n =

[∣∣∣S′
j (u)

∣∣∣]
Q×p

F =


|S′

1 (1)| |S′
2 (Q)| . . .

∣∣S′
p (1)

∣∣
|S′

1 (2)| |S′
2 (Q)| . . .

∣∣S′
p (2)

∣∣
. . . . . .

|S′
1 (Q)| |S′

2 (Q)| . . .
∣∣S′
p (Q)

∣∣


Step 4. Next, the product of the above two matrices (E & F ) is obtained.

Step 5. Now, the complex fuzzy max-min decision matrix is obtained.

Step 6. Finally, the optimal fuzzy set is obtained.

In order to have a summarized overall view of the proposed methodology, we present the

procedural steps in the form of the following Figure 3.1 given below:

We utilize the notion of complex fuzzy matrix and the proposed methodology given

above in finding the reference signals among the five signals obtained by the receiver. As-

sume that there is a set of five signals S = {ψ1, ψ2, ψ3, ψ4, ψ5} and every signal is sampled
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Figure 3.1: Procedural Steps of Proposed Methodology

five times each. Let R denotes the reference signal from which each of the signals is ac-

cordingly compared to obtain the high degree of resemblance between the signal and the

reference signal.

Figure 3.2: Signal Transfer from Transmitter to Receiver

According to the step 2, the matrix E and second matrix F are obtained. Both the obtained
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matrices are given below.

E =



0.1 0.2 0.5 0.1 0.2

0.5 0.4 0.4 0.1 0.2

0.4 0.2 0.2 0.2 0.3

0.2 0.3 0.3 0.2 0.4

0.1 0.2 0.1 0.1 0.3


& F =



0.2 0.1 0.3 0.1 0.1

0.4 0.2 0.3 0.2 0.3

0.4 0.2 0.2 0.2 0.2

0.1 0.5 0.3 0.5 0.4

0.2 0.1 0.2 0.4 0.3


Next, according to step 4 the following matrix is obtained:

E × F =



0.35 0.22 0.26 0.28 0.27

0.47 0.28 0.42 0.34 0.35

0.32 0.25 0.34 0.34 0.31

0.38 0.28 0.35 0.4 0.37

0.21 0.15 0.2 0.24 0.22


Now, as per given in step 5, the max-min of matrices is calculated as follows:

Mm [E × F ] = [Di1] = (di1)∀i ∈ {1, 2, 3, 4, 5}

subject to

d11 = min {u11, u21, u31, u41, u51};

where

u11 = 0.35, u21 = 0.47, u31 = 0.32, u41 = 0.38, u51 = 0.21.

Then,

d11 = min {0.35, 0.47, 0.32, 0.38, 0.21} = 0.21.

Similarly,

d21 = min {0.22, 0.28, 0.25, 0.28, 0.15} = 0.15.

d31 = min {0.26, 0.42, 0.34, 0.35, 0.2} = 0.2.

d41 = min {0.28, 0.34, 0.34, 0.4, 0.24} = 0.24.

d51 = min {0.27, 0.35, 0.31, 0.37, 0.22} = 0.22.

Finally, we obtain the min-max decision matrix which is given below:

mM (E × F ) =



d11 = 0.21

d21 = 0.15

d31 = 0.2

d41 = 0.24

d51 = 0.22


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In the end, the optimum fuzzy set is obtained [S]

optMm (E × F ) (α) =

{
0.21

α1
,
0.15

α2
,
0.2

α3
,
0.24

α4
,
0.22

α5

}
.

Hence, α4 is the signal.

In this manner, the reference signal is identified among the various number of signals ob-

tained by the receiver. This is also validates the proposed methodology.

3.12 Conclusions

In the current study, a noveliconcept of complex neutrosophic matricesiis presented and

explained with the help of a few algebraicioperations and properties, which will be of great

help for theiresearchers to understand the basics of theiconcept. The norm and power

convergence of the complexineutrosophic matrix have been discussedithoroughly. Further,

new similarity measures have been proposed and the property of positive definiteness for the

proposed measures has been studied. Later, applicability of the proposed theory has been

presented in case of medical diagnosis for better clarity. Various set-theoretic properties

of the fundamental operations related to commutativity, associativity and distributivity in

case of complex fuzzy matrix have been established. Some suitable numerical examples

to illustrate these computations have also been included. A new similarity measure for

the complex fuzzy matrix has been proposed with the proof of its validity. The proposed

methodology has been duly implemented in the process of identification of reference signal

from a set of signals transmitted from the transmitter.
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Chapter 4

Information Measures of

Neutrosophic Sets

In this chapter, we haveiproposed someinew exponential similarityimeasures withiproof of

their validityiand alsoipresented severalicounter-intuitive casesito show the efficacyiof the

exponentialimeasures. In orderito show theiapplicability of the exponentialisimilarity mea-

sures, we haveipresented two illustrativeiexamples - oneirelated to the classificationiproblem

(pattern recognition) andiother related to the evaluationiproblem of decision-makingi. Iniadd

ition to this, someiimportant comparativeiremarks have beenienumerated. We have also

proposed entropy for the single valued neutrosophic information measure. The ‘useful’

divergence of neutrosophic information measure is described. The concept of hybrid ambi-

guity ‘useful’ measure is also defined. The ‘useful’ neutrosophic information improvement

measure of neutrosophic measure is explained.

4.1 Similarity Measure of Neutrosophic Sets

Now, the new similarity measures under neutrosophic environment have been presented

below:

Let U be the universeiof discourse.

Definition 44 Consider P = {(TP (ui) , IP (ui) , FP (ui))|uiϵU} and Q =

{(TQ (ui) , IQ (ui) , FQ (ui))|uiϵU, i = 1, 2, . . . , n} beitwo valuedineutrosophic sets,ithen the
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similarityimeasure SM1(P, Q) between P and Q is defined as:

SM1 (P, Q) =
1

n

n∑
i=1

(
SMT

i (ui)× SM I
i (ui)× SMF

i (ui)
)
;

SMw
1 (P, Q) =

n∑
i=1

wi ×
(
SMT

i (ui)× SM I
i (ui)× SMF

i (ui)
)
;

SM2 (P, Q) =
1

n

n∑
i=1

(
SMT

i (ui) + SM I
i (ui) + SMF

i (ui)

3

)
;

SMw
2 (P, Q) =

n∑
i=1

wi ×
(
SMT

i (ui) + SM I
i (ui) + SMF

i (ui)

3

)
;

where

SMT
i (ui) = e−|TP (ui)−TQ(ui)|;

SM I
i (ui) = e−|IP (ui)−IQ(ui)|

&

SMF
i (ui) = e−|FP (ui)−FQ(ui)|.

Theorem 14 The measure proposediiniDefinition 44 is aivalid similarityimeasure.

Proof: Forithis, we need toishow that the similarityimeasure SM1(P,Q) between two

neutrosophicisets P and Q holds the conditionsias defined in Definition 44.

• We knowithat TP (ui) , TQ (ui) ≤ 1, which implies |TP (ui)− TQ (ui)| ≤ 1. This can

also be written as −1 ≤ |TP (ui)− TQ (ui)| ≤ 0.

Hence,

0 ≤ e−|TP (ui)−TQ(ui)| ≤ 1 ⇒ 0 ≤ SMT
i (ui) ≤ 1. Also 0 ≤ SM I

i (ui) , SM
F
i (ui) ≤ 1.

Therefore, from equation given in 44 we conclude that 0 ≤ SM1 (P,Q) ≤ 1.

• We know that SMT
i (ui) = 1, SM I

i (ui) = 1 and SMF
i (ui) = 1 if and only if P = Q,

so we have SM1 (P,Q) = 1 ⇐⇒ P = Q.

• As SMT
i (ui) , SM

I
i (ui) , SM

F
i (ui) are symmetric for neutrosophicisets. Hence, we

observe that SM1 (P,Q) = SM1 (Q,P ) .
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• If P ⊆ Q ⊆ O, then for ui ∈ U we have,

0 ≤ TP (ui) ≤ TQ (ui) ≤ TO (ui) ≤ 1;

0 ≥ IP (ui) ≥ IQ (ui) ≥ IO (ui) ≥ 1;

and

0 ≤ FP (ui) ≤ FQ (ui) ≤ FO (ui) ≤ 1.

It means that

− |TP (ui)− TQ (ui)| ≤ min {|TP (ui)− TQ (ui)| , |TQ (ui)− TO (ui)|};

− |IP (ui)− IQ (ui)| ≤ min {|IP (ui)− IQ (ui)| , |IQ (ui)− IO (ui)|};

and

− |FP (ui)− FQ (ui)| ≤ min {|FP (ui)− FQ (ui)| , |FQ (ui)− FO (ui)|};

This implies that

SMT
i (P,Q) ≤ min

{
SMT

i (P,Q) , SMT
i (Q,O)

}
;

SM I
i (P,Q) ≤ min

{
SM I

i (P,Q) , SM I
i (Q,O)

}
;

and

SMF
i (P,Q) ≤ min

{
SMF

i (P,Q) , SMF
i (Q,O)

}
.

Thus, based on this, equation in definition 44 becomes SM1 (P,Q) ≤ SM1 (P,Q)

and SM1 (P,Q) ≤ SM1 (Q,O) .

Hence, the proposedimeasure in theiDefinition 44 is the validisimilarityimeasure over

twoineutrosophic sets.

Theorem 15 The measureiproposed in the Definitioni44 is aivalid similarityimeasure.

Proof: Forithis, we needito show the similarityimeasure SM1 (P,Q) between two neutro-

sophic sets P and Q holds the conditionsidefined in Definition 44.

Weiknow that TP (ui) , TQ (ui) ≤ 1, which implies |TP (ui)− TQ (ui)| ≤ 1. This can also be

written as

−1 ≤ |TP (ui)− TQ (ui)| ≤ 0.
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Hence, 0 ≤ e−|TP (ui)−TQ(ui)| ≤ 1 ⇒ 0 ≤ SMT
i (ui) ≤ 1. Also, 0 ≤ SM I

i (ui) , SM
F
i (ui) ≤ 1.

Therefore, from equation in defintion44 we conclude that

0 ≤ SMw
1 (P,Q) ≤

n∑
i=1

wi = 1.

We know that SMT
i (ui) = 1, SM I

i (ui) = 1 and SMF
i (ui) = 1 if only if P = Q because,∑n

i=1wi = 1, so we have , SMw
1 (P, Q) = 1 ⇐⇒ P = Q.

As SMT
i (ui) , SM I

i (ui) , SMF
i (ui) are symmetric for neutrosophic sets. Hence, we

observe that

SMw
1 (P, Q) = SM1 (Q, P ) .

For P ⊆ Q ⊆ O and ui ∈ U, we have

SMT
i (P, Q) ≤ min

{
SMT

i (P, Q) , SMT
i (Q, O)

}
;

SM I
i (P, Q) ≤ min

{
SM I

i (P, Q) , SM I
i (Q, O)

}
;

and

SMF
i (P, Q) ≤ min

{
SMF

i (P, Q) , SMF
i (Q, O)

}
.

Thus, based on this, equation in definition 44 becomes SMw
1 (P, Q) ≤ SMw

1 (P, Q) and

SMw
1 (P, Q) ≤ SMw

1 (Q,O) .

Hence, the proposedimeasure in theiDefinition 44 is theivalid similarity measureiover two

neutrosophicisets.

Comparison with Existing Similarity Measures

In orderito show theieffectiveness, performanceiand advantages of theiproposed similar-

ityimeasures, we presentithe following comparativeianalysis withiexistingimeasures presented

by equations given in definition 44.

Thus,ito carry out theicomparison of theiproposed similarityimeasures withithe existingiones

in the literature,iwe consider fiveidifferent cases consistingiof two neutrosophicisets asifollows:

iCase 1:iA = i {0.2, 0.3, 0.4} i&iB = {0.2, 0.3, 0.4}
iCase 2:iA = i {0.3, 0.2, 0.4} i&iB = {0.4, 0.2, 0.3}

iCase 3:iA = i {1, 0.0, 0.0} i&iB = {0.0, 1, 1}
iCase 4:iA = i {1, 0.0, 0.0} i&iB = {0.0, 0.0, 0.0}
iCase 5:iA = i {0.4, 0.2, 0.6} i&iB = {0.2, 0.1, 0.3}

Basedion the computationalianalysis, theivalues obtained by theiproposed similarityimeasures

and existingisimilarity measures for each case have beenitabulated in the Table 4.1.

90



Table 4.1: Comparisoniof ProposediSimilarity Measureiwith Existing Ones

iCase 1 iCase 2 iCase 3 iCase 4 iCase 5

SM1 1 0.8187 0.0497 0.3678 0.5488

SM2 1 0.978 0.3678 0.7892 0.8214

Si[28] 1 0.93 0.0 0.0 0.666

SD[28] 1 0.965 0.0 0.0 0.8

SC [28] 1 0.965 0.0 Null 1

ST [28] 1 −2.10 0.954 0.984 0.259

In viewiof the computed valuesiobtained byithe differentimeasures,iwe can concludeithat

the proposed similarityimeasures areiquite effectiveiand give distinguishediresult whereasithe

existing ones areinot able to performigood in someicases (indicatediby the boldivalues).

Remarki: Null representsithe case whenithe degree of similarityican not be computedidue

to theiproblem division by zero.

4.2 Applications of Neutrosophic Similarity Mea-

sures

4.2.1 Classification Problem

Consideria standardiclassification problemiwhere weihave m differenti classesi(say)

C1, C2, C3, . . . , Cm of knownipatterns over the universe of discourse U = {u1, u2, u3, . . . , un}.
Suppose we choose oneisample (say) P1, P2, P3, . . . , Pm fromieach class andihave an un-

knownisample Qiwhere theiinformation in eachiknown and unknownipattern isifeatured un-

derithe neutrosophicienvironment. Thus, ourimain objective is toiclassify the unknownisample

intoione of the knowniclasses. In orderito solve thisiclassification problem,iwe calculate

theisimilarity measure of unknownisampleQ with each knownipattern Pi(i = 1, 2, 3, . . . ,m)

and theniallocate theiunknown sampleito one ofithe classes whichihas highest similarityiindex.

Example: Let usiconsider threeiexisting patterns P1, P2 andP3 being described by the

neutrosophicisets in U = {u1, u2, u3} as following:

P1 = {(u1, 0.5, 0.4, 0.2) , (u2, 0.4, 0.3, 0.4) , (u3, 0.4, 0.5, 0.1)} ;
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P2 = {(u1, 0.6, 0.5, 0.1) , (u2, 0.5, 0.1, 0.3) , (u3, 0.5, 0.5, 0.1)} ;

P3 = {(u1, 0.4, 0.4, 0.2) , (u2, 0.4, 0.5, 0.2) , (u3, 0.3, 0.3, 0.4)} ;

Let us take an unknownipattern Q given by

Q = {(u1, 0.4, 0.4, 0.2) , (u2, 0.5, 0.6, 0.1) , (u3, 0.3, 0.4, 0.4)} .

Now, the main objective of the problemiis to findithe class toiwhich Q ibelongs.

Weipresent the computationaliprocedure ofisolving the classificationiproblemiunder consid-

eration withithe help ofifollowing Figure 4.1.

Figure 4.1: ComputationaliProcedure for ClassificationiProblem

With theihelp of proposedisimilarity measuresigiven byiequations in definitioni44, and choos-

ingithe arbitrary weightivector w=(0.3,0.4,0.3) (mayibe selected on the decisionimakers

choice)iof the elementsiof U , weicompute theidesired valuesiand tabulateithem in Table 4.2.

Table 4.2: Computed Values of Similarity Measures
(P 1,Q) (P 2,Q) (P 3,Q)

SM1 0.6725 0.5611 0.5322

SMw
1 0.6659 0.5656 0.5530

SM2 0.880 0.8226 0.804

SMw
2 0.876 0.824 0.814

Based onithe obtainedivalues iniTable 4.2, we concludeithat the unknownipattern Qibelongs

to theiclass P1. The resultsiobtained byiutilizing theiproposed similarityimeasures areicertain
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-ly found toibe consistentiwith the resultsiobtained in [101]. The valuesiobtained are also

moreiprominent andidecisive ininature.

4.2.2 Evaluation Process in Decision Making

In viewiof the generaliformat of aidecision-makingiproblem, we consideria set of avail-

ableialternatives (say) Z1, Z2, . . . , Zm and the set oficriteria (say) O1, O2, . . . , On. The

mainigoal of theiproblem is toiselect the optimaliand theibest alternativesiout of them avail-

able alternativesiwith respectito n criteria. Theiprocedure for ranking of theialternatives

isibased on transformingithe neutrosophicidecision matrix andicomputing the similarityiindex

betweenithe alternatives and the idealisolution whichihas beeniclearly representediwith theihe

-lp of the followingiblock diagramigiven in Figure 4.2:

Figure 4.2: RankingiProcedure for DecisioniMaking with SimilarityiMeasures

Example: Considerithere is a financialiprivate limitedifirm whose objectiveiis to invest

a significantiamount ofimoney in the bestipossible sector. Supposeithere areifour possi-

bleiinvestment sectorsiselected on the basisiof an initialisurvey,isay,

Z1 : AutomobileiSector,

Z2 : Food & BeveragesiService Sector,

Z3 : InformationiTechnology Sector,

Z4: AmmunitioniProduction Sector.

Theiinvestment company mustitake a decisioniaccording to theifollowing three impor-

tant criteria:
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O1 : RiskiFactor,

O2 : GrowthiProspects,

O3 : EcologicaliImpact.

Supposeithat the managementiand theidecision-makers assign suitableiweights to eachicriteria

basedion theiriexperience andirisk bearingicapability giveniby w = (0.35, 0.25, 0.4).iThe nec-

essaryiinformation hasibeen takenifrom theiexperts/decision makers for theisake of evalua-

tioniof theialternatives Zi′s withirespect to eachicriterion Oj ′s.

The opinionivalues of eachialternative withirespect toieach criteriaihave been expressed

asia neutrosophiciinformation, and theifollowing neutrosophicidecision matrixihas been pro-

videdi:

The idealisolution in suchidecision-makingiproblems can be as α∗ = (1, 0, 0) .However,

it may beinoted that theiideal solutionigenerally does notiexist inipractice butia closerivalue

isiaccepted. Ouridecision canibe obtainediby calculatingithe values proposedisimilarity mea-

suresibetween eachialternative Zi(i = 1, 2, 3, 4) and the idealisolution α∗. In viewiof the

procedureipresented in Figure 4.2, theseivalues haveibeen computediand tabulatediin the

Table 4.3.

Table 4.3: Obtained Results Using the Proposed Similarity Measures

SM1 SMw
1 SM2 SMw

2

(Z1, α
∗) 0.2962 0.2889 0.6768 0.6716

(Z2, α
∗) 0.4665 0.4605 0.7813 0.7779

(Z3, α
∗) 0.3456 0.3445 0.7098 0.7092

(Z4, α
∗) 0.6703 0.4919 0.7942 0.7892

Onithe basis ofithe computedivalues, the rankingiorder of the fourialternativesiin the above

problemiis

Z4 > Z2 > Z3 > Z1
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Thus, we have that theialternative Z4 is the best choiceiamong all theialternatives. The

results obtainedibyiutilizing theiproposed similarityimeasures areiconsistent with theiresults

obtainedibyiYe [59] andiWang et al. [153].

4.3 Entropy of Single Valued Neutrosophic Infor-

mation Measure

In this section of the study, the entropy of the single valued neutrosophic information

measure is explained in detail with the help of theorem. The properties of single valued

neutrosophic entropy are explained below.

Definition 45 [33]“Consider M ′ to be a set of all SVNSs and A ∈M ′. Then, the entropy

of A, denoted by EM ′(A), satisfies

1. EM ′(A) = 0 iff ΓA(y) = ΛA(y) = θA(y) = 0 or 1.

2. EM ′(A) = 1 , when ΓA(y) = ΛA(y) = θA(y) = 0.5.

3. EM ′(A1) ≥ EM ′(A2) if A1 ⊂ A2 i.e.,

ΓA1(yi) ≤ ΓA2(yi), ΛA1(yi) ≥ ΛA2 & θA1(yi) ≤ θA2(yi).

4. EM ′(A) = EM ′(Ã) where Ã is complement of A.”

Next, the entropy measure given by Luca et al.[1] is extended and modified to find the

entropy for the single value neutrosophic information measure. This measure takes the

following form,

EM ′
Γ
(A) =

1

2n log(0.5)

n∑
i=1

[ΓA(yi) log(ΓA(yi)) + (1− ΓA(yi)) log((1− ΓA(yi)))];

EM ′
Λ
(A) =

1

2n log(0.5)

n∑
i=1

[ΛA(yi) log(ΛA(yi)) + (1− ΛA(yi)) log((1− ΛA(yi)))];

EM ′
θ
(A) =

1

2n log(0.5)

n∑
i=1

[θA(yi) log(θA(yi)) + (1− θA(yi)) log((1− θA(yi)))].

(4.3.1)

Similarly, the‘useful’ single valued neutrosophic information measure is obtained with some

modification in ‘useful’ fuzzy information measure given by Hooda and Bajaj [31] earlier in
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literature and this measure takes the following form for truth, falsity and neutral member-

ship functions i.e.,

EM ′
Γ
(A;P ;U) =

1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓA(yi)) + (1− ΓA(yi)) log((1− ΓA(yi)))]∑n

i=1 uipi
;

EM ′
Λ
(A;P ;U) =

1

2n log(0.5)

∑n
i=1 uipi[ΛA(yi) log(ΛA(yi)) + (1− ΛA(yi)) log((1− ΛA(yi)))]∑n

i=1 uipi
;

EM ′
θ
(A;P ;U) =

1

2n log(0.5)

∑n
i=1 uipi[θA(yi) log(θA(yi)) + (1− θA(yi)) log((1− θA(yi)))]∑n

i=1 uipi
;

(4.3.2)

where ui > 0.

Theorem 16 The measure 4.3.2 must satisfy the neutrosophic entropy measure properties

given by 45.

Proof: Axiom 1: EM ′
Γ
(A;P ;U) = 0 .

Then,

1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓA(yi)) + (1− ΓA(yi)) log((1− ΓA(yi)))]∑n

i=1 uipi
= 0.

ΓA(yi) log(ΓA(yi)) + (1− ΓA(yi)) log((1− ΓA(yi)))] = 0.

Next, either ΓA(yi) = 0 or 1∀ i = 1, 2, ..., n.

This proves that it satisfies the crisp set property.

Axiom 2: ΓA(y) = ΛA(y) = θA(y) = 0.5.

Putting this in equation 4.3.2, we get

1

2n log(0.5)

∑n
i=1 uipi[0.5 log(0.5) + (1− 0.5) log((1− 0.5)]∑n

i=1 uipi
= 1.

Hence, EM ′(A) = 1 , when ΓA(y) = ΛA(y) = θA(y) = 0.5.

Axiom 3: If A1 ⊂ A2, then, ΓA1 ≤ ΓA2 .

Also,

ΓA1(yi) log(ΓA1(yi)) + (1− ΓA1(yi)) log((1− ΓA1(yi))) ≤ ΓA2(yi) log(ΓA2(yi))

+(1− ΓA2(yi)) log((1− ΓA2(yi))).

This implies

M ′
Γ(A1;P ;U) ≤M ′

Γ(A2;P ;U).
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Similarly, we can prove that

M ′
Λ(A1;P ;U) ≥M ′

Λ(A2;P ;U)&M ′
θ(A1;P ;U) ≤M ′

θ(A2;P ;U).

Hence, this proves EM ′(A1) ≥ EM ′(A2) if A1 ⊂ A2.

Axiom 4: For the complement,

M ′
Γ(Ã;P ;U)

=
1

2n log(0.5)

∑n
i=1 uipi[Γ

c
A(yi) log(Γ

c
A(yi)) + (1− ΓA(yi))

c log(1− ΓA(yi))
c]∑n

i=1 uipi
.

=⇒ M ′
Γ(Ã;P ;U)

=
1

2n log(0.5)

∑n
i=1 uipi[(1− ΓA(yi)) log(1− ΓA(yi)) + (ΓA(yi)) log((ΓA(yi)))]∑n

i=1 uipi
.

=⇒ M ′
Γ(Ã;P ;U) =M ′

Γ(A;P ;U).

In similar manner, the condition can be obtained for the neutral and falsity membership

functions.

Thus, we observe that all the axioms have been satisfied and this is a valid entropy measure.

It may be noted that these properties can also be satisfied with the help of some numerical

examples. We consider Table 4.4 which shows the behavior of the proposed measure in case

of the crisp set. In this case, the values of degree of truth membership function is 1 when

membership is maximum whereas the values of indeterminacy and falsity are zero.

Table 4.4: Behavior of proposed measure on crisp set in case of maximum membership

ui pi (ΓA(yi),ΛA(yi), θA(yi)) (M ′(ΓA(yi)),M
′(ΛA(yi)),M

′(θA(yi)))

u4 0.4 (1,0,0) 0

u3 0.3 (1,0,0) 0

u2 0.2 (1,0,0) 0

u1 0.1 (1,0,0) 0

Secondly, in Table 4.5 when degree of membership is minimum then falsity component is

1 and the values of rest of the components are equal to zero i.e., A = (1, 0, 0) or (0, 0, 1).

Consider the universe U = (1, 2, 3, 4) with utilities ui = (u1, u2, u3, u4) and probabilities

p(A) = (0.1, 0.2, 0.3, 0.4). Note: In similar manner, all the above properties of single valued

neutrosophic information measure can be satisfied using the numerical example.
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Table 4.5: Behavior of proposed measure on crisp set in case of minimum membership

ui pi (ΓA(yi),ΛA(yi), θA(yi)) (M ′(ΓA(yi)),M
′(ΛA(yi)),M

′(θA(yi)))

u4 0.4 (0,0,1) 0

u3 0.3 (0,0,1) 0

u2 0.2 (0,0,1) 0

u1 0.1 (0,0,1) 0

4.4 ‘Useful’ Divergence Measure of Single Valued

Neutrosophic Information Measure

In this segment of the study, we have described the properties of divergence and the diver-

gence between the proposed neutrosophic information measures.

The divergence of two single valued neutrosophic sets is defined on the basis of the following

parameters:

• Two positive and symmetric single valued neutrosophic sets are compared.

• Divergence is equal to zero when these two sets coincide.

• Divergence is inversely proportion to the similarity between the two sets. As the

similarity increases the divergence decreases.

Consider two single valued neutrosophic sets A and B on the same similarity points

yi (i = 1, 2, ..., n) and with neutrosophic vectors

(ΓA(yi),ΛA(yi), θA(yi)) and (ΓB(yi),ΛB(yi), θB(yi)) where (i = 1, 2, ..., n).

The simplest form of fuzzy divergence was introduced by Bhandari and Pal [25] as

I(A,B) =
n∑
i=1

[ΓA(yi) log
ΓA(yi)

ΓB(yi)
+ (1− ΓA(yi)) log

(1− ΓA(yi))

(1− ΓB(yi))
]. (4.4.1)

Next, we consider two single valued neutrosophic fuzziness of A from B and the ‘useful’

measure for truth membership component of these two single valued neutrosophic directed

divergence measure of A from B is given by:

I(A,B;P ;U) =
1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓB(yi)) + (1− ΓA(yi)) log((1− ΓB(yi)))]∑n

i=1 uipi
.

(4.4.2)
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Then, the ‘useful’ neutrosophic symmetric divergence measure is defined as,

J(A,B;P;U)=I(A,B;P;U)+I(B,A;P;U). (4.4.3)

Theorem 17 The proposed measure I(A,B, P, U),i.e., I(A,B;P ;U) ≥ 0 if ΓA(yi) =

ΓB(yi) where i = 1, 2, ..., n is a valid information measure.

Proof: Suppose

n∑
i=1

ΓA(yi) = e,
n∑
i=1

ΓB(yi) = f &
n∑
i=1

uipi = u.

Then,

1

2n log(0.5)
[
n∑
i=1

uipi(ΓA(yi) log
ΓA(yi)

ΓB(yi)
] ≥ ue

2n log(0.5)
log

e

f
. (4.4.4)

In similar manner, we can prove that

1

2n log(0.5)
[
n∑
i=1

uipi(1− ΓA(yi)) log
(1− ΓA(yi))

(1− ΓB(yi))
] ≥ u(n− e)

2n log(0.5)
log

n− e

n− f
. (4.4.5)

Adding equations 4.4.4 and 4.4.5,

1

2n log(0.5)
[
n∑
i=1

uipi(ΓA(yi) log
ΓA(yi)

ΓB(yi)
+

n∑
i=1

uipi(1− ΓA(yi) log
(1− ΓA(yi)

(1− ΓB(yi))
] ≥

u

2n log(0.5)
[e log

e

f
+ (n− e) log

n− e

n− f
].

(4.4.6)

Suppose

f(e) =
1

2n log(0.5)
[e log

e

f
+ (n− e)

n− e

n− f
],

f ′(e) =
1

2n log(0.5)
[log

e

f
+
n− e

n− f
],

f ′′(e) =
1

2n log(0.5)
[
1

e
+

1

n− e
] > 0.

Thus f ′′(e) > 0, which proves that f(e) is a complex function and have a minimum value

when e = f . Secondly,
∑n

i=1 uipi > 0.

Hence, I(A,B;P ;U) ≥ 0.

4.5 Notion of Hybrid Ambiguity ‘Useful’ Measure

In this segment of the current manuscript, hybrid ambiguity of the singleivaluedineutrosophic

information measure under utility distribution has been obtained.
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Consider two singleivaluedineutrosophic information setsiA and B. The two conditions to

be satisfied to find the hybrid ambiguity are given below:

• Then, entropy of set A defines ambiguity for the given set.

• Secondly, the differenceibetweeniA and directed divergence of Biis calculated by

I(A,B).

Hybrid ambiguity= Entropy of A+ I(A,B).

The hybrid ambiguity foritheitruth membershipifunction is given below:

HAΓ =
1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓA(yi)) + (1− ΓA(yi)) log((1− ΓA(yi)))]∑n

i=1 uipi
−

1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log

ΓA(yi)
ΓB(yi)

+ (1− ΓA(yi)) log
(1−ΓA(yi))
1−ΓB(yi)

]∑n
i=1 uipi

.

=
1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓB(yi)) + (1− ΓA(yi)) log((1− ΓB(yi)))]∑n

i=1 uipi
.

=⇒ [I(A,B)]Γ =
1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓB(yi)) + (1− ΓA(yi)) log((1− ΓB(yi)))]∑n

i=1 uipi
.

Similarly, we can find for other two components for neutrosophic theory.

Remarks: It may be noted that we can establish a relation between entropy and directed

divergence of two single valued neutrosophic sets as follows.

If ΓB = 0.5, then

[I(A,B)]Γ =
1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log

ΓA(yi)
0.5 + (1− ΓA(yi)) log

(1−ΓA(yi))
0.5 ]∑n

i=1 uipi
.

=
1

2
− 1

2n log(0.5)

∑n
i=1 uipi[ΓA(yi) log(ΓA(yi)) + (1− ΓA(yi)) log((1− ΓA(yi)))]∑n

i=1 uipi
.

Then, the relation obtained is given by

= 1
2 -(Entropy of SVNS A).
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4.6 ‘Useful’ Single Valued Neutrosophic Informa-

tion Improvement Measure

The ‘useful’ information improvement measure for the three single valued neutrosophic sets

under consideration can be explained as follows,

Consider sets A and B, where set A is estimated from set B and was revisedito setiC.

Then, theioriginal and finaliambiguity is given by I ′(A,B)iand I ′(A,C). Then, the reduced

ambiguity for truth membershipifunction isigiven by

I ′Γ(A,B,C) = I ′Γ(A,B)− I ′Γ(A,C).

=
1

2n log(0.5)
[

∑n
i=1 uipi[ΓA(yi) log(ΓB(yi)) + (1− ΓA(yi)) log((1− ΓB(yi)))]∑n

i=1 uipi

−
∑n

i=1 uipi[ΓA(yi) log(ΓC(yi)) + (1− ΓA(yi)) log((1− ΓC(yi)))]∑n
i=1 uipi

].

=
1

2n log(0.5)
[

∑n
i=1 uipi[ΓA(yi) log

ΓB(yi)
ΓC(yi)

+ (1− ΓA(yi)) log
(1−ΓB(yi))
(1−ΓC(yi)

)]∑n
i=1 uipi

].

Similarly, we can obtain for the improved measure of the neutrality and falsity function of

neutrosophic information measure.

This is called the ‘useful’ single valued neutrosophic improved information measure.

4.7 Conclusions

We have successfullyiintroduced somenewimeasures of similarityifor the neutrosophicisets

in terms of theiexponential functionsiof the truthimembership,vindeterminacy-membership

andifalsity-membership. Theiefficiency of theiproposed measureihas been validated by pre-

senting fewicounter-intuitiveicases which showithat the existingimeasures failiunder some

certainicases, while the proposedimeasures classifyithem more accuratelyiand precisely.iFurth

-ermore, to illustrateithe applicability of the proposedisimilarity measures,ian example of

classificationiproblem and aniexample ofidecision-makingiproblem under neutrosophicienviro

-nment haveibeen successfullyisolved. Finally,iwe conclude thatithe proposed typesiof ex-

ponentialisimilarity measuresiare better thanithe existingimeasures. Theiproposed mea-

suresiproduce a reasonableiand distinguishableiresults which is the main outcomeiand ad-

vantageiin contrast withiother existing methods. Also,iit may clearly beiobserved that

theiproposed measures are veryisimple and haveithe minimumicomputational burdenias
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compared withiother existingimethods. The proposed exponentialisimilarity measureifor the

the neutrosophicisets can beiextended forisingle and multi-valuedineutrosophic hyperisoft

set also along with theirelevant application whichiwill certainly give an addediadvantage

in theiliterature. The proposedistrategy utilizingithe exponential similarityimeasure can

further beiapplied in various otheridecision-making problems, e.g., supplieriselection, pat-

ternirecognition, clusterianalysis, medical diagnosis, weaver selection, fault diagnosis, data

mining, logistic centre location selection etc. Later, we have successfully established the

validity of the proposed measures named as the probabilistic single valued neutrosophic

‘useful’ information measure, ‘useful’ divergence measure, hybrid ambiguity and ‘useful’

information improvement measure of single-valued neutrosophic sets. All these measures

have been explained and validated with the help of well established axioms and numerical

example.
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Chapter 5

Energy of Picture Fuzzy Graph in

Site Selection

Inithis chapter, we have considered the fact that pictureifuzzy graph hasithe sufficientistreng

-th toiformulate theiimpreciseness, vaguenessiand incompletenessiembedded in the informa-

tion of aniapplication. Therefore, we haveiproposed theidefinition of adjacencyimatrix of

suchigraph, its spectrum andienergy/Laplacian energyiwith upper/loweribounds in theicurre

-nt chapter. In referenceiwith picture fuzzyidirected graph, similar studiesiand resultsihave

beenipresented. Further, we have alsoipresented a newialgorithm to solve hydropower

plantisite selection problemiby utilizingitheinotion ofienergy/Laplacianienergy of picture

fuzzyigraph. Some comparativeifindings and advantagesiof the proposed approachihave

also beeniprovided.

5.1 Notion of Energy of Picture Fuzzy Graph

In thisisection, weihave proposed someinovel conceptsiof adjacencyimatrix, spectrumi, en-

ergyiand Laplacian energy of pictureifuzzy graph asifollows:

LetiG = (S,R)ibe aipicture fuzzyigraph, whereiS isithe pictureifuzzy vertexisetiand R is

the pictureifuzzy edgeiset.

Definition 46 Theiadjacencyimatrix A(G)iof theigraph G isia squareimatrix definedias

A(G) = [aij ], where aij = (µR(αi, αj), ηR(αi, αj), νR(αi, αj)) .
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Here, µR(αi, αj), iηR(αi, αj) & iνR(αi, αj) areithe degree ofimembership, degreeiof neutralimembership

(abstain) and degree inon-membershipirespectively.

Definition 47 Theispectrumiof the adjacencyimatrix A(G)iofithe pictureifuzzy graph G =

(S,R) isigiveniby (Θ,Φ,Ψ), where Θ, Φ and Ψ are the set ofithe eigenvalues ofimatrices

A(µR(αi, αj)) = [µR(αi, αj)] ;

A(ηR(αi, αj)) = [ηR(αi, αj)] ;

and

A(νR(αi, αj))) = [νR(αi, αj)] ;

respectively.

Definition 48 TheienergyiE(G) ofithe pictureifuzzy graphiG is definedias

E(G) = (E(µR(αi, αj)), E(ηR(αi, αj)), E(νR(αi, αj))) =

( m∑
i=1,θi∈Θ

|θi|,
m∑

i=1,ϕi∈Φ

|ϕi|,
m∑

i=1,ψi∈Ψ

|ψi|
)
.

For illustratingithe proposedidefinitions, weiconsider the following exampleiof a pictureifuzzy

graph:

Example: iSuppose G = (S,R) beia pictureifuzzy graphigiven iniFigure 5.1.

,0.5,0.3,0.2)

( ,0.5,0.2,0.3)

( ,0.5,0.3,0.2)

( ,0.5,0.3,0.2)

(0
.4
,0
.3
,0
.2
)

(0
.3
,0
.5
,0
.2
)

(0.4,0.2,0.3)

(0.5,0.2,0.2)

Figure 5.1: Graph G = (S,R) for Energy

In viewiof the definitionsiproposed above,ithe adjacency matrix A(G) is given by

A(G) =


(0.0, 0.0, 0.0) (0.4, 0.3, 0.2) (0.0, 0.0, 0.0) (0.4, 0.2, 0.3)

(0.4, 0.3, 0.2) (0.0, 0.0, 0.0) (0.5, 0.2, 0.2) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.5, 0.2, 0.2) (0.0, 0.0, 0.0) (0.3, 0.5, 0.2)

(0.4, 0.2, 0.3) (0.0, 0.0, 0.0) (0.3, 0.5, 0.2) (0.0, 0.0, 0.0)

 .
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Using the adjacencyimatrix A(G), theispectrum of the pictureifuzzy graphiG can be eval-

uated as

Spec(µR(αi, αj)) = {−0.8063, 0.8063,−0.0992, 0.0992};

Spec(ηR(αi, αj)) = {−0.5114, 0.5114,−0.0917, 0.0917};

Spec(νR(αi, αj)) = {−0.4561, 0.4561,−0.0438, 0.0438}.

Hence, theispectrum of G may beipresented as

Spec(G) = {(−0.8063,−0.5114,−0.4561), (0.8063, 0.5114, 0.4561),

(−0.0992,−0.0917,−0.0438), (0.0992, 0.0917, 0.0438)}.

Now,ithe calculationiof energy of theipicture fuzzyigraph can be doneias

E(µR(αi, αj)) = 1.811; E(ηR(αi, αj)) = 1.2062; E(νR(αi, αj)) = 0.998.

Hence, the energy of G is

E(G) = (1.811, 1.2062, 0.998).

Next,iweipresent theistudiesiand various importantiresults relatedito eigenvaluesiof ad-

jacencyimatrix, upperibound and loweribound of energy of pictureifuzzyigraph.

Theorem 18 LetiG = (S,R) beia pictureifuzzy graphiand A(G) be its adjacencyimatrix.

If θ1i ≥ θ2 ≥ . . . ≥ θm, ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕmiandiψ1 ≥ ψ2 ≥ . . . ≥ ψm are the abso-

luteieigenvalues of A(µR(αi, αj)), A(ηR(αi, αj)) and A(νR(αi, αj)), respectively, then:

(i)
m∑

i=1,θi∈Θ
θi = 0,

m∑
i=1,ϕi∈Φ

ϕi = 0 and
m∑

i=1,ψi∈Ψ
ψi = 0;

(ii)
m∑

i=1,θi∈Θ
θ2i = 2

∑
1≤i<j≤m

(µR(αi, αj))
2;

m∑
i=1,ϕi∈Φ

ϕ2i = 2
∑

1≤i<j≤m
(ηR(αi, αj))

2; and

m∑
i=1,ψi∈Ψ

ψ2
i = 2

∑
1≤i<j≤m

(νR(αi, αj))
2.

Proof :

(i) Sinceitheidiagonal entries of adjacencyimatrix A(G)iareizero, thereforeithe traceiof

theimatrix isizero. As theitrace of aimatrix isiequalitoisum of itsieigenvalues, the

proofiisiobvious.
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(ii) Byithe traceiproperty of aimatrix, weihave

tr((A(µR(αi, αj)))
2) =

m∑
i=1,θi∈Θ

θ2i ;

where

tr((A(µR(αi, αj)))
2) =

(
0 + (µR(α1, α2))

2 + . . . (µR(α1, αm))
2

)
+

(
(µR(α2, α1))

2 + 0 + . . . (µR(α2, αm))
2

)
...

+

(
(µR(αn, α1))

2 + 0 + (µR(αm, αm))
2 + . . .+ 0

)
= 2

∑
1≤i<j≤n

(µR(αi, αj))
2.

Hence,
m∑

i=1,θi∈Θ
θ2i = 2

∑
1≤i<j≤n

(µR(αi, αj))
2.

Similarly, we can show that

m∑
i=1,ϕi∈Φ

ϕ2i = 2
∑

1≤i<j≤n
(ηR(αi, αj))

2 and

m∑
i=1,ψi∈Ψ

ψ2
i = 2

∑
1≤i<j≤n

(νR(αi, αj))
2.

Hence, theiresults of the theoremiare proved.

Further,ithroughout theimanuscript weidenote

Mµ =:
∑

1≤i<j≤n

(µR(αi, αj))
2; Mη =:

∑
1≤i<j≤n

(ηR(αi, αj))
2; and Mν =:

∑
1≤i<j≤n

(νR(αi, αj))
2.

Also, we denote

|Aµ| =: det(A(µR(αi, αj))); |Aη| =: det(A(ηR(αi, αj))); and |Aν | =: det(A(νR(αi, αj))).

Theorem 19 Let G = (S,R)ibe theipicture fuzzyigraph with mivertices and A(G)ibe its

adjacencyimatrix. Then,

(i)

√
2Mµ +m(m− 1)|Aµ|

2
m ≤ E(µR(αi, αj)) ≤

√
2mMµ;

(ii)

√
2Mη +m(m− 1)|Aη|

2
m ≤ E(ηR(αi, αj)) ≤

√
2mMη;

(iii)

√
2Mν +m(m− 1)|Aν |

2
m ≤ E(νR(αi, αj)) ≤

√
2mMν .
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Proof : UsingiCauchy-Schwarziinequality forithe vectors (1, 1, . . . , 1)iand (|θ1|, |θ2|, . . . , |θm|)
withim entries, weiget

m∑
i=1

|θi| ≤
√
m

√√√√ m∑
i=1

|θi|2. (5.1.1)

Also, (
m∑
i=1

|θi|

)2

=

m∑
i=1

|θi|2 + 2

m∑
1≤i<j≤m

|θiθj | = 0. (5.1.2)

Theicharacteristic polynomialiof A(G) is giveniby

m∏
i=1

(λ− θi) = |A(G)− λI|.

Now,icomparing theicoefficients ofiλn−2 in aboveipolynomial, weiget

m∑
1≤i<j≤m

|θiθj | = −Mµ. (5.1.3)

Usingiequation (5.1.3) in equation (5.1.2), we have

m∑
i=1

|θi|2 = 2Mµ. (5.1.4)

Substitutingiequation (5.1.4)iin equation (5.1.1), weihave

m∑
1≤i<j≤m

|θi| ≤
√
m
√

2Mµ =
√

2mMµ.

Thereforei,

E(µR(αi, αj)) ≤
√

2mMµ. (5.1.5)

Next,

(E(µR(αi, αj)))
2 =

(
m∑
i=1

|θi|

)2

=
m∑
i=1

|θi|2 + 2
m∑

1≤i<j≤m
|θiθj |

= 2Mµ +
2m(m− 1)

2
AM{|θiθj |}.

Since,ithe arithmeticimean is greaterithan or equal toithe geometricimean, i.e., AM{|θiθj |} ≥
GM{|θiθj |}, therefore,

E(µR(αi, αj)) ≥
√
2Mµ +m(m− 1)GM{|θiθj |}. (5.1.6)

107



Also,

GM{|θiθj |} =

 ∏
1≤i<j≤m

|θiθj |

 2
m(m−1)

=

 ∏
1≤i<j≤m

|θi|m−1

 2
m(m−1)

=

(
m∏
i=1

|θi|

) 2
m

= |Aµ|
2
m . (5.1.7)

Substitutingiequation (5.1.7) iniequation (5.1.6), weiget

E(µR(αi, αj)) ≥
√

2Mµ +m(m− 1)|Aµ|
2
m . (5.1.8)

Thus,ifrom equationsi(5.1.5) and (5.1.8), weihave√
2Mµ +m(m− 1)|Aµ|

2
m ≤ E(µR(αi, αj)) ≤

√
2mMµ.

Onisimilar lines,iwe can showithat√
2Mη +m(m− 1)|Aη|

2
m ≤ E(ηR(αi, αj)) ≤

√
2mMη

and √
2Mν +m(m− 1)|Aν |

2
m ≤ E(νR(αi, αj)) ≤

√
2mMν .

Theorem 20 LetiG = (S,R)ibe aipicture fuzzyigraphionmivertices andiA(G) be itsiadjacency

matrix.iIfim ≤ 2Mµ, m ≤ 2Mη and m ≤ 2Mν ,ithen:

(i) E(µR(αi, αj)) ≤ 2Mµ

m +

√
(m− 1)

{
2Mµ −

(
2Mµ

m

)2}
;

(ii) E(ηR(αi, αj)) ≤ 2Mη

m +

√
(m− 1)

{
2Mη −

(
2Mη

m

)2}
;

(iii) E(νR(αi, αj)) ≤ 2Mν
m +

√
(m− 1)

{
2Mν −

(
2Mν
m

)2}
.

Proof :iSince A(G) of the pictureifuzzy graph Giis symmetric withitrace zero, therefore,

θ1 ≥
2

∑
1≤i<j≤m

µR(αi, αj)

m
,

where θ1, θ2, . . . , θm are theieigenvalues of A(G). In viewiof the results obtainediin Theorem

18, weiwrite
m∑
i=2

θ2i = 2Mµ − θ21. (5.1.9)
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UsingiCauchy- Schwarziinequality for theivectors (1, 1, . . . , 1) & (|θ1|, |θ2|, . . . , |θm|) with

(m− 1) entries, we get

E(µR(αi, αj))− θ1 =
m∑
i=2

θ2i ≤

√√√√(m− 1)
m∑
i=2

θ2i . (5.1.10)

Substitutingiequation (5.1.9) iniequation (5.1.10) and afterirearranging, weihave

E(µR(αi, αj)) ≤ θ1 +
√

(m− 1)
(
2Mµ − θ21

)
. (5.1.11)

Since theifunction F (α) = α+
√
(m− 1)(2Mµ − α2) decreasesion theiinterval (

√
2Mµ

m ,
√

2Mµ),

as 1 ≤ 2Mµ

m , therefore,√
2Mµ

m
≤ 2Mµ

m
≤ 2(µR(αi, αj))

m
≤ θ1 ≤

√
2Mµ.

Thus,ithe equationi(5.1.11) implies

E(µR(αi, αj)) ≤
2Mµ

m
+

√√√√(m− 1)

{
2Mµ −

(
2Mµ

m

)2
}
.

On similarilines, we canialso showithat

E(ηR(αi, αj)) ≤
2Mη

m
+

√√√√(m− 1)

{
2Mη −

(
2Mη

m

)2
}
;

and

E(νR(αi, αj)) ≤
2Mν

m
+

√√√√(m− 1)

{
2Mν −

(
2Mν

m

)2
}
.

It may beinoted that theiresults obtainediin the aboveitheorem provideithe upperibound

for theienergy ofithe picture fuzzyigraph, with theiconditions m ≤ 2Mµ, m ≤ 2Mη and

m ≤ 2Mν .

Theorem 21 Let G = (S,R)ibe a pictureifuzzyigraph onim vertices. ThenE(G) ≤ m
2 (1 +√

m).

Proof : If n ≤ 2Mµ,ithen by calculusiit is easyito showithat

f(Mµ) =
2Mµ

m
+

√√√√(m− 1)

{
2Mµ −

(
2Mµ

m

)2
}
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obtainsiaimaximumivalueiwhenMµ = m2+m
√
m

4 . Substitutingithisivalue ofMµ initheiabove

Theorem 20, weiget E(µR(αi, αj)) ≤ m(1+
√
m)

2 . Similarly,ithe results foriother energyicomponents

canibe obtained. Hence, theitheorem isiproved.

Next, weistudy anotheriimportantinotion ofienergy of graph,iknown as LaplacianiEnergy

of PictureiFuzzy Graph and discussiits variousigraph-theoreticiaspects.

Definition 49 Let G = (S,R)ibe aipicture fuzzyigraph onim vertices.iThe degree matrix

D(G) = [dij ], ofiG is a m×m diagonalimatrix definedias:

dij =

dG(αi) if i = j;

0 otherwise.

Example: LetiG = (S,R)ibe pictureifuzzy matrixi4 vertices. Then,ithe degree ofimatrix

D(G) is a 4× 4 diagonal matrixidefined as

D(G) =


(0.4, 0.2, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.5, 0.7, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.2, 0.3, 0.4) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.1, 0.2, 0.5)

 .

Definition 50 Let G = (S,R)ibeia picture fuzzyigraph onmivertices. The Laplacianimatrix

of a pictureifuzzy graphiG isidefined asiL(G) = D(G)−A(G);iwhereiD(G) & A(G)iare de-

greeiand adjacencyimatrix of theipicture fuzzyigraph G,irespectively.

Example: Let G = (S,R) beithe picture fuzzyigraph on 4ivertices. The lapla-

cianimatrix of a pictureifuzzy graph Giis definedias

L(G) = D(G)−A(G) =


(0.4, 0.2, 0.1) (−0.4,−0.2,−0.3) (−0.4,−0.3,−0.2) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.5, 0.7, 0.6) (0.0, 0.0, 0.0) (−0.3,−0.5,−0.2)

(0.0, 0.0, 0.0) (−0.2,−0.1,−0.6) (0.2, 0.3, 0.4) (0.0, 0.0, 0.0)

(−0.5,−0.2,−0.3) (0.0, 0.0, 0.0) (−0.5,−0.2,−0.2) (0.1, 0.2, 0.5)

 .

Definition 51 Theispectrum ofithe Laplacianimatrix L(G) of theipicture fuzzyigraph G =

(S,R)iisigivenibyi{(∆,Υ,Ω)},iwhere ∆, Υ and Ω are theiset of theieigenvalues ofiL(µR(αi, αj)),

L(ηR(αi, αj))iandiL(νR(αi, αj))), respectively.
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Example: Usingitheiexample giveniin the definition 51 we calculate theispectrum

ofiL(G) given below:

spec(µR(αi, αj)) = {−0.20962, 0.4000, 0.50481 + 0.3561i, 0.50481− 0.3561i}

spec(ηR(αi, αj)) = {−0.023607, 0.42361, 0.5− 0.1i, 0.5 + 0.1i}

spec(νR(αi, αj)) = {−0.027074, 0.4000, 0.61354− 0.25845i, 0.61354 + 0.25845i}

Theorem 22 LetiG = (S,R)ibe a pictureifuzzy graphionm verticesiandiL(G) be itsiLaplacian

matrix.iIf δ1 ≥ δ2 ≥ . . . ≥ δm, υ1 ≥ υ2 ≥ . . . ≥ υmiandiω1 ≥ ω2 ≥ . . . ≥ ωm areithe abso-

luteieigenvalues of L(µR(αi, αj)), L(ηR(αi, αj))iandiL(νR(αi, αj))) respectively,ithen

(i)
m∑

i=1,δi∈∆
δi = 2

∑
1≤i<j≤m

µR(αi, αj);

m∑
i=1,υi∈Υ

υi = 2
∑

1≤i<j≤m
ηR(αi, αj); and

m∑
i=1,ωi∈Ω

ωi = 2
∑

1≤i<j≤m
νR(αi, αj).

(ii)
m∑

i=1,δi∈∆
δ2i = 2

∑
1≤i<j≤m

(µR(αi, αj))
2 +

m∑
i=1

d2µR(αi,αj)(αi);

m∑
i=1,υi∈Υ

υ2i = 2
∑

1≤i<j≤m
(ηR(αi, αj))

2 +
m∑
i=1

d2ηR(αi,αj)(αi); and

m∑
i=1,ωi∈Ω

ω2
i = 2

∑
1≤i<j≤m

(νR(αi, αj))
2 +

m∑
i=1

d2νR(αi,αj)(αi).

Proof : Theitheorem canibe provedion theisimilar linesias the proofiof Theorem 18.

Definition 52 TheiLaplacianienergy of theipicture fuzzyigraph G = (S,R),idenoted by

LE(G),iis definedias

LE(G) = (LE(µR(αi, αj)), LE(ηR(αi, αj)), LE(ηR(αi, αj))) =

(
m∑
i=1

|ρi|,
m∑
i=1

|ξi|,
m∑
i=1

|ςi|

)
;

where ρi = δi −
2

∑
1≤i<j≤m

µR(αi,αj)

m ; ξi = υi −
2

∑
1≤i<j≤m

ηR(αi,αj)

m ; ςi = ωi −
2

∑
1≤i<j≤m

νR(αi,αj)

m .

Example: Againiwe will beiusing the exampleiused in definitioni52 to find theienergy

of the particulrimatrix which isigiven as:

LE(µR(αi, αj)) = 1.845103, LE(ηR(αi, αj)) = 1.467021, LE(νR(αi, αj)) = 1.758581
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Theorem 23 LetiG = (S,R)ibe aipicture fuzzyigraph onim verticesiand L(G)ibe its Lapla-

cianimatrix. Ifiδ1 ≥ δ2 ≥ . . . ≥ δm, υ1 ≥ υ2 ≥ . . . ≥ υmiandiω1 ≥ ω2 ≥ . . . ≥ ωm areithe

absoluteieigenvalues ofiL(µR(αi, αj)), L(ηR(αi, αj))iand L(νR(αi, αj))),irespectively, then

(i)
m∑
i=1

ρi = 0,
m∑
i=1

ξi = 0 and
m∑
i=1

ςi = 0;

(ii)
m∑
i=1

ρ2i = 2Nµ,
m∑
i=1

ξ2i = 2Nη,
m∑
i=1

ς2i = 2Nν ; where

Nµ =Mµ +
1
2

m∑
i=1

(
dµ(αi,αj)(αi)−

2
∑

1≤i<j≤m
µR(αi)

m

)
;

Nη =Mη +
1
2

m∑
i=1

(
dη(αi,αj)(αi)−

2
∑

1≤i<j≤m
ηR(αi)

m

)
and

Nν =Mν +
1
2

m∑
i=1

(
dν(αi,αj)(αi)−

2
∑

1≤i<j≤m
νR(αi)

m

)
.

Proof : Theiproof ofithe theoremiis obvious.

Theorem 24 LetiG = (S,R)ibe a pictureifuzzy graphionmivertices andiL(G) be itsiLaplacian

imatrix.iThen

(i) LE(µR(αi, αj)) ≤

√√√√2mMµ +m
m∑
i=1

(
dR(αi,αj)(αi)−

2
∑

1≤i<j≤m
µR(αi,αj)

m

)2

;

(ii) LE(ηR(αi, αj)) ≤

√√√√2mMη +m
m∑
i=1

(
dR(αi,αj)(αi)−

2
∑

1≤i<j≤m
ηR(αi,αj)

m

)2

;

(iii) LE(νR(αi, αj)) ≤

√√√√2mMν +m
m∑
i=1

(
dR(αi,αj)(αi)−

2
∑

1≤i<j≤m
νR(αi,αj)

m

)2

.

Proof : Theiproof canibe given onithe similarilines asithe proofiof the Theorem 19.

Theorem 25 Let G = (S,R) beia picture fuzzyigraph onim verticesiand L(G)ibe itsiLaplacian

imatrix. Then

(i) LE(µR(αi, αj)) ≥ 2

√√√√Mµ +
1
2

m∑
i=1

(
dR(αi,αj)(αi)−

2
∑

1≤i<j≤m
µR(αi,αj)

m

)2

;

(ii) LE(ηR(αi, αj)) ≥ 2

√√√√Mη +
1
2

m∑
i=1

(
dR(αi,αj)(αi)−

2
∑

1≤i<j≤m
ηR(αi,αj)

m

)2

;
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(iii) LE(νR(αi, αj)) ≥ 2

√√√√Mν +
1
2

m∑
i=1

(
dR(αi,αj)(αi)−

2
∑

1≤i<j≤m
νR(αi,αj)

m

)2

.

Proof : Theiproof canibe givenion the similarilines asithe proof ofithe Theoremi19.

Theiresults obtainediin the above theoremsiprovide usithe upperibound andilower boundiof

the Laplacianienergy ofithe picture fuzzyigraphiG.

Theorem 26 Let G = (S,R)ibe a pictureifuzzyigraph onmivertices andiL(G) be itsiLaplaciani

matrix. Then

(i) LE(µR(αi, αj)) ≤ |ρ1|+
√

(m− 1)(2Nµ − ρ21);

(ii) LE(ηR(αi, αj)) ≤ |ξ1|+
√

(m− 1)(2Nη − ξ21);

(iii) LE(νR(αi, αj)) ≤ |ς1|+
√

(m− 1)(2Nν − ς21 ).

Proof : Theiproof canibe givenion theisimilarilines asithe proof of theiTheoremi20.

5.2 Energy and Laplacian Energy of Picture Fuzzy

Directed Graph

In caseiof the directedigraph, the adjacencyimatrix A(G) ofia pictureifuzzy directedigraph is

not necessarilyisymmetric. Therefore,ithe eigenvalues ofithe adjacencyimatrix mayibe com-

plexinumbers. This sectionigeneralizes theiconcept ofienergy and Laplacianienergy foripicture

fuzzyidirected graphs.

Definition 53 Theispectrum ofithe adjacencyimatrix A(G) ofithe pictureifuzzy directedigraph

G = (S,
−→
R ) iis giveniby {(Θ,Φ,Ψ)},iwhere Θ, Φiand Ψ are the setiof theieigenvalues of

A(µ−→
R
(αi, αj)), A(η−→R (αi, αj))iand A(ν−→R (αi, αj))),irespectively.

Definition 54 The energyiof theipicture fuzzyidirected graphiG is givenias:

E(G) = (E(µ−→
R
(αi, αj)), E(η−→

R
(αi, αj)), E(ν−→

R
(αi, αj))) =

( m∑
i=1,θi∈Θ

|Re(θi)|,
m∑

i=1,ϕi∈Φ

|Re(ϕi)|,
m∑

i=1,ψi∈Ψ

|Re(ψi)|
)
;

whereiRe(θi), Re(ϕi)iand Re(ψi)irepresents the realipart of the eigenvaluesiθi, ϕiiand ψi,irespect

-ively.
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Theorem 27 LetiG = (S,
−→
R ) beiaipicture fuzzyidirectedigraphiandiA(G) beiits adjacencyimatrix.

Ifiθ1 ≥ θ2 ≥ . . . ≥ θm,iϕ1 ≥ ϕ2 ≥ . . . ≥ ϕmiandiψ1 ≥ ψ2 ≥ . . . ≥ ψm areithe absolute eigen-

valuesiof A(µR(αi, αj), A(ηR(αi, αj) and A(νR(αi, αj), respectively, then
m∑

i=1,θi∈Θ
Re(θi) =

0,
m∑

i=1,ϕi∈Φ
Re(ϕi) = 0 and

m∑
i=1,ψi∈Ψ

Re(ψi) = 0.

Definition 55 Let G = (S,
−→
R ) be aipicture fuzzyigraph onmivertices. The out-degreeimatrix

Dout(G) = [dij ], ofiG isia m×m diagonalimatrix definedias:

dij =

doutG (αi) if i = j;

0 otherwise.

Definition 56 Let G = (S,
−→
R )ibe aipicture fuzzyidirected graphion mivertices. The Lapla-

cianimatrix of a pictureifuzzyidirected G, denotediby L(G) isidefinedias

L(G) = Dout(G)−A(G);

where Dout(G) & A(G) are the out degreeimatrix and adjacency matrix of the picture fuzzyidirec

-ted graph G, respectively.

Definition 57 The spectrumiof theiLaplacianimatrix L(G) ofitheipictureifuzzy directed graphiG =

(S,
−→
R ) isigiveniby {(∆,Υ,Ω)}, where ∆, Υ and Ω areitheiset of theieigenvalues of L(µ−→

R
(αi, αj)),

L(η−→
R
(αi, αj)) and L(ν−→R (αi, αj)),irespectively.

Theorem 28 LetiG = (S,
−→
R ) beiaipicture fuzzyigraphionim vertices andiL(G) be its Lapla-

cianimatrix. Ifiδ1 ≥ δ2 ≥ . . . ≥ δm, υ1 ≥ υ2 ≥ . . . ≥ υmiandiω1 ≥ ω2 ≥ . . . ≥ ωm

are theiabsoluteieigenvalues of L(µ−→
R
(αi, αj)), L(η−→R (αi, αj)) and L(ν−→R (αi, αj))irespectively,

then
m∑

i=1,δi∈∆
Re(δi) = tr(L(µ−→

R
(αi, αj)));

m∑
i=1,υi∈Υ

Re(υi) = tr(L(η−→
R
(αi, αj)));

and
m∑

i=1,ωi∈Ω
Re(ωi) = tr(L(ν−→

R
(αi, αj))).

Proof: iThe proofican beigiven onithe similarilines asithe proof ofitheiTheorem 18.
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Definition 58 The Laplacianienergy of theipicture fuzzyidirected graphiG = (S,
−→
R )

denotediby LE(G) is definedias

LE(G) =
(
LE(µ−→

R
(αi, αj)), LE(η−→

R
(αi, αj)), LE(η−→

R
(αi, αj))

)
=

(
m∑
i=1

|ρi|,
m∑
i=1

|ξi|,
m∑
i=1

|ςi|

)
;

where ρi = Re(δi)−

m∑
i=1,δi∈∆

Re(δi)

m ; ξi = Re(υi)−

m∑
i=1,υi∈Υ

Re(υi)

m ; ςi = Re(ωi)−

m∑
i=1,ωi∈Ω

Re(ωi)

m .

Theorem 29 LetiG = (S,
−→
R ) be aipicture fuzzyidirectedigraph onimivertices andiL(G) be

its Laplacianimatrix. Ifiδ1 ≥ δ2 ≥ . . . ≥ δm, υ1 ≥ υ2 ≥ . . . ≥ υmiandiω1 ≥ ω2 ≥ . . . ≥ ωm

areithe absoluteieigenvalues of L(µ−→
R
(αi, αj)), L(η−→R (αi, αj)) and L(ν−→R (αi, αj))),respectively,

ithen
m∑
i=1

ρi = 0,
m∑
i=1

ξi = 0 and
m∑
i=1

ςi = 0.

Proof: Theiproofiof theitheorem isiobvious.

Foriillustrating the proposedidefinitions, weiconsider theifollowing example of a pictureidirect

-ed fuzzyigraph:

Example: Suppose G = (S,R) be aipicture fuzzyigraph asigiven in Figurei5.2.

,0.5,0.3,0.2)

( ,0.5,0.2,0.3)

( ,0.5,0.3,0.2)

( ,0.5,0.3,0.2)

(0
.4
,0
.3
,0
.2
)

(0
.3
,0
.5
,0
.2
)

(0.4,0.2,0.3)

(0.5,0.2,0.2)

Figure 5.2: Graph G = (S,R) for Laplacian Energy

Iniview ofithe aboveidefinitions andiFigure 5.2, the adjacencyimatrix of picture fuzzyidirect

-ed graphican be giveniby

A(G) =


(0.0, 0.0, 0.0) (0.4, 0.2, 0.3) (0.4, 0.3, 0.2) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.2)

(0.0, 0.0, 0.0) (0.2, 0.1, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

(0.5, 0.2, 0.3) (0.0, 0.0, 0.0) (0.5, 0.2, 0.2) (0.0, 0.0, 0.0)

 .
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The spectrumiof theipicture fuzzyidirected graphiG can beicomputed as

Spec(µ−→
R
(αi, αj)) = {0.48586,−0.17786 + 0.3976i,−0.17786− 0.3976i,−0.13014};

Spec(η−→
R
(αi, αj)) = {0.3387,−0.1208 + 0.27689i,−0.1208− 0.27689i,−0.0970};

Spec(ν−→
R
(αi, αj)) = {0.39225,−0.11764 + 0.32108i,−0.11764− 0.32108i,−0.156972}.

Hence, theispectrum ofipicture fuzzyidirected graphiG mayibe presentedias

Spec(G) =
{
(0.48556, 0.3387, 0.39225), (−0.17786 + 0.3976i,−0.1208 + 0.27689i,−0.11764 + 0.32108i),

(−0.17786− 0.3976i,−0.1208− 0.27689i,−0.11764− 0.32108i), (−0.13014,−0.0970,−0.156972),
}
.

Theicalculation ofithe componentsifor energy ofipicture fuzzyidirectedigraph G hasibeen

listedibelow:

E(µ−→
R
(αi, αj)) = −0.13014; E(η−→

R
(αi, αj)) = −0.0970; E(ν−→

R
(αi, αj)) = −0.156972.

Hence,ithe energyiof pictureifuzzy directedigraph G is

E(G) = (−0.13014,−0.0970,−03156972).

Next, theiout-degree matrixiD(G) and theiLaplacianimatrix L(G) ofithe pictureifuzzyidirected

graphiG are giveniby

Dout(G) =


(0.8, 0.5, 0.5) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.2, 0.1, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.5, 0.2, 0.3) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (1.0, 0.4, 0.5)


and

L(G) =


(0.8, 0.5, 0.5) (−0.4,−0.2,−0.3) (−0.4,−0.3,−0.2) (0.0, 0.0, 0.0)

(0.0, 0.0, 0.0) (0.2, 0.1, 0.6) (0.0, 0.0, 0.0) (−0.3,−0.5,−0.2)

(0.0, 0.0, 0.0) (−0.2,−0.1,−0.6) (0.5, 0.2, 0.3) (0.0, 0.0, 0.0)

(−0.5,−0.2,−0.3) (0.0, 0.0, 0.0) (−0.5,−0.2,−0.2) (0.1, 0.4, 0.5)

 ,

respectively. TheiLaplacian spectrumiof the picture fuzzyidirected graphiG can beicomputed

as

Spec(µ−→
R
(αi, αj)) = {0.02329, 0.8883 + 0.2635i, 0.8883− 0.2635i, 0.7000};

Spec(η−→
R
(αi, αj)) = {−0.04585, 0.4824 + 0.2599i, 0.48244− 0.2599i, 0.5809};

Spec(ν−→
R
(αi, αj)) = {0.61958 + 0.28912i, 0.61958− 0.28912i, 0.5864, 0.0744}.

Hence, theiLaplacian spectrumiof picture fuzzyidirected graphiG may beiwritten as

Spec(G) =
{
(0.02329,−0.04585, 0.61958 + 0.028912i), (0.8883 + 0.2635i, 0.4824 + 0.2599i, 0.61958− 0.28912i),

(0.8883− 0.2635i, 0.48244− 0.2599i, 0.5864), (0.7000, 0.5809, 0.0744)
}
.
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The calculationiof the componentsifor Laplacianienergy ofipicture fuzzyidirected graphiG

has beenilisted below:

LE(µ−→
R
(αi, αj)) = 2.49989; LE(η−→

R
(αi, αj)) = 1.59163; LE(ν−→

R
(αi, αj)) = 1.89996

Hence, the Laplacian energy of picture fuzzy directed graph G is

LE(G) = (2.49989, 1.59163, 1.89996).

5.3 Algorithm for Selection Process Using Picture

Fuzzy Graph Energy

Inithisisection,iweifocus onithe applicationiof theiproposed energy/Laplacianienergy ofipictu

re fuzzyidirected graphiin a realiworld problem relatedito the siteiselection process.iFor ens

-uringithe sustainable development,ithe use ofinatural resourcesiin an environmental consci

-ousnessiframework hasigot a remarkableipopularity in recentidecades. Establishment ofihyd

-ropoweriplants certainlyiprovides highiusability, betterireliability andiclean source ofienergy.

The problemiof siteiselection for the hydropoweriplants alsoicomprise of political,isocial, en-

vironmentaliand culturaliaspects in additionito the technicalirequirements.

Decisionimakingimethods areioften usediin various selectioniprocesses whereithe final

taskiis to selectithe best one outiof the given set ofialternatives. Whileidrawing some con-

cludingiremarks in applicableifields, the experts mainlyifocus onidifferent correlatedifactors

with theiriprior perceptioniand expertise.iThe preference relationiis supposed toibe the best

andifruitful tool toiachieve the actualisorting of theigiven set of alternativesiamong which

theiexperts put forwarditheir preferenceiover other alternatives. Iniorder to implementithe

preferenceirelation concept, we wouldiconsider theiinformation in theishape of pictureifuzzy

numbers asifollows:

Definition 59 A picture fuzzyipreference relation (PFPR) on the universeiof dis-

course U = {α1, α2, α3, . . . , αm} is representediby a matrix R = (r̃ij)m×m, where r̃ij =(
(αi, αj), µ(αi, αj), η(αi, αj), ν(αi, αj)

)
∀ i, j = 1, 2, . . . ,m.

For the sake of simplicity, suppose r̃ij = (µij , ηij , νij), where µij is theidegree to

whichithe objectiαi has beenipreferrediover the object αj,iηij isithe degreeito which the ex-

pertiis in dilemmaiwhether to preferithe object αiior αj. Iniaddition toithis, νij gives the
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degreeito which αi is notipreferred to αj and

rij = 1− (µij(α) + ηij(α) + νij(α))

gives the amount of refusaliwith the following constraint:

0 ≤ µij(α) + ηij(α) + νij(α) ≤ 1, µij = νji, ηij = ηji, νij = µji and µii = 1, ηii = νii = 0;

∀ i, j = 1, 2, . . . ,m.

Supposeithat theiissue of siteiselection for theiestablishment of hydropoweriplant is

formulatedias:

• Basedion the comprehensiveisurvey conductediby the governmentiagencies, let there

areifour possibleilocations/sites (α1, α2, α3, α4) for the hydropoweriplant to beiestablis

-hed.

• Theisurvey has a detailedidatabase andireports for all the fouripossible sitesiin con-

text withithe variousideterministic featuresisuch as ecologicalisafety, plant safety, so-

cialifactor, economicalifactors, maximumiefficiency, hydrologicalifactors, environmen-

talifactor etc.

• Foriconducting theievaluation processibased on theisurvey databaseireport, supposeithere

are threeiexperts (ek; k = 1, 2, 3) who have beeniindependentlyideputed. Basedion

the theiriexperience, the expert’sicomparative opinions haveibeen markediin the form

pictureifuzzy numbers.

• Further,ipicture fuzzyipreference relationsiin the formiof matrices have beeniconstructed

asithe initial stepifor the site selectioniprocess.

Iniview of the proposedienergy/Laplacianienergy of picture fuzzyidirected graphsiwith pref-

erenceirelations, anialgorithm foriaccomplishing the computingitask of siteiselection alongiwith

a flow chartiis being presentediin Figure 5.3.
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Figure 5.3: Flow chart ofialgorithm forialternatives selectioniprocess

Working Methodology of Proposed Algorithm

- iStep 1:iTheiexperts compareitheiinvolved factorsiand presentisome initial inputsifor the

computingiprocess in theishape of picture fuzzyipreference relations, representediin the

form ofimatrices Rk = (r̃ij
(k))4×4 (k = 1, 2, 3).

- Step 2: Consideria suitable pictureifuzzy directedigraphGkicorresponding to theiPFPRs

giveniby Rk(k = 1, 2, 3).

- Step 3: Computeithe energyiof eachipicture fuzzyidirected graphias perithe definition

of theienergy ofiPFDG.

- Step 4: Theiweight vectorifor eachiexpert canibe calculated byiusing

wk = (wkµ, w
k
η , w

k
ν) =

 E(Gµ)k
k∑
l=1

E(Gµ)l

,
E(Gη)k
k∑
l=1

E(Gη)l

,
E(Gν)k
k∑
l=1

E(Gν)l

 ; k = 1, 2, 3.

- Step 5: Inithis step, weiuse pictureifuzzyiweighted averageior pictureifuzzy orderediweighted

average oripicture fuzzy hybrid averageiaggregation operatorirecently given byiGarg [39].
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In thisiway, we aggregateithe three picture fuzzyipreferenceirelationsR1, R2 andR3 giveniin

step 1 intoia single preferenceirelationiR.

- Step 6: Weicompute theiscoreivalues by utilizingithe scoreifunction

S(rij) = µ2ij − ν2ij ;

anditabulateithem in theiform of aimatrix S(R) = [rij ].

- Step 7: Next,iwe determine theinet degree ofipreferenceiof alternatives byiutilizing theifunction

ϕ(αi) given byiWang and Fan [154] asifollows:

ϕ(αi) =

m∑
j=1,j ̸=i

(rij − rji), i = 1, 2, 3, . . .m.

- Step 8: Onithe basis ofithe highestivalue ofithe net degree,ifinally we chooseithe opti-

malialternative byiranking all the α′
is, i.e,

α1 > α2 > α4 > α3.

Hence, weiconclude thatithe site α1 is theibest site forithe establishment of hydropoweriplant

based oniour proposedimethodology andialgorithm.

Remark: In step 4, we canireplace the concept ofienergy byithe concept ofiLaplacian

energyifor the evaluation ofiweights. In thisicase, we willibe usingithe followingiformula for

theicalculation ofiweights:

wk = (wkµ, w
k
η , w

k
ν) =

 LE(Gµ)k
k∑
l=1

LE(Gµ)l

,
LE(Gη)k
k∑
l=1

LE(Gη)l

,
LE(Gν)k
k∑
l=1

LE(Gν)l

 ; k = 1, 2, 3.

Allithe computationsican similarlyiby performed forithe evaluationiprocess.

ImportantiComparativeiRemarks:

For theisake ofijustification iniconnection withithe proposeditechnique, weiconsider twoiexamples

ofiproblems ofisite selectioniwhich haveibeen solvedirecently byidifferent researchers.iGundogdu

et al.[34] proposediPicture FuzzyiLinear AssignmentiMethod andiJovicic et.al [122] pro-

posediPicture FuzzyiARAS Methodito solveithe siteiselection problems.

• In bothithe approaches,ithe decisionimatrix hasibeen constructediby consideringithe

availableialternatives andithe laididown criteriaiaccording to theirespective needs.
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• In step 4, weican replaceithe conceptiof energyiby theiconcept ofiLaplacian energyifor

theievaluation ofiweights. Inithis case, weiwill beiusing theifollowing formulaifor

theicalculation of weights:

wk = (wkµ, w
k
η , w

k
ν) =

 LE(Gµ)k
k∑
l=1

LE(Gµ)l

,
LE(Gη)k
k∑
l=1

LE(Gη)l

,
LE(Gν)k
k∑
l=1

LE(Gν)l

 ; k = 1, 2, 3.

Allithe computationsican similarlyiby performedifor theievaluation process.

• Theidifference isiin theiprocess oficonsidering theivertices and edgesiwhere theivertices

of theiparticular individualsiand connectingiedges wouldirepresent theimutual rela-

tionshipsiand makesithe situationieasier toiunderstand andiinterpret. Theidata of

theiproblem undericonsideration fitsifor theipicture fuzzyigraph-theoretic approach.

• Theiadvantageiof ourimethod overiother existing methods areiexplained by follow-

ingiremarks.

PFiLinear AssignmentiMethod [34] Initiallyithe alternativesiand theicriteria-based tableihave been

designediwith theihelp ofiexperts. UtilizingiPicture Fuzzy

WeightediAveraging operatori(PFWA), the individualidecision matrix

hasibeen accumulatediand theielements haveibeen computediwith

the pictureifuzzy scoreifunction. Further, theirank frequency

ofithe positiveivalued matrix/weightedimatrix π is calculated.

Afterisolving theseitwo matricesithe solutionsiare obtained.

The weightivector is dependention theiexpert view.

PF ARASiMethod [122] Theilinguistic criteriaiweight matricesiare considerediwith the

helpiof decisionimakers. The pictureifuzzy evaluation matricesihave

beenievaluated andinormalized toidetermine theipicture fuzzyidecision

matrix.iFurther, in thisiprocess theipicture fuzzy weightedidecision

matrix isicalculated. In theiend, the authoricalculated the picture

fuzzyioptimality functioniwhich leadsito theidefuzzified valueiof the

optimalityifunction andiultimately theiutility

degreeiof eachialternative isiobtained (foriranking).

LaplacianiEnergy of PictureiFuzzy Graph Butiin ouricase theidata isicollected onlyifor theigraph after

theigraph isimade accordingito theivarious criteria.iWe calculated

theiweight vectoriof the graphiwhich makesiit moreireliable.

Theimutual relationshipsiamong theicriteria andialternatives have

beenitranslated withithe conceptiof Laplacianienergy for

theievaluation ofithe necessaryiweights.
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5.4 Comparative Remarks, Advantages and Limi-

tations of the Proposed Methodology

Onithe basisiof the workiproposed in theimanuscript, weipresent some important compar-

ativeiremarks & advantageousifeatures behindithe implementationiofipicture fuzzyigraphs

and their operations:

• Asimentionediearlier,ithe incorporationiof intuitionisticifuzzy sets and Pythagoreanifu

-zzy setsihas someilimitations and notiable toicapture the full informationispecification

of theisituation. Therefore,ithe additionalicomponentsiof the degrees ofimembership,

neutralimembership, non-membershipiand degreeiof refusal inicase of the pictureifuzzy

sets certainlyiprovide a widericoverage and widerigeometricali

span.

• Inithisiway we find thatithe proposedigraphs & operationsiare sufficientlyicapable

toiaddressitheiconnectedidependanceidueitoitheiincompleteness of the informationihav

-ing the refusalifactoriin a more reliableiway.

• Theidrawback inithe existingiliterature of theiintuitionistic fuzzyigraphs and Pythag

-orean fuzzyigraphs is that the conditionidoes notiallowithe experts/decisionimakers

to allocate the membershipivalues of their own choice (Refer Table 5.1). Somehow,

this makes the expertsibounded forigivingitheiriinput in a particularidefined domain.

However, theiproposedipicture fuzzyigraphs provide a generalization feature which

make a strongiimpact.

Table 5.1: Concerns Raised in IFSs and PyFSs
R C1 C2 C3 C4

C1 (1.0 + 0.0 + 0.0 = 1) (0.40 + 0.20 + 0.69 > 1) (0.36 + 0.19 + 0.79 > 1) (0.56 + 0.17 + 0.62 > 1)

C2 (0.68 + 0.20 + 0.44 > 1) (1.0 + 0.0 + 0.0 > 1) (0.40 + 0.24 + 0.56 > 1) (0.51 + 0.29 + 0.61 > 1)

C3 (0.76 + 0.20 + 0.42 > 1) (0.54 + 0.24 + 0.42 > 1) (1.0 + 0.0 + 0.0 > 1) (0.48 + 0.14 + 0.77 > 1)

C2 (0.49 + 0.17 + 0.68 > 1) (0.59 + 0.29 + 0.53 > 1) (0.77 + 0.17 + 0.38 > 1) (1.0 + 0.0 + 0.0 > 1)

• The weights are being evaluatediusing the energy and the Laplacianienergy which play

a keyiroleiinitheievaluationiprocess. Thisiisibecause the utilityifactors of the avail-

ableialternativesiareidirectlyitranslated into the weightsiwith the helpiof the energy.
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5.5 Conclusions

TheiPythagorean fuzzyigraph-theoretic modeliand conceptsiare howeverisufficient to dis-

cussithe issues relatediwith uncertainty,iimpreciseness & inconsistencyiof theiinformation,

butithe containment of the refusalidegree has not beeniconsidered. Weihave successfully

putiforward theinovel notioniof energy andiLaplacian energy forithe picture fuzzyigraph

alongiwith the bounds on them.iThrough the proposediapproach, weiare certainlyiable to

modeliaccordingly and dealiwith the refusalicomponent foriproviding a better geometri-

calispan. Theiproposed conceptsiare wellicomposed and clearlyidiscussed withiillustrative

fuzzyigraph examples. The implementationiof the proposedialgorithm hasibeen success-

fullyipresented by taking a hydropoweriplant site selectioniproblem intoiaccount.
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Chapter 6

Conclusions & Future Work

In the present thesis, we have studied and proposed some new extension of fuzzy sets with

various results and applications. The findings of the work carried out in the various chapters

are being listed along with possible scope of future work:

• A novel concept of cohesive fuzzy set (CHFS) has been successfully proposed which

has the dual benefits of complex fuzzy set with coverage of hesitant fuzzy set. Various

properties and identities have also been proposed to increase the understanding of the

concept.

• The applicability of cohesive fuzzy set has been explained in detail in case of reference

signals using the concept of Inverse/Discrete Fourier transformation. The numerical

example has also been presented using the proposed methodologies.

• Second application of cohesive fuzzy set has been presented in case of solar activity

in which the proposed concept is utilized to obtain the interval contains maximum

amount of sunspots.

• The proposed concept of cohesive has been proved to be very reliable and therefore

will be of great help in solving various uncertainties problems in future.

• The novel concept of complex neutrosophic matrix has been proposed and the funda-

mentals of the concept have also been explained with the help of various operations

for better clarity.

• The matrix norm and power convergence of complex neutrosophic matrix have been

studied and discussed thoroughly.
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• Further, new similarity measures have been presented and the property of positive

definiteness of presented similarity measures have also been discussed for better clar-

ity.

• The applicability of the proposed similarity measure have been presented in case of

medical diagnosis.

• Various operators in case of complex fuzzy matrix have been discussed in detail for

better understanding and a similarity measure has also been proposed.

• The applicability of the complex fuzzy matrix has been studied in case of signal

identification and this also validates the use of proposed theory.

• The four exponential similarity measures have been proposed for the case of single

valued neutrosophic set and in addition a classification problem has been presented.

• The applicability of proposed exponential measures has been presented in case of

decision making problem.

• The ‘useful’ information measure with various other information measures have been

presented and validated with the help of various theorems.

• The future work of the proposed concept can also been presented for the case of

constrained optimization with a suitable applicability for the decision models.

• Laplacian energy for the case of pictureifuzzy graph is calculated and through the

proposediapproach we are able to deal with the refusal component for providing a

better geometricalispan.

• The applicability of the proposed concepts has been applied in case of hydrogen power

plant. Further,ithe concept ofiisomorphic graphs, planarigraphs, dualigraphs, regu-

larigraphs, etc., can analogouslyidefined andiapplied in variousiapplication fieldsiof

engineeringidesign, systemiscience, networkingietc. Also,ithese definitionsican fur-

theribe applicablyienhanced to “hesitant pictureifuzzy graph” and “picture fuzzyisoft

graph”.
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