
Analysis and Implementation of DAO Inconsistency
Attack in RPL

Project report submitted in partial fulfillment of the requirement

for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Akhil Sharma (131313)
Vishwas Malik (131324)

Under the supervision of

Mr. Arvind Kumar

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

i

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “Preliminary Analysis of

DAO Inconsistency Attack in RPL” in partial fulfillment of the requirements for the

award of the degree of Bachelor of Technology in Computer Science and Engineering

submitted in the department of Computer Science & Engineering, Jaypee University of

Information Technology, Waknaghat is an authentic record of our own work carried out

over a period from August 2016 to May 2017 under the supervision of Mr. Arvind

Kumar Assistant Professor, Department of Computer Science And Engineering. The

matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Akhil Sharma (131313) Vishwas Malik (131324)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Mr. Arvind Kumar

Assistant Professor

Department of Computer Science And Engineering

Dated:

ii

ACKNOWLEGEMENT

We are grateful and indebted to Mr. Arvind Kumar, Assistant professor, Department of

Computer Science And Engineering for his help and advice in completion of this project

report. We also express our deep sense of gratitude and appreciation to our guide for his

constant supervision, inspiration and encouragement right from the beginning of this

Project report. We also want to thank our parents and friends for their immense support

and confidence upon us. We deem it a pleasant duty to place on record our sincere and

heartfelt gratitude to our project guide for his long sightedness, wisdom and co-operation

which helped us in tackling crucial aspects of the project in a very logical and practical

way.

Akhil Sharma Vishwas Malik

(131313) (131324)

 Computer Science and Engineering

iii

TABLE OF CONTENTS

Serial
Number

Topics
Page
Numbers

 Candidate’s Declaration.. I
 Acknowledgement….. Ii
 Table Of Contents…………………………………………….. Iii
 List of Figures………………………………………………… V
 List of Tables………………………………………………….. Vi
 List of Abbreviations………………………………………….. Vii
 Abstract………………………………………………………... Viii
1 Introduction……………………………………………………. 1
1.1 The Internet of Things………………………………………… 1
1.1.1 About IOT……………………………………………………... 1
1.1.2 Growth of the IOT…………………………………………….. 2
1.1.3 Long Time to Value…………………………………………… 3

1.1.4 Challenges……………………………………………………... 3

1.2 Problem Statement…………………………………………….. 4
1.3 Objective………………………………………………………. 4
1.4 Methodology…………………………………………………… 4
1.5 Organization of Project Report………………………………… 4
2 Literature Survey………………………………………………. 5
2.1 6LoWPAN……………………………………………………... 5
2.2 RPL…………………………………………………………….. 5
2.2.1 DODAG Building Process…………………………………….. 6
2.2.2 Storing and Non Storing Nodes……………………………….. 7
2.2.3 Loop Avoidance and Loop Detection…………………………. 8
2.2.4 Global and Local Repair………………………………………. 8
2.3 Taxonomy of Attacks in RPL based Internet of Things………. 9
2.3.1 DAO Inconsistency Attack……………………………………. 9
3 System Development…………………………………………... 10
3.1 Use of RPL Network…………………………………………... 10
3.2 Network Topology………………………………..……………. 10
3.2.1 Grid Placement of Nodes………………………………………. 10
3.2.2 Linear Placement of Nodes …….……………………………... 12
4 Performance Analysis………………………………………..... 14
4.1 Attack on Grid Placement of Nodes…………………………… 14
4.1.1 Scenario 1(With attack on node 8)…………………………….. 14
4.1.1.1 Analysis of Sensor Map……………………………………….. 14
4.1.1.2 Analysis of average power consumption………………………. 17

iv

4.1.1.3 Analysis of average radio duty cycle…………………………... 20
4.1.1.4 Analysis of power history……………………………………… 22
4.1.2 Scenario 2(With attack on node 28)……..…………………….. 23
4.1.2.1 Analysis of Sensor Map……………………………………….. 23
4.1.2.2 Analysis of average power consumption………………………. 25
4.1.2.3 Analysis of average radio duty cycle…………………………... 29
4.1.3.4 Analysis of power history……………………………………… 31
4.2 Attack on Linear Placement of Nodes…………………………. 32
4.2.1 Analysis of Sensor Map……………………………………….. 32
4.2.2 Analysis of average power consumption………………………. 34
4.2.3 Analysis of average radio duty cycle…………………………... 36
4.2.4 Analysis of power history……………………………………… 37
5 Conclusion……………………………………………………... 39
5.1 Conclusions……………………………………………………. 39
5.2 Future Scope…………………………………………………… 39
6 References……………………………………………………... 40
7 Appendices…………………………………………………….. 42
7.1 Code Snippets………………………………………………….. 42
7.1.1 Sender.c File…………………………………………………… 42
7.1.2 Sink.c File……………………………………………………… 48

v

LIST OF FIGURES

Serial
Number

Figure Name
Page
Numbers

1.1 Application of IOT……………………………………………. 2
1.2 Growth of IOT………………………………………………… 3
2.1 DODAG Building Process……………………………………. 7
2.2 Taxonomy of Attacks…………………………………………. 9
3.1 Grid Placement of Nodes without attack……………………… 11
3.2 Grid Placement of Nodes with attack on Node 8/36………….. 11
3.3 Grid Placement of Nodes with attack on Node 28/36………… 12
3.4 Linear Placement of Nodes without attack ………………….... 13
3.5 Linear Placement of Nodes with attack on Node 5/11………... 13
4.1 Network without Attacked Node……………………………… 14
4.2 Network with Attack Node 8…………………………………. 15
4.3 Average Power Consumption without Attack Node………….. 18
4.4 Average power consumption with attack node 8/36………….. 20
4.5 Average radio duty cycle without attack node………………... 21
4.6 Average radio duty cycle with attack node 8/36…..………… 21
4.7 Historical power consumption of node 8 without attack……. 22
4.8 Historical power consumption of node 8 with attack……….. 22
4.9 Network without Attacked Node……………………………… 23
4.10 Network with Attack Node……………………………………. 24
4.11 Average Power Consumption without Attack Node………….. 27
4.12 Average power consumption with attack node 28………….. 29
4.13 Average radio duty cycle without attack node………………... 30
4.14 Average radio duty cycle with attack node 28.......................... 30
4.15 Historical power consumption of node 28 without attack…… 31
4.16 Historical power consumption of node 28 with attack……… 31
4.17 Network without Attacked Node……………………………… 32
4.18 Network with Attack Node 5…………………………………. 33
4.19 Average Power Consumption without Attack Node………….. 35
4.20 Average power consumption with attack node 5……………... 36
4.21 Average radio duty cycle without attack node………………... 36
4.22 Average radio duty cycle with attack node 5............................. 37
4.23 Historical power consumption of node 5 without attack……… 38
4.24 Historical power consumption of node 5 with attack…………. 38

vi

LIST OF TABLES

Serial
Number

Table Name
Page
Numbers

2.1 MOP field description………………………………………… 8
4.1 Total Packets received by each Node…………………………. 15
4.2 Analysis of Power Consumption without attack……………… 17
4.3 Analysis of Power Consumption with attack on Node 8…….. 19
4.4 Total Packets received by each Node…………………………. 24
4.5 Analysis of Power Consumption without attack……………… 26
4.6 Analysis of Power Consumption with attack on Node 28.......... 27
4.7 Total Packets received by each Node…………………………. 33
4.8 Analysis of Power Consumption without attack……………… 34
4.9 Analysis of Power Consumption with attack on Node 5............ 35

vii

LIST OF ABBREVIATIONS

1. IP Internet Protocol

2. IEEE Institute of Electrical and Electronics Engineers

3. LLN Low power and Lossy network

4. RPL Routing Protocol for LLN

5. DIO DODAG Information Object

6. DAO Destination Advertisement Object

7. TCP Transmission Control Protocol

8. DODAG Destination Oriented Directed Acyclic Graph

9. WSN Wireless Sensor Network

10. OF Objective Function

viii

 ABSTRACT

Internet of Things (IoT) has been a very trending research topic in the recent times, where

physical objects interconnect as a result of conjunction of various existing technologies.

IoT is rapidly developing, but there have been uncertainties about its security and privacy

which can affect its sustainability. The network layer which is both wired or wireless is

exposed to many kinds of attacks. Because of the openness of these wireless channels,

communications can be easily monitored.

In this project we introduce a DAO Inconsistency Attack in RPL networks in which an

attacker makes malicious node which uses the "F" flag to make RPL routers remove

legitimate downward routes and thus isolates nodes from DODAG Graph. This F flag is

present in the rpl-extension-header.c and by modifying this flag this attack is

implemented.

Mainly we modified the functions update_header_empty() and verify_header() to

implement this attack.

In this project, a Low power and lossy Network is to be constructed, and analyze the

results from the simulation of the DAO inconsistency by using the cooja simulator.

1

CHAPTER 1

INTRODUCTION

1.1 The Internet-of-Things

1.1.1 About IoT

As discussed in [1] [2] [4] “The Internet of things (stylized Internet of Things or IoT) is

the internetworking of physical gadgets, vehicles (additionally alluded to as "associated

gadgets" and "smart gadgets"), structures and different things—embedded with

electronics, software’s, sensors, actuators, and system network that empower these

articles to gather and trade information.” In 2013 the Global Standards Initiative on

Internet of Things (IoT-GSI) characterized the IoT as “the foundation of the data

society.” IoT is basically connecting all the devices of our day to day life to internet so as

to make our life easier.

"Things," in IoT refers to every device from lights to vehicles etc. of our day to day life.

These things are connected to a network so as to simplify our life work.

 Researchers looks "Things" as an "inseparable blend of hardware, software, data and

service ". These devices gather information from the nearby environment.

IoT is the leading research subject as nowadays focus is shifting towards ubiquitous

computing from traditional computing.

Iot covers different aspects like transportation, construction, medical sciences, home

appliances, shopping experiences etc.

2

Figure 1.1 Applications of IoT

1.1.2 Growth of the IoT

IoT is one of the leading research topic as it is new and a large no of people around 87%

have even not heard of it. But Iot has been in our life from very long as ATMs which date

back to 1980’s. It is predicted that around Billion objects will be connected to the internet

by 2020 out of which around 250 million will be vehicles.

Even the market of smart watches has grown drastically in the past few years.

So it is evident that IoT is in demand and devices connected to the internet are going to

increase drastically.

3

Figure 1.2 Growth of IoT

1.1.3 Long time to value

IoT projects can take quite a while. From business case improvement or development to

verification of idea for full-scale rollout, each phase of the procedure can be laden with

difficulties. In light of our work with clients, we prescribe that organizations take after a

five-stage procedure to limit the time required to convey their IoT ventures, while

amplifying the return on these activities.

There are many programs available that helps new organizations to support them for the

development of various IoT projects. Even the government is focusing on IoT by

implementing new schemes like Smart Cities, free Wi-Fi Zones etc.

1.1.4 Challenges

In this Report we discuss about DAO inconsistency attack whose identification is a major

challenge. As we know that this particular attack isolates the nodes that are associated

with it thus the desired outcome of the network is not what we expect it to be and creates

a problem of incomplete network which further hinders the collection of information

from the desired isolated node.

4

1.2 Problem Statement

Implementation of DAO inconsistency attack and analysis of power consumption, change

in topology and average radio duty cycle.

1.3 Aims and Objectives

The aim is to analyze a low power and lossy network in RPL.

1.4 Methodology

In this project we simulate a DAO Inconsistency attack based on RPL on the Linux based

simulator COOJA. Our prime methodology is to detect the malicious node which sets the

"F" Flag of the Data Packet and send it back to the node from where it received the Data

Packet making the nodes below it isolated from the DODAG.

1.5 Organization of Project Report

In Chapter 1 we have discussed about IOT basics, the current growth in this field, the

common challenges being faced by persons in implementing the IOT structure and finally

the different types of network topologies.

In Chapter 2 we would be providing with the basic terminology about the different

research paper read by us. We would be providing with facts and figures about different

concepts we studied in those research papers.

In Chapter 3 we are going to provide a model of how the project is done on the basis of

developments:-

• Analytical

• Experimental

• Statistical

In Chapter 4 we have given a proper analysis of DAO inconsistency attack on basis of

which we would use the malicious node.

In Chapter 5 we have provided with the conclusion that we derive from our project.

5

CHAPTER 2

LITERATURE SURVEY

A literature review is a means to evaluate and interpret all available research relevant to a

particular research question, or area. Its main aim is to present a fair evaluation of the

research area of interest by conducting a rigorous and auditable methodology. The main

purpose of our literature review is to find the relevant literature about DAO inconsistency

attack upon low power and lossy networks and their network protocols for the purpose of

background study, summarize the existing work and identify the gap in the current

research.

2.1 6LoWPAN

As discussed in [9][13][14] 6LoWPAN concept originated from the idea that "the Internet

Protocol could and should be applied even to the smallest devices,” and that low-power

devices with limited processing capabilities should be able to participate in the Internet of

Things.

The 6LoWPAN group has defined encapsulation and header compression mechanisms

that allow IPv6 packets to be sent and received over IEEE 802.15.4 based

networks. IPv4 and IPv6 are the work horses for data delivery for local-area

networks, metropolitan area networks, and wide-area networks such as the Internet.

2.2 RPL

As discussed in [5][10] “RPL is a Distance Vector IPv6 routing protocol for LLNs that

dictate the Destination Oriented Directed Acyclic Graph (DODAG) building process

using an objective function and a set of metrics/constraints.” The objective function uses

a combination of metrics and constraints to compute the ‘best’ path.

The objective function is the key towards the formation of the DODAG based on some

network constraints.

6

2.2.1 DODAG Building Process

The building process of the graph starts at the root node or the sink node, which is

configured by the system administrator. The RPL routing protocol provides a set of new

ICMPv6 control messages to communicate graph related information between different

nodes. These messages are:

 DIS (DODAG Information Solicitation)

 DIO (DODAG Information Object)

 DAO (DODAG Destination Advertisement Object)

 DAO ACK (DODAG Destination Advertisement Object Acknowledgement)

The graph building process starts when the root starts broadcasting its information using

the DIO message. The neighboring nodes will receive and process DIO messages from all

the nodes and makes their decision whether to connect or not based on certain rules. Once

the node has joined a graph it has a route toward the graph root. The graph root is termed

as the ‘parent’ of the node. Then the node computes its ‘rank’ which specifies its position

in the network. If it is not a leaf node then it will again send DIO messages to all its

neighboring nodes. If the node is a “leaf node”, it simply joins the graph and does not

send any DIO message. This process will continue until the leaf node is reached. This

rippling effect builds the graph edges out from the root to the leaf nodes where the

process terminates. In this formation each node of the graph has a routing entry towards

its parent and the leaf nodes can send a data packet all the way to root of the graph by just

forwarding the packet to its immediate parent. The various steps of the graph building

process are represented in Figure 2.1[5].

DAO messages are used to

parent. As each node receives the DAO message,

entry in the routing table. This process continues until the

and a complete path to the

RPL also supports “point

in the graph.” When a node sends a packet to another node within th

travels ‘upwards’ to a common

direction to the destination.

2.2.2 Storing and Non-storing nodes

Basically there are two types of nodes i.e. storing and non

In storing nodes due to some memory constraints it is unable to store routing ent
the routing table while in case of storing nodes it will store the routing table at each node.

Figure 2.1 DODAG Building Process

DAO messages are used to send the nodes information in the upward direction towards its

As each node receives the DAO message, it processes the information and adds a

entry in the routing table. This process continues until the information reaches the root

path to the root is setup.

point-to-point (P2P) communication from any node to any other

When a node sends a packet to another node within the network, the packet

’ to a common parent at which point it is forwarded

direction to the destination.

storing nodes

Basically there are two types of nodes i.e. storing and non-storing nodes.

In storing nodes due to some memory constraints it is unable to store routing ent
the routing table while in case of storing nodes it will store the routing table at each node.

7

send the nodes information in the upward direction towards its

processes the information and adds an

information reaches the root

point (P2P) communication from any node to any other node

network, the packet

it is forwarded in the ‘down’

In storing nodes due to some memory constraints it is unable to store routing entries in
the routing table while in case of storing nodes it will store the routing table at each node.

8

This mode can be set by using the MOP bit of RPL packet header. MOP is a 4 bit field.

MOP Description

0 No Downward routes maintained

1 Non Storing mode

2 Storing mode with no multicast support

3 Storing mode with multicast support

Table2.1 MOP field description

2.2.3 Loop Avoidance and Loop Detection

Loops are a major concern in any network, therefore it is important to detect and avoid

them. Loops are basically formed due to changes in some topology and lack of

synchronization between nodes.

RPL provides certain mechanism for loop avoidance and detection based on some rules.

The two rules specified in the RPL are:

 Max_Dept Rule, which states that a node can’t make a node its parent whose

rank is more than the current node

 A node is not allowed to change its rank to attract more traffic.[5]

2.2.4 Global and Local Repair

There are basically two repair mechanisms that RPL supports namely Global and Local

Repair.

Local Repair is launched when there is a link failure or no path is found between nodes.

While Global Repair is launched after local repair, because after local repair is launched

shape of the graph may start to change therefore global repair is required to maintain the

shape of the graph. Global Repair constructs the graph from the scratch.

2.3 Taxonomy of Attacks in RPL based Internet of Things

[6][7] Discussed that the

attacks and mainly divided

exhaustion of network re

category of attacks in RPL targets the network to

further divided into two categories: sub

third category targets the RPL network traffic.

2.3.1 DAO Inconsistency

A DAO Inconsistency Attack in RPL networks is

node which uses the "F" flag to make RPL routers remove legitimate downward routes

and thus isolates nodes from DODAG Graph. This F flag is pre

header.c and by modifying this flag this attack is implemented.

Taxonomy of Attacks in RPL based Internet of Things

 RPL protocol designed for IPv6 is exposed to a wide variet

attacks and mainly divided into three categories. The first category of attacks targets the

of network resources such as, memory, energy and power.

in RPL targets the network topology. The attacks on topology

wo categories: sub-optimization attacks and isolation attacks

argets the RPL network traffic.

Figure 2.2 Taxonomy of Attacks

3.1 DAO Inconsistency Attack

A DAO Inconsistency Attack in RPL networks is in which an attacker makes malicious

node which uses the "F" flag to make RPL routers remove legitimate downward routes

and thus isolates nodes from DODAG Graph. This F flag is present in the rpl

header.c and by modifying this flag this attack is implemented.

9

is exposed to a wide variety of

category of attacks targets the

and power. The second

pology. The attacks on topology is

optimization attacks and isolation attacks. The

in which an attacker makes malicious

node which uses the "F" flag to make RPL routers remove legitimate downward routes

sent in the rpl-extension-

10

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 Use of RPL Network

In DAO inconsistency attack, a malicious node isolates all the nodes associated with it.

By doing this, the malicious node cannot collect any DAO messages from the higher rank

node linked with it. Simulations are done using Cooja Simulator that consists of the

collection of all network protocols. To simulate DAO inconsistency attack a code is

written using C language which involves the implementation of DODAG which comes

under RPL networking. Having implemented the routing protocol which simulates the

DAO inconsistency attack, network performance is compared with and without the attack

in the network.

3.2 Network Topologies

We implemented our attack on two topologies which are discussed below:

 Grid Placement of Nodes (fig 3.1)

 Linear Placement of Nodes (fig 3.4)

3.2.1 Grid Placement of Nodes

We implemented our attack on a Grid placement of 35 nodes in which Node 35 was the

sink node and we implemented our attack on Node 8 in first scenario as shown in fig 3.2

which was renamed as Node 36 and on node 28 in second scenario as shown in fig 3.3

which was also renamed as node 36. We made node 8 and node 28 as malicious by

changing the code of the rpl-ext-header.c and rpl-icmp6.c.

Figure

Figure 3.1 Grid Placement of Nodes without Attack

Figure 3.2 Grid Placement of Nodes with Attack (Node 8/36)

11

Figure

3.2.2 Linear Placement

Then we implemented our attack on a linear

the sink node and we implemented our attack on Node 5 which was renamed as Node 11

as shown in fig 3.5. We made node 5 as malicious by chan

header.c and rpl-icmp6.c.

Figure 3.3 Grid Placement of Nodes with Attack (Node 28/36)

 of Nodes

Then we implemented our attack on a linear Placement of 10 nodes in which Node 1 was

the sink node and we implemented our attack on Node 5 which was renamed as Node 11

. We made node 5 as malicious by changing the code of rpl

icmp6.c.

12

of 10 nodes in which Node 1 was

the sink node and we implemented our attack on Node 5 which was renamed as Node 11

ging the code of rpl-ext-

Figure

Figure

Figure 3.4 Linear Placement of Nodes without Attack

Figure 3.5 Linear Placement of Nodes with Attack (Node 5/11)

13

PERFORMANCE ANALYSIS

In this Chapter we analyzed a network in two

discuss some of the differences that we observed in both the scenarios like:

 Sensor Map

 Average Power Consumption

 Average Radio Duty Cycle

 Power History

4.1 Attack on Grid Placement

4.1.1 Scenario 1 (With

4.1.1.1 Analysis of Sensor Map

“Sensor map depicts the relationship between parent and child nodes.

In the given scenario Node 35 is the Sink node and Node 8 has Node 3 and Node 7 as its

child node and its parent is Node 13

CHAPTER 4

PERFORMANCE ANALYSIS

In this Chapter we analyzed a network in two different radio environments

discuss some of the differences that we observed in both the scenarios like:

Average Power Consumption

Average Radio Duty Cycle

Placement of Nodes

Scenario 1 (With Attack on Node 8)

Analysis of Sensor Map

Sensor map depicts the relationship between parent and child nodes.”

In the given scenario Node 35 is the Sink node and Node 8 has Node 3 and Node 7 as its

child node and its parent is Node 13 as shown in fig 4.1.

14

different radio environments. We will

discuss some of the differences that we observed in both the scenarios like:-

In the given scenario Node 35 is the Sink node and Node 8 has Node 3 and Node 7 as its

Now we implement our attack on Node 8 as Node 36 by attacking it and making it a

malicious node. As you can observe from the figure 4.2

8) has now no child. This confirms that our attack has been successfully implemented

since now Node 36 has isolated its children from the root and the network topology has

changed.

Node

1

2

3

4

5

6

Figure 4.1 Network without Attacked node

Now we implement our attack on Node 8 as Node 36 by attacking it and making it a

you can observe from the figure 4.2 that now Node 36 (Actually Node

his confirms that our attack has been successfully implemented

since now Node 36 has isolated its children from the root and the network topology has

Figure 4.2 Network with Attacked node 8

Table 4.1 Total Packets received by each Node

Without Attack With Attack

28 12

28 13

20 13

29 14

29 13

28 14

15

Now we implement our attack on Node 8 as Node 36 by attacking it and making it a

that now Node 36 (Actually Node

his confirms that our attack has been successfully implemented

since now Node 36 has isolated its children from the root and the network topology has

16

7 27 13

8/36 28 13

9 29 13

10 28 13

11 29 14

12 20 12

13 28 11

14 28 13

15 29 14

16 28 14

17 20 13

18 29 14

19 29 14

20 29 13

21 29 14

22 26 13

23 29 13

24 29 14

25 29 12

26 29 14

27 29 13

28 28 13

29 28 14

30 20 13

31 28 13

32 20 13

33 29 11

34 28 11

35 0 0

As you can see from the table 4.1 that no. of packets received by Node 8/36 has decreased

from 28 to 13 because of no children associated with it.

17

4.1.1.2 Analysis of Average Power Consumption

“We define power consumption profiling as the process of parameterizing a network node

(or nodes) power consumption in terms of its (their) workload.”

In the given scenario, there is no attack implemented on Node 8. The power consumed by

Node 8 is 1.527mW from table 4.2.

Table 4.2 Analysis of Power Consumption without attack

Node Listen Power Transmit Power Power

1 0.510 0.103 1.121

2 0.465 0.132 1.077

3 0.484 0.109 1.096

4 0.494 0.227 1.227

5 0.556 0.328 1.405

6 0.536 0.248 1.305

7 0.713 0.244 1.514

8 0.634 0.348 1.527

9 0.531 0.254 1.296

10 0.499 0.234 1.240

11 0.528 0.219 1.263

12 0.730 0.547 1.850

13 0.623 0.415 1.588

14 0.572 0.339 1.438

15 0.464 0.136 1.084

16 0.532 0.286 1.332

17 0.519 0.222 1.250

18 0.466 0.146 1.095

19 0.511 0.288 1.321

20 0.536 0.260 1.313

21 0.465 0.150 1.107

22 0.467 0.133 1.080

23 0.449 0.124 1.063

24 0.551 0.245 1.315

25 0.720 0.553 1.845

26

27

28

29

30

31

32

33

34

Avg

Fig 4.3 shows the power consumed by all the nodes in the graphical format without

attack.

Figure 4.3 Average Power Consumption without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node 8. The

power consumed by Node 8 is 1.213mW

the attack the power consumed by Node 8 has decreased by 0.314mW since node 8 has

no child and the number of packets received by it has decreased.

0.557 0.276 1.357

0.511 0.155 1.164

0.483 0.197 1.180

0.473 0.141 1.114

0.661 0.170 1.373

0.648 0.458 1.666

0.574 0.344 1.443

0.535 0.269 1.320

0.510 0.103 1.121

0.549 0.249 1.364

Fig 4.3 shows the power consumed by all the nodes in the graphical format without

Figure 4.3 Average Power Consumption without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node 8. The

power consumed by Node 8 is 1.213mW from table 4.3. So, we can observe that due to

the attack the power consumed by Node 8 has decreased by 0.314mW since node 8 has

no child and the number of packets received by it has decreased.

18

Fig 4.3 shows the power consumed by all the nodes in the graphical format without

In the given scenario, there is DAO inconsistency attack implemented on Node 8. The

. So, we can observe that due to

the attack the power consumed by Node 8 has decreased by 0.314mW since node 8 has

19

Table 4.3 Analysis of Power Consumption with attack on Node 8

Node Listen Power Transmit Power Power

1 0.478 0.180 1.148

2 0.502 0.194 1.199

3 0.496 0.220 1.214

4 0.560 0.245 1.316

5 0.620 0.471 1.642

6 0.562 0.253 1.325

7 0.559 0.291 1.367

8 0.487 0.238 1.213

9 0.750 0.472 1.780

10 0.637 0.464 1.646

11 0.816 0.915 2.339.

12 0.737 0.478 1.789

13 0.600 0.134 1.263

14 0.812 0.772 2.192

15 0.619 0.292 1.427

16 0.642 0.422 1.602

17 0.548 0.116 1.163

18 0.461 0.180 1.129

19 0.742 0.281 1.585

20 0.521 0.260 1.290

21 0.583 0.321 1.428

22 0.717 0.666 1.965

23 0.655 0.193 1.379

24 0.878 1.035 2.552

25 0.565 0.186 1.256

26 0.629 0.521 1.704

27 0.592 0.320 1.448

28 0.589 0.292 1.413

29 0.654 0.350 1.541

30 0.498 0.223 1.224

31 0.506 0.260 1.264

32 0.502 0.178 1.183

33

34

Avg

Fig 4.4 shows the power consumed by all the nodes in the graphical format with

Node 8/36.

Figure 4.4 Average Power C

4.1.1.3 Analysis of Average Radio Duty Cycle

“Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

determination of total energy output.

In the given scenario, there is no attack implemented on Node 8. The Average Radio

Duty Cycle of Node 8 is 2.01

0.500 0.200 1.205

0.525 0.230 1.265

0.604 0349 1.484

shows the power consumed by all the nodes in the graphical format with

Figure 4.4 Average Power Consumption with Attacked Node 8/36

Analysis of Average Radio Duty Cycle

Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

determination of total energy output.”

n scenario, there is no attack implemented on Node 8. The Average Radio

Duty Cycle of Node 8 is 2.01 from fig 4.5.

20

shows the power consumed by all the nodes in the graphical format with attack on

Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

n scenario, there is no attack implemented on Node 8. The Average Radio

Figure 4.5 Average Radio Duty Cycle without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node

Average Radio Duty Cycle of Node 8 is 1.25

the attack the Average Radio Duty Cycle of Node 8 has decreased by a factor of 0.76.

Figure 4.6 Average Radio Duty Cycle with Attacked Node

Figure 4.5 Average Radio Duty Cycle without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node

Average Radio Duty Cycle of Node 8 is 1.25 from fig 4.6. So, we can observe that due to

the attack the Average Radio Duty Cycle of Node 8 has decreased by a factor of 0.76.

Figure 4.6 Average Radio Duty Cycle with Attacked Node 8/36

21

In the given scenario, there is DAO inconsistency attack implemented on Node 8. The

. So, we can observe that due to

the attack the Average Radio Duty Cycle of Node 8 has decreased by a factor of 0.76.

4.1.1.4 Analysis of Power History

In the given scenario, there is no attack implemented on Node 8. Node 8’s initial power

consumption is high and even the overall power consumption is high

number of children to which the root can send packets through No

4.7.

Figure 4.7 Historical Power Consumption of Node 8 without Attack

Figure 4.8 Historical Power Consumption of Node 8 with Attack

ysis of Power History

In the given scenario, there is no attack implemented on Node 8. Node 8’s initial power

and even the overall power consumption is high

number of children to which the root can send packets through Node 8

Figure 4.7 Historical Power Consumption of Node 8 without Attack

Figure 4.8 Historical Power Consumption of Node 8 with Attack

22

In the given scenario, there is no attack implemented on Node 8. Node 8’s initial power

and even the overall power consumption is high because it has

de 8 as shown in fig

In the scenario given above Fig 4.8

Node 8. Node 8’s initial power consumption is high but

low because it has no child to which it can forward the packets.

4.1.2 Scenario 2 (With Attack on Node 28)

4.1.2.1 Analysis of Sensor Map

“Sensor map depicts the relationship between parent and child nodes.

In the given scenario, Node 35 is the Sink node and Node 28 has Node 33 and Node 27as

its child node and its parent is Node 23

Now we implement our attack on Node 28 by attacking it and making it a malicious node.

As you can observe from the figure given below that now Node 36 (Actually Node 11)

has no child now as shown in fig 4.10

implemented since now Node 28 attracts less traffic as compared to before and the

network topology has changed.

e scenario given above Fig 4.8, there is DAO inconsistency attack implemented on

Node 8. Node 8’s initial power consumption is high but the overall power consumption is

because it has no child to which it can forward the packets.

Scenario 2 (With Attack on Node 28)

Analysis of Sensor Map

Sensor map depicts the relationship between parent and child nodes.”

In the given scenario, Node 35 is the Sink node and Node 28 has Node 33 and Node 27as

its child node and its parent is Node 23 as shown in fig 4.9.

Figure 4.9 Network without Attacked node

Now we implement our attack on Node 28 by attacking it and making it a malicious node.

As you can observe from the figure given below that now Node 36 (Actually Node 11)

as shown in fig 4.10. This confirms that our attack has been successfully

implemented since now Node 28 attracts less traffic as compared to before and the

network topology has changed.

23

, there is DAO inconsistency attack implemented on

the overall power consumption is

In the given scenario, Node 35 is the Sink node and Node 28 has Node 33 and Node 27as

Now we implement our attack on Node 28 by attacking it and making it a malicious node.

As you can observe from the figure given below that now Node 36 (Actually Node 11)

t our attack has been successfully

implemented since now Node 28 attracts less traffic as compared to before and the

Node

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4.10 Network with Attacked node 28

Table 4.4 Total Packets received by each Node

Without Attack With Attack

28 21

28 25

20 25

29 24

29 23

28 24

27 24

28 25

29 24

28 24

29 23

20 24

28 24

28 24

29 25

24

25

16 28 25

17 20 24

18 29 23

19 29 25

20 29 24

21 29 25

22 26 25

23 29 24

24 29 24

25 29 25

26 29 25

27 29 24

28 28 23

29 28 23

30 20 25

31 28 24

32 20 23

33 29 25

34 28 24

35 0 0

As you can see from the table 4.4 that no. of packets received by Node 28 has decreased

from 28 to 23 because of no child which results in less traffic through Node 28. This

shows that Node 28 attracts more less when we implement our attack as compared to the

normal environment.

4.1.2.1 Analysis of Average Power Consumption

“We define power consumption profiling as the process of parameterizing a network node

(or nodes) power consumption in terms of its (their) workload.”

In the given scenario, there is no attack implemented on Node 28. The power consumed

by Node 28 is 1.180mW from table 4.5.

26

Table 4.5 Analysis of Power Consumption without attack

Node Listen Power Transmit Power Power

1 0.510 0.103 1.121

2 0.465 0.132 1.077

3 0.484 0.109 1.096

4 0.494 0.227 1.227

5 0.556 0.328 1.405

6 0.536 0.248 1.305

7 0.713 0.244 1.514

8 0.634 0.348 1.527

9 0.531 0.254 1.296

10 0.499 0.234 1.240

11 0.528 0.219 1.263

12 0.730 0.547 1.850

13 0.623 0.415 1.588

14 0.572 0.339 1.438

15 0.464 0.136 1.084

16 0.532 0.286 1.332

17 0.519 0.222 1.250

18 0.466 0.146 1.095

19 0.511 0.288 1.321

20 0.536 0.260 1.313

21 0.465 0.150 1.107

22 0.467 0.133 1.080

23 0.449 0.124 1.063

24 0.551 0.245 1.315

25 0.720 0.553 1.845

26 0.557 0.276 1.357

27 0.511 0.155 1.164

28 0.483 0.197 1.180

29 0.473 0.141 1.114

30 0.661 0.170 1.373

31 0.648 0.458 1.666

32 0.574 0.344 1.443

33

34

Avg

Fig 4.11 shows the power consumed by all the nodes in the graphical format without

attack.

Figure 4.11

In the given scenario, there is DAO inconsistency attack implemented on Node 28. The

power consumed by Node 28 is 1.005mW

the attack the power consumed by Node

no child and the number of packets received by it has decreased.

Table 4.5

Node

1

2

3

4

5

6

0.535 0.269 1.320

0.510 0.103 1.121

0.549 0.249 1.364

Fig 4.11 shows the power consumed by all the nodes in the graphical format without

Figure 4.11 Average Power Consumption without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node 28. The

power consumed by Node 28 is 1.005mW from table 4.5. So, we can observe that due to

the attack the power consumed by Node 28 has decreased by 0.175mW since node 28 has

no child and the number of packets received by it has decreased.

Table 4.5 Analysis of Power Consumption with attack on Node 28

Listen Power Transmit Power Power

0.454 0.178 1.121

0.498 0.194 1.197

0.561 0.268 1.347

0.481 0.179 1.157

0.448 0.135 1.063

0.472 0.142 1.106

27

Fig 4.11 shows the power consumed by all the nodes in the graphical format without

In the given scenario, there is DAO inconsistency attack implemented on Node 28. The

. So, we can observe that due to

28 has decreased by 0.175mW since node 28 has

28

7 0.578 0.295 1.402

8 0.795 0.702 2.096

9 0.537 0.247 1.304

10 0.491 0.160 1.148

11 0.471 0.167 1.133

12 0.459 0.122 1.077

13 0.645 0.195 1.379

14 0.539 0.254 1.309

15 0.583 0.339 1.446

16 0.541 0.290 1.347

17 0.499 0.089 1.092

18 0.461 0.136 1.088

19 0.541 0.120 1.174

20 0.622 0.502 1.670

21 0.528 0.256 1.293

22 0.673 0.446 1.678

23 0.679 0.295 1.538

24 0.613 0.412 1.576

25 0.512 0.137 1.142

26 0.475 0.156 1.126

27 0.519 0.163 1.192

28 0.431 0.109 1.005

29 0.560 0.301 1.395

30 0.465 0.128 1.084

31 0.447 0.110 1.046

32 0.476 0.156 1.130

33 0.450 0.140 1.074

34 0.466 0.127 1.085

Avg 0.528 0.225 1.265

Fig 4.12 shows the power consumed by all the nodes in the graphical format with attack

on Node 28/36.

Figure 4.12 Average Power Consumption with Attacked Node 28

4.1.2.3 Analysis of Average Radio Duty Cycle

“Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

determination of total energy output.

In the given scenario, there is no attack implemented on Node 28. The Average Radio

Duty Cycle of Node 28 is 1.3

Figure 4.12 Average Power Consumption with Attacked Node 28

Analysis of Average Radio Duty Cycle

Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

determination of total energy output.”

In the given scenario, there is no attack implemented on Node 28. The Average Radio

Duty Cycle of Node 28 is 1.3 from fig 4.13.

29

Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

In the given scenario, there is no attack implemented on Node 28. The Average Radio

Figure 4.13

In the given scenario, there is DAO inconsistency attack implemented on Node 28. The

Average Radio Duty Cycle of Node 28 is 0.9

to the attack the Average

Figure 4.14 Average Radio Duty Cycle with Attacked Node 28

Figure 4.13 Average Radio Duty Cycle without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node 28. The

Average Radio Duty Cycle of Node 28 is 0.9 from fig 4.14. So, we can observe that due

 Radio Duty Cycle of Node 28 has decreased by a factor of 0.4.

Figure 4.14 Average Radio Duty Cycle with Attacked Node 28

30

In the given scenario, there is DAO inconsistency attack implemented on Node 28. The

. So, we can observe that due

Radio Duty Cycle of Node 28 has decreased by a factor of 0.4.

4.1.2.4 Analysis of Power History

In the given scenario, there is no attack implemented on Node 28. Node 28’s initial power

consumption is high and even the overall power consumption is high

number of children to which the root can send packets through Node 28

4.15.

Figure 4.15

Figure 4.16

Analysis of Power History

In the given scenario, there is no attack implemented on Node 28. Node 28’s initial power

and even the overall power consumption is high

number of children to which the root can send packets through Node 28

Figure 4.15 Historical Power Consumption of Node 28 without Attack

Figure 4.16 Historical Power Consumption of Node 28 with Attack

31

In the given scenario, there is no attack implemented on Node 28. Node 28’s initial power

and even the overall power consumption is high because it has

number of children to which the root can send packets through Node 28 as shown in fig

In the scenario given above Fig 4.16

Node 28. Node 28’s initial power consumption is high but

is low because it has no ch

4.2 Attack on Linear

4.2.1 Analysis of Sensor Map

“Sensor map depicts the relationship between parent and child nodes.

In the given scenario, Node 1 is the Sink node and Node 5 has Node 6 as its

and its parent is Node 4 as shown in fig 4.17

Now we implement our attack on Node 5 by attacking it and making it a malicious node.

As you can observe from the figure given below that now Node 5

shown in fig 4.18. This confirms that our attack has been successfully implemented since

e scenario given above Fig 4.16, there is DAO inconsistency attack implemented on

Node 28. Node 28’s initial power consumption is high but the overall power consumption

because it has no child to which it can forward the packets.

Attack on Linear Placement of Nodes

Analysis of Sensor Map

Sensor map depicts the relationship between parent and child nodes.”

In the given scenario, Node 1 is the Sink node and Node 5 has Node 6 as its

as shown in fig 4.17.

Figure 4.17 Network without Attacked node

Now we implement our attack on Node 5 by attacking it and making it a malicious node.

As you can observe from the figure given below that now Node 5 now has no child

. This confirms that our attack has been successfully implemented since

32

, there is DAO inconsistency attack implemented on

the overall power consumption

In the given scenario, Node 1 is the Sink node and Node 5 has Node 6 as its child node

Now we implement our attack on Node 5 by attacking it and making it a malicious node.

now has no child as

. This confirms that our attack has been successfully implemented since

now Node 5 has isolated its children and their subnetwork and the network topology has

changed.

Node

1

2

3

4

5

6

7

8

9

10

now Node 5 has isolated its children and their subnetwork and the network topology has

Figure 4.18 Network with Attacked node 5

Table 4.7 Total Packets received by each Node

Without Attack With Attack

0 0

116 62

115 63

115 61

115 63

114 -

114 -

116 -

116 -

114 -

33

now Node 5 has isolated its children and their subnetwork and the network topology has

34

As you can see from table 4.7 that no. of packets received by Node 5 has decreased from

115 to 63 because of no children associated with it. This shows that Node 5 has isolated

its children and their subnetwork when we implement our attack as compared to the

normal environment.

4.1.2 Analysis of Average Power Consumption

“We define power consumption profiling as the process of parameterizing a network node

(or nodes) power consumption in terms of its (their) workload.”

In the given scenario, there is no attack implemented on Node 5. The power consumed by

Node 5 is 1.877mW from table 4.8.

Table 4.8 Analysis of Power Consumption without attack

Node Listen Power Transmit Power Power

1 0 0 0

2 0.521 0.066 1.077

3 0.692 0.567 1.812

4 0.649 0.307 1.473

5 0.682 0.637 1.877

6 0.623 0.382 1.526

7 0.591 0.340 1.445

8 0.527 0.228 1.251

9 0.489 0.215 1.198

10 0.447 0.120 1.038

Avg 0.580 0.318 1.411

Fig 4.19 shows the power consumed by all the nodes in the graphical format without

attack.

Figure 4.19 Average Power Consumption

In the given scenario, there is DAO inconsistency attack implemented on Node 5. The

power consumed by Node 5 is 0.990mW

the attack the power consumed by Node 5 has decreased by 0.887mW.

Table 4.8

Node

1

2

3

4

5

6

7

8

9

10

Avg

Fig 4.20 shows the power consumed by all the nodes in the graphical format with attack

on Node 5/11.

Figure 4.19 Average Power Consumption without Attacked Node

In the given scenario, there is DAO inconsistency attack implemented on Node 5. The

power consumed by Node 5 is 0.990mW from table 4.8. So, we can observe that due to

the attack the power consumed by Node 5 has decreased by 0.887mW.

Table 4.8 Analysis of Power Consumption with attack on Node 10

Listen Power Transmit Power Power

0 0 0

0.439 0.045 0.956

0.499 0.233 1.229

0.480 0.133 1.097

0.428 0.098 0.990

- - -

- - -

- - -

- - -

- - -

0.461 0.127 1.068

shows the power consumed by all the nodes in the graphical format with attack

35

In the given scenario, there is DAO inconsistency attack implemented on Node 5. The

. So, we can observe that due to

shows the power consumed by all the nodes in the graphical format with attack

Figure 4.20 Average Power Consumption with Attacked Node 5

4.1.3 Analysis of Average Radio Duty Cycle

“Duty cycle (or duty factor) is a

transmitting. It is important because it relates to peak and average power in the

determination of total energy output.

In the given scenario, there is no attack implemented on Node 5. The Average Radio

Duty Cycle of Node 5 is 2.32

 Figure 4.21

Figure 4.20 Average Power Consumption with Attacked Node 5

Analysis of Average Radio Duty Cycle

Duty cycle (or duty factor) is a measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

determination of total energy output.”

In the given scenario, there is no attack implemented on Node 5. The Average Radio

Cycle of Node 5 is 2.32 from fig 4.21.

Figure 4.21 Average Radio Duty Cycle without Attacked Node

36

measure of the fraction of the time a radar is

transmitting. It is important because it relates to peak and average power in the

In the given scenario, there is no attack implemented on Node 5. The Average Radio

In the given scenario, there is DAO inconsistency attack implemented on Node 5. The

Average Radio Duty Cycle of Node 5 is

to the attack the Average Radio Duty Cycle of Node 5 has decreased by a factor of 1.32.

Figure 4.22

4.1.4 Analysis of Power History

In the given scenario, there is no attack implemented on Node 5. Node 5’s initial power

consumption is high and

which can send its packet through Node 5

In the given scenario, there is DAO inconsistency attack implemented on Node 5. The

Average Radio Duty Cycle of Node 5 is 0.90 from fig 4.22. So, we can observe that due

to the attack the Average Radio Duty Cycle of Node 5 has decreased by a factor of 1.32.

Figure 4.22 Average Radio Duty Cycle with Attacked Node 5

Analysis of Power History

ere is no attack implemented on Node 5. Node 5’s initial power

consumption is high and overall power consumption is also high because it has a child

which can send its packet through Node 5 as shown in fig 4.23.

37

In the given scenario, there is DAO inconsistency attack implemented on Node 5. The

. So, we can observe that due

to the attack the Average Radio Duty Cycle of Node 5 has decreased by a factor of 1.32.

ere is no attack implemented on Node 5. Node 5’s initial power

because it has a child

Figure 4.23

Figure 4.24

In the given scenario, there is DAO inconsistency attack implemented on Node 5

shown in fig 4.24. Node 5’s initial power consumption is low and

consumption is also low

packets.

Figure 4.23 Historical Power Consumption of Node 5 without Attack

Figure 4.24 Historical Power Consumption of Node 5 with Attack

In the given scenario, there is DAO inconsistency attack implemented on Node 5

. Node 5’s initial power consumption is low and

 because it is now a leaf node, therefore it cannot forward any

38

In the given scenario, there is DAO inconsistency attack implemented on Node 5 as

. Node 5’s initial power consumption is low and overall power

because it is now a leaf node, therefore it cannot forward any

39

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

We implemented the DAO inconsistency attack on two different topologies and

successfully analyzed it by analyzing its sensor map, power, radio duty cycle and no of

packets both in attacked environment and normal environment. Now taking the case of

Grid placement of node we observed that whenever the attacking node is introduced in

the network it isolates the subnetwork below it, but the nodes of the subnetwork lies in

the vicinity of the nodes connected to the root node, thus the isolated sub graph gets again

connected to the network through the nearby node according to the applied metrics in

objective function. Now in the second case that is Linear Placement of nodes when the

subgraph or node below the attacking node gets isolated then none of the other node lies

in the vicinity of it thus the subgraph gets totally isolated from the network and cannot

reconnect to the network. So from these observation we can conclude that Grid Placement

of Nodes is better than Linear Placement of nodes as in case of Grid Placement we can

40

reconnect to the network just by increasing the cost of the network that is in terms of

metrics applied but the same is not possible for Linear placement .

5.2 Future Scope

Study for understanding wireless network security in low power and lossy networks for

attacks such as Sink Hole (an extension of DAO Inconsistency Attack). Also, we would

continue our analysis of relation of RPL with IPv6 Neighbor Discovery, with 6LoWPAN.

Our project for reducing power consumption in DAO Inconsistency Attack will be taken

up. Developing skills to use Cooja is also important for us to deal with these networks.

CHAPTER 6

REFRENCES

[1] Vikrant Negi internet of thing, seminar report ,2008,pp. 1-4.

[2] Shi Yan-rong, Hou Tao, Internet of Things key technologies and architectures

research in information processing in Proceedings of the 2nd International Conference on

Computer Science and Electronics Engineering (ICCSEE), 2013

[3] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini and Imrich Chlamtac,

Internet of Things: Vision, applications and research challenges, in Ad Hoc Networks,

2012, pp.1497-1516

[4] Luigi Atzori, Antonio Iera, Giacomo Morabito, The Internet of Things: A Survey, in

Computer Networks, pp. 2787-2805

[5] JP Vasseur, Navneet Agarwal, Jonathan Hui, Zach Shelby, Paul Bertrand, Cedric

Chauvenet, RPL: The IP routing protocol designed for low power and lossy networks

41

Internet Protocol for Smart Objects, (IPSO) Alliance, April 2011, pp 5-13

[6] Anthea Mayzaud, Remi Badonnel, Isabelle Chrisment, A Taxonomy of Attacks in

RPL-based Internet of Thing, in International Journal of Network Security, August 2015,

pp 3-12

[7] Arvind Kumar, Rakesh Matam, Shailendra Shukla, Impact of Packet Dropping

Attacks on RPL, in Computer Networks, 2016, pp 3-5

[8] Anuj Sehgal ; Anthéa Mayzaud ; Rémi Badonnel ; Isabelle Chrisment ; Jürgen

Schönwälder, Addressing DODAG inconsistency attacks in RPL networks, Dec 2014, pp

3-5

[9] Zach Shelby, Carsten Bormann, 6LoWPAN The Wireless Embedded Internet.

[10] T. Winter et. al, RPL: IPv6 Routing protocol for Low power and Lossy

Networks, Internet Draft draft-ietf-roll-rpl-17 Retreived, June 2015.

[11] Contiki Operating Systems Website: http://www.contiki-os.org Retreived:,

July,2015.

[12] Heddeghem W V, Cross-Layer link estimation for Contiki based wireless

sensor networks: PhD Thesis, Vrije University. May,2012.

[13] Geoff Mulligan, The 6LoWPAN architecture, EmNets 2007: Proceedings

of the 4th workshop on Embedded networked sensors, ACM, 2007.

[14] Anhtuan L, Jonathan L, Aboubaker L, Mahdi A and Yuan L, 6LoWPAN:

a study on QoS security threats and countermeasures Using intrusion detection

system approach International Journal of Communication systems,

2012, pp. 1-20.

[15] Luigi Atzori, Antonio Iera, Giacomo Morabito, The Internet of Things:

42

A Survey, In Computer Networks, pp. 2787-2805.

43

CHAPTER 7

APPENDICES

 7.1 Code Snippets

7.1.1 Sender.c File

#include "contiki.h"

#include "net/uip.h"

#include "net/uip-ds6.h"

#include "net/uip-udp-packet.h"

#include "net/rpl/rpl.h"

#include "dev/serial-line.h"

#if CONTIKI_TARGET_Z1

#include "dev/uart0.h"

#else

#include "dev/uart1.h"

#endif

#include "collect-common.h"

#include "collect-view.h"

#include <stdio.h>

#include <string.h>

#define UDP_CLIENT_PORT 8775

#define UDP_SERVER_PORT 5688

#define DEBUG DEBUG_PRINT

#include "net/uip-debug.h"

static struct uip_udp_conn *client_conn;

static uip_ipaddr_t server_ipaddr;

44

/*---*/

PROCESS(udp_client_process, "UDP client process");

AUTOSTART_PROCESSES(&udp_client_process, &collect_common_process);

/*---*/

void

collect_common_set_sink(void)

{

 /* A udp client can never become sink */

}

/*---*/

void

collect_common_net_print(void)

{

 rpl_dag_t *dag;

 uip_ds6_route_t *r;

 /* Let's suppose we have only one instance */

 dag = rpl_get_any_dag();

 if(dag->preferred_parent != NULL) {

 PRINTF("Preferred parent: ");

 PRINT6ADDR(rpl_get_parent_ipaddr(dag->preferred_parent));

 PRINTF("\n");

 }

 for(r = uip_ds6_route_head();

 r != NULL;

 r = uip_ds6_route_next(r)) {

 PRINT6ADDR(&r->ipaddr);

 }

 PRINTF("---\n");

}

/*---*/

45

static void

tcpip_handler(void)

{

 if(uip_newdata()) {

 /* Ignore incoming data */

 }

}

/*---*/

void

collect_common_send(void)

{

 static uint8_t seqno;

 struct {

 uint8_t seqno;

 uint8_t for_alignment;

 struct collect_view_data_msg msg;

 } msg;

 /* struct collect_neighbor *n; */

 uint16_t parent_etx;

 uint16_t rtmetric;

 uint16_t num_neighbors;

 uint16_t beacon_interval;

 rpl_parent_t *preferred_parent;

 rimeaddr_t parent;

 rpl_dag_t *dag;

 if(client_conn == NULL) {

 /* Not setup yet */

 return;

 }

 memset(&msg, 0, sizeof(msg));

 seqno++;

46

 if(seqno == 0) {

 /* Wrap to 128 to identify restarts */

 seqno = 128;

 }

 msg.seqno = seqno;

 rimeaddr_copy(&parent, &rimeaddr_null);

 parent_etx = 0;

 /* Let's suppose we have only one instance */

 dag = rpl_get_any_dag();

 if(dag != NULL) {

 preferred_parent = dag->preferred_parent;

 if(preferred_parent != NULL) {

 uip_ds6_nbr_t *nbr;

 nbr = uip_ds6_nbr_lookup(rpl_get_parent_ipaddr(preferred_parent));

 if(nbr != NULL) {

 /* Use parts of the IPv6 address as the parent address, in reversed byte order. */

 parent.u8[RIMEADDR_SIZE - 1] = nbr->ipaddr.u8[sizeof(uip_ipaddr_t) - 2];

 parent.u8[RIMEADDR_SIZE - 2] = nbr->ipaddr.u8[sizeof(uip_ipaddr_t) - 1];

 parent_etx = rpl_get_parent_rank((rimeaddr_t *) uip_ds6_nbr_get_ll(nbr)) / 2;

 }

 }

 rtmetric = dag->rank;

 beacon_interval = (uint16_t) ((2L << dag->instance->dio_intcurrent) / 1000);

 num_neighbors = RPL_PARENT_COUNT(dag);

 } else {

 rtmetric = 0;

 beacon_interval = 0;

 num_neighbors = 0;

 }

47

 /* num_neighbors = collect_neighbor_list_num(&tc.neighbor_list); */

 collect_view_construct_message(&msg.msg, &parent,

 parent_etx, rtmetric,

 num_neighbors, beacon_interval);

 uip_udp_packet_sendto(client_conn, &msg, sizeof(msg),

 &server_ipaddr, UIP_HTONS(UDP_SERVER_PORT));

}

/*---*/

void

collect_common_net_init(void)

{

#if CONTIKI_TARGET_Z1

 uart0_set_input(serial_line_input_byte);

#else

 uart1_set_input(serial_line_input_byte);

#endif

 serial_line_init();

}

/*---*/

static void

print_local_addresses(void)

{

 int i;

 uint8_t state;

 PRINTF("Client IPv6 addresses: ");

 for(i = 0; i < UIP_DS6_ADDR_NB; i++) {

 state = uip_ds6_if.addr_list[i].state;

 if(uip_ds6_if.addr_list[i].isused &&

 (state == ADDR_TENTATIVE || state == ADDR_PREFERRED)) {

 PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);

48

 PRINTF("\n");

 /* hack to make address "final" */

 if (state == ADDR_TENTATIVE) {

 uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;

 }

 }

 }

}

/*---*/

static void

set_global_address(void)

{

 uip_ipaddr_t ipaddr;

 uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);

 uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);

 uip_ds6_addr_add(&ipaddr, 0, ADDR_AUTOCONF);

 /* set server address */

 uip_ip6addr(&server_ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 1);

}

/*---*/

PROCESS_THREAD(udp_client_process, ev, data)

{

 PROCESS_BEGIN();

 PROCESS_PAUSE();

 set_global_address();

 PRINTF("UDP client process started\n");

49

 print_local_addresses();

 /* new connection with remote host */

 client_conn = udp_new(NULL, UIP_HTONS(UDP_SERVER_PORT), NULL);

 udp_bind(client_conn, UIP_HTONS(UDP_CLIENT_PORT));

 PRINTF("Created a connection with the server ");

 PRINT6ADDR(&client_conn->ripaddr);

 PRINTF(" local/remote port %u/%u\n",

 UIP_HTONS(client_conn->lport), UIP_HTONS(client_conn->rport));

 while(1) {

 PROCESS_YIELD();

 if(ev == tcpip_event) {

 tcpip_handler();

 }

 }

 PROCESS_END();

}

/*---*/

7.1.2 Sink.c File

#include "contiki.h"

#include "contiki-lib.h"

#include "contiki-net.h"

#include "net/ip/uip.h"

50

#include "net/rpl/rpl.h"

#include "net/linkaddr.h"

#include "net/netstack.h"

#include "dev/button-sensor.h"

#include "dev/serial-line.h"

#if CONTIKI_TARGET_Z1

#include "dev/uart0.h"

#else

#include "dev/uart1.h"

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "collect-common.h"

#include "collect-view.h"

#define DEBUG DEBUG_PRINT

#include "net/ip/uip-debug.h"

#define UIP_IP_BUF ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN])

#define UDP_CLIENT_PORT 8775

#define UDP_SERVER_PORT 5688

static struct uip_udp_conn *server_conn;

PROCESS(udp_server_process, "UDP server process");

AUTOSTART_PROCESSES(&udp_server_process,&collect_common_process);

/*---*/

void

51

collect_common_set_sink(void)

{

}

/*---*/

void

collect_common_net_print(void)

{

 printf("I am sink!\n");

}

/*---*/

void

collect_common_send(void)

{

 /* Server never sends */

}

/*---*/

void

collect_common_net_init(void)

{

#if CONTIKI_TARGET_Z1

 uart0_set_input(serial_line_input_byte);

#else

 uart1_set_input(serial_line_input_byte);

#endif

 serial_line_init();

 PRINTF("I am sink!\n");

}

/*---*/

static void

tcpip_handler(void)

{

52

 uint8_t *appdata;

 linkaddr_t sender;

 uint8_t seqno;

 uint8_t hops;

 if(uip_newdata()) {

 appdata = (uint8_t *)uip_appdata;

 sender.u8[0] = UIP_IP_BUF->srcipaddr.u8[15];

 sender.u8[1] = UIP_IP_BUF->srcipaddr.u8[14];

 seqno = *appdata;

 hops = uip_ds6_if.cur_hop_limit - UIP_IP_BUF->ttl + 1;

 printf("DATA recv '%u' from %u \n", seqno, sender.u8[0]);

 collect_common_recv(&sender, seqno, hops,

 appdata + 2, uip_datalen() - 2);

 }

}

/*---*/

static void

print_local_addresses(void)

{

 int i;

 uint8_t state;

 PRINTF("Server IPv6 addresses: ");

 for(i = 0; i < UIP_DS6_ADDR_NB; i++) {

 state = uip_ds6_if.addr_list[i].state;

 if(state == ADDR_TENTATIVE || state == ADDR_PREFERRED) {

 PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);

 PRINTF("\n");

 /* hack to make address "final" */

 if (state == ADDR_TENTATIVE) {

 uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;

53

 }

 }

 }

}

/*---*/

PROCESS_THREAD(udp_server_process, ev, data)

{

 uip_ipaddr_t ipaddr;

 struct uip_ds6_addr *root_if;

 PROCESS_BEGIN();

 PROCESS_PAUSE();

 SENSORS_ACTIVATE(button_sensor);

 PRINTF("UDP server started\n");

#if UIP_CONF_ROUTER

 uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 1);

 /* uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); */

 uip_ds6_addr_add(&ipaddr, 0, ADDR_MANUAL);

 root_if = uip_ds6_addr_lookup(&ipaddr);

 if(root_if != NULL) {

 rpl_dag_t *dag;

 dag = rpl_set_root(RPL_DEFAULT_INSTANCE,(uip_ip6addr_t *)&ipaddr);

 uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);

 rpl_set_prefix(dag, &ipaddr, 64);

 PRINTF("created a new RPL dag\n");

 } else {

 PRINTF("failed to create a new RPL DAG\n");

 }

54

#endif /* UIP_CONF_ROUTER */

 print_local_addresses();

 /* The data sink runs with a 100% duty cycle in order to ensure high

 packet reception rates. */

 NETSTACK_RDC.off(1);

 server_conn = udp_new(NULL, UIP_HTONS(UDP_CLIENT_PORT), NULL);

 udp_bind(server_conn, UIP_HTONS(UDP_SERVER_PORT));

 PRINTF("Created a server connection with remote address ");

 PRINT6ADDR(&server_conn->ripaddr);

 PRINTF(" local/remote port %u/%u\n", UIP_HTONS(server_conn->lport),

 UIP_HTONS(server_conn->rport));

 while(1) {

 PROCESS_YIELD();

 if(ev == tcpip_event) {

 tcpip_handler();

 } else if (ev == sensors_event && data == &button_sensor) {

 PRINTF("Initiaing global repair\n");

 rpl_repair_root(RPL_DEFAULT_INSTANCE);

 }

 }

 PROCESS_END();

}

/*---

55

